JP5549093B2 - Propagation mode conversion structure and circuit board - Google Patents

Propagation mode conversion structure and circuit board Download PDF

Info

Publication number
JP5549093B2
JP5549093B2 JP2009081367A JP2009081367A JP5549093B2 JP 5549093 B2 JP5549093 B2 JP 5549093B2 JP 2009081367 A JP2009081367 A JP 2009081367A JP 2009081367 A JP2009081367 A JP 2009081367A JP 5549093 B2 JP5549093 B2 JP 5549093B2
Authority
JP
Japan
Prior art keywords
taper
propagation mode
microstrip line
mode conversion
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009081367A
Other languages
Japanese (ja)
Other versions
JP2010233172A (en
Inventor
健児 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009081367A priority Critical patent/JP5549093B2/en
Publication of JP2010233172A publication Critical patent/JP2010233172A/en
Application granted granted Critical
Publication of JP5549093B2 publication Critical patent/JP5549093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguides (AREA)

Description

本発明は、マイクロストリップ線路と導波管との伝送モード変換のための伝播モード変換構造に関する。   The present invention relates to a propagation mode conversion structure for transmission mode conversion between a microstrip line and a waveguide.

準ミリ波帯域(10GHz〜30GHz)やミリ波帯域(30GHz〜300GHz)の高周波信号を取り扱う回路部品において、マイクロストリップ線路と導波管との伝送モード変換を行うために、例えば特許文献1に示すような導波管構造が提案されている。特許文献1の図12には、テーパ型インピーダンス変換器を採用した、導波管構造が開示されている。この導波管構造は、少なくとも多層基板、λ/4整合器、伝播モード変換部から構成され、多層基板に、入出力端での特性インピーダンス比が3以下のλ/4整合器などのインピーダンス整合器を設けられている。この実施形態では、多層基板内のλ/4整合器に代わるものとして、テーパ型の擬似導波管によるインピーダンス整合器を用いられている。すなわち、多層基板1には、低インピーダンスのリッジ形導波管部36を有する伝播モード変換部6と、テーパ型インピーダンス整合器7cが設けられ、リッジ形導波管部36から導波管39に至る、多層基板内に配置したビア位置をシフトすることにより、反射損失が−15dB以下で広帯域のテーパ型インピーダンス整合器7cを実現できる旨記載されている。   In order to perform transmission mode conversion between a microstrip line and a waveguide in a circuit component that handles high-frequency signals in a quasi-millimeter wave band (10 GHz to 30 GHz) or a millimeter wave band (30 GHz to 300 GHz), for example, Patent Document 1 Such a waveguide structure has been proposed. FIG. 12 of Patent Document 1 discloses a waveguide structure that employs a tapered impedance converter. This waveguide structure is composed of at least a multilayer substrate, a λ / 4 matching device, and a propagation mode conversion unit, and impedance matching such as a λ / 4 matching device having a characteristic impedance ratio of 3 or less at the input / output end on the multilayer substrate. A vessel is provided. In this embodiment, as an alternative to the λ / 4 matching device in the multilayer substrate, an impedance matching device using a tapered pseudo waveguide is used. That is, the multilayer substrate 1 is provided with a propagation mode converter 6 having a low-impedance ridge-shaped waveguide section 36 and a taper-type impedance matching unit 7 c, from the ridge-shaped waveguide section 36 to the waveguide 39. It is described that by shifting the position of the vias arranged in the multilayer substrate, it is possible to realize a broadband tapered impedance matching unit 7c with a reflection loss of −15 dB or less.

特開2008−141344号公報JP 2008-141344 A

しかしながら、通信機器の高性能化に伴い、前記多層基板に構成されたテーパ型インピーダンス変換器においても、よりいっそうの広帯域、低反射損失が求められていた。そこで、本発明は、広帯域で、低反射損失の伝播モード変換構造を提供することを目的とする。   However, with the improvement in performance of communication equipment, even wider bandwidth and lower reflection loss have been demanded for the tapered impedance converter configured on the multilayer substrate. Therefore, an object of the present invention is to provide a propagation mode conversion structure with a wide band and low reflection loss.

