JP5560013B2 - Carburizing furnace and carburizing method - Google Patents

Carburizing furnace and carburizing method Download PDF

Info

Publication number
JP5560013B2
JP5560013B2 JP2009226142A JP2009226142A JP5560013B2 JP 5560013 B2 JP5560013 B2 JP 5560013B2 JP 2009226142 A JP2009226142 A JP 2009226142A JP 2009226142 A JP2009226142 A JP 2009226142A JP 5560013 B2 JP5560013 B2 JP 5560013B2
Authority
JP
Japan
Prior art keywords
carburizing
furnace
fan
carbon
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009226142A
Other languages
Japanese (ja)
Other versions
JP2011074435A (en
Inventor
俊明 大橋
文隆 虻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2009226142A priority Critical patent/JP5560013B2/en
Publication of JP2011074435A publication Critical patent/JP2011074435A/en
Application granted granted Critical
Publication of JP5560013B2 publication Critical patent/JP5560013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼材料の浸炭処理炉及び浸炭方法に関する。   The present invention relates to a carburizing treatment furnace and a carburizing method for steel materials.

鋼材料の浸炭処理方法としては、炭化水素系ガスと空気との混合ガスを原料として吸熱型変成ガス発生炉を用いて変成することで得られる変成ガス(エンドサーミックガス)をキャリアガスとし、このキャリアガスと共に所定のカーボンポテンシャルを得るためのエンリッチガスとして炭化水素系ガスを浸炭室内に供給して浸炭処理する方法(キャリアガスを用いたガス浸炭処理方法)が広く普及している。このガス浸炭処理方法では、浸炭室内雰囲気を構成するガス成分の濃度もしくは分圧を測定することにより、間接的に炭素ポテンシャルを算出し、その結果を元にエンリッチガスの供給量を調節することにより浸炭の制御が可能である。   As a carburizing method for steel materials, a modified gas (endthermic gas) obtained by using a mixed gas of hydrocarbon gas and air as a raw material and using an endothermic modified gas generator is used as a carrier gas. A method of carburizing by supplying a hydrocarbon-based gas as an enriched gas for obtaining a predetermined carbon potential together with a carrier gas into a carburizing chamber (a gas carburizing method using a carrier gas) has been widely used. In this gas carburizing treatment method, the carbon potential is indirectly calculated by measuring the concentration or partial pressure of the gas component constituting the atmosphere of the carburizing chamber, and the supply amount of the enriched gas is adjusted based on the result. Carburization can be controlled.

通常、このようなキャリアガスを用いたガス浸炭処理方法では、目標とする表面炭素濃度よりも高い雰囲気炭素ポテンシャルに設定することで、単位時間当たりの炭素侵入量を高めて処理時間の短縮を図っている。そして、続く拡散工程で炭素の拡散を行い、表面炭素濃度と浸炭深さの調整を行う。しかし、浸炭中の炭素ポテンシャルを高くするためにエンリッチガス(炭化水素ガス)を浸炭室内に供給しすぎるとスーティング発生(煤の発生)の危険性を生じるので、処理時間の短縮には限界がある。現在では、キャリアガスを用いたガス浸炭処理方法は、数ある浸炭方法の中で比較的確立された技術であるといえるが、エネルギーや地球環境の観点からはまだ十分であるとの言い難く、更なる改善が望まれている。その取り組みの一つとして、処理時間短縮が挙げられる。そして、処理時間短縮は、使用ガス量やエネルギーの低減にもつがなる。   Usually, in such a gas carburizing method using a carrier gas, the carbon intrusion amount per unit time is increased to shorten the processing time by setting the atmospheric carbon potential higher than the target surface carbon concentration. ing. In the subsequent diffusion step, carbon is diffused to adjust the surface carbon concentration and the carburization depth. However, if too much enriched gas (hydrocarbon gas) is supplied into the carburizing chamber to increase the carbon potential during carburizing, there is a risk of sooting (generation of soot), so there is a limit to shortening the processing time. is there. At present, it can be said that the gas carburizing method using carrier gas is a relatively established technology among the many carburizing methods, but it is difficult to say that it is still sufficient from the viewpoint of energy and the global environment. Further improvements are desired. One approach is to reduce processing time. The shortening of the processing time leads to a reduction in the amount of gas used and energy.

浸炭処理における炭素の挙動は、炭素が鋼表面に侵入する過程と、鋼表面の炭素が鋼内部に拡散する過程とからなる。このうち炭素が鋼表面に侵入する過程において、単位面積単位時間当たりの炭素浸入量J(g/cms)は、鋼表面近傍の雰囲気中の炭素濃度をCg(g/cm)、鋼表面の炭素濃度をCs(g/cm)とした場合、J=β(Cg−Cs)と表される。ここでβは炭素移行係数(cm/s)であり、雰囲気により値が変化することが知られている。式からわかるように、同じ時間浸炭したとしても、炭素移行係数βの値が大きいほど炭素浸入量が多くなる。すなわち、特定の深さまで炭素を浸入させる場合、βの値が大きいほど浸炭処理が短時間で終わる。
この炭素移行係数を大きくするために、66体積%以上74体積%以下の濃度の一酸化炭素を含有する雰囲気で鋼を浸炭する浸炭工程が提案されている。(特許文献1)
The behavior of carbon in the carburizing process includes a process in which carbon enters the steel surface and a process in which carbon on the steel surface diffuses into the steel. Among these, in the process of carbon entering the steel surface, the carbon intrusion amount J (g / cm 2 s) per unit area unit time is the carbon concentration in the atmosphere near the steel surface Cg (g / cm 3 ), steel When the surface carbon concentration is Cs (g / cm 3 ), J = β (Cg−Cs). Here, β is a carbon transfer coefficient (cm / s), and it is known that the value varies depending on the atmosphere. As can be seen from the equation, even when carburizing for the same time, the carbon infiltration amount increases as the value of the carbon transfer coefficient β increases. That is, when carbon is infiltrated to a specific depth, the carburizing process is completed in a shorter time as the value of β is larger.
In order to increase this carbon transfer coefficient, a carburizing process has been proposed in which steel is carburized in an atmosphere containing carbon monoxide at a concentration of 66 volume% or more and 74 volume% or less. (Patent Document 1)

