JP5556364B2 - Metal lead and its manufacturing method - Google Patents

Metal lead and its manufacturing method Download PDF

Info

Publication number
JP5556364B2
JP5556364B2 JP2010117148A JP2010117148A JP5556364B2 JP 5556364 B2 JP5556364 B2 JP 5556364B2 JP 2010117148 A JP2010117148 A JP 2010117148A JP 2010117148 A JP2010117148 A JP 2010117148A JP 5556364 B2 JP5556364 B2 JP 5556364B2
Authority
JP
Japan
Prior art keywords
plate
joined
aluminum plate
lead
copper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010117148A
Other languages
Japanese (ja)
Other versions
JP2011243531A (en
Inventor
貴章 島田
浩介 田中
博康 杉山
美里 草刈
太一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010117148A priority Critical patent/JP5556364B2/en
Publication of JP2011243531A publication Critical patent/JP2011243531A/en
Application granted granted Critical
Publication of JP5556364B2 publication Critical patent/JP5556364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、非水電解質デバイス等に用いられるアルミニウム板からなる銅板付の金属リードとその製造方法に関する。   The present invention relates to a metal lead with a copper plate made of an aluminum plate used for a nonaqueous electrolyte device or the like, and a method for manufacturing the same.

小型電子機器の電源として、例えば、リチウムイオン電池などの非水電解質電池が用いられている。この非水電解質電池としては、正極板、負極板および電解液を、多層フィルムからなる封入体に収納し、正極板、負極板に接続したリードを密封封止して外部に取り出す構造のものが知られている。この場合のリードは、通常、正極側にアルミニウム板またはその合金導体からなるリード材が用いられている。   For example, non-aqueous electrolyte batteries such as lithium ion batteries are used as power sources for small electronic devices. This non-aqueous electrolyte battery has a structure in which a positive electrode plate, a negative electrode plate, and an electrolytic solution are accommodated in an enclosure made of a multilayer film, and leads connected to the positive electrode plate and the negative electrode plate are sealed and taken out to the outside. Are known. In this case, a lead material made of an aluminum plate or an alloy conductor thereof is usually used on the positive electrode side.

アルミニウム板からなるリードは、半田付けによる簡易な電気接続ができない。また、所望の電圧を得るために複数の非水電解質デバイスを直列接続して使用する場合がある。この場合、アルミニウム板のリードと銅板のリードを電気的に接触させて接続するが、接触部に結露等による水分が付着すると、異種金属間で局部電池が形成され、イオン化傾向の大きい方の金属が腐食するという問題がある。これを改善するために、例えば、特許文献1には、アルミニウムのリード部材に冷間圧接による銅のリード部材を接合したリード部材が開示されている。   A lead made of an aluminum plate cannot be easily connected by soldering. In some cases, a plurality of nonaqueous electrolyte devices are connected in series to obtain a desired voltage. In this case, the lead of the aluminum plate and the lead of the copper plate are connected in electrical contact, but if moisture due to condensation adheres to the contact part, a local battery is formed between different types of metals, and the metal with the higher ionization tendency Has the problem of corrosion. In order to improve this, for example, Patent Document 1 discloses a lead member in which a copper lead member is joined to an aluminum lead member by cold welding.

特開2008−108584号公報JP 2008-108584 A

図7(A)〜(C)は、上記特許文献1に開示のアルミニウムのリード部材11と銅のリード部材12を冷間圧接により接合する形態を模擬的に示したものである。その接合部分13を加圧するために、接合部分を挟んで上下にダイス(加圧金型)14と15が配される。ダイス14と15の少なくとも一方のダイス(例えば、上方のダイス14)の押圧面には、接合面に変形を生じさせるための凸部14aが設けられる。他方のダイス15の押圧面は平坦か、または、凸部14aに対応するような凹部15aが設けられる。   FIGS. 7A to 7C schematically show a form in which the aluminum lead member 11 and the copper lead member 12 disclosed in Patent Document 1 are joined by cold welding. In order to pressurize the joint portion 13, dies (pressing dies) 14 and 15 are arranged above and below the joint portion. The pressing surface of at least one of the dies 14 and 15 (for example, the upper die 14) is provided with a convex portion 14a for causing deformation of the joint surface. The pressing surface of the other die 15 is flat or provided with a recess 15a corresponding to the protrusion 14a.

アルミニウムのリード部材11と銅のリード部材12の接合部分13は、押圧面に凹凸を有するダイス14,15により、塑性変形を生じて密着接合される。また、上記のように加工されたリード部材は、図7(D)に示すように、例えば、その接合部分を内側層16aと外側層16bからなる2枚の絶縁樹脂フィルム16で覆って、非水電解質電池の外装体に封着するための封止部とされる。   The joining portion 13 of the aluminum lead member 11 and the copper lead member 12 is plastically deformed and closely joined by the dies 14 and 15 having irregularities on the pressing surface. In addition, as shown in FIG. 7D, the lead member processed as described above is covered with two insulating resin films 16 composed of an inner layer 16a and an outer layer 16b, for example. The sealing portion is used to seal the outer body of the water electrolyte battery.