本発明の伝搬モード変換構造は、リッジ導波管で構成された伝播モード変換部を備えた、マイクロストリップ線路と、標準導波管との間の伝搬モード変換構造であって、複数の誘電体層が積層された多層誘電体基板の最上層にマイクロストリップ線路が形成され前記リッジ導波管は、前記多層誘電体基板の内層であって、複数の誘電体層に、前記マイクロストリップ線路と対向するように設けられた接地導体と、前記接地導体と一体的に構成された導体パターンとを備えた導体を有し、前記導体によって囲まれた電極非形成部には、前記導体パターンの一部が突出したリッジ部が形成され、前記電極非形成部を囲むように配置されたビア電極を介して、複数の誘電体層に設けられた導体の接地導体が接続され、複数の誘電体層に設けられた導体のリッジ部は、前記マイクロストリップ線路と他のビア電極を介して接続され、前記マイクロストリップ線路と前記導体パターンを含む、多層誘電体基板の積層方向断面にて、前記電極非形成部を介して対向するリッジ部を構成する前記導体パターンの端部と接地導体の端部を、それぞれ導体パターン側同士、接地導体側同士積層方向に結ぶ線により構成されるテーパの傾きが途中で変化して、傾きの異なる複数のテーパ部が形成されており、前記テーパは前記マイクロストリップ線路側が細くなる傾きであって、前記標準導波管側のテーパ部が前記マイクロストリップ線路側のテーパ部よりもテーパの傾きが小さく、標準導波管側のテーパ部のテーパの傾きは0度を含むことを特徴とする。
かかる構成によれば、多層誘電体基板内で略50Ωのインピーダンスを持つマイクロストリップ線路と数100Ωのインピーダンスを持つ標準導波管との接続におけるインピーダンス変化が緩和され、反射損失が低減されることにより、通過損失が向上し、かつ、広帯域での整合を確保できる。
A propagation mode conversion structure according to the present invention is a propagation mode conversion structure between a microstrip line and a standard waveguide , which includes a propagation mode conversion unit composed of a ridge waveguide, and includes a plurality of dielectrics layer microstrip line is formed on the uppermost layer of the multilayer dielectric base plate which is stacked, the ridge waveguide, said a lining of the multilayer dielectric substrate, a plurality of dielectric layers, the microstrip line A conductor having a grounding conductor provided so as to face the grounding conductor and a conductor pattern integrally formed with the grounding conductor, and an electrode non-forming portion surrounded by the conductor has a conductor pattern A plurality of dielectrics are formed by connecting a ground conductor of a conductor provided in a plurality of dielectric layers through via electrodes arranged so as to surround the electrode non-formation part. Provided in layer Ridge of the body, which is connected via a microstrip line and another via electrode, including the microstrip line and the conductor pattern, in the stacking direction cross section of the multilayer dielectric substrate, via the non-electrode portion The slope of the taper formed by a line connecting the end of the conductor pattern and the end of the ground conductor constituting the opposite ridge portions in the stacking direction between the conductor pattern sides and between the ground conductor sides changes in the middle. A plurality of taper portions having different inclinations are formed, and the taper is inclined so that the microstrip line side is thinner, and the taper portion on the standard waveguide side is more than the taper portion on the microstrip line side. The taper inclination is small, and the taper inclination of the taper portion on the standard waveguide side includes 0 degree.
According to such a configuration, the impedance change in the connection between the microstrip line having an impedance of approximately 50Ω and the standard waveguide having an impedance of several hundreds Ω in the multilayer dielectric substrate is mitigated, and the reflection loss is reduced. Thus, the passage loss is improved and the matching in a wide band can be ensured.

また、前記伝搬モード変換構造において、前記複数のテーパ部のいずれかの傾きが30〜35度の範囲であって、反射損失が−15dBでの帯域幅が10GHz以上であることが好ましい。かかる構成によれば、マイクロストリップ線路から標準導波管までの反射損失の低減、すなわち、変換部の低損失化が図れ、広帯域整合を図ることができる。 Further, in the above propagation mode conversion structure, I either gradient 30 to 35 degrees ranging der of the plurality of the tapered portion, the reflection loss bandwidth preferably der Rukoto than 10GHz in -15 dB. According to such a configuration, the reflection loss from the microstrip line to the standard waveguide can be reduced, that is, the loss of the conversion unit can be reduced, and broadband matching can be achieved.

本発明の回路基板は、準ミリ波帯またはミリ波帯の信号を取り扱う回路を多層誘電体基板に構成した回路基板であって、前記回路の少なくとも一部に前記伝搬モード変換構造を用いたことを特徴とする。前記伝搬モード変換構造を用いて構成した回路基板は、準ミリ波帯またはミリ波帯の信号を取り扱う際の、伝送モード変換の反射特性における広帯域化を図るうえ好適である。   The circuit board of the present invention is a circuit board in which a circuit for handling a quasi-millimeter wave band signal or a millimeter wave band signal is formed on a multilayer dielectric substrate, and the propagation mode conversion structure is used for at least a part of the circuit. It is characterized by. A circuit board configured using the propagation mode conversion structure is suitable for widening the reflection characteristics of transmission mode conversion when handling signals in the quasi-millimeter wave band or the millimeter wave band.

本発明によれば、多層基板に構成されたテーパ型伝搬モード変換構造において、広帯域で、低反射損失の伝搬モード変換構造を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, in the taper type propagation mode conversion structure comprised in the multilayer board | substrate, it becomes possible to provide the propagation mode conversion structure of a broadband and a low reflection loss.

本発明に係る伝搬モード変換構造の一実施形態を示す図である。It is a figure which shows one Embodiment of the propagation mode conversion structure which concerns on this invention. 本発明に係る伝搬モード変換構造の内層の導体の形態を示す図である。It is a figure which shows the form of the conductor of the inner layer of the propagation mode conversion structure which concerns on this invention. 従来の伝搬モード変換構造を示す図である。It is a figure which shows the conventional propagation mode conversion structure. 伝搬モード変換構造の反射損失および挿入損失特性を示す図である。It is a figure which shows the reflection loss and insertion loss characteristic of a propagation mode conversion structure. 伝搬モード変換構造の反射損失および挿入損失特性を示す図である。It is a figure which shows the reflection loss and insertion loss characteristic of a propagation mode conversion structure. 伝搬モード変換構造の反射損失および挿入損失特性を示す図である。It is a figure which shows the reflection loss and insertion loss characteristic of a propagation mode conversion structure. 伝搬モード変換構造の反射損失および挿入損失特性を示す図である。It is a figure which shows the reflection loss and insertion loss characteristic of a propagation mode conversion structure. 伝搬モード変換構造の反射損失および挿入損失特性を示す図である。It is a figure which shows the reflection loss and insertion loss characteristic of a propagation mode conversion structure.

