JP5559718B2 - Electric tool - Google Patents

Electric tool Download PDF

Info

Publication number
JP5559718B2
JP5559718B2 JP2011024116A JP2011024116A JP5559718B2 JP 5559718 B2 JP5559718 B2 JP 5559718B2 JP 2011024116 A JP2011024116 A JP 2011024116A JP 2011024116 A JP2011024116 A JP 2011024116A JP 5559718 B2 JP5559718 B2 JP 5559718B2
Authority
JP
Japan
Prior art keywords
reduction ratio
work
motor
speed
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011024116A
Other languages
Japanese (ja)
Other versions
JP2012161881A (en
Inventor
直 有村
博之 海藏
穣 山田
賢一郎 稲垣
将利 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011024116A priority Critical patent/JP5559718B2/en
Priority to EP12744616.9A priority patent/EP2674262B1/en
Priority to PCT/JP2012/052588 priority patent/WO2012108372A1/en
Priority to CN201280008008.1A priority patent/CN103442854B/en
Publication of JP2012161881A publication Critical patent/JP2012161881A/en
Application granted granted Critical
Publication of JP5559718B2 publication Critical patent/JP5559718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/008Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with automatic change-over from high speed-low torque mode to low speed-high torque mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

本発明は、電動工具、殊に変速手段を備えている電動工具に関するものである。   The present invention relates to a power tool, and more particularly to a power tool provided with a speed change means.

作業の負荷の大小に応じて減速比を切り替えることができる電動工具によって、ネジ締めや穴あけ作業を行う場合、まず、低減速比、つまり低トルク高速回転で作業を開始し、その後、減速比を大きくして高トルク低速回転側へと変速し、作業を行うことが効率的である。しかし、減速比切り換えの変速を手動で行うものでは、作業開始にあたり、低減速比に設定し、作業途中で高減速比側へ切り換える動作を加えなければならず、作業者にかかる負担が大きくなってしまう。   When screw tightening or drilling work with an electric tool that can switch the reduction ratio according to the work load, first start the work with a reduced speed ratio, that is, low torque and high speed rotation, and then set the reduction ratio. It is efficient to increase the speed and shift the speed toward the high torque low speed rotation side. However, if the gear ratio is switched manually, the reduction speed ratio must be set at the start of work, and an operation to switch to the high reduction ratio side must be added during work, increasing the burden on the operator. End up.

このために、負荷トルクの変化を直接あるいは間接的に検出し、この変化に応じて変速が自動的になされるものが特許文献1などにおいて提案されている。   For this reason, Japanese Patent Application Laid-Open No. H10-228561 proposes a method in which a change in load torque is detected directly or indirectly and a shift is automatically performed in accordance with the change.

しかし、従来の自動変速を行うものにおいては、作業開始時の減速比が低減速比に固定されている上に、モータを逆転させる場合についても同じく低減速比に固定されていた。   However, in the conventional automatic transmission, the reduction ratio at the start of work is fixed to the reduction speed ratio, and also when the motor is reversely rotated, the reduction ratio is also fixed.

このために、モータを正転させることで行うねじ締め作業ではなく、モータを逆転させることで行うねじ緩め作業の場合、初期に高トルクが必要となるにもかかわらず、低減速比であるために低トルク高回転で作業が開始されることになり、モータ等に大きな負担がかかることになる。手動で高減速比にセットしてからねじ緩め作業を開始すれば、モータ等にかかる負担は小さくなるが、これでは自動変速の有利さを生かすことができない。   For this reason, in the case of the screw loosening work performed by reversing the motor, not the screw tightening work performed by rotating the motor forward, the speed ratio is reduced although high torque is required at the initial stage. In other words, the work is started at a low torque and a high rotation, which places a heavy burden on the motor and the like. If the screw loosening operation is started after manually setting to a high reduction ratio, the burden on the motor or the like is reduced, but this cannot take advantage of the automatic transmission.

特開2009−78349号公報JP 2009-78349 A

本発明はこのような点に鑑みなされたものであって、モータを正転させて行う作業と、モータを逆転させて行う作業のいずれに対しても、適切な減速比で作業を開始して自動変速させることができる電動工具を提供することを課題とするものである。   The present invention has been made in view of the above points, and for each of the work performed by rotating the motor forward and the work performed by rotating the motor reversely, the work is started at an appropriate reduction ratio. It is an object of the present invention to provide an electric tool that can be automatically shifted.

本発明は、回転動力源としての正逆回転自在なモータと、該モータで回転駆動される出力部との間に、減速比を切り換える変速機を配している電動工具において、作業負荷の増大で上記変速機を高減速比に、作業負荷の低下で上記変速機を低減速比に切り換えるとともに、作業開始時の変速機の減速比初期設定状態をモータの回転方向に応じて変更する制御手段を備えていることに特徴を有している。 The present invention provides an increase in work load in an electric tool in which a transmission that switches a reduction ratio is arranged between a motor that can rotate forward and backward as a rotational power source and an output unit that is rotationally driven by the motor. The control means for switching the transmission to a high reduction ratio, switching the transmission to a reduction speed ratio when the work load decreases, and changing the initial setting state of the reduction ratio of the transmission at the start of work according to the rotation direction of the motor It is characterized by having.