リード部材(アルミ板と銅板)の圧接部分には絶縁樹脂フィルムを隙間なく密着させなければならない。しかし、上記のリード部材では圧接部分にダイスの凹凸形状が写された凹凸があるので、そこに絶縁樹脂フィルムを貼るときに隙間が生じ易い。ダイスの押圧面に凹凸を設けると加工コストが嵩むので、凹凸のない平坦なダイスを使用する方がコスト的に有利である。   The insulating resin film must be closely adhered to the pressure contact portion of the lead member (aluminum plate and copper plate). However, in the above lead member, there is an unevenness in which the uneven shape of the die is copied at the pressure contact portion, and therefore a gap is likely to occur when an insulating resin film is applied thereto. If unevenness is provided on the pressing surface of the die, the processing cost increases. Therefore, it is more cost effective to use a flat die without unevenness.

本発明は、上述した実情に鑑みてなされたもので、押圧面に凹凸のない平坦な圧接ダイスを用いて、アルミニウム板に冷間圧接により銅板を接続一体化した金属リードとその製造方法の提供を目的とする。   The present invention has been made in view of the above-described circumstances, and provides a metal lead in which a copper plate is connected and integrated with an aluminum plate by cold pressure welding using a flat pressure welding die having no unevenness on the pressing surface, and a method for manufacturing the same. With the goal.

本発明による金属リードは、矩形状のアルミニウム板の一方の端部分に銅板を冷間圧接により接合し、該接合部分を絶縁樹脂フィルムで覆った非水電解質デバイス用の金属リードで、接合部分はアルミニウム板の端部分の接合面の酸化膜が除去された状態で銅板と接合され、接合部分に凹凸がないことを特徴とする。
また、本発明による金属リードの製造方法は、矩形状のアルミニウム板の一方の端部分に銅板を冷間圧接により接合し、該接合部分を絶縁樹脂フィルムで覆った非水電解質デバイス用の金属リードの製造方法で、接合部分をアルミニウム板の端部分の接合面の酸化膜を研磨または斜め剪断により除去した後に、銅板を押圧面が平坦な圧接ダイスで接合し、接合部分に凹凸が生じないようにする。
Metal lead according to the present invention, the copper plate is joined by cold welding to one end portion of the rectangular aluminum plate, the bonded portion of a metal lead covered non-aqueous electrolyte for a device with an insulating resin film, the bonding portion is joined to the copper plate in a state where oxide films of the bonding surface of the end portion of the aluminum plate has been removed, characterized in that there are no irregularities in the joint portion.
The metal lead manufacturing method according to the present invention also includes a metal lead for a non-aqueous electrolyte device in which a copper plate is joined to one end portion of a rectangular aluminum plate by cold pressure welding, and the joined portion is covered with an insulating resin film. in the manufacturing method, the bonding portion was removed by polishing or diagonal shear an oxide film of the bonding surface of the end portion of the aluminum plate, and bonding the copper plate pressing surface is a flat crimping die, so that uneven bonding portion does not occur To .

本発明による金属リードおよびその製造方法によれば、接続部分に凹凸がないので、絶縁樹脂を確実に密着させることが容易である。また、ダイスの加工コストも小さい。   According to the metal lead and the method for manufacturing the same according to the present invention, since there is no unevenness in the connection portion, it is easy to reliably attach the insulating resin. Also, the processing cost of the die is low.

本発明による金属リードの概略を説明する図である。It is a figure explaining the outline of the metal lead by this invention. 本発明による金属リードを用いた非水電解質デバイスの一例を示す図である。It is a figure which shows an example of the nonaqueous electrolyte device using the metal lead by this invention. 本発明によるアルミニウム板と銅板を冷間圧接で接合する一例を説明する図ある。It is a figure explaining an example which joins the aluminum plate and copper plate by this invention by cold pressure welding. 本発明によるアルミニウム板と銅板を冷間圧接で接合する他の例を説明する図ある。It is a figure explaining the other example which joins the aluminum plate and copper plate by cold pressure welding by this invention. 本発明によるアルミニウム板と銅板を冷間圧接で接合するその他の例を説明する図ある。It is a figure explaining the other example which joins the aluminum plate and copper plate by cold pressure welding by this invention. 本発明によるアルミニウム板と銅板を冷間圧接で接合した試験結果を示す図ある。It is a figure which shows the test result which joined the aluminum plate and copper plate by this invention by cold pressure welding. 従来技術の解決すべき課題を説明する図である。It is a figure explaining the subject which the conventional technology should solve.

図により本発明の実施の形態を説明する。図1(A)は、本発明による金属リードの一例を示し、図1(B)は、その正面図、図1(C)は、断面図である。
本発明によるアルミリード3は、矩形状のアルミニウム導体の板5(以下、アルミ板という)の一方の端部分に、矩形状の銅導体の板7(以下、銅板という)を後述する冷間圧接により接合し、該接合部分を絶縁樹脂フィルム6で覆って形成される。なお、銅板7には、その外周面にニッケルメッキが施されたニッケルメッキ銅の板を含めたものとする。
Embodiments of the present invention will be described with reference to the drawings. 1A shows an example of a metal lead according to the present invention, FIG. 1B is a front view thereof, and FIG. 1C is a cross-sectional view thereof.
An aluminum lead 3 according to the present invention has a rectangular copper conductor plate 7 (hereinafter referred to as a copper plate), which will be described later, on one end of a rectangular aluminum conductor plate 5 (hereinafter referred to as an aluminum plate). And the joining portion is covered with an insulating resin film 6. The copper plate 7 includes a nickel-plated copper plate having a nickel plating on the outer peripheral surface thereof.