以下、本発明の実施形態について図面を参照して説明する。図1は本発明に係る準ミリ波帯またはミリ波帯用伝搬モード変換構造(導波管変換器)の実施形態を示す。図1(a)は伝搬モード変換構造の断面構造を示す。本発明に係る伝搬モード変換構造は、マイクロストリップ線路2と、標準導波管12との間の伝搬モード変換構造である。伝搬モード変換構造は、複数の誘電体層1が積層された多層誘電体基板と、多層誘電体基板の最上層に形成されたマイクロストリップ線路2および伝播モード変換部とを有する。伝播モード変換部と標準導波管12との間には、空洞11を有する整合導波管(接続導波管)10が接続されている。伝播モード変換部の構成を以下に説明する。多層誘電体基板の内部にはマイクロストリップ線路2に対向するように接地導体3が配置されている。接地導体3はビア電極5を介してさらに下方の誘電体層に形成された接地導体に接続されている。図1(a)に示す構成では、多層誘電体基板の内層の各誘電体に、接地導体3が設けられていて、これらは互いにビア電極5を介して接続されている。一方、マイクロストリップ線路2の端部は、ビア電極4を介して内層の導体パターン6に接続されている。導体パターン6はビア電極4を介してさらに下方の誘電体層に形成された導体パターン6に接続されている。図1(a)に示す構成では、多層誘電体基板の内層の各誘電体に、導体パターン6が設けられていて、これらは互いにビア電極4を介して接続されている。導体パターン6を接続するビア電極4および接地導体3を接続するビア電極5は、それぞれ導体パターン6および接地導体3の端部付近に形成されている。図2には図1に示す伝搬モード変換構造における、多層誘電体基板の上から5層目の誘電体層に形成された導体の形態を積層方向から見た図を示す。導体パターン6の一部は接地導体3側に突出する形態で形成されており、図1(a)に示す実施形態ではリッジ導波管が構成されている。かかるリッジ導波管は、マイクロストリップ線路2の延設方向に対して垂直な方向(多層誘電体基板の積層方向)に向けて接続されている。図1および図2に示す実施形態では、導体パターン6と接地導体3とは一体的に構成されていて、一体的に構成された導体によって囲まれた、外形が略矩形の電極非形成部が形成されている。前記導体パターン6の一部は、かかる電極非形成部に突出するように形成されており、リッジ部9が形成されている。また、電極非形成部を囲むようにビア電極が配置されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a quasi-millimeter wave band or a propagation mode conversion structure (waveguide converter) for a millimeter wave band according to the present invention. FIG. 1A shows a cross-sectional structure of the propagation mode conversion structure. The propagation mode conversion structure according to the present invention is a propagation mode conversion structure between the microstrip line 2 and the standard waveguide 12. The propagation mode conversion structure includes a multilayer dielectric substrate in which a plurality of dielectric layers 1 are stacked, a microstrip line 2 formed on the uppermost layer of the multilayer dielectric substrate, and a propagation mode conversion unit. A matching waveguide (connection waveguide) 10 having a cavity 11 is connected between the propagation mode converter and the standard waveguide 12. The configuration of the propagation mode conversion unit will be described below. A ground conductor 3 is disposed inside the multilayer dielectric substrate so as to face the microstrip line 2. The ground conductor 3 is connected via a via electrode 5 to a ground conductor formed in a further lower dielectric layer. In the configuration shown in FIG. 1A, a ground conductor 3 is provided on each dielectric of the inner layer of the multilayer dielectric substrate, and these are connected to each other via a via electrode 5. On the other hand, the end of the microstrip line 2 is connected to the inner conductor pattern 6 via the via electrode 4. The conductor pattern 6 is connected to the conductor pattern 6 formed in the lower dielectric layer via the via electrode 4. In the configuration shown in FIG. 1A, a conductor pattern 6 is provided on each dielectric of an inner layer of a multilayer dielectric substrate, and these are connected to each other via a via electrode 4. The via electrode 4 that connects the conductor pattern 6 and the via electrode 5 that connects the ground conductor 3 are formed near the ends of the conductor pattern 6 and the ground conductor 3, respectively. FIG. 2 shows a view of the form of the conductor formed on the fifth dielectric layer from the top of the multilayer dielectric substrate in the propagation mode conversion structure shown in FIG. A part of the conductor pattern 6 is formed so as to protrude toward the ground conductor 3, and in the embodiment shown in FIG. 1A, a ridge waveguide is formed. Such a ridge waveguide is connected in a direction perpendicular to the extending direction of the microstrip line 2 (stacking direction of the multilayer dielectric substrate). In the embodiment shown in FIGS. 1 and 2, the conductor pattern 6 and the ground conductor 3 are integrally formed, and the electrode non-formation portion having a substantially rectangular outer shape surrounded by the integrally formed conductor is provided. Is formed. A part of the conductor pattern 6 is formed so as to protrude from the electrode non-forming portion, and a ridge portion 9 is formed. A via electrode is arranged so as to surround the electrode non-forming portion.