また、雰囲気ガス中のCOガス濃度を高くすれば、浸炭時間が短縮されてコストを削減することができるので、35体積%以上の高CO濃度の変成ガスを長時間にわたって安定して効率的に発生することのできる浸炭雰囲気ガスの発生方法および装置が開示されている。(特許文献2)   In addition, if the CO gas concentration in the atmospheric gas is increased, the carburizing time can be shortened and the cost can be reduced, so that a high CO concentration metamorphic gas of 35% by volume or more can be stably and efficiently added over a long period of time. A method and apparatus for generating carburized atmosphere gas that can be generated is disclosed. (Patent Document 2)

特開2008−057039号公報JP 2008-057039 A 特開2004−332080号公報JP 2004-332080 A

しかしながら、本発明者らは浸炭処理において、被処理品の浸炭状態のバラツキがロット内(バッチ内)あるいはロット間でまだまだ大きいといった事実を知見した。そこで、本発明の目的は、このバラツキを改善し、安定した被処理品が得られる浸炭処理炉および浸炭方法を提供することにある。   However, the present inventors have found the fact that in the carburizing process, the variation in the carburized state of the products to be processed is still large within a lot (within a batch) or between lots. Accordingly, an object of the present invention is to provide a carburizing treatment furnace and a carburizing method capable of improving this variation and obtaining a stable product.

本発明者らは様々な検討の結果、炭素移行係数βを所定値以上とすること、具体的には炉内雰囲気を従来にないレベルで強力に攪拌することで、能力の高い浸炭状態に制御でき、ロット内、ロット間のバラツキも抑えることができることを知見した。   As a result of various studies, the inventors have set the carbon transfer coefficient β to a predetermined value or more, specifically, by vigorously stirring the furnace atmosphere at an unprecedented level, thereby controlling the carburized state with high ability. It was found that variations within and between lots can be suppressed.

上記知見に基づき、本発明によれば、浸炭処理炉内の鋼材を浸炭処理する浸炭方法であって、前記浸炭処理炉内の雰囲気を900〜1000℃の浸炭雰囲気とし、当該浸炭雰囲気内においてファンを1500rpm以上の回転数で回転させて撹拌を行い、前記浸炭処理炉内雰囲気から鋼材表面への炭素の侵入に関し炭素移行係数βが2.5×10−5cm/s以上であって、前記浸炭処理炉内のCO濃度が35vol%以下の雰囲気で浸炭処理することを特徴とする、鋼材の浸炭方法が提供される。
Based on the above knowledge, according to the present invention, there is provided a carburizing method for carburizing a steel material in a carburizing furnace , wherein the carburizing furnace has an atmosphere in the carburizing atmosphere of 900 to 1000 ° C. The carbon transfer coefficient β is 2.5 × 10 −5 cm / s or more with respect to carbon intrusion from the atmosphere in the carburizing furnace to the steel surface , and the mixture is stirred at a rotational speed of 1500 rpm or more, A carburizing method for steel is provided, characterized by performing carburizing treatment in an atmosphere having a CO concentration of 35 vol% or less in a carburizing furnace.

前記炭素移行係数βが3.0×10−5cm/s以上であってもよく、前記CO濃度が30vol%以下であってもよい。
The carbon migration coefficient β may be 3.0 × 10 −5 cm / s or more, and the CO concentration may be 30 vol% or less .

また、別な観点からの本発明によれば、鋼材を浸炭する浸炭処理炉であって、炉殻と、炉内加熱用ヒーターと、炉内のCO分圧測定手段と、炉内に変成ガスを導入する手段と、炉内を攪拌するファンを有し、900〜1000℃の浸炭雰囲気中において前記ファンが1500rpm以上の回転数で回転可能である、浸炭処理炉が提供される。   According to another aspect of the present invention, there is provided a carburizing furnace for carburizing a steel material, a furnace shell, a heater for heating in the furnace, a CO partial pressure measuring means in the furnace, and a metamorphic gas in the furnace. There is provided a carburizing treatment furnace having a means for introducing the gas and a fan for stirring the inside of the furnace, wherein the fan can rotate at a rotation speed of 1500 rpm or more in a carburizing atmosphere of 900 to 1000 ° C.

上記浸炭処理炉において、900〜1000℃の浸炭雰囲気中において前記ファンが1800rpmを超える回転で回転可能としてもよい。また、上記浸炭処理炉において、前記ファンが回転することにより炭素移行係数βを2.5×10−5cm/s以上とすることが可能であるとしてもよい。また、前記炭素移行係数βが3.0×10−5cm/s以上であってもよい。さらにまた、前記ファンの回転数がインバータ制御されていてもよく、前記ファンが除振台を介して炉殻に取り付けられていてもよく、前記ファンがラジアルファンであって、該ラジアルファンのブレードが3枚以上、ブレードの長さが150mm以上、幅50mm以上であってもよく、前記ラジアルファンのブレードの長さが200mm以上、幅100mm以上であってもよい。 In the carburizing furnace, the fan may be capable of rotating at a rotation exceeding 1800 rpm in a carburizing atmosphere of 900 to 1000 ° C. In the carburizing furnace, the carbon transfer coefficient β may be 2.5 × 10 −5 cm / s or more by rotating the fan. Further, the carbon transfer coefficient β may be 3.0 × 10 −5 cm / s or more. Furthermore, the rotational speed of the fan may be inverter controlled, the fan may be attached to the furnace shell via a vibration isolation table, the fan is a radial fan, and the blade of the radial fan 3 or more, the length of the blade may be 150 mm or more and the width may be 50 mm or more, and the blade length of the radial fan may be 200 mm or more and the width of 100 mm or more.