アルミ板5と銅板7との接合部分を覆う絶縁樹脂フィルム6は、板の幅方向から張り出て、板の接合部分を両面から挟むようにして貼り付けられる。絶縁樹脂フィルム6は、図1(C)に示すように、アルミ板5および銅板7に接着または溶着する内側層6aと、電池外装体等と融着される外側層6bとの2層で形成することができる。内側層6aは、加熱溶融によりアルミ板、銅板およびそれらの接合部分に密着させる。外側層6bは、内側層6aよりは融点の高いものが用いられ、電池外装体に封止される時には形状を保持する。   The insulating resin film 6 covering the joint portion between the aluminum plate 5 and the copper plate 7 is stuck so as to protrude from the width direction of the plate and sandwich the joint portion of the plate from both sides. As shown in FIG. 1C, the insulating resin film 6 is formed of two layers of an inner layer 6a that is bonded or welded to the aluminum plate 5 and the copper plate 7, and an outer layer 6b that is fused to the battery outer package or the like. can do. The inner layer 6a is brought into close contact with an aluminum plate, a copper plate, and a joint portion thereof by heating and melting. The outer layer 6b has a higher melting point than the inner layer 6a, and retains its shape when sealed to the battery outer package.

図2(A)は、図1に示したアルミリード3を、リチウムイオン電池やキャパシタなどの非水電解質デバイスに用いる例を示し、図2(B)は金属リードの封着例を示した図である。
なお、非水電解質電池1では、正極側には、高い電位がかかるため高電位で電解液に溶解しない金属のアルミニウムからなるアルミリード3が使用され、負極側には、ニッケルメッキした銅からなる銅リード4が使用されることが多い。また、電気二重層コンデンサでは、正極側も負極側もアルミリードが使用される。
2A shows an example in which the aluminum lead 3 shown in FIG. 1 is used for a nonaqueous electrolyte device such as a lithium ion battery or a capacitor, and FIG. 2B shows an example of sealing a metal lead. It is.
In the non-aqueous electrolyte battery 1, an aluminum lead 3 made of metal aluminum that does not dissolve in the electrolyte solution at a high potential is used on the positive electrode side, and the negative electrode side is made of nickel-plated copper. Copper leads 4 are often used. In the electric double layer capacitor, aluminum leads are used for both the positive electrode side and the negative electrode side.

非水電解質電池1は、セパレータを介して積層された正極板と負極板、ならびに、電解液とを、金属箔を含む多層フィルムからなる外装体2に収納し、図2(A)に示すように、正極側のアルミリード3、負極側の銅リード4を、絶縁樹脂フィルム6を介して外装体2のシール部2dから密封封止した状態で取り出して構成される。
なお、アルミリード3は、銅板7の部分が外部に露出するように配され、半田接続や銅導体との直接接続に供せられる。アルミ板5の他方の端部分は、アルミニウム導体のままで、図2(B)に示すように、電池内の電極板リード8と接続される。
The nonaqueous electrolyte battery 1 stores a positive electrode plate and a negative electrode plate, and an electrolyte solution, which are laminated via a separator, in an exterior body 2 made of a multilayer film containing a metal foil, as shown in FIG. In addition, the aluminum lead 3 on the positive electrode side and the copper lead 4 on the negative electrode side are taken out from the seal portion 2d of the outer package 2 through the insulating resin film 6 and configured.
The aluminum lead 3 is arranged so that a portion of the copper plate 7 is exposed to the outside, and is used for solder connection or direct connection with a copper conductor. The other end portion of the aluminum plate 5 remains an aluminum conductor and is connected to the electrode plate lead 8 in the battery as shown in FIG.

外装体2は、非水電解質電池1の外装ケースとなるもので、例えば、矩形状の2枚の多層フィルム周辺のシール部2dを、熱溶着によりシールすることにより密封される。外装体2を形成する多層フィルムは、少なくとも3層の積層体からなり、その最内層フィルム2aは、電解液で溶解されずシール部2dから電解液が漏出するのを防止するのに適したものとしてポリオレフィン樹脂(例:無水マレイン酸変性低密度ポリエチレンまたはポリプロピレン)が用いられる。金属箔層2bは、アルミニウム、銅、ステンレス等の金属箔が用いられ、電解液に対する密封性を高めている。最外層フィルム2cは、薄い金属箔層2bを保護するためのもので、ポリエチレンテレフタレート(PET)等で形成されている。   The exterior body 2 serves as an exterior case for the nonaqueous electrolyte battery 1 and is sealed by, for example, sealing the seal portions 2d around the two rectangular multilayer films by heat welding. The multilayer film forming the outer package 2 is composed of a laminate of at least three layers, and the innermost layer film 2a is suitable for preventing the electrolyte from leaking out from the seal portion 2d without being dissolved by the electrolyte. A polyolefin resin (eg, maleic anhydride-modified low density polyethylene or polypropylene) is used. The metal foil layer 2b is made of a metal foil such as aluminum, copper, or stainless steel, and enhances the sealing performance against the electrolytic solution. The outermost layer film 2c is for protecting the thin metal foil layer 2b, and is formed of polyethylene terephthalate (PET) or the like.