多層誘電体基板の内部において、リッジ部9の根元側の導体パターン6の位置は変わらず、下層に向かうにつれてリッジ部9の長さが減少するとともに、それに対向する接地導体3の端辺の位置もリッジ部9から遠ざかるように構成されている。すなわち、導体パターン6の一部であるリッジ部9およびそれに対向する接地導体3の一部は、マイクロストリップ線路2から離れるにしたがって、すなわち下層に向かうにつれて離れていく。このようにして図1(a)の実施形態におけるリッジ導波管は、マイクロストリップ線路2とは反対側に拡大するテーパを有する。リッジ部9を構成する導体パターン6の端部同士と対向する接地導体3の端部同士を結ぶ線で構成されるテーパの傾きが、テーパの途中で変化して、傾きの異なる複数のテーパ部が形成されている。リッジ部9を構成する導体パターン6の端部同士と、対向する接地導体3の端部(リッジ部9を構成する導体パターン6の端部に最も近い点)同士を結ぶ線を図1(b)に図示した。テーパの傾きを変化させることで、インピーダンス調整、整合帯域の調整が可能である。すなわち、上層のテーパ部7とそれよりも下層に形成されたテーパ部8が形成され、テーパの傾きはマイクロストリップ線路2に近い側(上層のテーパ部7)よりも、遠い側(下層のテーパ部8)の方が小さくなっている。なお、テーパの傾きはリッジ導波管の向き(積層方向)からの鋭角で判断し、その角度が小さいほど傾きが小さいものとする。リッジ部9を構成する導体パターン6の端部同士と対向する接地導体3の端部同士を結ぶ線がリッジ導波管の向き(積層方向)と平行な場合も傾き0の場合として、上記傾きが変化している形態に含むこととする。図1に示す形態では、マイクロストリップ線路2に遠い側(下層のテーパ部8)のテーパの傾きは0、すなわちリッジ部9を構成する導体パターン6の端部同士と接地導体3の端部同士を結ぶ線が、リッジ導波管の向き(積層方向)と平行であるが、テーパの傾きが、テーパの途中で変化している形態はかかる構成に限定されるものではない。すなわちマイクロストリップ線路2に遠い側(下層のテーパ部8)のテーパの傾きは0でなくてもよい。なお、マイクロストリップ線路2に直結する、傾き0の部分は、上記複数のテーパ部に含まれない。   In the multilayer dielectric substrate, the position of the conductor pattern 6 on the base side of the ridge portion 9 does not change, the length of the ridge portion 9 decreases toward the lower layer, and the position of the end side of the grounding conductor 3 facing it Is also configured to move away from the ridge portion 9. That is, the ridge portion 9 that is a part of the conductor pattern 6 and the part of the ground conductor 3 that faces the ridge part 9 are separated from the microstrip line 2, that is, toward the lower layer. In this way, the ridge waveguide in the embodiment of FIG. 1A has a taper that expands to the side opposite to the microstrip line 2. The taper slope formed by a line connecting the ends of the conductor pattern 6 constituting the ridge portion 9 and the ends of the ground conductor 3 facing each other changes in the middle of the taper, and a plurality of taper portions having different slopes. Is formed. A line connecting the end portions of the conductor pattern 6 constituting the ridge portion 9 and the end portions of the opposing ground conductor 3 (points closest to the end portion of the conductor pattern 6 constituting the ridge portion 9) are shown in FIG. ). By changing the inclination of the taper, the impedance can be adjusted and the matching band can be adjusted. That is, an upper taper portion 7 and a taper portion 8 formed in a lower layer are formed, and the inclination of the taper is farther from the side closer to the microstrip line 2 (upper taper portion 7) (lower taper portion). Part 8) is smaller. The inclination of the taper is determined by an acute angle from the direction of the ridge waveguide (lamination direction), and the inclination is smaller as the angle is smaller. If the line connecting the ends of the conductor pattern 6 constituting the ridge portion 9 and the ends of the grounding conductor 3 facing each other is parallel to the direction of the ridge waveguide (stacking direction), the above inclination is assumed as a case where the inclination is zero. Is included in the changing form. In the form shown in FIG. 1, the inclination of the taper on the side farther from the microstrip line 2 (lower taper portion 8) is 0, that is, the ends of the conductor pattern 6 constituting the ridge portion 9 and the ends of the ground conductor 3 Although the line connecting the two is parallel to the direction of the ridge waveguide (stacking direction), the configuration in which the inclination of the taper changes in the middle of the taper is not limited to such a configuration. That is, the inclination of the taper on the side farther from the microstrip line 2 (lower taper portion 8) may not be zero. Note that the portion with the inclination 0 directly connected to the microstrip line 2 is not included in the plurality of tapered portions.