本願発明の浸炭処理炉および浸炭方法によって、浸炭室内雰囲気の炭素ポテンシャル制御を高いレベルで、また、炭素移行係数を高いレベルにすることが可能になり、浸炭処理の状態が安定し、被処理品のロット内、ロット間バラツキを抑えることができる。さらに、浸炭処理時間も短縮され、処理コストも低減することができる。   By the carburizing treatment furnace and carburizing method of the present invention, it becomes possible to control the carbon potential of the carburizing room atmosphere at a high level and to set the carbon transfer coefficient to a high level. Variations between lots and between lots can be suppressed. Furthermore, the carburizing time can be shortened, and the processing cost can be reduced.

β値(炭素移行係数)と表面のC質量%(炭素質量%)の関係について概念図である。It is a conceptual diagram about the relationship between (beta) value (carbon transfer coefficient) and C mass% (carbon mass%) of the surface. 本発明を実施するに適した雰囲気熱処理炉(浸炭処理炉)の説明図である。It is explanatory drawing of the atmospheric heat treatment furnace (carburizing treatment furnace) suitable for implementing this invention.

以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

鋼材料(鋼材)の浸炭処理において、被処理品(鋼材)の浸炭状態のバラツキがロット内(バッチ内)あるいはロット間でまだまだ大きいといった事実がある。発明者らは浸炭のばらつきの因子を鋭意研究した結果、以下のことを見いだした。
まず浸炭ばらつきは炭素分布(C分布)の計算方法から、C分布に影響を及ぼす因子を抽出した。これらの因子がばらつくことで浸炭のばらつきが発生すると考えた。
C分布の計算は、以下のようにFickの第2法則を適当な境界条件の下で解くことである。
(Fickの第2法則・・・式1)
∂C/∂t=D・∂C/∂X・・・式1
ただし、各記号の意味は以下の通りである。
C:炭素濃度(g/cm
D:拡散定数(cm/s)
X:表面からの距離(cm)
t:時間(s)
(境界条件・・・式2)
浸炭処理において、雰囲気から鋼表面への炭素(C)侵入量を、式2とする。
J=β(Cg−Cs)・・・式2
ただし、各記号の意味は以下の通りである。
J:炭素流速(g/cms)・・・単位面積、単位時間あたりの炭素侵入量
β:炭素移行係数(cm/s)
Cg:雰囲気の炭素濃度(g/cm
Cs:鋼表面の炭素濃度(g/cm
上記式1、式2より、炭素分布に影響を与えるものはD、β、Cgの3つの因子であり、これらの因子は温度、炭素質量%(C質量%)、雰囲気組成(各ガス成分の分圧)、“その他”に依存すると考えられる。前記因子のうち温度、C質量%、雰囲気組成については、一般的に制御に利用されている条件(要因)である。すなわち浸炭処理の条件は主にワークの浸炭深さに応じて定められ、実操業においては温度、カーボンポテンシャル、雰囲気組成、時間を適当に定めて浸炭深さを調整する。
In carburizing treatment of steel material (steel material), there is a fact that the variation in the carburized state of the product to be treated (steel material) is still large within a lot (within a batch) or between lots. As a result of intensive studies on the factors of variation in carburization, the inventors have found the following.
First, factors affecting the C distribution were extracted from the carbon distribution (C distribution) calculation method for carburization variation. It was thought that the variation of carburization occurred due to the variation of these factors.
The calculation of the C distribution is to solve Fick's second law under an appropriate boundary condition as follows.
(Fick's second law: Equation 1)
∂C / ∂t = D · ∂ 2 C / ∂X 2 Formula 1
However, the meaning of each symbol is as follows.
C: Carbon concentration (g / cm 3 )
D: Diffusion constant (cm 2 / s)
X: Distance from surface (cm)
t: Time (s)
(Boundary condition ... Equation 2)
In the carburizing process, the amount of carbon (C) penetration from the atmosphere into the steel surface is represented by Formula 2.
J = β (Cg−Cs) Equation 2
However, the meaning of each symbol is as follows.
J: Carbon flow velocity (g / cm 2 s)... Carbon intrusion amount per unit area, unit time β: carbon transfer coefficient (cm / s)
Cg: carbon concentration in the atmosphere (g / cm 3 )
Cs: Carbon concentration on the steel surface (g / cm 3 )
From the above formulas 1 and 2, the factors that affect the carbon distribution are the three factors D, β, and Cg. These factors are temperature, carbon mass% (C mass%), and atmospheric composition (of each gas component). (Partial pressure) and “others”. Among the above factors, temperature, C mass%, and atmospheric composition are generally used conditions (factors) for control. That is, the carburizing conditions are mainly determined according to the carburizing depth of the workpiece. In actual operation, the carburizing depth is adjusted by appropriately determining the temperature, carbon potential, atmosphere composition, and time.

ここで発明者らは式1、式2を鋭意検討した結果、炭素移行係数βが2.5×10−5cm/s以上、好ましくは3.0×10−5cm/s以上、さらに好ましくは3.5×10−5cm/s以上の範囲であれば、炭素移行係数βが実際の操業でばらついても、そのばらつきは浸炭深さにほとんど影響しないことが判明した。また、従来の炉内のCO濃度が35vol%以下の浸炭炉において炭素移行係数βが2.5×10−5cm/s以上のものがなく、大きくとも2×10−5cm/s以下であることを現行の浸炭炉を調査によりつきとめた。
特許文献1には炭素移行係数βに着目し、それを大きくするために、雰囲気組成(各ガス成分の分圧)を変更、すなわちCO濃度を66〜74vol%に上げ、浸炭時間が短縮される浸炭方法を提供している。しかしながら、CO濃度が35vol%以下の例(比較例)をみると、炭素移行係数βは最も大きいものでも1.8×10−5cm/sであり、すなわち本発明者らの調査と同様前記2×10−5cm/s以下であり、本発明である35vol%で2.5×10−5cm/s以上とならない。
本発明者らは炭素移行係数βを浸炭ガスとして比較的扱いやすく経済的なCOが35vol%以下の雰囲気ガスで、すなわちCO濃度が低くてもβ値を向上させる前記式では表されない“その他”の要因を鋭意検討した結果、炉内雰囲気の強攪拌が炭素移行係数β値を大きくするのに効果があることを見いだした。すなわち従来では不可能であったCO濃度が35vol%以下で炭素移行係数βを2.5×10−5cm/s以上とすることが可能になった。
なお、炭素移行係数βは前記式2と下記式3から実験により求めた。実験により、M(t)曲線を作成し下式で回帰すればβを求めることができる。
(式3)
t: 浸炭開始からの時間(s)
M: 浸炭開始から単位面積あたりのC増加量(g/cm
τ: 鋼の厚さ(cm)、非常に薄く内部にC濃度勾配がないと仮定する
これにより炭素浸入量Jの式2を整理すると
∫J・dt=M
J=dM/dt=β・(Cg−Cs)
M=M(t)=τ・Cg(1−exp(−2β・t/τ))/2 ・・・ 式3
以上、本発明は浸炭炉(浸炭部、浸炭室)の炉内のCO濃度が35vol%以下で、且つ炭素移行係数βを2.5×10−5cm/s以上とした状態で、浸炭処理する鋼材の浸炭方法である。
Here, as a result of intensive studies on the formulas 1 and 2, the inventors have found that the carbon transfer coefficient β is 2.5 × 10 −5 cm / s or more, preferably 3.0 × 10 −5 cm / s or more, and more preferably In the range of 3.5 × 10 −5 cm / s or more, it was found that even if the carbon transfer coefficient β varies in actual operation, the variation hardly affects the carburization depth. Further, in a conventional carburizing furnace with a CO concentration of 35 vol% or less, there is no carbon transfer coefficient β of 2.5 × 10 −5 cm / s or more, and at most 2 × 10 −5 cm / s or less. I found out that there was an investigation of the current carburizing furnace.
Patent Document 1 focuses on the carbon transfer coefficient β, and in order to increase it, the atmosphere composition (partial pressure of each gas component) is changed, that is, the CO concentration is increased to 66 to 74 vol%, and the carburizing time is shortened. Provides carburizing methods. However, when an example (comparative example) in which the CO concentration is 35 vol% or less is seen, the carbon transfer coefficient β is 1.8 × 10 −5 cm / s even at the largest, that is, similar to the above-described investigation by the present inventors. It is 2 × 10 −5 cm / s or less, and does not become 2.5 × 10 −5 cm / s or more at 35 vol% according to the present invention.
The present inventors are relatively easy to handle carbon transfer coefficient β as a carburizing gas, and economical CO is an atmosphere gas having a volume of 35 vol% or less, that is, “others” not represented by the above formula that improves the β value even when the CO concentration is low. As a result of intensive studies on the above factors, it was found that strong stirring in the furnace atmosphere is effective in increasing the carbon transfer coefficient β. That is, it has become possible to set the carbon transfer coefficient β to 2.5 × 10 −5 cm / s or more when the CO concentration is 35 vol% or less, which was impossible in the past.
The carbon transfer coefficient β was obtained from the above formula 2 and the following formula 3 by experiments. By experiment, if M (t) curve is created and regressed by the following equation, β can be obtained.
(Formula 3)
t: Time from the start of carburization (s)
M: C increase per unit area from the start of carburization (g / cm 2 )
τ: It is assumed that the steel thickness (cm) is very thin and there is no C concentration gradient inside.
J = dM / dt = β · (Cg−Cs)
M = M (t) = τ · Cg (1-exp (−2β · t / τ) ) / 2 Equation 3
As described above, the present invention is a carburizing treatment in a state where the CO concentration in the furnace of the carburizing furnace (carburizing section, carburizing chamber) is 35 vol% or less and the carbon transfer coefficient β is 2.5 × 10 −5 cm / s or more. This is a carburizing method for steel.

CO濃度が35vol%より高くなると変成ガスの製造が煤などの発生で困難になり、それを解決するためには変成ガス発生装置(変成炉)及び製造コストが高くなり好ましくない。また、CO濃度が35vol%より高くなると、浸炭炉中に特にスーティングが発生しやすく設備の保全に手間がかかり、被処理材表面にスーティングすると浸炭のばらつきが大きくなる。よって、CO濃度は35vol%以下、好ましくは30vol%以下とする必要がある。
炭素移行係数βは2.5×10−5cm/s未満であると、操業におけるβ値の多少の変化(ばらつき)で表面のC%が大きく変化する。よって前述の通り、本発明では炭素移行係数βは2.5×10−5cm/s以上、好ましくはβは3.0×10−5cm/s以上、さらに好ましくはβは3.5×10−5cm/s以上とすることにより、実際の操業において場所やワークによりβ値が多少ばらついても表面のC%の変化の少なくすることができる。図1にβ値と表面のC質量%の関係について概念図を示す。図1に示す概念図(グラフ)からは、炭素移行係数βが大きいほど、そのばらつきによる鋼材の表面C質量%の変化が少ないことが分かる。
If the CO concentration is higher than 35 vol%, the production of the shift gas becomes difficult due to generation of soot and the like, and in order to solve it, the shift gas generator (shift furnace) and the manufacturing cost increase, which is not preferable. Further, when the CO concentration is higher than 35 vol%, sooting is particularly likely to occur in the carburizing furnace, and it takes time to maintain the equipment. When sooting is performed on the surface of the material to be treated, the variation in carburizing increases. Therefore, the CO concentration needs to be 35 vol% or less, preferably 30 vol% or less.
When the carbon transfer coefficient β is less than 2.5 × 10 −5 cm / s, the C% of the surface changes greatly due to a slight change (variation) in the β value during operation. Therefore, as described above, in the present invention, the carbon migration coefficient β is 2.5 × 10 −5 cm / s or more, preferably β is 3.0 × 10 −5 cm / s or more, more preferably β is 3.5 ×. By setting it to 10 −5 cm / s or more, it is possible to reduce the change in C% of the surface even if the β value varies somewhat depending on the place and work in actual operation. FIG. 1 is a conceptual diagram showing the relationship between β value and C mass% on the surface. From the conceptual diagram (graph) shown in FIG. 1, it can be seen that the larger the carbon transfer coefficient β, the smaller the change in the surface C mass% of the steel material due to the variation.

図2は、一例として本発明を実施するに適した雰囲気熱処理炉(浸炭処理炉)の説明図である。
雰囲気熱処理炉は図1に示すように、被処理品(鋼材)の搬入部1と、予熱部8と、浸炭部9と、降温均熱部11と、焼入油槽部3と、搬出部4とをこの順で並設し、搬入部1と予熱部8間、この予熱部8と浸炭部9間、この浸炭部9と降温均熱部11間、この降温均熱部11と焼入油槽部3間を夫々扉12〜15により開閉自在ならしめると共に、上記予熱部8及び降温均熱部11内は少くとも1個の被処理品7を装入できるスペースとし、上記浸炭部9内は複数の、例えば3個の被処理品7を装入できるスペースとする。
また、雰囲気熱処理においては、上記浸炭部9内を浸炭可能な一定温度、例えば930℃に加熱し、浸炭処理を行う。
FIG. 2 is an explanatory view of an atmosphere heat treatment furnace (carburizing furnace) suitable for carrying out the present invention as an example.
As shown in FIG. 1, the atmosphere heat treatment furnace includes a carry-in part 1 for a product (steel material), a preheating part 8, a carburizing part 9, a temperature-decreasing and soaking part 11, a quenching oil tank part 3, and a carry-out part 4. Are arranged side by side in this order, between the carry-in part 1 and the preheating part 8, between the preheating part 8 and the carburizing part 9, between the carburizing part 9 and the temperature-decreasing soaking part 11, this temperature-decreasing and soaking part 11 and the quenching oil tank. The parts 3 can be freely opened and closed by doors 12 to 15, respectively, and the preheating part 8 and the temperature lowering / heating part 11 are provided with a space in which at least one article to be treated 7 can be loaded. A space in which a plurality of, for example, three objects to be processed 7 can be loaded is used.
In the atmosphere heat treatment, the inside of the carburized portion 9 is heated to a constant temperature capable of carburizing, for example, 930 ° C., and carburizing is performed.

雰囲気熱処理においては、扉12を開いて被処理品7を予熱部8に搬入部1を介して装入して予熱し、その後扉13を開いて浸炭部9内に予熱された被処理品7を1個づつ順次に装入し、浸炭を行う。   In the atmosphere heat treatment, the article 12 to be treated is preheated by opening the door 12 and charging the pretreatment part 8 into the preheating part 8 via the carry-in part 1 and then preheating in the carburizing part 9 by opening the door 13. Are sequentially charged and carburized.

このようにして上記浸炭部9内にそのスペースに見合う、例えば3個の被処理品7が装入された場合は所定の浸炭時間経過後、扉14を開いて上記浸炭部9から1個の被処理品7を上記降温均熱部11内に送ると共に、タイミングを等しくして上記予熱部8から1個の予熱された被処理品7を上記浸炭部9内に装入し、また、上記降温均熱部11から焼入油槽部3へ1個の降温された被処理品7を送るようにし、以下この操作を繰り返して従来の雰囲気熱処理方法と同様の処理を行うようにする。 In this way, when, for example, three articles to be processed 7 are charged in the carburizing portion 9, the door 14 is opened after the predetermined carburizing time has passed, and one piece from the carburizing portion 9 is opened. While sending the article 7 to be processed into the temperature-decreasing and soaking part 11, the preheated part 8 is charged with one preheated article 7 from the preheating part 8 at the same timing, One temperature-treated article 7 is sent from the temperature-decreasing / equalizing section 11 to the quenching oil tank section 3, and thereafter, this operation is repeated to perform the same processing as the conventional atmospheric heat treatment method.

本発明は浸炭炉(浸炭部9)内の雰囲気を攪拌するファン16と、炉殻17と炉内加熱用ヒーター(図示しない)と、炉内のCO分圧測定手段(図示しない)と、炉内に変成ガスを導入する手段(図示しない)とを有し、前記攪拌ファン16は900〜1000℃の浸炭雰囲気中において1500rpm以上の回転数で回転することができる浸炭処理炉である。さらに前記攪拌ファン16は900〜1000℃の浸炭雰囲気中において、1800rpmを超える回転数で回転することができるのが好ましい。 The present invention includes a fan 16 for stirring the atmosphere in the carburizing furnace (carburizing section 9), a furnace shell 17, a heater for heating in the furnace (not shown), a CO partial pressure measuring means (not shown) in the furnace, The stirring fan 16 is a carburizing furnace capable of rotating at a rotational speed of 1500 rpm or more in a carburizing atmosphere of 900 to 1000 ° C. Furthermore, it is preferable that the stirring fan 16 can rotate at a rotational speed exceeding 1800 rpm in a carburizing atmosphere of 900 to 1000 ° C.

浸炭炉(浸炭部9)において、ファン16はモーター18の駆動により回転させられ、通常1200rpm以下の定格で回転するものがほとんどである。それよりも早い回転数で回転させると、モーター18の振動で炉殻17やファン16とモーターの接続部、炉内のファン16そのものなどの接合部が破壊する恐れがあり、1500rpm以上で定常的に回転させることは困難である。さらに、交流モーターを使用する上では通常1800rpmが最大であり、それ以上はインバータによって交流電流の周波数を変える必要があり、且つそのような強力なモーター18を浸炭炉上に設置すると、浸炭炉やファン16がこわれる恐れがある。よって従来は上記のような回転数でファン16を回転することは考えられなかった。 In the carburizing furnace (carburizing section 9), the fan 16 is rotated by driving the motor 18, and most of them normally rotate at a rating of 1200 rpm or less. If it is rotated at a faster rotational speed, the vibration of the motor 18 may destroy the connection between the furnace shell 17, the fan 16 and the motor, and the joint 16 such as the fan 16 in the furnace. It is difficult to rotate it. Further, in the case of using an AC motor, 1800 rpm is usually the maximum, and it is necessary to change the frequency of the AC current by an inverter, and when such a powerful motor 18 is installed on the carburizing furnace, The fan 16 may be broken. Therefore, conventionally, it has not been considered to rotate the fan 16 at the above rotational speed.

浸炭炉(浸炭部9)においては、攪拌により浸炭のばらつきを小さくするという考えはあるが、そのレベルは従来の装置に関し、最大限出力(回転数)をあげるという処置にとどまっていた。すなわち、強大なモーターを取り付けると炉がこわれる恐れがあり、また攪拌が炭素移行係数β値に関連し、且つ所定のβ値以上になると浸炭ばらつきを著しく小さくすることが知られていなかったのである。よって通常の装置で考えられる範囲での強攪拌にとどまっていた。
しかしながら、本発明では炭素移行係数βの値が2.5×10−5cm/s以上、好ましくは3.0×10−5cm/s以上、さらに好ましくは3.5×10−5cm/s以上とする前述の理論的な予想(目的)があるために、900〜1000℃の高温での浸炭処理温度において、ファン16や炉殻17がこわれないような材質や構造を設計上もたせることにより、上記炭素移行係数βを達成できる能力を有するファン16を浸炭炉に取り付けることができた。例えば、耐熱鋼の使用、図2に示すように除振台19の上にファン16の駆動用のモーター18を設置するなどして、炉やファン16がこわれるのを防止し、また、ファンの回転数を1800rpm以上とするためにインバータ制御で電源の周波数を変えたファン16を駆動するモーター18を設計し、使用した。
In the carburizing furnace (carburizing section 9), there is an idea of reducing the variation in carburizing by stirring, but the level of the conventional apparatus is limited to the maximum output (rotation speed). That is, if a strong motor is attached, the furnace may be broken, and it has not been known that the agitation is related to the carbon transfer coefficient β value, and that the carburization variation is remarkably reduced when the predetermined β value is exceeded. . Therefore, the stirring was limited to the range considered by a normal apparatus.
However, in the present invention, the carbon migration coefficient β is 2.5 × 10 −5 cm / s or more, preferably 3.0 × 10 −5 cm / s or more, more preferably 3.5 × 10 −5 cm / s. Since there is the above-mentioned theoretical expectation (objective) of s or more, the material and structure should be designed so that the fan 16 and the furnace shell 17 do not break at the carburizing temperature of 900 to 1000 ° C. Thus, the fan 16 having the ability to achieve the carbon transfer coefficient β could be attached to the carburizing furnace. For example, the use of heat-resistant steel, the installation of a motor 18 for driving the fan 16 on the anti-vibration table 19 as shown in FIG. 2 prevents the furnace and the fan 16 from being broken, In order to set the rotational speed to 1800 rpm or more, a motor 18 for driving the fan 16 whose power source frequency was changed by inverter control was designed and used.

また、前記ファン16がラジアルファンであって、該ラジアルファンのブレードが3枚以上、ブレードの長さが150mm以上、幅50mm以上、さらに好ましくはブレードの長さが200mm以上、幅100mm以上であることが好ましい。
さらに、前記浸炭炉(浸炭部9)が炭化水素系ガス供給部、酸化性ガス供給部有することが好ましい。また、前記浸炭炉(浸炭部9)が炉内減圧用の真空ポンプを有しても良い。
The fan 16 is a radial fan, and the radial fan has three or more blades, the blade length is 150 mm or more, the width is 50 mm or more, more preferably the blade length is 200 mm or more and the width is 100 mm or more. It is preferable.
Furthermore, it is preferable that the carburizing furnace (carburizing section 9) has a hydrocarbon gas supply section and an oxidizing gas supply section. The carburizing furnace (carburizing section 9) may have a vacuum pump for reducing the pressure in the furnace.

即ち従来と比べ非常に攪拌能力の強力な出力のファン16(例えば従来の1.3〜2.0倍程度)を所定範囲内の実効容積の炉に設置することにより、炉内の雰囲気攪拌が強力に実施可能となり、炭素移行係数βを本発明に示す所定値以上にすることができる。
これにより、被処理品7を浸炭処理した場合に、ロット内のばらつきが大幅に低減できると共に、その浸炭速度も向上する。さらには、減圧下で処理する場合にも有効である。また、予熱部8と降温均熱部11のない、単純なバッチ炉(浸炭焼入れ炉)や減圧浸炭炉その他の形式の炉にも適用できる。
In other words, by installing a fan 16 (for example, about 1.3 to 2.0 times that of the conventional one) having a powerful stirring ability compared with the conventional one in a furnace having an effective volume within a predetermined range, the atmosphere in the furnace can be stirred. Therefore, the carbon transfer coefficient β can be set to a predetermined value or more shown in the present invention.
Thereby, when the to-be-processed goods 7 are carburized, the variation in a lot can be reduced significantly and the carburizing speed is also improved. Furthermore, it is also effective when processing under reduced pressure. Further, the present invention can be applied to a simple batch furnace (carburizing and quenching furnace), a reduced pressure carburizing furnace, and other types of furnaces that do not have the preheating unit 8 and the temperature lowering and soaking unit 11.

以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

(実施例)
浸炭処理の条件を以下の通りとし、ファンの回転数およびファンの直径は以下の表1に示す条件で、鋼材の浸炭処理を実施した。なお、浸炭炉としてはバッチ式(予熱、浸炭、拡散、冷却を1つの部屋で行う)の炉を用いた。
(条件)
1.温度 930℃×3h
2.RXガス 23vol%CO、流量3m3/h
3.挿入量 80kg/グロス(フルチャージ)
4.ファン ラジアルファン、ブレードの幅70mm、長さ200mm
5.処理室 300×600×300mm(0.054m3、有効加熱容積)
6.モーター ファンを駆動(回転)するインバータ制御のモーター
最大回転数 3000rpm
7.その他 除振台にモーターを載せ、炉体にモーターの振動が伝わるのを抑制。
(評価)
浸炭しやすさを炭素移行係数β値、浸炭のバラツキを処理バッチにおいて浸炭深さの最大値と最小値との差(レンジ)で評価した。なお、β値は実験により前述の方法で求めた。
(Example)
The carburizing treatment was performed as follows, and the carburizing treatment of the steel material was performed under the conditions shown in Table 1 below for the fan rotation speed and the fan diameter. As a carburizing furnace, a batch type furnace (preheating, carburizing, diffusion, and cooling are performed in one room) was used.
(conditions)
1. Temperature 930 ℃ × 3h
2. RX gas 23vol% CO, flow rate 3m 3 / h
3. Insertion amount 80kg / gross (full charge)
4). Fan Radial fan, blade width 70mm, length 200mm
5. Processing chamber 300 × 600 × 300mm (0.054m 3 , effective heating volume)
6). Motor Inverter-controlled motor that drives (rotates) the maximum motor speed 3000rpm
7). Others A motor is mounted on the vibration isolation table to suppress the transmission of motor vibration to the furnace body.
(Evaluation)
The ease of carburization was evaluated by the carbon transfer coefficient β value, and the variation in carburization was evaluated by the difference (range) between the maximum value and the minimum value of the carburization depth in the treatment batch. The β value was determined by the above-described method through experiments.

(比較例)
ファンの回転数はモーターの制限により最大1800rpm(定常運転としては1000rpm仕様)およびファンのブレードの幅40mm、長さ100mm、直径を表1に示す条件で行った以外は、実施例と同条件で鋼材の浸炭処理を実施し、比較例とした。評価も実施例と同様とした。
(Comparative example)
The number of rotations of the fan was the same as in the example except that the maximum rotation was 1800 rpm (1000 rpm specification for steady operation) and the fan blade width was 40 mm, length was 100 mm, and the diameter was as shown in Table 1. Carburizing treatment of steel was carried out and used as a comparative example. Evaluation was also the same as in the examples.

結果を以下の表1に示す。
表1に示すように、実施例1、2はファンの直径の大きい400mm(ブレードの長さは約200mm)の大きさのものを、またモーターは前述の強力な駆動力を有するものを使用した。この結果、炭素移行係数β値はそれぞれ2.70、4.0であり、従来の装置では得られない大きいものであった。また、浸炭深さのレンジも1バッチ中で0.12mm以下に低減することができた。なお、実施例1のファンの出力(消費電力)は0.25kWであった。
The results are shown in Table 1 below.
As shown in Table 1, Examples 1 and 2 used a fan having a large diameter of 400 mm (blade length of about 200 mm), and a motor having the above-mentioned powerful driving force. . As a result, the carbon transfer coefficient β values were 2.70 and 4.0, respectively, which were large that could not be obtained with the conventional apparatus. In addition, the carburization depth range could be reduced to 0.12 mm or less in one batch. Note that the output (power consumption) of the fan of Example 1 was 0.25 kW.

表1に示すように、比較例1〜4は、ファンの直径が200mm(ブレードの長さは約100mm)の大きさのものを使用した。そして、回転数を変更したものである。本試験では回転数が大きくなるほど、β値は上昇したが、最大でも1.99であった。さらに、ファンの回転数を上げ過ぎた比較例4は、その回転の振動等のため故障し試験不能となった。また、最もβ値の大きい比較例3でも浸炭深さのレンジは0.15mmであり、実施例1、2に劣った。
したがって、実施例の被処理品はバラツキは小さく抑えられることがわかった。また、浸炭速度も比較例と比べ15%以上向上していた。

Figure 0005560013
As shown in Table 1, in Comparative Examples 1 to 4, a fan with a diameter of 200 mm (the blade length was about 100 mm) was used. And the rotation speed is changed. In this test, the β value increased as the rotational speed increased, but was 1.99 at the maximum. Further, Comparative Example 4 in which the rotational speed of the fan was increased too much failed due to vibration of the rotational speed and became untestable. Further, even in Comparative Example 3 having the largest β value, the carburized depth range was 0.15 mm, which was inferior to Examples 1 and 2.
Therefore, it was found that the product to be treated in the example can be kept small in variation. Further, the carburization rate was improved by 15% or more compared to the comparative example.
Figure 0005560013

本発明は、鋼材料の浸炭処理炉及び浸炭方法に適用できる。   The present invention can be applied to a steel material carburizing furnace and a carburizing method.

1…搬入部
3…焼入油槽部
4…搬出部
7…被処理品
8…予熱部
9…浸炭部
11…降温均熱部
12〜15…扉
16…ファン
17…炉殻
18…モーター
19…除振台
DESCRIPTION OF SYMBOLS 1 ... Carry-in part 3 ... Quenching oil tank part 4 ... Carry-out part 7 ... To-be-processed part 8 ... Preheating part 9 ... Carburizing part 11 ... Cooling-temperature soaking part 12-15 ... Door 16 ... Fan 17 ... Furnace shell 18 ... Motor 19 ... Vibration isolation table

Claims (11)

浸炭処理炉内の鋼材を浸炭処理する浸炭方法であって、
前記浸炭処理炉内の雰囲気を900〜1000℃の浸炭雰囲気とし、
当該浸炭雰囲気内においてファンを1500rpm以上の回転数で回転させて撹拌を行い、
前記浸炭処理炉内雰囲気から鋼材表面への炭素の侵入に関し炭素移行係数βが2.5×10−5cm/s以上であって、前記浸炭処理炉内のCO濃度が35vol%以下の雰囲気で浸炭処理することを特徴とする、鋼材の浸炭方法。
A carburizing method for carburizing steel in a carburizing furnace,
The atmosphere in the carburizing furnace is a carburizing atmosphere of 900 to 1000 ° C.,
In the carburizing atmosphere, stirring is performed by rotating the fan at a rotation speed of 1500 rpm or more,
With respect to carbon intrusion from the atmosphere in the carburizing furnace to the steel surface, the carbon transfer coefficient β is 2.5 × 10 −5 cm / s or more, and the CO concentration in the carburizing furnace is 35 vol% or less. A carburizing method for steel, characterized by performing a carburizing process.
前記炭素移行係数βが3.0×10−5cm/s以上であることを特徴とする、請求項1に記載の鋼材の浸炭方法。 The said carbon transfer coefficient (beta) is 3.0 * 10 < -5 > cm / s or more, The carburizing method of the steel materials of Claim 1 characterized by the above-mentioned. 前記CO濃度が30vol%以下であることを特徴とする、請求項1または2に記載の鋼材の浸炭方法。 3. The carburizing method for steel as set forth in claim 1, wherein the CO concentration is 30 vol% or less. 鋼材を浸炭する浸炭処理炉であって、炉殻と、炉内加熱用ヒーターと、炉内のCO分圧測定手段と、炉内に変成ガスを導入する手段と、炉内を攪拌するファンを有し、900〜1000℃の浸炭雰囲気中において前記ファンが1500rpm以上の回転数で回転可能である、浸炭処理炉。A carburizing treatment furnace for carburizing steel materials, comprising a furnace shell, a heater for heating in the furnace, a CO partial pressure measuring means in the furnace, a means for introducing a metamorphic gas into the furnace, and a fan for stirring the inside of the furnace And a carburizing furnace in which the fan can rotate at a rotational speed of 1500 rpm or more in a carburizing atmosphere of 900 to 1000 ° C. 900〜1000℃の浸炭雰囲気中において前記ファンが1800rpmを超える回転で回転可能である、請求項4に記載の浸炭処理炉。The carburizing furnace according to claim 4, wherein the fan can rotate at a rotation exceeding 1800 rpm in a carburizing atmosphere of 900 to 1000 ° C. 6. 前記ファンが回転することにより炭素移行係数βを2.5×10When the fan rotates, the carbon transfer coefficient β is 2.5 × 10 −5-5 cm/s以上とすることが可能である、請求項4または5に記載の浸炭処理炉。The carburizing furnace according to claim 4 or 5, which can be set to be cm / s or more. 前記炭素移行係数βが3.0×10The carbon transfer coefficient β is 3.0 × 10 −5-5 cm/s以上であることを特徴とする、請求項4〜6のいずれかに記載の浸炭処理炉。The carburizing furnace according to any one of claims 4 to 6, wherein the carburizing furnace is cm / s or more. 前記ファンの回転数がインバータ制御されていることを特徴とする、請求項4〜7のいずれかに記載の浸炭処理炉。The carburizing furnace according to any one of claims 4 to 7, wherein the rotation speed of the fan is controlled by an inverter. 前記ファンが除振台を介して炉殻に取り付けられていることを特徴とする、請求項4〜8のいずれかに記載の浸炭処理炉。The carburizing furnace according to any one of claims 4 to 8, wherein the fan is attached to the furnace shell via a vibration isolation table. 前記ファンがラジアルファンであって、該ラジアルファンのブレードが3枚以上、ブレードの長さが150mm以上、幅50mm以上であることを特徴とする、請求項4〜9のいずれかに記載の浸炭処理炉。The carburization according to any one of claims 4 to 9, wherein the fan is a radial fan, and the blades of the radial fan are three or more, the blade length is 150 mm or more, and the width is 50 mm or more. Processing furnace. 前記ラジアルファンのブレードの長さが200mm以上、幅100mm以上であることを特徴とする、請求項10に記載の浸炭処理炉。The carburizing furnace according to claim 10, wherein the radial fan has a blade length of 200 mm or more and a width of 100 mm or more.
JP2009226142A 2009-09-30 2009-09-30 Carburizing furnace and carburizing method Active JP5560013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226142A JP5560013B2 (en) 2009-09-30 2009-09-30 Carburizing furnace and carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226142A JP5560013B2 (en) 2009-09-30 2009-09-30 Carburizing furnace and carburizing method

Publications (2)

Publication Number Publication Date
JP2011074435A JP2011074435A (en) 2011-04-14
JP5560013B2 true JP5560013B2 (en) 2014-07-23

Family

ID=44018716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226142A Active JP5560013B2 (en) 2009-09-30 2009-09-30 Carburizing furnace and carburizing method

Country Status (1)

Country Link
JP (1) JP5560013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031313B2 (en) * 2012-09-28 2016-11-24 Dowaサーモテック株式会社 Carburizing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155658B2 (en) * 1999-03-04 2008-09-24 大陽日酸株式会社 Manufacturing method of carburizing atmosphere gas and carburizing method using the gas
JP4158905B2 (en) * 2003-06-09 2008-10-01 光洋サーモシステム株式会社 Gas carburizing equipment
JP2009091632A (en) * 2007-10-10 2009-04-30 Dowa Thermotech Kk Heat-treatment apparatus and heat-treatment method

Also Published As

Publication number Publication date
JP2011074435A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP3448789B2 (en) Gas carburizing method
CN102154614B (en) Vacuum carburization processing method and vacuum carburization processing apparatus
JP6378189B2 (en) Method of nitriding steel member
JP5577573B2 (en) Vacuum carburizing method and vacuum carburizing apparatus
JP5560013B2 (en) Carburizing furnace and carburizing method
WO2006030686A1 (en) High-frequency heat treatment apparatus, high-frequency heat treatment process, and high-frequency heat treated article
CN100406610C (en) Carburizing process with pre-vacuumizing, protecting nitrogen-base atmosphere and no inner oxidation
US9365919B2 (en) Method for reduction of time in a gas carburizing process and cooling apparatus utilizing a high speed quenching oil flow rate
JP2015025161A (en) Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy
KR101738503B1 (en) Method for heat treatment for reducing deformation of cold-work articles
WO2021039911A1 (en) Vacuum carburization treatment method and production method for carburized component
JP5130150B2 (en) Induction hardening method and bearing parts
EP1598440B1 (en) Method of gas carburizing
JP6935326B2 (en) Gas carburizing method
JP6031313B2 (en) Carburizing method
JP2008202105A (en) Method for carbonitriding metallic member
JP5317709B2 (en) Quenching method
EP4317480A1 (en) Nitriding treatment method for steel member
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
EP4296383A1 (en) Nitriding method for steel member
GB2490714A (en) Methods and apparatus for gas carburising
US20110284132A1 (en) Method for reduction of time in a gas carburizing process and cooling apparatus
JP2000074324A (en) Carburizing preventive surface working
JPH0874027A (en) Carburization treatment
Marteeny et al. Optimizing Cycle Time and Process Flexibility Using Vacuum Sealed Quenching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250