アルミリード3および銅リード4は、共に絶縁樹脂フィルム6が外装体2の多層フィルムに熱融着されて密封封着される。なお、絶縁樹脂フィルム6は、図1(C)で説明したように、例えば、内側層6aと外側層6bとの2層で形成することができる。そして、外装体2とのシール時に、外側層6bと外装体2と融着させることで、外装体2内の金属箔2bとリードとが電気的に短絡が生じないようにして、封着させることができる。   Both the aluminum lead 3 and the copper lead 4 are hermetically sealed by thermally sealing the insulating resin film 6 to the multilayer film of the outer package 2. The insulating resin film 6 can be formed of, for example, two layers of an inner layer 6a and an outer layer 6b, as described with reference to FIG. Then, the outer layer 6b and the exterior body 2 are fused to each other so that the metal foil 2b and the lead in the exterior body 2 are not electrically short-circuited and sealed. be able to.

上述の非水電解質電池1は、例えば、実使用時における電池温度のモニタや充放電の制御を行なって電池を保護する保護回路基板9を接続して一体としたり、複数個の電池の正極側のリード3と負極側のリード4を電気的に直列接続して使用する場合などがある。このような場合、通常のアルミリードが用いられている場合は、半田接続ができない。しかし、図2のように、半田付け可能な銅板7を有するアルミリード3を用いることにより、保護回路基板9の導体パターン9aに直接接続することができ、組立てが容易に行なえる。また、複数の電池の正極側のアルミリード3と負極側の銅リード4とを直列接続して使用することも可能となる。   The non-aqueous electrolyte battery 1 described above can be integrated by connecting a protection circuit board 9 that protects the battery by monitoring the battery temperature and controlling the charge and discharge during actual use, or the positive side of a plurality of batteries. In some cases, the lead 3 and the lead 4 on the negative electrode side are electrically connected in series. In such a case, solder connection is not possible when ordinary aluminum leads are used. However, as shown in FIG. 2, by using the aluminum lead 3 having the solderable copper plate 7, it can be directly connected to the conductor pattern 9a of the protective circuit board 9 and can be easily assembled. In addition, it is possible to use the aluminum lead 3 on the positive electrode side and the copper lead 4 on the negative electrode side of a plurality of batteries connected in series.

図3〜図5は、上記のアルミ板5と銅板7を、冷間圧延による接合する方法を説明する図である。図3は、厚さが同じのアルミ板と銅板とを互いに接合させる例で、図3(A)に示すように、同じ厚さのアルミ板5と銅板7との互いの端部同士を重ねて接合するものとする。図3(B)に示すように、接合するアルミ板5の端部分を、斜めに剪断して表面の酸化膜を除去した斜めの接合面5aを形成する。また、銅板7の端部分も同様に斜めに剪断して表面の汚れや、ニッケルメッキ層を除去した斜めの接合面7aを形成する。   3-5 is a figure explaining the method to join the said aluminum plate 5 and the copper plate 7 by cold rolling. FIG. 3 shows an example in which an aluminum plate and a copper plate having the same thickness are joined to each other. As shown in FIG. 3A, the end portions of the aluminum plate 5 and the copper plate 7 having the same thickness are overlapped with each other. Shall be joined. As shown in FIG. 3B, the end portion of the aluminum plate 5 to be joined is obliquely sheared to form an oblique joining surface 5a from which the surface oxide film is removed. Similarly, the end portion of the copper plate 7 is also sheared obliquely to form a slanted joint surface 7a from which surface contamination and a nickel plating layer have been removed.

次いで、図3(C)に示すように、双方の板の斜めの接合面5aと7aを突き合わせ、上下に圧接ダイス10aと10bを配する。斜めの接合面5aと7aを互いに重ねると、自然と上側に重なる銅板7の接合面7aが、アルミ板5の接合面5aから上方に浮き出るようにして乗り上げる。上側の圧接ダイス10aと下側の圧接ダイス10bは、その押圧面が共に平坦に形成されている。   Next, as shown in FIG. 3C, the diagonal joining surfaces 5a and 7a of both plates are brought into contact with each other, and press-contact dies 10a and 10b are arranged up and down. When the oblique joining surfaces 5 a and 7 a are overlapped with each other, the joining surface 7 a of the copper plate 7 that naturally overlaps the upper surface rises upward from the joining surface 5 a of the aluminum plate 5. The upper press-contacting die 10a and the lower press-contacting die 10b are both formed with flat pressing surfaces.

次いで、図3(D)に示すように、上下の圧接ダイス10aと10bに押圧力(負荷応力)を加えて接合部分を冷間圧接する。この圧接により、接合面5aと7aは接合一体化される。このとき、接合前の接合面5a,7aは、接合端部分5c,7cで示すような不定形に塑性変形して密着接合される。なお、圧接の中心部分における圧接変形後の残存板厚さは、アルミ板5側を(a)、銅板7側を(b)とすると、後述するように、(a<b)で、接合厚さ(a+b)は、ほぼ板の厚さとなる。
Next, as shown in FIG. 3D, a pressing force (load stress) is applied to the upper and lower pressing dies 10a and 10b to cold-weld the joined portions. By this pressure welding, the joining surfaces 5a and 7a are joined and integrated. At this time, the joining surfaces 5a and 7a before joining are plastically deformed into an indefinite shape as shown by the joining end portions 5c and 7c and are tightly joined. The remaining plate thickness after pressure welding deformation at the center portion of the pressure welding is (a) where the aluminum plate 5 side is (a) and the copper plate 7 side is (b). is (a + b) is approximately the thickness of the plate preparative ing.

図4は、厚さが異なるアルミ板と銅板とを互いに接合させる例で、図4(A)に示すように、厚いアルミ板5と薄い銅板7'との互いの端部同士を重ねて接合するものとする。図4(B)に示すように、図3の例と同様に接合するアルミ板5の端部分を、斜めに剪断して表面の酸化膜を除去した斜めの接合面5aを形成する。また、銅板7'の端部分も同様に斜めに剪断して表面の汚れや、酸化層を除去した斜めの接合面7'aを形成する。   FIG. 4 shows an example in which an aluminum plate and a copper plate having different thicknesses are joined to each other. As shown in FIG. 4 (A), the thick aluminum plate 5 and the thin copper plate 7 ′ are joined to each other. It shall be. As shown in FIG. 4 (B), the end portion of the aluminum plate 5 to be joined is obliquely sheared in the same manner as in the example of FIG. 3 to form an oblique joining surface 5a from which the oxide film on the surface is removed. Similarly, the end portion of the copper plate 7 ′ is also obliquely sheared to form a slanted joint surface 7′a from which surface dirt and oxide layers have been removed.

次いで、図4(C)に示すように、双方の板の斜めの接合面5aと7'aを突き合わせ、上下にダイス10aと10bを配する。なお、上側の圧接ダイス10aと下側の圧接ダイス10bは、図3の例と同様にその押圧面が共に平坦に形成されている。   Next, as shown in FIG. 4C, the diagonal joining surfaces 5a and 7'a of both plates are brought into contact with each other, and the dies 10a and 10b are arranged above and below. Note that the pressing surfaces of the upper pressing die 10a and the lower pressing die 10b are both flat as in the example of FIG.

この後、図4(D)に示すように、上下の圧接ダイス10aと10bに押圧力を加えて接合部分を冷間圧接する。この圧接により、接合面5aと7'aは接合一体化される。このとき、接合前の接合面5a,7'aは、圧接により接合端部分5c,7'cで示すような不定形に塑性変形して密着接合される。なお、圧接の中心部分における圧接変形後の残存板厚さは、アルミ板5側を(a)、銅板7'側を(b)とすると、(a>b)で、接合厚さ(a+b)は、厚みのあるアルミ板5側の厚さよりも圧縮されて接合される。   Thereafter, as shown in FIG. 4D, a pressing force is applied to the upper and lower pressing dies 10a and 10b to cold-weld the joined portions. By this pressure welding, the joining surfaces 5a and 7'a are joined and integrated. At this time, the joining surfaces 5a and 7′a before joining are plastically deformed into an indeterminate shape as shown by the joining end portions 5c and 7′c by pressure welding and are tightly joined. The remaining plate thickness after the pressure deformation at the center portion of the pressure contact is (a) on the aluminum plate 5 side and (b) on the copper plate 7 ′ side, and (a> b), the joining thickness (a + b) Are compressed and bonded to each other than the thickness on the thick aluminum plate 5 side.

図5は、厚さが異なるアルミ板と銅板とを互いに接合させる例で、図5(A)に示すように、厚いアルミ板5と薄い銅板7'との互いの端部同士を平面接合するものとする。図5(B)に示すように、接合するアルミ板5の端部分を研磨して表面の酸化膜を除去した接合面5bを形成する。また、銅板7'の端部分も同様に研磨して表面の汚れや、酸化膜を除去した接合面7'bを形成する。   FIG. 5 is an example in which an aluminum plate and a copper plate having different thicknesses are joined to each other. As shown in FIG. 5A, the end portions of the thick aluminum plate 5 and the thin copper plate 7 ′ are joined to each other in a plane. Shall. As shown in FIG. 5B, the end face of the aluminum plate 5 to be joined is polished to form a joining surface 5b from which the oxide film on the surface has been removed. Also, the end portion of the copper plate 7 ′ is similarly polished to form a bonding surface 7′b from which the surface dirt and oxide film have been removed.

次いで、図5(C)に示すように、研磨した接合面5bと7'bを重ね合わせ、上下にダイス10aと10bを配する。なお、上側のダイス10aと下側のダイス10bは、図3,4の例と同様にその押圧面が共に平坦に形成されている。   Next, as shown in FIG. 5C, the polished joining surfaces 5b and 7'b are overlapped, and the dies 10a and 10b are arranged above and below. The upper die 10a and the lower die 10b have flat pressing surfaces as in the example of FIGS.

この後、図5(D)に示すように、上下の圧接ダイス10aと10bに押圧力を加えて、接合部分を冷間圧接する。この圧接により、接合面5bと7'bは接合一体化される。このとき、接合前の接合面5b,7'bは、圧接により接合端部分5c,7'cで示すような不定形に塑性変形して密着接合される。なお、圧接の中心部分における圧接変形後の残存板厚さは、アルミ板5側を(a)、銅板7'側を(b)とすると(a≧b)で、接合厚さ(a+b)は、厚いアルミ板の厚さ程度ないしは以下に圧縮されて接合される。   Thereafter, as shown in FIG. 5D, a pressing force is applied to the upper and lower press-connecting dies 10a and 10b to cold-weld the joined portions. By this pressure welding, the joining surfaces 5b and 7'b are joined and integrated. At this time, the joining surfaces 5b and 7'b before joining are plastically deformed into an indefinite shape as shown by the joining end portions 5c and 7'c by pressure welding and are tightly joined. The remaining plate thickness after the pressure deformation at the center portion of the pressure contact is (a) on the aluminum plate 5 side and (b) on the copper plate 7 'side (a ≧ b), and the joining thickness (a + b) is Compressed and bonded to the thickness of a thick aluminum plate or below.