図3には従来の導波管変換器を示すが、従来の導波管変換器では、リッジ部9を構成する導体パターン6の端部同士とそれと対向する接地導体3の端部同士を結ぶ線で構成されるテーパの傾きが、テーパの途中で変化せず、テーパ部10のテーパの傾きは一定である。これに対して、テーパの傾きが変化する屈曲点は多層誘電体基板の積層方向、マイクロストリップ線路2側の主面よりも、マイクロストリップ線路2から遠い側の主面に相対的に近い位置に配置されていることが好ましい。図1に示す実施形態では、最下層の誘電体層の上面に形成された導体パターン6および接地導体3の部分を境にテーパの傾きを変化させている。   FIG. 3 shows a conventional waveguide converter. In the conventional waveguide converter, the end portions of the conductor pattern 6 constituting the ridge portion 9 and the end portions of the grounding conductor 3 facing each other are connected. The inclination of the taper formed by the line does not change in the middle of the taper, and the inclination of the taper of the taper portion 10 is constant. On the other hand, the bending point where the inclination of the taper changes is relatively closer to the main surface on the side farther from the microstrip line 2 than the main surface on the microstrip line 2 side in the stacking direction of the multilayer dielectric substrate. It is preferable that they are arranged. In the embodiment shown in FIG. 1, the inclination of the taper is changed with the conductor pattern 6 and the ground conductor 3 formed on the upper surface of the lowermost dielectric layer as a boundary.

図4には裏面での導体パターン6および接地導体3の間隔(短手方向の裏面開口サイズ)を一定として、テーパの傾き(角度)を変化させた場合の反射特性および挿入損失特性を示す。誘電体層は一層が0.1mmである。テーパの傾きが大きくなると、反射ピークが低域に変化し、低域側への広帯域化が図られる。また、傾きを30〜35度の範囲とすることで、反射損失−15dBでの帯域幅は、10GHz以上を確保することができることがわかる。かかる範囲が、広帯域整合の観点から好ましく、特に低域側への広帯域化に有利である。ただし、テーパの傾きを一つの値に固定してしまうと、テーパの寸法の自由度が損なわれる。そこで、傾きの異なる複数のテーパ部を形成して、該複数のテーパ部のいずれかの傾きを30〜35度の範囲とすれば、広帯域化と伝播モード変換部の寸法設計自由度とを両立することができる。   FIG. 4 shows the reflection characteristics and insertion loss characteristics when the taper slope (angle) is changed while the distance between the conductor pattern 6 and the ground conductor 3 on the back surface (back surface opening size in the short direction) is constant. One layer of the dielectric layer is 0.1 mm. When the inclination of the taper increases, the reflection peak changes to a low band, and a broad band toward the low band is achieved. Moreover, it turns out that the bandwidth in reflection loss -15dB can ensure 10 GHz or more by making inclination into the range of 30-35 degree | times. Such a range is preferable from the viewpoint of broadband matching, and is particularly advantageous for increasing the bandwidth toward the low frequency side. However, if the inclination of the taper is fixed to one value, the degree of freedom of the taper dimension is lost. Therefore, if a plurality of taper portions having different inclinations are formed and the inclination of any one of the plurality of taper portions is set in a range of 30 to 35 degrees, both a wide band and a dimensional design freedom of the propagation mode conversion unit are achieved. can do.

図5に上層のテーパ部7のテーパ角度を一定として、最下層の誘電体層の裏面に形成された導体パターン6および接地導体3の間隔(端手方向の裏面開口サイズ)を変化させた特性を示す。この場合、最下層の誘電体層の上面に形成された導体パターン6および接地導体3の部分を境にテーパの傾きを変化させている。開口サイズを大きくすると、反射ピークが高域に変化する。また、反射損失−15dBでの帯域幅は開口サイズが大きくなるほど高域へ広がる傾向にある。傾きの異なる複数のテーパ部を形成し、その傾きを調整することで、反射損失や挿入損失の制御が容易になる。開口サイズを0.85〜0.9mmの範囲にして、テーパ部の傾きを30度以上の範囲にすることは、優れた反射損失特性を示し、広帯域整合の観点から好ましい。該構成は、特に高域側への広帯域化に有利である。   FIG. 5 shows a characteristic in which the taper angle of the upper taper portion 7 is constant and the distance between the conductor pattern 6 formed on the back surface of the lowermost dielectric layer and the ground conductor 3 (the back surface opening size in the hand direction) is changed. Indicates. In this case, the inclination of the taper is changed with the conductor pattern 6 and the ground conductor 3 formed on the upper surface of the lowermost dielectric layer as a boundary. When the aperture size is increased, the reflection peak changes to a high range. Further, the bandwidth at the reflection loss of −15 dB tends to be widened as the aperture size increases. By forming a plurality of tapered portions having different inclinations and adjusting the inclinations, it becomes easy to control reflection loss and insertion loss. Setting the opening size in the range of 0.85 to 0.9 mm and the inclination of the tapered portion in the range of 30 degrees or more shows excellent reflection loss characteristics and is preferable from the viewpoint of broadband matching. This configuration is particularly advantageous for widening the bandwidth toward the high frequency side.