モータ回転方向が正転である場合の減速比初期設定状態の減速比よりも、モータ回転方向が逆転である場合の減速比初期設定状態の減速比が大であるもののほか、モータ回転方向が正転である場合の減速比初期設定状態の減速比よりも、モータ回転方向が逆転である場合の減速比初期設定状態の減速比が小であるものや、モータ回転方向が正転である場合の減速比初期設定状態は非低減速比側であり、モータ回転方向が逆転である場合の減速比初期設定状態も非低減速比側であるものを好適に用いることができる。   The reduction ratio in the initial setting of the reduction ratio when the motor rotation direction is reverse is larger than the reduction ratio in the initial setting of the reduction ratio when the motor rotation direction is normal. If the reduction ratio in the initial setting of the reduction ratio when the motor rotation direction is reverse than the reduction ratio in the initial setting of the reduction ratio in the case of rotation, or if the rotation direction of the motor is normal The speed reduction ratio initial setting state is the non-reduction speed ratio side, and the speed reduction ratio initial setting state when the motor rotation direction is reverse is also the non-reduction speed ratio side.

作業開始時の変速機の減速比初期設定をユーザが変更するための作業開始時変速設定手段を備えたものとしてもよい。   It is good also as what was provided with the work start time transmission setting means for a user to change the reduction ratio initial setting of the transmission at the time of work start.

前記変速機として減速比を3段以上に切り換えできるものを用いてもよい。   A transmission that can switch the reduction ratio to three or more stages may be used as the transmission.

減速比初期設定状態をユーザに表示する表示手段を備えていることも好ましい。   It is also preferable to provide display means for displaying the reduction ratio initial setting state to the user.

本発明においては、モータを正転させて行う作業はもちろん、モータを逆転させて行う作業についても、適切な減速比で作業を開始することができ、このために工具にかかる負担を軽減することができる上に、作業そのものの効率も向上させることができて、快適な作業を行うことができる。   In the present invention, not only the work performed by rotating the motor forward, but also the work performed by rotating the motor in reverse, the work can be started at an appropriate reduction ratio, and the burden on the tool is reduced for this purpose. In addition, the efficiency of the work itself can be improved, and a comfortable work can be performed.

本発明の実施の形態の一例の動作を示すフローチャートである。It is a flowchart which shows operation | movement of an example of embodiment of this invention. 同上のブロック図である。It is a block diagram same as the above. ねじ締め(ねじ緩め)についてのトルク変化の説明図であり、(a)はモータ正転時、(b)はモータ逆転時を示している。It is explanatory drawing of the torque change about screw fastening (screw loosening), (a) has shown the time of motor forward rotation, (b) has shown the time of motor reverse rotation. 他例のフローチャートである。It is a flowchart of another example. 逆ねじに対するねじ締め(ねじ緩め)についてのトルク変化の説明図であり、(a)はモータ正転時、(b)はモータ逆転時を示している。It is explanatory drawing of the torque change about the screw fastening (screw loosening) with respect to a reverse screw, (a) has shown the time of motor forward rotation, (b) has shown the time of motor reverse rotation. 更に他例のフローチャートである。It is a flowchart of other examples. (a)(b)は夫々作業についてのトルク変化の説明図である。(a) (b) is explanatory drawing of the torque change about each operation | work. 別の例のブロック図である。It is a block diagram of another example. 同上のフローチャートである。It is a flowchart same as the above. さらに別の例のフローチャートである。It is a flowchart of another example. 穴あけ作業のトルク変化の説明図である。It is explanatory drawing of the torque change of a drilling operation | work. 他の例のブロック図である。It is a block diagram of another example. 同上の平面図である。It is a top view same as the above.

以下本発明を図示の実施例に基づいて詳述すると、図2に示す電動工具は、正逆回転自在なモータ10を動力源とする電動ドリルドライバーであり、モータ10の回転出力は、減速比を切り換える変速機能を備えた変速機11を介して出力部12に出力される。図中18は電池パックである。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiment. The electric tool shown in FIG. 2 is an electric drill driver that uses a motor 10 that can freely rotate in the forward and reverse directions, and the rotational output of the motor 10 has a reduction ratio. Is output to the output unit 12 via a transmission 11 having a speed change function. In the figure, 18 is a battery pack.

上記変速機11は、ソレノイドなどの電磁部材によって減速比の切換が可能なもので、その減速比の切換動作は、制御回路13の制御下で行われる。  The transmission 11 can switch a reduction ratio by an electromagnetic member such as a solenoid, and the switching operation of the reduction ratio is performed under the control of the control circuit 13.

この制御回路13は、トリガスイッチ14の操作に応じて上記モータ10の回転制御も司るもので、モータ駆動回路15を通じて上記モータ10の駆動を行う該制御回路13には、モータ10の回転数Nを検出する回転数検出手段16と、モータ駆動電流Iを検出する電流検出手段17とが接続されており、作業負荷に応じて減速比の切換動作を自動で行わせる場合、上記の両検出手段16,17で構成される駆動状態検出手段の検出出力に応じて、制御回路13が変速機11における減速比の切り換えを変速機11に指示する。   The control circuit 13 also controls the rotation of the motor 10 in accordance with the operation of the trigger switch 14. The control circuit 13 that drives the motor 10 through the motor drive circuit 15 has a rotation speed N of the motor 10. Is connected to the current detection means 17 for detecting the motor drive current I. When the reduction ratio switching operation is automatically performed in accordance with the work load, both the detection means described above are used. The control circuit 13 instructs the transmission 11 to switch the reduction ratio in the transmission 11 in accordance with the detection output of the driving state detection means 16, 17.

今、モータ10の起動時に出力負荷が小さい場合、モータ駆動電流Iは大きくなり、モータ回転数Nの増加率も大きくなる。出力負荷が大きい場合はモータ駆動電流Iは同様に大きくなるものの、モータ回転数Nの増加率は小さく、もしくは0になる。   If the output load is small when the motor 10 is started up, the motor drive current I increases and the increase rate of the motor rotation speed N also increases. When the output load is large, the motor drive current I increases in the same manner, but the increase rate of the motor rotation speed N is small or zero.

このためにこの電動工具における1チップマイクロコンピュータなどで構成された上記制御回路13は、初期設定で減速比が小さい側(図1中の減速比1)にセットされ、モータ駆動電流I≧I1(A)かつモータ回転数の増加率≦α1の2つの条件を満たした時に、減速比が大となる側(図1中の減速比2)へ自動変速する。   For this purpose, the control circuit 13 composed of a one-chip microcomputer or the like in this electric power tool is set to the side where the reduction ratio is small (the reduction ratio 1 in FIG. 1) by default, and the motor drive current I ≧ I1 ( When the two conditions A) and the motor rotation speed increase rate ≦ α1 are satisfied, the automatic transmission is shifted to the side where the reduction ratio becomes large (the reduction ratio 2 in FIG. 1).

従って、起動時の負荷が小さく、作業を続けるにつれて徐々に作業負荷が大きくなる作業を行う場合、モータ駆動電流Iが徐々に大きくなるとともにモータ回転数Nは低下するが、モータ駆動電流I≧I1(A)かつモータ回転数Nの増加率≦α1の条件を満たした時点で、制御回路13は変速機11に減速比が大となる側へ自動変速する。なお、モータ回転数Nの低下は、その増加率が負の値となることもある。   Therefore, when performing a work in which the load at the start is small and the work load gradually increases as the work continues, the motor drive current I gradually increases and the motor rotation speed N decreases, but the motor drive current I ≧ I1. When the condition of (A) and the increase rate of the motor rotation speed N ≦ α1 is satisfied, the control circuit 13 automatically shifts the transmission 11 to the side where the reduction ratio becomes larger. In addition, the increase rate of the motor rotation speed N may be a negative value.

上記条件で自動変速を行うために、モータ10の起動時の突入電流や、作業者が出力無負荷の状態でトリガスイッチ14オンし、オフ寸前まで戻す動作を繰り返す際に生じる突入電流があっても、上記α1の値を判定可能な増加率に設定しておけば、誤った自動変速切換を行うことはない。   In order to perform automatic gear shifting under the above conditions, there is an inrush current at the start of the motor 10 and an inrush current that occurs when the operator repeats the operation of turning on the trigger switch 14 in the no-load state and returning it to the level just before the off However, if the value of α1 is set to an increase rate that can be determined, automatic automatic shift switching is not performed.

また、作業につれて負荷が小さくなる場合は、逆に減速比が小さくなる方向に変速する。作業負荷が小さくなるとモータ駆動電流Iが小さくなり、モータ回転数Nは上昇する。従ってモータ駆動電流I≦I3(A)かつモータ回転数N≧N3の条件を満たした場合に低減速比(高速側)に自動変速する。   On the other hand, when the load is reduced as the work is performed, the gear is shifted in the direction of decreasing the reduction ratio. When the work load decreases, the motor drive current I decreases and the motor rotation speed N increases. Accordingly, when the conditions of the motor drive current I ≦ I3 (A) and the motor rotation speed N ≧ N3 are satisfied, the automatic transmission is automatically shifted to the reduction speed ratio (high speed side).

ところで、電動ドリルドライバーのような電動工具では、モータ10を正転させてねじ締めに用いることが多く、この場合、作業当初は負荷が小さく、ねじ締めが進むにつれて負荷が大きくなる。このために、上記のような自動変速を行う場合、上述のように、初期状態では低減速比(低トルク高速回転)にセットされていることが好ましく、作業負荷が大きくなれば高減速比(高トルク低速回転)に自動で移行し、作業が終了してトリガスイッチ14がオフされたならば、上記初期状態である低減速比に戻るようになっていることが好ましい。   By the way, in an electric tool such as an electric drill driver, the motor 10 is often rotated forward and used for screw tightening. In this case, the load is initially small and the load increases as the screw tightening proceeds. For this reason, when performing the automatic shift as described above, as described above, it is preferable to set the reduction speed ratio (low torque high speed rotation) in the initial state, and if the work load increases, the high reduction ratio ( When the operation is automatically completed and the trigger switch 14 is turned off, it is preferable to return to the reduction speed ratio which is the initial state.

しかし、モータ10を逆転させて行う作業の場合を考えると、その代表的な作業は締め付けられているねじを緩める作業であるが、この時には図3(a)に示すように作業初期の負荷が大きいものとなる。そして、この時にも初期設定が低減速比となっていると、作業開始時にモータ10に大きな負荷がかかる上に、高減速比に切り換えられてから実際のねじ緩め作業が始まるために、時間的ロスが生じてしまう。また、作業開始時にモータロックが生じるおそれがある。組立ではなく解体を行う場合は、逆転させての作業が主体となるために、正転時に合わせて初期減速比が設定されたものであると、問題が多いことになる。   However, considering the work performed by reversing the motor 10, the typical work is the work of loosening the tightened screw. At this time, as shown in FIG. It will be big. At this time, if the initial setting is the reduction speed ratio, a large load is applied to the motor 10 at the start of work, and the actual screw loosening work starts after switching to the high reduction ratio. Loss will occur. Moreover, there is a possibility that the motor lock occurs at the start of work. When disassembling instead of assembling, work is mainly performed in the reverse direction, and there are many problems if the initial reduction ratio is set in accordance with the forward rotation.

このためにこの電動工具においては、モータ10の回転方向を切り換えるための回転方向切換手段19による回転方向のセットに合わせて、正転時には初期減速比を低減速比に、逆転時には初期減速比を高減速比にセットするものとしてある。このための減速比の切り換えは、回転方向切換手段19でモータ10の回転方向を切り換えた時点で行うことが好ましい。   For this reason, in this electric power tool, the initial reduction ratio is set to the reduction speed ratio at the time of forward rotation and the initial reduction ratio at the time of reverse rotation in accordance with the setting of the rotation direction by the rotation direction switching means 19 for switching the rotation direction of the motor 10. It is set to a high reduction ratio. For this purpose, the reduction ratio is preferably switched when the rotation direction of the motor 10 is switched by the rotation direction switching means 19.

モータ10の回転方向に合わせて初期減速比が切り換えられるために、この電動工具においては、モータ10を正転させる時には上述のように低減速比の状態で作動を開始し、負荷が大きくなれば高減速比に自動切換を行い、作業を終了してトリガスイッチ14をオフにすれば低減速比に戻るように制御回路13によって変速機11が制御される。   Since the initial reduction ratio is switched in accordance with the rotation direction of the motor 10, in this electric tool, when the motor 10 is rotated forward, the operation is started in the state of the reduction speed ratio as described above, and the load becomes large. The transmission 11 is controlled by the control circuit 13 so as to return to the reduced speed ratio by automatically switching to the high speed reduction ratio and finishing the work and turning off the trigger switch 14.

そして回転方向切換手段19によってモータ10の回転方向を逆転方向にセットすれば、この時点で変速機11は高減速比の状態に切り換えられ、トリガスイッチ14のオンにて高トルク低速回転の状態で作業を開始することができる。そして作業負荷が徐々に小さくなり、前記条件に達すれば、低減速比側に自動変速する。作業が終了してトリガスイッチ14がオフされれば、変速機11は高減速比側へ自動的に戻る。   If the rotation direction of the motor 10 is set to the reverse rotation direction by the rotation direction switching means 19, the transmission 11 is switched to the high reduction ratio state at this point, and the high torque / low speed rotation state is established when the trigger switch 14 is turned on. Work can be started. Then, when the work load is gradually reduced and the above condition is reached, automatic shifting is performed to the reduction speed ratio side. When the work is finished and the trigger switch 14 is turned off, the transmission 11 automatically returns to the high reduction ratio side.

ねじ締め作業を行う時も、ねじ緩め作業を行う時も、変速機11の減速比の切り換え操作を別途行う必要が全くない上に、作業開始時の減速比は、夫々の作業に適した減速比となっているために、きわめて使い勝手がよいものである。   There is no need to separately perform a changeover operation of the reduction ratio of the transmission 11 when performing screw tightening work or screw loosening work, and the speed reduction ratio at the start of work is a deceleration suitable for each work. Because of the ratio, it is extremely convenient.

もっとも、ねじには逆ねじと称されるものがあり、この逆ねじを締め付ける場合はモータ10を逆転させて行う。逆ねじを緩める作業は、モータ10を正転させて行う。従って、逆ねじを作業対象とする場合は、上記実施例とは逆に、回転方向切換手段19による回転方向のセットに合わせて、正転時には初期減速比を高減速比に、逆転時には初期減速比を低減速比にセットするものとしてもよい。図4にこの場合のフローチャートを示す。図5(a)はモータ正転によって逆ねじを緩める場合のトルク変化を、図5(b)はモータ逆転によって逆ねじを締める場合のトルク変化を示している。   However, some screws are referred to as reverse screws, and when the reverse screws are tightened, the motor 10 is reversed. The work of loosening the reverse screw is performed by rotating the motor 10 forward. Therefore, when working with a reverse screw, contrary to the above embodiment, the initial reduction ratio is set to a high reduction ratio at the time of forward rotation and the initial deceleration at the time of reverse rotation in accordance with the rotation direction set by the rotation direction switching means 19. The ratio may be set to a reduction speed ratio. FIG. 4 shows a flowchart in this case. FIG. 5 (a) shows the torque change when the reverse screw is loosened by forward rotation of the motor, and FIG. 5 (b) shows the torque change when the reverse screw is tightened by reverse rotation of the motor.

この場合、モータ10を正転させる時には、高減速比にセットされており、トリガスイッチ14のオンにて高トルク低速回転の状態で作業を開始することができる。そして作業負荷が徐々に小さくなり、予め設定した条件に達すれば、低減速比側に自動変速する。作業が終了してトリガスイッチ14がオフされれば、変速機11は高減速比側へ自動的に戻る。   In this case, when the motor 10 is rotated forward, it is set to a high reduction ratio, and when the trigger switch 14 is turned on, the operation can be started in a high torque / low speed rotation state. When the work load gradually decreases and reaches a preset condition, automatic shift is performed to the reduction speed ratio side. When the work is finished and the trigger switch 14 is turned off, the transmission 11 automatically returns to the high reduction ratio side.

そして回転方向切換手段19によってモータ10の回転方向を逆転方向にセットすれば、この時点で変速機11は低減速比の状態に切り換えられ、トリガスイッチ14のオンで低減速比の状態で作動を開始し、負荷が大きくなれば高減速比に自動切換を行い、作業を終了してトリガスイッチ14をオフにすれば低減速比に戻る。   If the rotation direction of the motor 10 is set to the reverse rotation direction by the rotation direction switching means 19, the transmission 11 is switched to the reduced speed ratio state at this point, and the trigger switch 14 is turned on to operate in the reduced speed ratio state. When the load increases, automatic switching to the high reduction ratio is performed, and when the operation is completed and the trigger switch 14 is turned off, the reduction speed ratio is restored.

このために、この実施例の場合、前記通常のねじ締付け作業と全く逆の逆ねじ締付け作業などに用いることができる。   For this reason, in the case of this embodiment, it can be used for reverse screw tightening work and the like which are completely opposite to the normal screw tightening work.

このほか、正転作業においても作業の種類によっては締付けトルクの変化が異なるものがある。小径のねじの締め付けは図7(a)に示すようなトルク変化であり、低減速側の低トルク高速回転での作業開始が効率的である。しかし、大径のねじ(例えばコーチねじ)の場合は図7(b)に示すようなトルク変化であり、低減速比側で作業を開始すると、作業開始直後にロックしてしまう。   In addition, there is a change in the tightening torque depending on the type of work in forward rotation work. The tightening of the small-diameter screw is a torque change as shown in FIG. 7 (a), and it is efficient to start work at a low speed and high speed rotation on the reduced speed side. However, in the case of a large-diameter screw (for example, a coach screw), the torque changes as shown in FIG. 7B, and when the work is started on the reduction speed ratio side, it is locked immediately after the work is started.

このような作業開始直後から高締付けトルクが必要な作業に対しては、高減速比で作業を開始することで効率的に作業ができ、モータロック等による工具への負担を軽減することができる。また、締結されているねじを緩める場合は、緩め始めが高トルク作業となるために、この場合も作業開始時は高減速比の高トルク低速回転が適している。このために、作業開始時に正逆いずれの回転方向についても高トルクが必要な場合は、図6に示すように、高減速比が初期状態となるものを好適に用いることができる。   For such work that requires a high tightening torque immediately after the start of work, work can be performed efficiently by starting work with a high reduction ratio, and the burden on the tool due to motor lock or the like can be reduced. . In addition, when loosening a screw that is fastened, since the beginning of the loosening is a high torque operation, a high torque low speed rotation with a high reduction ratio is also suitable at the start of the operation. For this reason, when high torque is required in both the forward and reverse rotation directions at the start of work, as shown in FIG. 6, the one in which the high reduction ratio is in the initial state can be suitably used.

作業の種類によって好ましい初期減速比が異なることを考慮すれば、初期減速比をユーザが設定できるようにしたものが好ましい。図8は初期減速比の設定をユーザが行うための作業開始時変速設定手段20を設けたものを示しており、制御回路13は、この作業開始時変速設定手段20によって設定された減速比が初期減速比となるように制御回路13が記憶して変速機11を制御する。図9にフローチャートを示す。   Considering that the preferred initial reduction ratio varies depending on the type of work, it is preferable that the user can set the initial reduction ratio. FIG. 8 shows a device provided with a work start speed setting means 20 for the user to set the initial speed reduction ratio, and the control circuit 13 has the speed reduction ratio set by the work start speed setting means 20 set. The control circuit 13 stores the initial reduction ratio and controls the transmission 11. FIG. 9 shows a flowchart.

上記作業開始時変速設定手段20として、例えばプッシュスイッチを用いる場合、工具停止状態で且つ回転方向切換手段19によって正転に設定されている時にプッシュスイッチを操作すれば、正転状態の作業開始時の初期減速比が切り換えられ、工具停止状態で且つ逆転に設定されている時にプッシュスイッチを操作すれば、逆転状態の作業開始時の初期減速比が切り換えられる。なお、プッシュスイッチのオンを繰り返すことで、初期減速比が順次切り換わるようにしておく。プッシュスイッチでなくてもよいのはもちろんであるが、上述のように、回転方向切換手段19によってセットされている回転方向での初期減速比を変更するようにしておくと、正転の時の初期減速比及び逆転の時の初期減速比の設定操作を少ない部材で行うことができる上に、ユーザの使い勝手もよいものとなる。   For example, when a push switch is used as the work start speed setting means 20, if the push switch is operated when the tool is stopped and the forward direction is set by the rotation direction switching means 19, the forward start state of the work is started. When the push switch is operated when the tool is stopped and set to reverse rotation, the initial reduction ratio at the start of work in the reverse rotation state is switched. The initial reduction ratio is sequentially switched by repeatedly turning on the push switch. Of course, it is not necessary to use a push switch, but as described above, if the initial reduction ratio in the rotational direction set by the rotational direction switching means 19 is changed, The setting operation of the initial reduction ratio and the initial reduction ratio at the time of reverse rotation can be performed with a small number of members, and the user-friendliness is also improved.

なお、作業者は同様の作業を連続して行うために、初期減速比の設定を作業内容に合わせて一度行えば、その状態で連続して作業を行うことができるために、作業効率を高くすることができ、また1台の電動工具の使用効率も高くすることができる。   In addition, in order to perform the same work continuously, the operator can perform the work continuously in that state once the initial reduction ratio is set according to the work content. In addition, the use efficiency of one power tool can be increased.

変速機11として、減速比を3段階に切り換えることができるものにおいても、本願発明を適用することができるのはもちろんであり、図10にこの場合のフローチャートを示す。   Of course, the present invention can also be applied to the transmission 11 in which the reduction ratio can be switched in three stages, and FIG. 10 shows a flowchart in this case.

減速比がもっとも小さい状態にある時に、モータ駆動電流I≧I1(A)かつモータ回転数Nの増加率≦α1の条件を満たした時点で、減速比を一段大きい中減速比に切り換え、さらにこの状態でモータ駆動電流I≧I2(A)かつモータ回転数N≦α2の2つの条件を満たした場合、減速比がもっとも大きい側へ自動変速する。   When the speed reduction ratio is in the smallest state, when the conditions of motor drive current I ≧ I1 (A) and motor rotation speed N increase rate ≦ α1 are satisfied, the speed reduction ratio is switched to a medium speed reduction ratio that is one step higher. When the two conditions of the motor drive current I ≧ I2 (A) and the motor rotation speed N ≦ α2 are satisfied in the state, the automatic transmission is shifted to the side with the largest reduction ratio.

逆に減速比がもっとも大である時に、モータ駆動電流I≦I4(A)かつモータ回転数N≧N4の条件を満たした場合に中減速比に自動変速する。この状態でモータ駆動電流I≦I3(A)かつモータ回転数N≧N3の条件を満たした場合に高速側へ自動変速する。   On the other hand, when the speed reduction ratio is the largest, the speed is automatically changed to the medium speed reduction ratio when the conditions of the motor drive current I ≦ I4 (A) and the motor rotation speed N ≧ N4 are satisfied. In this state, when the conditions of the motor drive current I ≦ I3 (A) and the motor rotational speed N ≧ N3 are satisfied, the automatic transmission is shifted to the high speed side.

このように3段変速となっている場合、初期減速比は正転時も逆転時も上記中減速比(中トルク中速回転)とするとよい。木工穴あけ作業においてはφ10mm〜φ30mmと様々な穴径の穴あけを行うことになる。また、木工穴あけ作業の作業トルク特性は、図11に示すように、穴あけ開始時はトルクが上昇し、徐々にトルクが低下し安定したトルクとなり、最後は貫通してトルクがゼロとなる。このために、低減速比で作業を開始すると、穴あけ開始直後に中減速側に変速し、中減速の状態のまま作業を完了することになり、高トルク作業であると、中減速比からさらに高減速比に変速して作業が完了する。つまり、木工穴あけ作業では、低減速比での作業は必要でない場合が殆どである。従って、中減速比から作業開始することで、余計な変速を行うことなく、作業を効率的に行うことができて作業者への負担が軽減できる。   Thus, in the case of the three-speed shift, the initial reduction ratio is preferably set to the medium reduction ratio (medium torque / medium speed rotation) at the time of forward rotation and reverse rotation. In the woodwork drilling operation, drilling with various hole diameters of φ10 mm to φ30 mm is performed. Further, as shown in FIG. 11, the working torque characteristics of the woodworking drilling operation are such that the torque increases at the start of drilling, gradually decreases to a stable torque, and finally penetrates to become zero. For this reason, when the work is started at the reduced speed ratio, the gear shifts to the medium deceleration side immediately after the start of drilling, and the work is completed in the middle deceleration state. Shifting to a high reduction ratio completes the work. That is, in the woodwork drilling work, the work at the reduced speed ratio is almost unnecessary. Therefore, by starting the work from the medium reduction ratio, the work can be efficiently performed without performing an extra shift, and the burden on the operator can be reduced.

前記のねじ締め作業などにも適用することも考えれば、作業開始時変速設定手段20を備えて、ユーザが初期減速比を変更することができるようにしておくことが好ましいのはもちろんである。   Considering that the present invention is also applicable to the above-described screw tightening operation, it is needless to say that it is preferable to provide the operation start speed setting means 20 so that the user can change the initial reduction ratio.

図12及び図13は、上記の初期設定されている減速比をユーザに対して報知する表示手段21を設けたものを示している。この表示手段21としては、たとえば工具の上部に低減速比(H)、中減速比(M)、高減速比(L)の3つの発光ダイオードを設けたものを好適に用いることができ、回転方向切換手段19によって決定されている回転方向の作業開始時の初期減速比に対応する発光ダイオードを点灯させることで、ユーザに現在のモータ回転方向での初期減速比を報知する。   FIGS. 12 and 13 show a display unit 21 that notifies the user of the initially set reduction ratio. As the display means 21, for example, a tool provided with three light emitting diodes of a reduction speed ratio (H), a medium reduction ratio (M), and a high reduction ratio (L) on the upper part of the tool can be suitably used. The user is notified of the initial reduction ratio in the current motor rotation direction by turning on the light emitting diode corresponding to the initial reduction ratio at the start of work in the rotation direction determined by the direction switching means 19.

正転用と逆転用の3×2の合計6個のLEDを設けても良い。ユーザーは予め設定されている初期減速比、あるいはユーザ自身が設定した初期減速比を容易に認識することができるために、誤った初期減速比で作業を行うことによる作業の失敗を防ぐことができる。   A total of 6 LEDs of 3 × 2 for forward rotation and reverse rotation may be provided. Since the user can easily recognize the initial reduction ratio set in advance or the initial reduction ratio set by the user himself / herself, it is possible to prevent work failure due to working with an incorrect initial reduction ratio. .

10 モータ
11 変速機
12 出力部
13 制御回路
14 トリガスイッチ
15 モータ駆動回路
16 モータ回転数検出手段
17 モータ電流検出手段
18 電池パック
19 回転方向切換手段
20 作業開始時変速設定手段
21 表示手段
DESCRIPTION OF SYMBOLS 10 Motor 11 Transmission 12 Output part 13 Control circuit 14 Trigger switch 15 Motor drive circuit 16 Motor rotation speed detection means 17 Motor current detection means 18 Battery pack 19 Rotation direction switching means 20 Work start time shift setting means 21 Display means

Claims (7)

回転動力源としての正逆回転自在なモータと、該モータで回転駆動される出力部との間に、減速比を切り換える変速機を配している電動工具において、
作業負荷の増大で上記変速機を高減速比に、作業負荷の低下で上記変速機を低減速比に切り換えるとともに、作業開始時の変速機の減速比初期設定状態をモータの回転方向に応じて変更する制御手段を備えていることを特徴とする電動工具。
In an electric tool in which a transmission that switches a reduction ratio is arranged between a motor that can rotate forward and backward as a rotational power source and an output unit that is rotationally driven by the motor,
When the work load increases, the transmission is switched to a high reduction ratio, and when the work load decreases, the transmission is switched to a reduction speed ratio, and the initial setting state of the transmission reduction ratio at the start of work depends on the rotation direction of the motor. An electric tool comprising a control means for changing.
モータ回転方向が正転である場合の減速比初期設定状態の減速比よりも、モータ回転方向が逆転である場合の減速比初期設定状態の減速比が大であることを特徴とする請求項1記載の電動工具。   The reduction ratio in the initial setting of the reduction ratio when the motor rotation direction is reverse is larger than the reduction ratio in the initial setting of the reduction ratio when the motor rotation direction is normal. The electric tool described. モータ回転方向が正転である場合の減速比初期設定状態の減速比よりも、モータ回転方向が逆転である場合の減速比初期設定状態の減速比が小であることを特徴とする請求項1記載の電動工具。   The reduction ratio in the initial setting of the reduction ratio when the motor rotation direction is reverse is smaller than the reduction ratio in the initial setting of the reduction ratio when the motor rotation direction is normal. The electric tool described. モータ回転方向が正転である場合の減速比初期設定状態は非低減速比側であり、モータ回転方向が逆転である場合の減速比初期設定状態も非低減速比側であることを特徴とする請求項1記載の電動工具。   The reduction ratio initial setting state when the motor rotation direction is forward rotation is the non-reduction speed ratio side, and the reduction ratio initial setting state when the motor rotation direction is reverse rotation is also the non-reduction speed ratio side. The electric tool according to claim 1. 作業開始時の変速機の減速比初期設定をユーザが変更するための作業開始時変速設定手段を備えていることを特徴とする請求項1〜4のいずれか1項に記載の電動工具。   The power tool according to any one of claims 1 to 4, further comprising: a work start speed setting unit for a user to change an initial reduction ratio setting of the transmission at the start of the work. 前記変速機は減速比を3段以上に切り換えできるものであることを特徴とする請求項1〜5のいずれか1項に記載の電動工具。   The power tool according to any one of claims 1 to 5, wherein the transmission is capable of switching a reduction ratio to three or more stages. 減速比初期設定状態をユーザに表示する表示手段を備えていることを特徴とする請求項1〜6のいずれか1項に記載の電動工具。   The power tool according to any one of claims 1 to 6, further comprising display means for displaying a reduction ratio initial setting state to a user.
JP2011024116A 2011-02-07 2011-02-07 Electric tool Active JP5559718B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011024116A JP5559718B2 (en) 2011-02-07 2011-02-07 Electric tool
EP12744616.9A EP2674262B1 (en) 2011-02-07 2012-02-06 Power tool
PCT/JP2012/052588 WO2012108372A1 (en) 2011-02-07 2012-02-06 Power tool
CN201280008008.1A CN103442854B (en) 2011-02-07 2012-02-06 Electric tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024116A JP5559718B2 (en) 2011-02-07 2011-02-07 Electric tool

Publications (2)

Publication Number Publication Date
JP2012161881A JP2012161881A (en) 2012-08-30
JP5559718B2 true JP5559718B2 (en) 2014-07-23

Family

ID=46638587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024116A Active JP5559718B2 (en) 2011-02-07 2011-02-07 Electric tool

Country Status (4)

Country Link
EP (1) EP2674262B1 (en)
JP (1) JP5559718B2 (en)
CN (1) CN103442854B (en)
WO (1) WO2012108372A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054708A (en) * 2012-09-13 2014-03-27 Panasonic Corp Electric tool
JP2014172162A (en) * 2013-03-13 2014-09-22 Panasonic Corp Electric tool
US10998805B2 (en) 2015-07-23 2021-05-04 Black & Decker Inc. Power tool with direction sensing controller
CN106077117A (en) * 2016-08-12 2016-11-09 安徽理工大学 A kind of intelligent glomerocryst mould for stainless steel fiber tube production line
JP7027235B2 (en) * 2018-04-16 2022-03-01 株式会社マキタ Electric tool
US11980924B2 (en) * 2019-03-27 2024-05-14 Zhejiang Value Mechanical & Electrical Products Co., Ltd. Electric pipe expander, chuck structure for electric pipe expander, and control circuit for electric pipe expander

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591565U (en) * 1982-06-25 1984-01-07 三洋機工株式会社 Nut runner
CN2134543Y (en) * 1992-05-13 1993-05-26 杨泰和 Cross coupling continous move wheel series of non-harmonious, unequale complex wheel series and applied device
JP3238639B2 (en) * 1997-03-06 2001-12-17 株式会社マキタ Silent clutch for electric screwdriver
JP2005066785A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Power tool
JP3903976B2 (en) * 2003-10-14 2007-04-11 松下電工株式会社 Tightening tool
JP4211676B2 (en) * 2004-05-12 2009-01-21 パナソニック電工株式会社 Impact rotary tool
JP2006000993A (en) * 2004-06-21 2006-01-05 Maeda Metal Industries Ltd Fastening machine with reaction receiver
CN101091998B (en) * 2006-06-19 2012-03-28 苏州宝时得电动工具有限公司 Speed changeable tool
JP4293222B2 (en) * 2006-10-12 2009-07-08 パナソニック電工株式会社 Impact tools
JP4840191B2 (en) * 2007-02-28 2011-12-21 パナソニック電工株式会社 Electric tool
EP2030710B1 (en) 2007-08-29 2014-04-23 Positec Power Tools (Suzhou) Co., Ltd. Power tool and control system for a power tool
JP5032956B2 (en) * 2007-11-27 2012-09-26 パナソニック株式会社 Electric tool
JP5199649B2 (en) * 2007-11-27 2013-05-15 パナソニック株式会社 Electric tool
JP2010264578A (en) * 2009-05-18 2010-11-25 Makita Corp Power tool

Also Published As

Publication number Publication date
WO2012108372A1 (en) 2012-08-16
CN103442854B (en) 2016-08-10
CN103442854A (en) 2013-12-11
EP2674262A1 (en) 2013-12-18
JP2012161881A (en) 2012-08-30
EP2674262B1 (en) 2018-04-04
EP2674262A4 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5559718B2 (en) Electric tool
JP5824419B2 (en) Electric tool
US9712091B2 (en) Power tool and controller
US11224961B2 (en) Electric power tool
JP4400303B2 (en) Impact rotary tool
JP5914841B2 (en) Electric tool
JP5800761B2 (en) Electric tool
JP5991439B2 (en) Electric tool and polisher using the same
US20190111551A1 (en) Electric working machine and method for controlling motor of electric working machine
JP2015039750A (en) Electric tool polishing attachment
WO2012108375A1 (en) Electric tool
US20190381648A1 (en) Power tool with tapping mode
JP4986640B2 (en) Constant torque electric screwdriver
JP2013022665A (en) Power tool
JP6764255B2 (en) Electric work machine
JP7113264B2 (en) Electric tool
JP2015047646A (en) Electric power tool
JP2014233778A (en) Work machine with reciprocal movement
JP2005006384A (en) Switch for power tool and power tool employing it
JP7332039B2 (en) work machine
JP2022027892A (en) Electric tool
JP2023072228A (en) work machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140606

R151 Written notification of patent or utility model registration

Ref document number: 5559718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151