図6は、上述した種々の形態でアルミ板と銅板とを冷間圧接した試験結果を示す図で、試料1〜7についての接合状態を調べた。試験には、アルミ板(長辺50mm、短辺10mm)と銅板(長辺50mm、短辺10mm)の、一方の短辺同士を接合して行った。なお、評価の判断基準は、接合後に、アルミ板または銅板のいずれか一方を持って持ち上げたとき、他方が剥がれずに持ち上がれば「○」、他方が剥がれて持ち上がらなければ「×」とした。
なお、冷間圧接後の圧接部分における残存厚さは、図3〜図5で説明したように、圧接の中心部分で測定した値で、アルミ板側を(a)、銅板側を(b)とし、[ ]内の値は、残存率(=圧接後の板厚/圧接前の板厚×100)を示す。
FIG. 6 is a diagram showing test results obtained by cold-welding an aluminum plate and a copper plate in the various forms described above, and the bonding state of samples 1 to 7 was examined. The test was performed by joining one short side of an aluminum plate (long side 50 mm, short side 10 mm) and a copper plate (long side 50 mm, short side 10 mm). In addition, the judgment criteria of the evaluation was “○” if the aluminum plate or the copper plate was lifted after being joined and lifted without peeling, and “X” if the other was peeled and not lifted. .
In addition, the residual thickness in the pressure-welded part after cold pressure welding is the value measured in the center part of pressure welding as demonstrated in FIGS. 3-5, (a) on the aluminum plate side, (b) on the copper plate side. The value in [] represents the residual ratio (= plate thickness after pressure welding / plate thickness before pressure welding × 100).

試料1,2は、アルミ板と銅板の双方の板厚を共に0.2mmとし、端部分を斜め剪断して酸化膜等の除去処理をした。端部分を図3に示す形態で互いに重ね合わせて、試料1には8000MPa、試料2には3000MPaの負荷応力を圧接ダイスに加えて圧接した。
この結果、残存厚さ[残存率]a,bは、試料1がa=0.05mm[25%],b=0.14mm[70%]で、試料2がa=0.06mm[25%],b=0.14mm[70%]で、何れも接合状態は「○」であった。
In Samples 1 and 2, the thicknesses of both the aluminum plate and the copper plate were set to 0.2 mm, and the edge portions were subjected to oblique shearing to remove oxide films and the like. The end portions were overlapped with each other in the form shown in FIG. 3, and a pressure stress of 8000 MPa was applied to Sample 1 and 3000 MPa was applied to Sample 2 by applying pressure stress to the pressure contact die.
As a result, the remaining thicknesses [residual ratios] a and b are as follows. Sample 1 has a = 0.05 mm [25%], b = 0.14 mm [70%], and Sample 2 has a = 0.06 mm [25%]. ], B = 0.14 mm [70%], and the bonding state was “◯” in both cases.

試料3,4は、アルミ板の板厚を0.4mm、銅板の板厚を0.2mmとし、端部分を斜め剪断して酸化膜等の除去処理をした。端部分を図4に示す形態で互いに重ね合わせて、試料3には1000MPa、試料4には4000MPaの負荷応力を圧接ダイス加えて圧接した。
この結果、残存厚さ[残存率]a,bは、試料3がa=0.26mm[65%],b=0.19mm[95%]で、試料4がa=0.25mm[63%],b=0.17mm[85%]で、何れも接合状態は「○」であった。
In Samples 3 and 4, the thickness of the aluminum plate was 0.4 mm, the thickness of the copper plate was 0.2 mm, and the end portion was obliquely sheared to remove the oxide film or the like. The end portions were overlapped with each other in the form shown in FIG. 4, and a pressure stress of 1000 MPa was applied to sample 3 and a pressure stress of 4000 MPa was applied to sample 4 and pressed.
As a result, the remaining thicknesses [residual ratios] a and b are as follows. Sample 3 has a = 0.26 mm [65%], b = 0.19 mm [95%], and Sample 4 has a = 0.25 mm [63%]. ], B = 0.17 mm [85%], and the bonding state was “◯” in both cases.

試料5〜7は、アルミ板の板厚を0.4mm、銅板の板厚を0.2mmとし、試料5,6は図5に示すように端部分の接合面の酸化膜等の除去処理をしたが、試料7は処理なしとした。接合面を図5に示す形態で互いに重ね合わせて、試料5には16000MPa、試料6には500MPa、試料7には16000MPaの負荷応力を圧接ダイスに加えて圧接した。
この結果、残存厚さ[残存率]a,bは、試料5がa=0.19mm[48%],b=0.18mm[90%]で、試料6がa=0.30mm[75%],b=0.19mm[95%]で、試料7がa=0.18mm[45%],b=0.18mm[90%]で、試料5は、接合状態は「○」であったが、試料6と7は、「×」であった。
Samples 5 to 7 have an aluminum plate thickness of 0.4 mm and a copper plate thickness of 0.2 mm. Samples 5 and 6 have an oxide film or the like removed from the joint surface at the end as shown in FIG. However, Sample 7 was not treated. The joining surfaces were overlapped with each other in the form shown in FIG. 5, and a pressure stress of 16000 MPa was applied to the sample 5, 500 MPa to the sample 6, and 16000 MPa to the sample 7 by applying pressure stress to the pressure die.
As a result, the remaining thicknesses [residual ratios] a and b are as follows: sample 5 is a = 0.19 mm [48%], b = 0.18 mm [90%], and sample 6 is a = 0.30 mm [75%]. ], B = 0.19 mm [95%], sample 7 was a = 0.18 mm [45%], b = 0.18 mm [90%], and sample 5 had a bonding state of “◯”. However, Samples 6 and 7 were “x”.

上記の試験結果から、試料6のように、圧接ダイスに加える負荷応力が少なすぎると圧接不足で接合不良となる。試料3の結果から、負荷応力は1000Mpa程度あればよく、これ以上では、負荷応力の大小による残存厚さに、大きな差は生じなかった。また、試料7の結果から、接合面の酸化膜等の除去処理がされず、酸化膜が残っている状態では、例え、大きな負荷応力で圧接しても接合不良となることが判明した。
また、アルミ板と銅板とを冷間圧接した場合、銅に比べて軟質のアルミニウムの圧縮展延が大きく、アルミ板の厚さの残存率(30〜65%)は小さく、銅板の厚さの残存率(70〜95%)の方が大きかった。
From the above test results, as in sample 6, if the load stress applied to the pressure welding die is too small, insufficient pressure welding results in poor bonding. From the results of Sample 3, it is sufficient that the load stress is about 1000 Mpa. Above this, there is no significant difference in the remaining thickness due to the magnitude of the load stress. Further, from the result of the sample 7, it was found that when the oxide film or the like on the bonding surface was not removed and the oxide film remained, bonding failure occurred even when pressed with a large load stress.
Moreover, when the aluminum plate and the copper plate are cold-welded, the compression spread of soft aluminum is larger than that of copper, the remaining rate of the aluminum plate thickness (30 to 65%) is small, and the thickness of the copper plate The residual ratio (70 to 95%) was larger.

以上の結果から、アルミ板と銅板の冷間圧接による接合で、アルミ板側の接合端部分の酸化膜、銅板側の汚れやメッキ層を除去することで、押圧面が平坦な圧接ダイスを用いることが可能となって、銅付のアルミリードを安価に製造することができる。また、アルミ板と銅板の接合部分の厚さの増加が十分に抑えられ、凹凸が生じず厚み圧縮のための加工処理を必要としない。   From the above results, a pressure welding die with a flat pressing surface is used by removing the oxide film at the joining end portion on the aluminum plate side, dirt and plating layer on the copper plate side by joining by cold pressure welding of the aluminum plate and the copper plate. Thus, an aluminum lead with copper can be manufactured at low cost. Moreover, the increase in the thickness of the joined portion between the aluminum plate and the copper plate is sufficiently suppressed, so that the unevenness does not occur and the processing for compressing the thickness is not required.

1…非水電解質電池、2…外装体、3…アルミリード、4…銅リード、5…アルミ板、5a,5b…接合面、6…絶縁樹脂フィルム、6a…内側層、6b…外側層、7,7'…銅板、7a〜7'c…接合面、8…電極板リード、9…保護回路基板、10a,10b…圧接ダイス。 DESCRIPTION OF SYMBOLS 1 ... Non-aqueous electrolyte battery, 2 ... Exterior body, 3 ... Aluminum lead, 4 ... Copper lead, 5 ... Aluminum plate, 5a, 5b ... Joining surface, 6 ... Insulating resin film, 6a ... Inner layer, 6b ... Outer layer, 7, 7 '... Copper plate, 7a-7'c ... Joining surface, 8 ... Electrode plate lead, 9 ... Protection circuit board, 10a, 10b ... Pressure welding die.

Claims (3)

矩形状のアルミニウム板の一方の端部分に銅板を冷間圧接により接合し、該接合部分を絶縁樹脂フィルムで覆った非水電解質デバイス用の金属リードであって、
前記接合部分は前記アルミニウム板の端部分の接合面の酸化膜が除去された状態で前記銅板と接合され、前記接合部分に凹凸がないことを特徴とする金属リード。
A metal lead for a non-aqueous electrolyte device in which a copper plate is joined to one end portion of a rectangular aluminum plate by cold welding, and the joined portion is covered with an insulating resin film,
The joint portion is joined to the front Symbol copper plate in a state where oxide films of the bonding surface of the end portion of the aluminum plate has been removed, metal leads, characterized in that there are no irregularities in the joint portion.
矩形状のアルミニウム板の一方の端部分に銅板を冷間圧接により接合し、該接合部分を絶縁樹脂フィルムで覆った非水電解質デバイス用の金属リードの製造方法であって、
前記接合部分を前記アルミニウム板の端部分の接合面の酸化膜を除去した後に前記銅板を押圧面が平坦な圧接ダイスで接合し、前記接合部分に凹凸を生じないことを特徴とする金属リードの製造方法。
A method for producing a metal lead for a non-aqueous electrolyte device in which a copper plate is joined to one end portion of a rectangular aluminum plate by cold welding, and the joined portion is covered with an insulating resin film,
Metal, characterized in that bonding the bonding portion by the pressing surface flat crimping die pre Symbol copper plate after removing the oxide film of the bonding surface of the end portion of the aluminum plate, no irregularities in the joint portion Lead manufacturing method.
前記アルミニウム板の端部分の接合面の酸化膜を、研磨または斜め剪断により除去することを特徴とする請求項2に記載の金属リードの製造方法。   3. The method of manufacturing a metal lead according to claim 2, wherein the oxide film on the joint surface of the end portion of the aluminum plate is removed by polishing or oblique shearing.
JP2010117148A 2010-05-21 2010-05-21 Metal lead and its manufacturing method Active JP5556364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117148A JP5556364B2 (en) 2010-05-21 2010-05-21 Metal lead and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117148A JP5556364B2 (en) 2010-05-21 2010-05-21 Metal lead and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011243531A JP2011243531A (en) 2011-12-01
JP5556364B2 true JP5556364B2 (en) 2014-07-23

Family

ID=45409975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117148A Active JP5556364B2 (en) 2010-05-21 2010-05-21 Metal lead and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5556364B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227756B2 (en) * 2014-03-28 2017-11-08 オートモーティブエナジーサプライ株式会社 Battery terminals and batteries
JP6342231B2 (en) * 2014-06-19 2018-06-13 オートモーティブエナジーサプライ株式会社 Battery negative terminal
JP6404045B2 (en) * 2014-09-09 2018-10-10 三井化学株式会社 Lid, electric element, electric element unit, and method of manufacturing lid
JP6413682B2 (en) * 2014-11-17 2018-10-31 住友電気工業株式会社 Lead member and battery
CN107755873A (en) * 2017-11-30 2018-03-06 西安启源机电装备有限公司 A kind of. g., lead tape is cold-pressed opposite soldering device
DE102018210660A1 (en) * 2018-06-28 2020-01-02 Bayerische Motoren Werke Aktiengesellschaft Storage cell for an energy storage device of a motor vehicle and energy storage device for a motor vehicle
CN113178668A (en) * 2020-01-08 2021-07-27 东莞新能德科技有限公司 Battery structure, electronic device, and method for manufacturing battery structure
JP2022131626A (en) * 2021-02-26 2022-09-07 本田技研工業株式会社 pouch cell
JP7329010B2 (en) * 2021-03-19 2023-08-17 プライムプラネットエナジー&ソリューションズ株式会社 laminated battery
JP7329009B2 (en) * 2021-03-19 2023-08-17 プライムプラネットエナジー&ソリューションズ株式会社 terminal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR7603989A (en) * 1975-06-30 1977-03-22 Gen Electric TRANSITION PIECE FROM ALUMINUM TO COPPER FOR ENGINES WINDING WITH ALUMINUM AND THE SAME PRODUCTION PROCESS
JPS60177981A (en) * 1984-02-24 1985-09-11 Hitachi Cable Ltd Production of edge lay and through-lay clad material
JP3596626B2 (en) * 1994-04-07 2004-12-02 石川島播磨重工業株式会社 Rolled material joining apparatus and joining method
JP2002134094A (en) * 2000-10-20 2002-05-10 Nec Mobile Energy Kk Enclosed type battery
JP4904539B2 (en) * 2006-10-25 2012-03-28 住電朝日精工株式会社 Lead member, bonding method thereof, and nonaqueous electrolyte storage device

Also Published As

Publication number Publication date
JP2011243531A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5556364B2 (en) Metal lead and its manufacturing method
JP4904539B2 (en) Lead member, bonding method thereof, and nonaqueous electrolyte storage device
US6641027B2 (en) Method of connecting electric leads to battery tabs
JP5139945B2 (en) Battery pack
JP6395208B2 (en) Electrochemical cell, electrochemical cell module, portable device, and method of manufacturing electrochemical cell module
JP5202772B1 (en) Battery negative terminal
JP5549996B2 (en) Hoop-like member for aluminum tab lead
WO2012165567A1 (en) Negative electrode terminal for battery and method for producing negative electrode terminal for battery
JP2011181300A (en) Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same
JP2015032441A (en) Tab lead and nonaqueous electrolyte battery
JP2010033922A (en) Layered secondary battery
JP5229440B2 (en) Electrochemical devices
JP2000133241A (en) Nonaqueous electrolyte battery and manufacture of nonaqueous electrolyte battery
JP6405856B2 (en) Lead member and lead member manufacturing method
JP2013161547A (en) Lead member and manufacturing method therefor
KR100516768B1 (en) Secondary Battery having Parallel-Tap Combining Structure and Method of Combining the Tab
KR200469693Y1 (en) Lead member
JP2004515084A (en) Connection between conductive substrate and multilayer body
US20140038013A1 (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
JP2001345090A (en) Sealed-type battery
JP2008159351A (en) Battery device
JP4670120B2 (en) Flat battery and manufacturing method thereof
WO2009151007A1 (en) Method of manufacturing sealed battery
WO2016093015A1 (en) Electrode
JP2001093488A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250