図6にリッジ導波管の平面寸法を一定として、リッジ部の幅だけを変化させた特性を示す。リッジ部幅が大きくなると、反射損失が改善する傾向にある。リッジ部の幅を0.15〜0.2mmの範囲で設定すると、広帯域の観点から好ましく、他の形状パラメータ変更による反射特性の劣化を補うために、組合せて変更すると良い。また、図7には多層誘電体基板と標準導波管とのインピーダンス調整を図る整合導波管の幅(短手方向)を変化させた特性を示す。リッジ導波管の同方向の開口部の幅は0.8mmである。導波管幅が狭いと反射ピークが分離した二つの谷を持つ傾向があり、幅が広くなるにしたがって、谷が一つに合体する。更に、幅を広げると、反射損失が劣化する傾向にある。二つの谷を持つ方が広帯域化が図れるが、帯域中央付近での反射劣化により、挿入損失的には平坦性を確保することが困難になる。挿入損失よりも反射損失を優先する場合、二つの谷を持つ状態を選択すればよい。具体的には、整合導波管の幅を0.5〜0.6mmとする場合のように、リッジ導波管の開口部の幅に対する整合導波管の幅を63〜75%の範囲で設定すると良い。反射損失と通過損失とを両立させる場合には、0.55〜0.6mmとする場合のように、リッジ導波管の開口部の幅に対する整合導波管の幅を69〜75%の範囲で設定することがより好ましい。   FIG. 6 shows the characteristics in which only the width of the ridge portion is changed while the plane dimension of the ridge waveguide is constant. As the ridge width increases, the reflection loss tends to improve. If the width of the ridge portion is set in the range of 0.15 to 0.2 mm, it is preferable from the viewpoint of a wide band, and may be changed in combination in order to compensate for deterioration of reflection characteristics due to other shape parameter changes. Further, FIG. 7 shows characteristics in which the width (short direction) of the matching waveguide for adjusting the impedance between the multilayer dielectric substrate and the standard waveguide is changed. The width of the opening in the same direction of the ridge waveguide is 0.8 mm. If the waveguide width is narrow, there is a tendency to have two valleys with separated reflection peaks, and the valleys merge into one as the width increases. Further, when the width is increased, the reflection loss tends to deteriorate. A band having two valleys can achieve a wider band, but it is difficult to ensure flatness in terms of insertion loss due to reflection deterioration near the center of the band. When priority is given to reflection loss over insertion loss, a state having two valleys may be selected. Specifically, the width of the matching waveguide with respect to the width of the opening of the ridge waveguide is in the range of 63 to 75% as in the case where the width of the matching waveguide is 0.5 to 0.6 mm. It is good to set. When both the reflection loss and the passage loss are compatible, the width of the matching waveguide with respect to the width of the opening of the ridge waveguide is in the range of 69 to 75% as in the case of 0.55 to 0.6 mm. It is more preferable to set by.

本発明の伝播モード変換構造は、準ミリ波帯またはミリ波帯の信号を取り扱う回路を多層誘電体基板に構成した回路基板に適用することができる。前記回路の少なくとも一部に本発明に係る伝播モード変換構造を用いて回路基板を構成すればよい。回路基板は、例えば、通信モジュール用基板、アンテナ基板、各種センサ基板のような用途に用いることができる。但し、その用途はこれらに限らず、準ミリ波帯またはミリ波帯の信号を取り扱う回路を誘電体基板に構成した回路基板に広く適用できる   The propagation mode conversion structure of the present invention can be applied to a circuit board in which a circuit handling a quasi-millimeter wave band signal or a millimeter wave band signal is formed on a multilayer dielectric substrate. What is necessary is just to comprise a circuit board using the propagation mode conversion structure which concerns on this invention for at least one part of the said circuit. The circuit board can be used for applications such as a communication module board, an antenna board, and various sensor boards. However, its use is not limited to these, and it can be widely applied to circuit boards in which a circuit that handles a quasi-millimeter wave band signal or a millimeter wave band signal is formed on a dielectric substrate.

本発明の伝播モード変換構造およびそれを用いた回路基板は、通常の多層セラミック基板の製造方法を適用して製造することができる。例えば、1000℃以下で低温焼結が可能なセラミック誘電体材料LTCC(Low Temperature Co-fired Ceramics)からなり、厚さが10μm〜200μmのグリーンシートに、低抵抗率のAgやCu等の導体ペーストを印刷して所定の電極パターンを形成し、複数のグリーンシートを適宜一体的に積層し、焼結することにより製造することが出来る。前記誘電体材料としては、例えばAl、Si、Srを主成分として、Ti、Bi、Cu、Mn、Na、Kを副成分とする材料や、Al、Si、Srを主成分としてCa、Pb、Na、Kを複成分とする材料や、Al、Mg、Si、Gdを含む材料や、Al、Si、Zr、Mgを含む材料が用いられ、誘電率は3〜15程度の材料を用いる。また、前記セラミック基板をHTCC(高温同時焼成セラミック)技術を用いて、誘電体材料をAlを主体とするものとし、伝送線路等をタングステンやモリブデン等の高温で焼結可能な金属導体として構成しても良い。 The propagation mode conversion structure and the circuit board using the same according to the present invention can be manufactured by applying a normal method for manufacturing a multilayer ceramic substrate. For example, it is made of ceramic dielectric material LTCC (Low Temperature Co-fired Ceramics), which can be sintered at a low temperature of 1000 ° C. or less, and a conductive paste such as Ag or Cu having a low resistivity on a green sheet having a thickness of 10 μm to 200 μm. Can be manufactured by forming a predetermined electrode pattern, laminating a plurality of green sheets appropriately and sintering. As the dielectric material, for example, Al, Si, Sr as a main component, Ti, Bi, Cu, Mn, Na, K as a subcomponent, Al, Si, Sr as a main component, Ca, Pb, A material containing Na and K as a composite component, a material containing Al, Mg, Si, and Gd, and a material containing Al, Si, Zr, and Mg are used, and a material having a dielectric constant of about 3 to 15 is used. Further, the ceramic substrate is made of HTCC (high temperature co-fired ceramic) technology, the dielectric material is mainly Al 2 O 3 , and the transmission line is a metal conductor that can be sintered at a high temperature such as tungsten or molybdenum. You may comprise as.

図8には図1に示す本発明の実施例に係る伝播モード変換構造と、図2に示す従来例の伝播モード変換構造における反射特性を示した。これらの伝播モード変換構造において、誘電体層は1層あたり0.1mm厚であり、10層を積層した1mm厚さの誘電体基板である。この誘電体基板において、図1に示した伝播モード変換構造を形成した。導体パターン等を1層あたり0.06mmシフトさせて、テーパの傾きを、31度の角度に設定した。最下層の誘電体層でテーパの傾きを13度にした。一方、図2に示す従来の伝播モード変換構造はテーパの傾きは26度一定とした。いずれも裏面での導体パターン6および接地導体3の間隔(裏面の開口サイズ)は0.85mmで同じとした。図8に示すように、本発明に係る伝播モード変換構造では反射損失で−15dB以下の帯域は11GHz以上となり、従来の9GHzと比較すると、2GHz以上も広帯域化が図られていることが判る。テーパをそのまま開口面まで延長する従来の形状より、本願発明のようにテーパの傾きを途中で変化させることで反射損失、通過損失ともに、広帯域化が図られていることが判る。   FIG. 8 shows the reflection characteristics of the propagation mode conversion structure according to the embodiment of the present invention shown in FIG. 1 and the conventional propagation mode conversion structure shown in FIG. In these propagation mode conversion structures, the dielectric layer is 0.1 mm thick per layer, and is a 1 mm thick dielectric substrate in which 10 layers are laminated. In this dielectric substrate, the propagation mode conversion structure shown in FIG. 1 was formed. The conductor pattern or the like was shifted by 0.06 mm per layer, and the inclination of the taper was set to an angle of 31 degrees. The taper slope was set to 13 degrees in the lowermost dielectric layer. On the other hand, in the conventional propagation mode conversion structure shown in FIG. 2, the taper inclination is fixed at 26 degrees. In either case, the distance between the conductor pattern 6 and the ground conductor 3 on the back surface (opening size on the back surface) was 0.85 mm, and the same. As shown in FIG. 8, in the propagation mode conversion structure according to the present invention, the band of -15 dB or less in reflection loss is 11 GHz or more, and it can be seen that the band is widened by 2 GHz or more as compared with the conventional 9 GHz. From the conventional shape in which the taper is extended to the opening surface as it is, it can be seen that both the reflection loss and the passage loss are widened by changing the inclination of the taper in the middle as in the present invention.

1:誘電体層 2:マイクロストリップ線路 3:接地導体
4、5:ビア電極 6:導体パターン 7、8,13:テーパ部 9:リッジ部
10:整合導波管(接続導波管) 11:空洞 12:標準導波管
1: Dielectric layer 2: Microstrip line 3: Ground conductor 4, 5: Via electrode 6: Conductor pattern 7, 8, 13: Tapered portion 9: Ridge portion 10: Matching waveguide (connection waveguide) 11: Cavity 12: Standard waveguide

Claims (3)

リッジ導波管で構成された伝播モード変換部を備えた、マイクロストリップ線路と、標準導波管との間の伝搬モード変換構造であって、
複数の誘電体層が積層された多層誘電体基板の最上層にマイクロストリップ線路が形成され
前記リッジ導波管は、前記多層誘電体基板の内層であって、複数の誘電体層に、前記マイクロストリップ線路と対向するように設けられた接地導体と、前記接地導体と一体的に構成された導体パターンとを備えた導体を有し、前記導体によって囲まれた電極非形成部には、前記導体パターンの一部が突出したリッジ部が形成され、前記電極非形成部を囲むように配置されたビア電極を介して、複数の誘電体層に設けられた導体の接地導体が接続され、複数の誘電体層に設けられた導体のリッジ部は、前記マイクロストリップ線路と他のビア電極を介して接続され、
前記マイクロストリップ線路と前記導体パターンを含む、多層誘電体基板の積層方向断面にて、前記電極非形成部を介して対向するリッジ部を構成する前記導体パターンの端部と接地導体の端部を、それぞれ導体パターン側同士、接地導体側同士積層方向に結ぶ線により構成されるテーパの傾きが途中で変化して、傾きの異なる複数のテーパ部が形成されており、
前記テーパは前記マイクロストリップ線路側が細くなる傾きであって、
前記標準導波管側のテーパ部が前記マイクロストリップ線路側のテーパ部よりもテーパの傾きが小さく、標準導波管側のテーパ部のテーパの傾きは0度を含むことを特徴とする伝播モード変換構造。
Propagation mode conversion structure between a microstrip line and a standard waveguide , having a propagation mode conversion unit composed of a ridge waveguide ,
Microstrip line is formed on the uppermost layer of the plurality of multi-layer dielectric base plate dielectric layers are laminated,
The ridge waveguide is an inner layer of the multilayer dielectric substrate, and is configured integrally with a ground conductor provided on a plurality of dielectric layers so as to face the microstrip line, and the ground conductor. The electrode non-formation part surrounded by the conductor has a ridge part from which a part of the conductor pattern protrudes and is arranged so as to surround the electrode non-formation part. The ground conductors of the conductors provided in the plurality of dielectric layers are connected via the via electrodes formed, and the ridge portions of the conductors provided in the plurality of dielectric layers are connected to the microstrip line and the other via electrodes. Connected through
Including the microstrip line and the conductor pattern, in the stacking direction cross section of the multilayer dielectric substrate, an end portion of the conductor pattern constituting the ridge portion facing through the non-electrode portion and the end portion of the ground conductor In addition, the inclination of the taper constituted by lines connecting in the stacking direction between the conductor pattern sides and between the ground conductor sides is changed in the middle, and a plurality of taper portions having different inclinations are formed.
The taper is an inclination that the microstrip line side becomes thin,
The propagation mode characterized in that the taper portion on the standard waveguide side has a smaller taper slope than the taper portion on the microstrip line side, and the taper slope of the taper portion on the standard waveguide side includes 0 degree. Transformation structure.
前記複数のテーパ部のいずれかの傾きが30〜35度の範囲であって、
反射損失が−15dBでの帯域幅が10GHz以上であることを特徴とする請求項1に記載の伝播モード変換構造。
The inclination of any of the plurality of taper portions is in a range of 30 to 35 degrees,
The propagation mode conversion structure according to claim 1, wherein the bandwidth at a reflection loss of -15 dB is 10 GHz or more.
準ミリ波帯またはミリ波帯の信号を取り扱う回路を多層誘電体基板に構成した回路基板であって、前記回路の少なくとも一部に請求項1または2に記載の伝播モード変換構造を用いたことを特徴とする回路基板。   A circuit board in which a circuit for handling a quasi-millimeter wave band signal or a millimeter wave band signal is formed on a multilayer dielectric substrate, wherein the propagation mode conversion structure according to claim 1 or 2 is used for at least a part of the circuit. A circuit board characterized by.
JP2009081367A 2009-03-30 2009-03-30 Propagation mode conversion structure and circuit board Expired - Fee Related JP5549093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081367A JP5549093B2 (en) 2009-03-30 2009-03-30 Propagation mode conversion structure and circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081367A JP5549093B2 (en) 2009-03-30 2009-03-30 Propagation mode conversion structure and circuit board

Publications (2)

Publication Number Publication Date
JP2010233172A JP2010233172A (en) 2010-10-14
JP5549093B2 true JP5549093B2 (en) 2014-07-16

Family

ID=43048526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081367A Expired - Fee Related JP5549093B2 (en) 2009-03-30 2009-03-30 Propagation mode conversion structure and circuit board

Country Status (1)

Country Link
JP (1) JP5549093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105493343B (en) * 2014-02-14 2018-01-09 华为技术有限公司 Planar transmission line waveguide adaptor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372360B2 (en) * 2001-01-10 2009-11-25 三菱電機株式会社 Waveguide / microstrip line converter
JP4648292B2 (en) * 2006-11-30 2011-03-09 日立オートモティブシステムズ株式会社 Millimeter-wave transceiver and in-vehicle radar using the same
JP2009027372A (en) * 2007-07-18 2009-02-05 Nec Corp Tapered waveguide

Also Published As

Publication number Publication date
JP2010233172A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US7884682B2 (en) Waveguide to microstrip transducer having a ridge waveguide and an impedance matching box
JP3366552B2 (en) Dielectric waveguide line and multilayer wiring board including the same
US7319370B2 (en) 180 degrees hybrid coupler
JP3937433B2 (en) Planar circuit-waveguide connection structure
JP2008271295A (en) Body structure connecting microstrip line and layered waveguide line and wiring board with the same
JP4854622B2 (en) Connection structure of rectangular waveguide section and differential line section
JP3464116B2 (en) High frequency transmission line coupling structure and multilayer wiring board having the same
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3686736B2 (en) Dielectric waveguide line and wiring board
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP4937145B2 (en) Waveguide connection structure, waveguide connection plate, and waveguide converter
JP5549093B2 (en) Propagation mode conversion structure and circuit board
JP3347607B2 (en) Laminated waveguide line
US8154364B2 (en) High-frequency transmission line having ground surface patterns with a plurality of notches therein
JP5404373B2 (en) Waveguide type high frequency line
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP2007329908A (en) Dielectric substrate, waveguide tube, and transmission line transition device
JP2008193161A (en) Microstrip line-waveguide converter
JP3522120B2 (en) Connection structure of dielectric waveguide line
JP4032867B2 (en) Microstrip line, strip line, and resonator using the same
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JP3996880B2 (en) Waveguide branch structure
JP4731520B2 (en) Connection structure of laminated waveguide line and laminated waveguide line and wiring board having the same
JP3439973B2 (en) Branch structure of dielectric waveguide
JP4203405B2 (en) Branch structure of waveguide structure and antenna substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees