JP5545972B2 - Method for producing foam molded article - Google Patents

Method for producing foam molded article Download PDF

Info

Publication number
JP5545972B2
JP5545972B2 JP2010072913A JP2010072913A JP5545972B2 JP 5545972 B2 JP5545972 B2 JP 5545972B2 JP 2010072913 A JP2010072913 A JP 2010072913A JP 2010072913 A JP2010072913 A JP 2010072913A JP 5545972 B2 JP5545972 B2 JP 5545972B2
Authority
JP
Japan
Prior art keywords
resin particles
flame retardant
composite resin
particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010072913A
Other languages
Japanese (ja)
Other versions
JP2011202108A (en
Inventor
誠一 森本
真司 石田
慶尚 山地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2010072913A priority Critical patent/JP5545972B2/en
Publication of JP2011202108A publication Critical patent/JP2011202108A/en
Application granted granted Critical
Publication of JP5545972B2 publication Critical patent/JP5545972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、発泡成形体の製造方法に関する。更に詳しくは、本発明は、難燃剤の使用量が少なくても所望の難燃性を実現しうる発泡成形体の製造方法に関する。 The present invention relates to a method for producing a foam molded article . More specifically, the present invention relates to a method for producing a foamed molded product that can achieve desired flame retardancy even when the amount of flame retardant used is small.

ポリスチレン系樹脂とポリオレフィン系樹脂とを複合化することで、ポリスチレン系樹脂の優れた剛性と、ポリオレフィン系樹脂の優れた耐薬品性及び耐衝撃性とを有する発泡成形体を与えうる複合樹脂粒子が特開2008−75076号公報(特許文献1)や特開2008−239794号公報(特許文献2)で提案されている。
これら特許文献には、複合樹脂粒子に難燃性を付与するために、複合樹脂粒子100質量部に対して、1.5質量部以上の難燃剤を使用することが必要であると記載されている。
Composite resin particles capable of providing a foamed molded article having excellent rigidity of polystyrene resin and excellent chemical resistance and impact resistance of polyolefin resin by combining polystyrene resin and polyolefin resin. It is proposed in Japanese Patent Application Laid-Open No. 2008-75076 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-239794 (Patent Document 2).
These patent documents describe that it is necessary to use a flame retardant of 1.5 parts by mass or more with respect to 100 parts by mass of the composite resin particles in order to impart flame retardancy to the composite resin particles. Yes.

特開2008−75076号公報JP 2008-75076 A 特開2008−239794号公報JP 2008-239794 A

しかしながら、近年省資源化、低コスト化の要望から、所望の難燃性を維持しつつ、難燃剤の使用量を減らすことが望まれている。   However, in recent years, due to demands for resource saving and cost reduction, it is desired to reduce the amount of flame retardant used while maintaining desired flame retardancy.

かくして本発明によれば、分散剤を含む水性懸濁中に、ポリプロピレン系樹脂粒子100質量部と、スチレン系単量体100〜400質量部と、重合開始剤とを分散させる工程と、
得られた分散液を前記スチレン系単量体が実質的に重合しない温度に加熱して前記スチレン系単量体を前記ポリプロピレン系樹脂粒子に含浸させる工程と、
ポリプロピレン系樹脂粒子の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、前記スチレン系単量体の第1の重合を行って第1の粒子を得る工程と、
前記第1の重合工程に続いて、スチレン系単量体と、重合開始剤とを加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、前記第1の粒子への前記スチレン系単量体の含浸及び第2の重合を行って複合樹脂粒子を得る工程と、
前記第2の重合中の前記第1の粒子又は前記複合樹脂粒子に、前記複合樹脂粒子100質量部に対して1.5質量部未満0.3質量部以上の難燃剤としてのトリス(2,3−ジブロモプロピル)イソシアヌレートを含浸させて難燃剤含有複合樹脂粒子を得る工程と、
前記難燃剤含有複合樹脂粒子に発泡剤を含浸させて発泡性複合樹脂粒子を得る工程と、
予備発泡装置内にゲージ圧力0.005〜0.09MPaの水蒸気を導入して前記発泡性複合樹脂粒子を加熱することによって予備発泡粒子を得る工程と、
前記予備発泡粒子を成形型のキャビティ内へ充填し、0.20MPa<X≦0.35MPaの範囲のゲージ圧力Xの水蒸気で発泡成形させて発泡成形体を形成する工程と
を有する発泡成形体の製造方法が提供される。
Thus, according to the present invention, in the aqueous suspension containing the dispersant, 100 parts by mass of the polypropylene resin particles, 100 to 400 parts by mass of the styrene monomer, and the polymerization initiator are dispersed.
Heating the obtained dispersion to a temperature at which the styrenic monomer is not substantially polymerized to impregnate the polypropylene resin particles with the styrenic monomer;
When the melting point of the polypropylene resin particles is T ° C., a step of obtaining the first particles by performing the first polymerization of the styrene monomer at a temperature of (T−10) ° C. to (T + 20) ° C. ,
Subsequent to the first polymerization step, a styrene monomer and a polymerization initiator are added, and the temperature is set to (T-25) ° C. to (T + 10) ° C., to the first particles. The step of impregnating the styrenic monomer and the second polymerization to obtain composite resin particles;
The first particle or the composite resin particle in the second polymerization has a tris (2,2) as a flame retardant of less than 1.5 parts by mass and more than 0.3 parts by mass with respect to 100 parts by mass of the composite resin particles. A step of impregnating 3-dibromopropyl) isocyanurate to obtain flame retardant-containing composite resin particles;
A step of impregnating the flame retardant-containing composite resin particles with a foaming agent to obtain expandable composite resin particles;
A step of obtaining prefoamed particles by introducing water vapor at a gauge pressure of 0.005 to 0.09 MPa into the prefoaming apparatus and heating the expandable composite resin particles;
A step of filling the pre-expanded particles into a cavity of a mold and foam-molding with water vapor having a gauge pressure X in the range of 0.20 MPa <X ≦ 0.35 MPa;
A method for producing a foamed molded article having the following is provided.

更に、本発明によれば、上記方法により得られる難燃剤含有複合樹脂粒子に発泡剤を含浸させて発泡性複合樹脂粒子を得る工程と、予備発泡装置内にゲージ圧力0.005〜0.09MPaの水蒸気を導入して前記発泡性複合樹脂粒子を加熱することによって予備発泡粒子を得る工程とを有する予備発泡粒子の製造方法が提供される。
また、本発明によれば、上記方法により得られる予備発泡粒子を成形型のキャビティ内へ充填し、0.20MPa<X≦0.35MPaの範囲のゲージ圧力Xの水蒸気で発泡成形させて発泡成形体を形成する工程を有する発泡成形体の製造方法が提供される。
Further, according to the present invention, the step of impregnating the flame retardant-containing composite resin particles obtained by the above method with a foaming agent to obtain expandable composite resin particles, and a gauge pressure of 0.005 to 0.09 MPa in the preliminary foaming apparatus And a step of obtaining the pre-expanded particles by introducing the water vapor and heating the expandable composite resin particles.
Further, according to the present invention, the pre-expanded particles obtained by the above method are filled into a cavity of a mold, and foam-molded with water vapor having a gauge pressure X in the range of 0.20 MPa <X ≦ 0.35 MPa. Provided is a method for producing a foamed molded article having a step of forming a body.

本発明によれば、所望の難燃性を維持しつつ、難燃剤の使用量が低減された難燃剤含有複合樹脂粒子、予備発泡粒子、発泡成形体及びそれらの製造方法が提供できる。本発明の発泡成形体は、更に、加熱寸法安定性及び融着性が良好である。
また、難燃剤が、トリス(2,3−ジブロモプロピル)イソシアヌレートを含む場合、より向上した難燃性を有しつつ、難燃剤の使用量が低減された難燃剤含有複合樹脂粒子を提供できる。
更に、難燃剤含有複合樹脂粒子が、前記複合樹脂粒子100質量部に対して1質量部以下の難燃助剤を更に含み、前記難燃助剤が2,3−ジメチル−2,3−ジフェニルブタンを含む場合、より向上した難燃性を有しつつ、難燃剤の使用量が低減された難燃剤含有複合樹脂粒子を提供できる。
また、発泡成形体が、0mm/minの燃焼速度(米国自動車安全基準FMVSS 302に準拠した方法により測定)を有し、かつ、1.0%未満の加熱寸法変化率(JIS K6767:1999KのB法に準拠した方法により80℃、168時間で測定)を有する場合、特に自動車用途に好適な発泡成形体を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the flame retardant containing composite resin particle by which the usage-amount of a flame retardant was reduced, pre-expanded particle | grains, a foaming molding, and those manufacturing methods can be provided, maintaining desired flame retardance. The foamed molded product of the present invention is further excellent in heat dimensional stability and fusing property.
In addition, when the flame retardant contains tris (2,3-dibromopropyl) isocyanurate, it is possible to provide flame retardant-containing composite resin particles having a more improved flame retardancy while reducing the amount of flame retardant used. .
Further, the flame retardant-containing composite resin particles further include 1 part by mass or less of a flame retardant aid with respect to 100 parts by mass of the composite resin particles, and the flame retardant aid is 2,3-dimethyl-2,3-diphenyl. When butane is included, the flame retardant-containing composite resin particles having the flame retardancy improved and the amount of the flame retardant used can be reduced.
In addition, the foamed molded article has a burning rate of 0 mm / min (measured by a method in conformity with the US automobile safety standard FMVSS 302) and a heating dimensional change rate of less than 1.0% (JIS K6767: B of 1999K). In the case of having a measurement at 80 ° C. and 168 hours by a method compliant with the law, it is possible to provide a foamed molded article particularly suitable for automobile use.

(a)難燃剤含有複合樹脂粒子
難燃剤含有複合樹脂粒子は、複合樹脂粒子100質量部中に、難燃剤が1.5質量部未満0.3質量部以上含有されてなる。複合樹脂粒子は、ポリプロピレン系樹脂100質量部と、ポリスチレン系樹脂100〜400質量部とから少なくとも構成される。
(ポリプロピレン系樹脂)
ポリプロピレン系樹脂としては、特に限定されず、公知の重合方法で得られた樹脂を使用できる。例えば、プロピレン単独重合体、プロピレンと他の単量体との共重合体(二元や三元以上の共重合体を含む)等が挙げられる。共重合体は、ブロック共重合体でも、ランダム共重合体でもよい。他の単量体としては、エチレン、α−オレフィン、環状オレフィン、ジエン系単量体等が挙げられる。
(A) Flame retardant-containing composite resin particles The flame retardant-containing composite resin particles include a flame retardant in less than 1.5 parts by mass and 0.3 parts by mass or more in 100 parts by mass of the composite resin particles. The composite resin particle is composed of at least 100 parts by mass of polypropylene resin and 100 to 400 parts by mass of polystyrene resin.
(Polypropylene resin)
The polypropylene resin is not particularly limited, and a resin obtained by a known polymerization method can be used. For example, a propylene homopolymer, a copolymer of propylene and another monomer (including a binary or ternary or higher copolymer) and the like can be mentioned. The copolymer may be a block copolymer or a random copolymer. Examples of other monomers include ethylene, α-olefin, cyclic olefin, and diene monomer.

共重合体は、プロピレン単位を75質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。更に、共重合体は、プロピレン−エチレン共重合体が好ましい。プロピレン−エチレン共重合体は、プロピレンとエチレンとの共重合体単位を90質量%以上含むものであることが好ましい。
また、ポリプロピレン系樹脂は、120℃〜145℃の範囲の融点及び0.1〜10g/10分のメルトフローレート(MFR)を有するものが好ましい。融点が、120℃より低いと発泡成形体の耐熱性が低くなることがある。また、融点が145℃より高いと、重合温度が高くなり、良好な重合が困難となることがある。なお、融点が複数ある場合、最も低い融点をここでの融点とする。
The copolymer preferably contains 75% by mass or more of propylene units, more preferably 90% by mass or more. Furthermore, the copolymer is preferably a propylene-ethylene copolymer. The propylene-ethylene copolymer preferably contains 90% by mass or more of a copolymer unit of propylene and ethylene.
The polypropylene resin preferably has a melting point in the range of 120 ° C. to 145 ° C. and a melt flow rate (MFR) of 0.1 to 10 g / 10 min. When the melting point is lower than 120 ° C., the heat resistance of the foamed molded product may be lowered. Moreover, when melting | fusing point is higher than 145 degreeC, superposition | polymerization temperature becomes high and favorable superposition | polymerization may become difficult. When there are a plurality of melting points, the lowest melting point is defined as the melting point here.

(ポリスチレン系樹脂)
ポリスチレン系樹脂としては、例えば、スチレン、置換スチレン(置換基は、低級アルキル、ハロゲン原子(特に塩素原子)等)のスチレン系単量体を重合させて得られる樹脂が挙げられる。置換スチレンとしては、例えば、α−メチルスチレン、p−メチルスチレン、t−ブチルスチレン、クロロスチレン等が挙げられる。更に、ポリスチレン系樹脂は、スチレン系単量体と、スチレン系単量体と共重合可能な他の単量体との共重合体であってもよい。他の単量体としては、ジビニルベンゼン、エチレングリコールのモノ又はジアクリル酸やメタクリル酸のエステル、無水マレイン酸、N−フェニルマレイミド等が挙げられる。
ポリスチレン系樹脂は、スチレン系単量体単位を70質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。
(Polystyrene resin)
Examples of the polystyrene resin include resins obtained by polymerizing styrene monomers such as styrene and substituted styrene (substituents are lower alkyl, halogen atoms (particularly chlorine atoms) and the like). Examples of the substituted styrene include α-methyl styrene, p-methyl styrene, t-butyl styrene, and chlorostyrene. Furthermore, the polystyrene resin may be a copolymer of a styrene monomer and another monomer copolymerizable with the styrene monomer. Examples of the other monomer include divinylbenzene, ethylene glycol mono- or diacrylic acid or methacrylic acid ester, maleic anhydride, N-phenylmaleimide and the like.
The polystyrene resin preferably contains 70% by mass or more of styrene monomer units, more preferably 90% by mass or more.

ポリスチレン系樹脂は、ポリプロピレン系樹脂100質量部に対して、100〜400質量部使用される。ポリスチレン系樹脂が400質量部より多いと、発泡成形体の耐薬品性及び耐熱性が低下することがある。一方、使用量が100質量部より少ないと、発泡成形体の剛性が低下することがある。ポリスチレン系樹脂の使用量は、120〜300質量部であることが好ましく、150〜250質量部であることがより好ましい。   The polystyrene resin is used in an amount of 100 to 400 parts by mass with respect to 100 parts by mass of the polypropylene resin. If the amount of the polystyrene resin is more than 400 parts by mass, the chemical resistance and heat resistance of the foamed molded product may be lowered. On the other hand, if the amount used is less than 100 parts by mass, the rigidity of the foamed molded product may be lowered. The amount of the polystyrene-based resin used is preferably 120 to 300 parts by mass, and more preferably 150 to 250 parts by mass.

(難燃剤)
難燃剤としては、トリス(2,3−ジブロモプロピル)イソシアヌレート、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、デカブロモジフェニルエーテル、トリブロモフェニルアリルエーテル、テトラブロモビスフェノールAジアリルエーテル、テトラブロモビスフェノールAジプロピルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、テトラブロモビスフェノールAジ(ヒドロキシエチル)エーテル、テトラブロモビスフェノールAビス(2,3−ジブロモプロピルエーテル)等の臭素系難燃剤、塩化パラフィン、塩化トリフェニル、塩化ジフェニル、パークロルペンタシクロデカン等の塩素系難燃剤、1,2−ジブロモ3−クロルプロパン、2−クロル−1,2,3,4−テトラブロモブタン等の塩素臭素含有難燃剤等が挙げられる。難燃剤は、1種のみ使用してもよく、複数種組み合わせて使用してもよい。複数種組み合わせて使用する場合は、トリス(2,3−ジブロモプロピル)イソシアヌレートが主成分(例えば、50質量%以上)であることが好ましい。
(Flame retardants)
Flame retardants include tris (2,3-dibromopropyl) isocyanurate, tetrabromocyclooctane, hexabromocyclododecane, decabromodiphenyl ether, tribromophenyl allyl ether, tetrabromobisphenol A diallyl ether, tetrabromobisphenol A dipropyl Brominated flame retardants such as ether, tetrabromobisphenol A diglycidyl ether, tetrabromobisphenol A di (hydroxyethyl) ether, tetrabromobisphenol A bis (2,3-dibromopropyl ether), chlorinated paraffin, triphenyl chloride, chloride Chlorine flame retardants such as diphenyl and perchlorpentacyclodecane, and chlorine odors such as 1,2-dibromo-3-chloropropane and 2-chloro-1,2,3,4-tetrabromobutane Containing flame retardants and the like. Only one type of flame retardant may be used, or multiple types of flame retardants may be used in combination. When used in combination of plural kinds, it is preferable that tris (2,3-dibromopropyl) isocyanurate is a main component (for example, 50% by mass or more).

難燃剤は、複合樹脂粒子100質量部に対して、1.5質量部未満0.3質量部以上の範囲で含有される。難燃剤の含有量が0.3質量部より少ないと、発泡成形体の難燃性が低下することがある。一方、難燃剤の含有量が1.5質量部以上であると、難燃性の付与に必要以上の量が含まれることになり発泡成形体の製造コストが増加することがある。更に、発泡成形体の加熱寸法変化が大きくなることがある。難燃剤の含有量は、1.2質量部以下0.3質量部以上であることが好ましく、1.0質量部以下0.3質量部以上であることがより好ましい。   The flame retardant is contained in a range of less than 1.5 parts by mass and 0.3 parts by mass or more with respect to 100 parts by mass of the composite resin particles. When content of a flame retardant is less than 0.3 mass part, the flame retardance of a foaming molding may fall. On the other hand, when the content of the flame retardant is 1.5 parts by mass or more, an amount more than necessary for imparting flame retardancy is included, and the production cost of the foamed molded product may increase. Furthermore, the heating dimensional change of the foamed molded product may become large. The content of the flame retardant is preferably 1.2 parts by mass or less and 0.3 parts by mass or more, and more preferably 1.0 part by mass or less and 0.3 parts by mass or more.

(他の添加剤)
難燃剤含有複合樹脂粒子は、必要に応じて、難燃助剤、着色剤、滑剤、核剤、充填材、可塑剤、酸化防止剤、紫外線吸収剤等を含んでいてもよい。
(1)難燃助剤
難燃助剤としては、2,3−ジメチル−2,3−ジフェニルブタン、3,4−ジメチル−3,4−ジフェニルヘキサン、ジクミルパーオキサイド、クメンヒドロパーオキサイド等が挙げられる。難燃助剤は、1種のみ使用してもよく、複数種組み合わせて使用してもよい。複数種組み合わせて使用する場合は、2,3−ジメチル−2,3−ジフェニルブタンが主成分(例えば、50質量%以上)であることが好ましい。
難燃助剤の含有量は、複合樹脂粒子100質量部に対して、1質量部以下であることが好ましい。難燃助剤の含有量が1質量部より多いと、難燃性の付与に必要以上の量が含まれることになり発泡成形体の製造コストが増加することがある。さらに、発泡成形体の加熱寸法変化が大きくなることがある。難燃助剤の含有量は、0.8質量部以下であることがより好ましく、0.5質量部以下であることが更に好ましい。
(Other additives)
The flame retardant-containing composite resin particles may contain a flame retardant aid, a colorant, a lubricant, a nucleating agent, a filler, a plasticizer, an antioxidant, an ultraviolet absorber, and the like as necessary.
(1) Flame retardant aid Examples of the flame retardant aid include 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, dicumyl peroxide, cumene hydroperoxide, and the like. Is mentioned. Only one flame retardant aid may be used, or a plurality of flame retardant aids may be used in combination. When using in combination of two or more kinds, it is preferable that 2,3-dimethyl-2,3-diphenylbutane is a main component (for example, 50 mass% or more).
The content of the flame retardant aid is preferably 1 part by mass or less with respect to 100 parts by mass of the composite resin particles. When the content of the flame retardant aid is more than 1 part by mass, an amount more than necessary for imparting flame retardancy is included, and the production cost of the foamed molded product may increase. Furthermore, the change in the heating dimension of the foamed molded product may become large. The content of the flame retardant aid is more preferably 0.8 parts by mass or less, and further preferably 0.5 parts by mass or less.

(2)着色剤
着色剤としては、無機系の顔料であっても、有機系の顔料であってもよい。
無機系の顔料としては、例えば、ファーネスブラック、ケッチェンブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛、炭素繊維等のカーボン、黄鉛、亜鉛黄、バリウム黄等のクロム酸塩、紺青等のフェロシアン化物、カドミウムイエロー、カドミウムレッド等の硫化物、鉄黒、紅殻等の酸化物、群青のようなケイ酸塩、酸化チタン等が挙げられる。
有機系の顔料としては、例えば、モノアゾ顔料、ジスアゾ顔料、アゾレーキ、縮合アゾ顔料、キレートアゾ顔料等のアゾ顔料、フタロシアニン系、アントラキノン系、ペリレン系、ペリノン系、チオインジゴ系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系等の多環式顔料等が挙げられる。
(2) Colorant The colorant may be an inorganic pigment or an organic pigment.
Examples of inorganic pigments include furnace black, ketjen black, channel black, thermal black, acetylene black, carbon such as graphite and carbon fiber, chromate such as yellow lead, zinc yellow and barium yellow, and bitumen. Examples thereof include sulfides such as ferrocyanide, cadmium yellow and cadmium red, oxides such as iron black and red husk, silicates such as ultramarine blue, and titanium oxide.
Examples of organic pigments include monoazo pigments, disazo pigments, azo lakes, condensed azo pigments, chelate azo pigments, azo pigments, phthalocyanine-based, anthraquinone-based, perylene-based, perinone-based, thioindigo-based, quinacridone-based, dioxazine-based, Examples thereof include polycyclic pigments such as indolinone and quinophthalone.

上記着色剤として、カーボンを使用する場合、複合樹脂粒子に含有させる前のカーボン(原料カーボン)は、粒子状であることが好ましい。原料カーボンの粒子径は、通常、5nm〜100nmが好適であり、更に好ましくは、15nm〜35nmである。なお、原料カーボンの粒子径は、平均粒子径を意味し、平均粒子径は、電子顕微鏡による算術平均である。本発明に用いられるカーボンブラックを特徴づける平均粒子径は、カーボンブラックの集合体を構成する小さな球状(微結晶による輪郭を有し、分離できない)成分を電子顕微鏡写真にて測定、算出した粒子の直径の平均のことである。
また、難燃剤含有複合樹脂粒子中のカーボンの含有量は、できるだけ少ないか、含まれていないことが好ましい。例えば、含有量の上限は、0.5質量%である。0.5質量%より多い場合、難燃性が低下することがある。
When carbon is used as the colorant, the carbon (raw material carbon) before being contained in the composite resin particles is preferably in the form of particles. The particle diameter of the raw material carbon is usually preferably 5 nm to 100 nm, and more preferably 15 nm to 35 nm. In addition, the particle diameter of raw material carbon means an average particle diameter, and an average particle diameter is an arithmetic average by an electron microscope. The average particle size that characterizes the carbon black used in the present invention is the particle size measured and calculated by electron micrographs of small spherical components (contained by microcrystals that cannot be separated) constituting the carbon black aggregate. It is the average diameter.
Moreover, it is preferable that the carbon content in the flame retardant-containing composite resin particles is as small as possible or not contained. For example, the upper limit of the content is 0.5% by mass. When it is more than 0.5% by mass, flame retardancy may be reduced.

(3)その他
滑剤としては、例えば、ステアリン酸亜鉛、ステアリン酸アルミニウム、エチレンビスステアリン酸アマイド等が挙げられる。
核剤としては、タルク、珪酸カルシウム、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等が挙げられる。
充填材としては、合成又は天然に産出される二酸化ケイ素等が挙げられる。
可塑剤としては、ジイソブチルアジペート、流動パラフィン、グリセリンジアセトモノラウレート、やし油等が挙げられる。
(3) Others Examples of the lubricant include zinc stearate, aluminum stearate, ethylenebisstearic acid amide and the like.
Examples of the nucleating agent include talc, calcium silicate, ethylene bis stearamide, and a methacrylic ester copolymer.
Examples of the filler include silicon dioxide produced synthetically or naturally.
Examples of the plasticizer include diisobutyl adipate, liquid paraffin, glycerin diacetomonolaurate, and palm oil.

(b)難燃剤含有複合樹脂粒子の製造方法
難燃剤含有複合樹脂粒子は、例えば、
分散剤を含む水性懸濁中に、ポリプロピレン系樹脂粒子100質量部と、スチレン系単量体100〜400質量部と、重合開始剤とを分散させる工程Aと、
得られた分散液を前記スチレン系単量体が実質的に重合しない温度に加熱してスチレン系単量体を前記ポリプロピレン系樹脂粒子に含浸させる工程Bと、
ポリプロピレン系樹脂粒子の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、スチレン系単量体の第1の重合を行って第1の粒子を得る工程Cと、
第1の重合工程に続いて、スチレン系単量体と、重合開始剤とを加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、第1の粒子への前記スチレン系単量体の含浸及び第2の重合を行って複合樹脂粒子を得る工程Dと、
第2の重合中の第1の粒子又は複合樹脂粒子に、複合樹脂粒子100質量部に対して1.5質量部未満0.3質量部以上の難燃剤を含浸させて難燃剤含有複合樹脂粒子を得る工程Eと
を経ることにより製造できる。
(B) Production method of flame retardant-containing composite resin particles The flame retardant-containing composite resin particles are, for example,
Step A in which 100 parts by mass of polypropylene resin particles, 100 to 400 parts by mass of styrene monomer, and a polymerization initiator are dispersed in an aqueous suspension containing a dispersant,
Heating the obtained dispersion to a temperature at which the styrenic monomer is not substantially polymerized to impregnate the polypropylene resin particles with the styrenic monomer; and
When the melting point of the polypropylene resin particles is T ° C., a step C for obtaining the first particles by performing the first polymerization of the styrene monomer at a temperature of (T−10) ° C. to (T + 20) ° C. ,
Subsequent to the first polymerization step, the styrenic monomer and the polymerization initiator are added, and the temperature is set to (T-25) ° C. to (T + 10) ° C. Step D for obtaining composite resin particles by impregnation with a styrenic monomer and second polymerization;
The first particle or composite resin particle in the second polymerization is impregnated with less than 1.5 parts by weight of a flame retardant with respect to 100 parts by weight of the composite resin particles, and the flame retardant-containing composite resin particles It can manufacture by passing through the process E which obtains.

工程A〜Eのそれぞれは、例えば、スチレン系単量体を原料としてビーズ状のポリスチレン系樹脂粒子を製造するポリスチレン系樹脂の懸濁重合法又はシード重合法等の周知の重合方法を実施する際に用いられるオートクレーブ重合装置を用いて実施できるが、使用される製造装置はこれに限定されない。   Each of the processes A to E is performed, for example, when a well-known polymerization method such as a suspension polymerization method or a seed polymerization method of a polystyrene resin for producing bead-shaped polystyrene resin particles using a styrene monomer as a raw material. However, the production apparatus used is not limited to this.

(工程A)
ポリプロピレン系樹脂粒子は、例えば、ポリプロピレン系樹脂を押出機で溶融し、ストランドカット、水中カット、ホットカット等により造粒ペレット化する方法、粉砕機にて直接樹脂粒子を粉砕しペレット化する方法により得られる。また、その形状は、真球状、楕円球状(卵状)、円柱状、角柱状等が挙げられる。このポリプロピレン系樹脂粒子の好ましい粒子径は、0.5〜1.5mmの範囲であり、より好ましくは、0.6〜1.0mmの範囲である。
(Process A)
Polypropylene resin particles are obtained by, for example, melting a polypropylene resin with an extruder and granulating pellets by strand cutting, underwater cutting, hot cutting, etc., or by directly pulverizing and pelletizing resin particles with a pulverizer. can get. In addition, examples of the shape include a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, and a prismatic shape. The preferable particle diameter of the polypropylene resin particles is in the range of 0.5 to 1.5 mm, and more preferably in the range of 0.6 to 1.0 mm.

分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。無機系分散剤を用いる場合、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。
分散剤の使用量は、水性懸濁液100質量部に対して、0.1〜5質量部であることが好ましい。
水性懸濁液を構成する水性媒体は、水、水と水溶性溶媒(例えば、メタノール、エタノール等の低級アルコール)との混合物等が挙げられる。水性媒体の使用量は、懸濁液を形成できさえすれば特に限定されない。
Examples of the dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinylpyrrolidone, carboxymethylcellulose, methylcellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium phosphate, magnesium carbonate. And inorganic dispersants such as magnesium oxide. Of these, inorganic dispersants are preferred. When using an inorganic dispersant, it is preferable to use a surfactant in combination. Examples of such surfactants include dodecyl benzene sulfonic acid soda and α-olefin sulfonic acid soda.
It is preferable that the usage-amount of a dispersing agent is 0.1-5 mass parts with respect to 100 mass parts of aqueous suspension.
Examples of the aqueous medium constituting the aqueous suspension include water, a mixture of water and a water-soluble solvent (for example, lower alcohols such as methanol and ethanol), and the like. The amount of the aqueous medium used is not particularly limited as long as a suspension can be formed.

重合開始剤としては、スチレン系単量体の重合に汎用されている従来周知の重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−アミルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。なお、重合開始剤は、単独で用いられても併用されてもよい。
重合開始剤の使用量は、スチレン系単量体100質量部に対して、0.1〜5質量部であることが好ましい。
As the polymerization initiator, a conventionally known polymerization initiator widely used for the polymerization of styrene monomers can be used. For example, benzoyl peroxide, lauroyl peroxide, t-amyl peroxy octoate, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butyl peroxybivalate, t-butyl peroxyisopropyl carbonate, t- Butyl peroxyacetate, t-butylperoxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t-butylperoxybutane, dicumyl peroxide And an azo compound such as azobisisobutyronitrile and azobisdimethylvaleronitrile. In addition, a polymerization initiator may be used independently or may be used together.
It is preferable that the usage-amount of a polymerization initiator is 0.1-5 mass parts with respect to 100 mass parts of styrene-type monomers.

架橋剤を使用してもよい。架橋剤としては、2,2−ジ−t−ブチルパーオキシブタン、2,2−ビス(t−ブチルパーオキシ)ブタン、ジクミルパーオキサイド、2 ,5−ジメチル−2, 5−ジ−t−ブチルパーオキシヘキサン等の有機過酸化物等が挙げられる。架橋剤の添加方法としては、例えば、架橋剤をポリプロピレン系樹脂に直接添加する方法、溶剤、可塑剤又はスチレン系単量体に架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系単量体に架橋剤を溶解させた上で添加する方法が好ましい。
スチレン系単量体は、ポリプロピレン系樹脂粒子に含浸させるために、水性媒体に、連続的にあるいは断続的に添加できる。スチレン系単量体は、水性媒体中に徐々に添加していくのが好ましい。
A cross-linking agent may be used. As the crosslinking agent, 2,2-di-t-butylperoxybutane, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t -Organic peroxides such as butylperoxyhexane. Examples of the method for adding the crosslinking agent include a method in which the crosslinking agent is added directly to the polypropylene resin, a method in which the crosslinking agent is dissolved in a solvent, a plasticizer or a styrene monomer, and a method in which the crosslinking agent is added to water. The method of adding after dispersing is mentioned. Among these, a method of adding a crosslinking agent after dissolving it in a styrene monomer is preferable.
The styrene monomer can be continuously or intermittently added to the aqueous medium in order to impregnate the polypropylene resin particles. The styrenic monomer is preferably added gradually to the aqueous medium.

(工程B)
工程Bでは、工程Aで得られた分散液を、スチレン系単量体が実質的に重合しない温度に加熱し、スチレン系単量体をポリプロピレン系樹脂粒子に含浸させる。この加熱温度は、45〜70℃の範囲であることが好ましい。加熱温度が45℃未満であると、スチレン系単量体の含浸が不十分となってポリスチレンの重合粉末が生成されることがある。一方、加熱温度が70℃を超えると、スチレン系単量体がポリプロピレン系樹脂粒子に十分含浸される前に重合してしまうことがある。より好ましい加熱温度は50〜65℃の範囲である。
(Process B)
In step B, the dispersion obtained in step A is heated to a temperature at which the styrene monomer is not substantially polymerized, and the styrene monomer is impregnated with polypropylene resin particles. This heating temperature is preferably in the range of 45 to 70 ° C. When the heating temperature is less than 45 ° C., the impregnation of the styrene monomer is insufficient and a polystyrene polymer powder may be generated. On the other hand, when the heating temperature exceeds 70 ° C., polymerization may occur before the styrene monomer is sufficiently impregnated with the polypropylene resin particles. A more preferable heating temperature is in the range of 50 to 65 ° C.

(工程C及びD)
工程C及び工程Dにおいて、重合温度は重要な要因である。具体的には、ポリプロピレン系樹脂の融点をT℃としたとき、重合温度は、工程C(第1の重合)では、(T−10)℃〜(T+20)℃の範囲であり、工程D(第2の重合)では、(T−25)℃〜(T+10)℃の範囲である。
上記温度範囲で重合を行うことにより、中心部はポリスチレン系樹脂の存在量が多く、表層はポリプロピレン系樹脂の存在量が多い複合樹脂粒子を得ることができる。ポリスチレン系樹脂とポリプロピレン系樹脂が偏在する結果として、ポリプロピレン系樹脂とポリスチレン系樹脂のそれぞれの長所が生かされ、剛性、発泡成形性及び耐薬品性を良好に保持された発泡成形体を提供できる。
(Process C and D)
In step C and step D, the polymerization temperature is an important factor. Specifically, when the melting point of the polypropylene resin is T ° C., the polymerization temperature is in the range of (T−10) ° C. to (T + 20) ° C. in the step C (first polymerization), and the step D ( In the second polymerization, it is in the range of (T-25) ° C. to (T + 10) ° C.
By performing polymerization in the above temperature range, composite resin particles having a large amount of polystyrene resin in the center and a large amount of polypropylene resin in the surface layer can be obtained. As a result of the uneven distribution of the polystyrene-based resin and the polypropylene-based resin, the advantages of the polypropylene-based resin and the polystyrene-based resin can be utilized to provide a foamed molded article having excellent rigidity, foam moldability, and chemical resistance.

重合温度が上記温度範囲より低くなると、中心部のポリスチレン系樹脂の存在量が少なく、良好な物性を示す発泡成形体が得られないことがある。また、重合温度が上記温度範囲より高くなると、スチレン系単量体がポリプロピレン系樹脂粒子に十分含浸される前に重合が開始してしまうので、良好な物性を示す発泡成形体が得られないことがある。また、高くなると、耐熱性に優れた高価格の重合設備が必要になる。
また、スチレン系単量体の重合を、工程Cと工程Dの二段階に分ける理由は、一度に多くのスチレン系単量体をポリプロピレン系樹脂に含浸させようとすると、スチレン系単量体がポリプロピレン系樹脂に十分に含浸されず、ポリプロピレン系樹脂の表面に残るからである。重合工程を二段階に分ければ、工程Cにおいてスチレン系単量体が確実にポリプロピレン系樹脂の中心部に含浸され、工程Dにおいてもスチレン系単量体がポリプロピレン系樹脂の中心部に向かって含浸される。
When the polymerization temperature is lower than the above temperature range, the abundance of the polystyrene-based resin in the central portion is small, and a foamed molded article having good physical properties may not be obtained. In addition, when the polymerization temperature is higher than the above temperature range, the polymerization starts before the styrene monomer is sufficiently impregnated with the polypropylene resin particles, so that a foam molded article having good physical properties cannot be obtained. There is. Moreover, if it becomes high, the superposition | polymerization equipment excellent in heat resistance will be needed.
Also, the reason for dividing the polymerization of the styrenic monomer into two steps, Step C and Step D, is that when a large amount of styrene monomer is impregnated into the polypropylene resin at once, the styrenic monomer This is because the polypropylene resin is not sufficiently impregnated and remains on the surface of the polypropylene resin. If the polymerization process is divided into two stages, the styrene monomer is surely impregnated in the central part of the polypropylene resin in the process C, and the styrene monomer is impregnated in the central part of the polypropylene resin also in the process D. Is done.

なお、ポリスチレン系樹脂とポリプロピレン系樹脂との偏在は、ATR(Attenuated Total Reflectance)法赤外分光分析により、表面及び中心部を測定することで求めることができる。
ATR法赤外分光分析とは、全反射吸収(Attenuated Total Reflectance)を利用する一回反射型ATR法により赤外吸収スペクトルを測定する分析方法である。この分析方法は、高い屈折率を持つATRプリズムを試料に密着させ、ATRプリズムを通して赤外線を試料に照射し、ATRプリズムからの反射光を分光分析する方法である。
ATR法赤外分光分析は、試料とATRプリズムとを密着させるだけでスペクトルを測定できるという簡便さ、深さ数μmまでの表面分析が可能である等の理由で高分子材料等の有機物をはじめ、種々の物質の表面分析に広く利用されている。
The uneven distribution of the polystyrene-based resin and the polypropylene-based resin can be obtained by measuring the surface and the center portion by ATR (Attenuated Total Reflectance) method infrared spectroscopic analysis.
The ATR method infrared spectroscopic analysis is an analysis method in which an infrared absorption spectrum is measured by a single reflection type ATR method using total reflection absorption (Attenuated Total Reflectance). This analysis method is a method in which an ATR prism having a high refractive index is closely attached to a sample, infrared light is irradiated to the sample through the ATR prism, and the reflected light from the ATR prism is spectrally analyzed.
ATR infrared spectroscopic analysis includes organic materials such as polymer materials because of the simplicity of being able to measure the spectrum simply by bringing the sample and the ATR prism into close contact with each other, and the ability to perform surface analysis up to a depth of several μm. It is widely used for surface analysis of various substances.

赤外吸収スペクトルでは、698cm-1における吸光度D698が、ポリスチレン系樹脂に主に含まれるベンゼン環の面外変角振動に由来する698cm-1付近に現われるピークの高さに対応する。また、1376cm-1における吸光度D1376が、ポリプロピレン系樹脂に含まれる−C−CH3炭化水素のCH3の対称変角振動に由来する1376cm-1付近に現われるピークの高さに対応する。 The infrared absorption spectrum, the absorbance D 698 at 698cm -1 corresponds to the height of the peak appearing around 698cm -1 derived from out-of-plane deformation vibration of a benzene ring contained in the main to the polystyrene resin. Further, the absorbance D 1376 at 1376cm -1 corresponds to the height of the peak appearing in the vicinity of 1376cm -1, which derived from the symmetric deformation vibration of CH 3 of -C-CH 3 hydrocarbons contained in the polypropylene resin.

両吸光度比からポリスチレン系樹脂とポリプロピレン系樹脂の組成割合を以下のようにして求める。即ち、まず、ポリスチレン系樹脂とポリプロピレン系樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を作製し、各標準試料についてATR法赤外分光分析により粒子表面分析を行なって赤外線吸収スペクトルを得る。得られた赤外吸収スペクトルのそれぞれから吸光度比を算出する。そして、縦軸に組成割合(標準試料中のポリスチレン系樹脂比率(質量%))を、横軸に吸光度比(D698/D1376)をとることで、検量線を描く。この検量線に基づいて、複合樹脂発泡粒子の吸光度比から、ポリスチレン系樹脂とポリプロピレン系樹脂の組成割合を求めることができる。 The composition ratio of the polystyrene resin and the polypropylene resin is determined from the absorbance ratio as follows. That is, first, a plurality of types of standard samples are prepared by uniformly mixing polystyrene resin and polypropylene resin at a predetermined composition ratio, and each standard sample is subjected to particle surface analysis by ATR infrared spectroscopy. An infrared absorption spectrum is obtained. The absorbance ratio is calculated from each of the obtained infrared absorption spectra. A calibration curve is drawn by taking the composition ratio (polystyrene resin ratio (mass%) in the standard sample) on the vertical axis and the absorbance ratio (D 698 / D 1376 ) on the horizontal axis. Based on the calibration curve, the composition ratio of the polystyrene resin and the polypropylene resin can be determined from the absorbance ratio of the composite resin foamed particles.

(工程E)
工程Eでは、第2の重合中の第1の粒子又は複合樹脂粒子に、難燃剤を含浸させる。含浸させる際の温度は、難燃剤又は難燃助剤の融点の内、高い方の融点をt℃としたとき、t℃〜(t+30)℃の範囲が好ましい。t℃より低いと難燃剤又は難燃助剤が複合樹脂粒子に十分に含浸されないことがある。また、(t+30)℃より高いと耐熱性に優れた高価格の重合設備が必要になることがある。
工程Eの後、反応槽を冷却し、難燃剤含有複合樹脂粒子を水性媒体と分離することで、難燃剤複合樹脂粒子を単離できる。
(Process E)
In step E, the first particles or the composite resin particles in the second polymerization are impregnated with a flame retardant. The temperature at the time of impregnation is preferably in the range of t ° C. to (t + 30) ° C. when the higher melting point of the flame retardant or the flame retardant auxiliary is t ° C. When the temperature is lower than t ° C, the composite resin particles may not be sufficiently impregnated with the flame retardant or the flame retardant aid. On the other hand, if it is higher than (t + 30) ° C., an expensive polymerization facility having excellent heat resistance may be required.
After Step E, the reaction vessel is cooled, and the flame retardant-containing composite resin particles are separated from the aqueous medium, whereby the flame retardant composite resin particles can be isolated.

(c)予備発泡粒子
予備発泡粒子は、難燃剤含有複合樹脂粒子に、発泡剤を含浸させ、次いで予備発泡して得ることができる。
予備発泡粒子は、例えば、難燃剤含有複合樹脂粒子に発泡剤を含浸させて発泡性複合樹脂粒子を得る工程と、予備発泡装置内にゲージ圧力0.005〜0.09MPaの水蒸気を導入して発泡性複合樹脂粒子を加熱することによって予備発泡粒子を得る工程とを経ることにより形成できる。
(C) Pre-foamed particles Pre-foamed particles can be obtained by impregnating a flame retardant-containing composite resin particle with a foaming agent and then pre-foaming.
The pre-expanded particles include, for example, a step of impregnating a flame retardant-containing composite resin particle with a foaming agent to obtain expandable composite resin particles, and introducing water vapor with a gauge pressure of 0.005 to 0.09 MPa into the pre-expand device. It can form by passing through the process of obtaining pre-expanded particle | grains by heating an expandable composite resin particle.

(発泡性複合樹脂粒子)
(1)発泡剤
発泡剤としては、沸点が重合体の軟化温度以下であり易揮発性を有するもの、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、シクロペンタン、炭酸ガス、窒素が挙げられる。これらの発泡剤は、単独もしくは2種以上を併用してもよい。発泡剤の使用量は、難燃剤含有複合樹脂粒子100質量部に対して5〜25質量部の範囲とすることが好ましい。
(Expandable composite resin particles)
(1) Foaming agent As the foaming agent, one having a boiling point lower than the softening temperature of the polymer and easily volatile, such as propane, n-butane, i-butane, n-pentane, i-pentane, cyclopentane, Examples include carbon dioxide and nitrogen. These foaming agents may be used alone or in combination of two or more. The amount of the foaming agent used is preferably in the range of 5 to 25 parts by mass with respect to 100 parts by mass of the flame retardant-containing composite resin particles.

(2)他の添加剤
更に、発泡助剤を発泡剤と共に用いてもよい。発泡助剤としては、例えば、トルエン、キシレン、エチルベンゼン、シクロヘキサン、D−リモネン等の溶剤、ジイソブチルアジペート、ジアセチル化モノラウレート、やし油等の可塑剤(高沸点溶剤)が挙げられる。なお、発泡助剤の使用量は、難燃剤含有複合樹脂粒子100質量部に対して0.1〜2.5質量部が好ましい。
また、発泡性複合樹脂粒子には、結合防止剤、融着促進剤、帯電防止剤、展着剤等の表面処理剤を添加してもよい。
(2) Other additives Further, a foaming aid may be used together with the foaming agent. Examples of the foaming aid include solvents such as toluene, xylene, ethylbenzene, cyclohexane, and D-limonene, and plasticizers (high-boiling solvents) such as diisobutyl adipate, diacetylated monolaurate, and coconut oil. In addition, as for the usage-amount of foaming adjuvant, 0.1-2.5 mass parts is preferable with respect to 100 mass parts of flame retardant containing composite resin particles.
In addition, a surface treatment agent such as a binding inhibitor, a fusion accelerator, an antistatic agent, or a spreading agent may be added to the foamable composite resin particles.

結合防止剤は、発泡性複合樹脂粒子を予備発泡させる際の予備発泡粒子同士の合着を防止する役割を果たす。ここで、合着とは、予備発泡粒子の複数個が合一して一体化することをいう。具体例としては、タルク、炭酸カルシウム、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルポリシロキサン等が挙げられる。
融着促進剤は、予備発泡粒子を二次発泡成形する際の予備発泡粒子同士の融着を促進させる役割を果たす。具体例としては、ステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステル等が挙げられる。
The anti-bonding agent plays a role of preventing coalescence of the pre-expanded particles when pre-expanding the expandable composite resin particles. Here, coalescence means that a plurality of pre-expanded particles are united and integrated. Specific examples include talc, calcium carbonate, zinc stearate, aluminum hydroxide, ethylene bis stearamide, tricalcium phosphate, dimethylpolysiloxane and the like.
The fusion accelerator plays a role of promoting fusion between the pre-foamed particles when the pre-foamed particles are subjected to secondary foam molding. Specific examples include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, sorbitan stearate, and the like.

帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド等が挙げられる。
展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
なお、前記表面処理剤の総添加量は、難燃剤含有複合樹脂粒子100質量部に対して0.01〜2.0質量部が好ましい。
Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride.
Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil.
In addition, as for the total addition amount of the said surface treating agent, 0.01-2.0 mass parts is preferable with respect to 100 mass parts of flame retardant containing composite resin particles.

(3)発泡剤含浸
難燃性複合樹脂粒子中に発泡剤を含浸させる方法は、発泡剤の種類に応じて適宜変更可能である。例えば、難燃性複合樹脂粒子が分散している水性媒体中に発泡剤を圧入して、発泡剤を含浸させる方法、難燃性複合樹脂粒子を回転混合機に供給し、この回転混合機内に発泡剤を圧入して発泡剤を含浸させる方法等が挙げられる。なお、難燃性複合樹脂粒子に発泡剤を含浸させる温度は、通常、50〜140℃とすることが好ましい。
(3) Impregnation with foaming agent The method of impregnating the flame retardant composite resin particles with the foaming agent can be appropriately changed according to the type of foaming agent. For example, a method of press-fitting a foaming agent into an aqueous medium in which flame-retardant composite resin particles are dispersed, and impregnating the foaming agent, supplying the flame-retardant composite resin particles to a rotary mixer, and into the rotary mixer Examples thereof include a method of press-fitting a foaming agent and impregnating the foaming agent. In addition, it is preferable that the temperature which makes a flame retardant composite resin particle impregnate a foaming agent is 50-140 degreeC normally.

(予備発泡工程)
発泡性複合樹脂粒子を加熱して予備発泡させることで予備発泡粒子を得る。
予備発泡に用いる装置は、従来のポリスチレン系樹脂予備発泡粒子の製造の場合と同等の装置を使用できる。加熱は、例えば、予備発泡装置内にゲージ圧力0.005〜0.09MPaの水蒸気を導入することで行うことができる。加熱時間は一般に20〜180秒程度である。
(Pre-foaming process)
Prefoamed particles are obtained by heating and prefoaming the foamable composite resin particles.
The apparatus used for pre-foaming can use the same apparatus as in the case of production of conventional polystyrene resin pre-foamed particles. Heating can be performed, for example, by introducing water vapor with a gauge pressure of 0.005 to 0.09 MPa into the preliminary foaming apparatus. The heating time is generally about 20 to 180 seconds.

(予備発泡粒子の性質)
予備発泡粒子は、通常、0.0166〜0.2g/cm3の嵩密度を有することが好ましい。嵩密度が0.0166g/cm3より小さいと、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下することがある。一方、嵩密度が0.2g/cm3より大きいと、予備発泡粒子を発泡させて得られる発泡成形体の質量が増加することがある。より好ましい嵩密度は0.02〜0.1g/cm3であり、更に好ましい嵩密度は0.025〜0.05g/cm3である。
また、この嵩密度を嵩発泡倍数で表すと、嵩発泡倍数(倍)=1/嵩密度(g/cm3)であることから、好ましい予備発泡粒子の嵩密度は5〜60(倍)の嵩発泡倍数に対応し、より好ましい嵩密度は10〜50(倍)の嵩発泡倍数に対応し、更に好ましい嵩密度は20〜40(倍)の嵩発泡倍数に対応する。
(Properties of pre-expanded particles)
In general, the pre-expanded particles preferably have a bulk density of 0.0166 to 0.2 g / cm 3 . If the bulk density is less than 0.0166 g / cm 3 , the strength of the foamed molded article obtained by foaming the pre-foamed particles may be lowered. On the other hand, if the bulk density is greater than 0.2 g / cm 3 , the mass of the foamed molded product obtained by foaming the pre-foamed particles may increase. More preferred bulk density of 0.02~0.1g / cm 3, more preferred bulk density is 0.025~0.05g / cm 3.
Moreover, when this bulk density is expressed by a bulk foaming factor, it is bulk foaming factor (times) = 1 / bulk density (g / cm 3 ), so that the preferred bulk density of the pre-expanded particles is 5 to 60 (times). Corresponding to the bulk expansion ratio, a more preferable bulk density corresponds to a bulk expansion ratio of 10 to 50 (times), and a more preferable bulk density corresponds to a bulk expansion ratio of 20 to 40 (times).

予備発泡粒子の形状は、その後の型内発泡成形に影響を与えないものであれば、特に限定されない。例えば、真球状、楕円球状(卵状)、円柱状、角柱状等が挙げられる。この内、成形型のキャビティ内への充填が容易である真球状、楕円球状が好ましい。
なお、予備発泡粒子は、発泡成形に付す前に、例えば24時間程度熟成工程に付してもよい。
The shape of the pre-expanded particles is not particularly limited as long as it does not affect the subsequent in-mold foam molding. For example, a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, a prismatic shape, and the like can be given. Of these, a true spherical shape and an elliptical spherical shape, which can be easily filled into the cavity of the mold, are preferable.
The pre-expanded particles may be subjected to an aging step, for example, for about 24 hours before being subjected to foam molding.

(d)発泡成形体
発泡成形体は、上記予備発泡粒子を成形型のキャビティ内へ充填し、予備発泡粒子を加熱して発泡させることにより製造できる。
予備発泡粒子の加熱は、0.20MPa<X≦0.35MPaの範囲のゲージ圧力Xの水蒸気で行うことが好ましい。
発泡成形体は、0mm/minの燃焼速度(米国自動車安全基準FMVSS 302に準拠した方法により測定)であり、かつ、1.0%未満の加熱寸法変化率(JIS K6767:1999KのB法に準拠した方法により80℃、168時間で測定)された加熱寸法変化率を有することが好ましい。燃焼速度が0mm/minを超えると、発泡成形体に十分な難燃性を付与できないことがある。また、収縮率が1.0%を超えると、寸法安定性に欠けることがある。なお、収縮率は小さい程望ましいので、その下限値を特に設ける必要はない。例えば、収縮率の下限値は0であることが望ましい。
(D) Foamed molded body The foamed molded body can be produced by filling the prefoamed particles into a cavity of a mold and heating the prefoamed particles to foam.
The pre-expanded particles are preferably heated with water vapor having a gauge pressure X in the range of 0.20 MPa <X ≦ 0.35 MPa.
The foamed molded article has a burning rate of 0 mm / min (measured by a method in accordance with US automobile safety standard FMVSS 302) and a heating dimensional change rate of less than 1.0% (according to B method of JIS K6767: 1999K). It is preferable to have a heating dimensional change rate measured at 80 ° C. for 168 hours). When the burning rate exceeds 0 mm / min, sufficient flame retardancy may not be imparted to the foamed molded product. Further, when the shrinkage rate exceeds 1.0%, the dimensional stability may be lacking. In addition, since shrinkage | contraction rate is so preferable that it is small, it is not necessary to provide the lower limit in particular. For example, it is desirable that the lower limit value of the shrinkage rate is zero.

発泡成形体は、0.0166〜0.2g/cm3の密度を有することが好ましい。密度が0.0166g/cm3より小さいと、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下することがある。一方、発泡成形体の密度が0.2g/cm3より大きいと、予備発泡粒子を発泡させて得られる発泡成形体の質量が増加することがある。より好ましい密度は0.02〜0.1g/cm3の範囲であり、更に好ましい密度は0.025〜0.05g/cm3の範囲である。
上記密度を発泡倍数で示すと、好ましい密度は5〜60(倍)の発泡倍数に対応し、より好ましい密度は10〜50(倍)に対応し、更に好ましい密度は20〜40(倍)に対応する。
発泡成形体は、剛性、加熱寸法安定性、発泡成形性及び耐薬品性に優れている。また、難燃剤を含む場合は、難燃性に優れている。
発泡成形体は、車輛用バンパーの芯材、ドア内装緩衝材等の車輛用緩衝材、電子部品、各種工業資材、食品等の搬送容器等の各種用途に用いることができる。
The foamed molded product preferably has a density of 0.0166 to 0.2 g / cm 3 . When the density is less than 0.0166 g / cm 3 , the strength of the foamed molded product obtained by foaming the pre-foamed particles may be lowered. On the other hand, if the density of the foam molded article is larger than 0.2 g / cm 3 , the mass of the foam molded article obtained by foaming the pre-foamed particles may increase. A more preferable density is in the range of 0.02 to 0.1 g / cm 3 , and a further preferable density is in the range of 0.025 to 0.05 g / cm 3 .
When the above density is expressed in terms of expansion ratio, a preferable density corresponds to a expansion ratio of 5 to 60 (times), a more preferable density corresponds to 10 to 50 (times), and a more preferable density is 20 to 40 (times). Correspond.
The foam molded article is excellent in rigidity, heat dimensional stability, foam moldability and chemical resistance. Moreover, when a flame retardant is included, it is excellent in flame retardance.
The foamed molded product can be used in various applications such as a vehicle bumper core material, a vehicle cushioning material such as a door interior cushioning material, electronic parts, various industrial materials, and food containers.

以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、以下の実施例における融点、嵩発泡倍数、発泡倍数、加熱寸法変化率、燃焼速度及び成形体内部融着の測定法を下記する。
<融点>
JIS K7122:1987「プラスチックの転移熱測定方法」記載の方法により測定する。すなわち、示差走査熱量計装置DSC220型(セイコー電子工業社製)を用い、測定容器に試料を7mg充填して、窒素ガス流量30ml/minのもと、室温から220℃の間で10℃/minの昇・降温スピードにより昇温、降温、昇温を繰り返し、2回目の昇温時のDSC曲線の融解ピーク温度を融点とする。また、融解ピークが2つ以上ある場合は、低い側のピーク温度を融点とする。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measuring method of melting | fusing point in the following Examples, a bulk foam multiple, a foam multiple, a heating dimensional change rate, a combustion rate, and a molded object internal fusion is described below.
<Melting point>
Measured by the method described in JIS K7122: 1987 “Method of measuring the transition heat of plastic”. That is, using a differential scanning calorimeter DSC220 type (manufactured by Seiko Denshi Kogyo Co., Ltd.), 7 mg of a sample was filled in a measurement container, and a nitrogen gas flow rate of 30 ml / min was used at a temperature between room temperature and 220 ° C. to 10 ° C./min. The temperature rise, fall, and temperature rise are repeated at the speed of raising and lowering the temperature, and the melting peak temperature of the DSC curve at the second temperature rise is defined as the melting point. Further, when there are two or more melting peaks, the lower peak temperature is taken as the melting point.

<嵩発泡倍数>
予備発泡粒子の嵩発泡倍数は下記の要領で測定する。
まず、予備発泡粒子を500cm3、メスシリンダ内に500cm3の目盛りまで充填する。なお、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達しているものがあれば、その時点で予備発泡粒子のメスシリンダ内への充填を終了する。
次に、メスシリンダ内に充填した予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とした。そして、下記の式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm3)=W/500
予備発泡粒子の嵩発泡倍数は、次式により算出する。
嵩発泡倍数(倍)=1/密度(g/cm3
<Bulk foam multiple>
The bulk expansion ratio of the pre-expanded particles is measured as follows.
First, the pre-expanded particles 500 cm 3, filled into the graduated cylinder to the scale of 500 cm 3. When the graduated cylinder is visually observed from the horizontal direction and any pre-expanded particles reach a scale of 500 cm 3 , the filling of the pre-expanded particles into the graduated cylinder is terminated at that point.
Next, the mass of the pre-expanded particles filled in the measuring cylinder was weighed with two significant figures after the decimal point, and the mass was defined as W (g). Then, the bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
The bulk expansion ratio of the pre-expanded particles is calculated by the following formula.
Bulk foam multiple (times) = 1 / density (g / cm 3 )

<発泡成形体の嵩発泡倍数>
発泡成形後に得られる発泡成形体の見かけの体積(cm3)(c)と、その質量(g)(d)を測定し、式(d)/(c)により発泡成形体の嵩密度(g/cm3)を求める。発泡成形体の見かけの体積は成形後の収縮を考慮しなければ、例えば発泡成形体が得られた時点での金型キャビティ内の体積に等しく、金型図面寸法から算出できる。嵩発泡倍数は嵩密度の逆数、すなわち式(c)/(d)とする。
<Bulk expansion ratio of foam molded article>
The apparent volume (cm 3 ) (c) and the mass (g) (d) of the foam molded article obtained after foam molding are measured, and the bulk density (g of the foam molded article is expressed by the formula (d) / (c). / Cm 3 ). If the shrinkage after molding is not taken into account, the apparent volume of the foam molded body is equal to the volume in the mold cavity at the time when the foam molded body is obtained, and can be calculated from the dimensions of the mold drawing. The bulk foaming factor is the reciprocal of the bulk density, that is, the formula (c) / (d).

<加熱寸法変化率>
加熱寸法変化率はJIS K 6767:1999K「発泡プラスチック−ポリエチレン−試験方法」記載のB法にて測定する。
試験片は150×150×原厚み(mm)として、その中央部に縦及び横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるよう記入し、80℃の熱風循環式乾燥機の中に168時間置いた後に取出し、標準状態の場所に1時間放置後、縦及び横線の寸法を下記式によって測定する。
S=(L1−L0)/L0×100
式中、Sは加熱寸法変化率(%)、L1は加熱後の平均寸法(mm)、L0は初めの平均寸法(mm)をそれぞれ表す。
加熱寸法変化率Sは、以下の基準で評価する。
◎:0≦S≦0.5;寸法変化率が非常に低く、寸法の安定性が極めて良好である。
○:0.5<S<1;寸法変化率が低く、寸法の安定性が良好である。
×:S≧1;寸法の変化が大きく、寸法の安定性に劣る。
<Heating dimensional change rate>
The heating dimensional change rate is measured by the B method described in JIS K 6767: 1999K “foamed plastic-polyethylene test method”.
The test piece is 150 x 150 x original thickness (mm), and three straight lines are written in the center and parallel to each other in the vertical and horizontal directions at intervals of 50 mm, inside a hot air circulating dryer at 80 ° C. After 168 hours, the sample is taken out, left in a standard state for 1 hour, and the vertical and horizontal line dimensions are measured by the following formula.
S = (L 1 −L 0 ) / L 0 × 100
In the formula, S represents a heating dimensional change rate (%), L 1 represents an average dimension (mm) after heating, and L 0 represents an initial average dimension (mm).
The heating dimensional change rate S is evaluated according to the following criteria.
A: 0 ≦ S ≦ 0.5; the rate of dimensional change is very low, and the dimensional stability is extremely good.
A: 0.5 <S <1; dimensional change rate is low and dimensional stability is good.
X: S ≧ 1; dimensional change is large and dimensional stability is poor.

<燃焼速度>
燃焼速度は、米国自動車安全基準FMVSS 302に準拠した方法で測定する。
試験片は、350mm×100mm×12mm(厚み)とし、少なくとも350mm×100mmの二面には表皮が存在するものとする。
燃焼速度は、以下の基準で評価する。
○:所定の嵩発泡倍数の発泡成形体において、測定開始点に達する前に消火した場合。この場合の燃焼速度を0mm/minとする。
×:所定の嵩発泡倍数の発泡成形体において、燃焼速度が0mm/minより大きい場合。
<Burning rate>
The burning rate is measured by a method in accordance with the US automobile safety standard FMVSS 302.
The test piece is 350 mm × 100 mm × 12 mm (thickness), and it is assumed that the skin exists on at least two sides of 350 mm × 100 mm.
The burning rate is evaluated according to the following criteria.
○: In the case of a foamed molded article having a predetermined bulk expansion ratio, the fire extinguishes before reaching the measurement start point. In this case, the combustion speed is set to 0 mm / min.
X: When the combustion speed is larger than 0 mm / min in a foamed molded article having a predetermined bulk foaming factor.

<成形体内部融着>
縦400mm×横300mm×厚み30mmの平板形状の発泡成形体の表面に、一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約5mmの切り込み線を入れた後、この切り込み線に沿って発泡成形体を手で二分割する。そして、二分割された発泡成形体の破断面の発泡粒子について、100〜150個の任意の範囲について発泡粒子内で破断している発泡粒子の数(a)と、発泡粒子同士の界面で破断している発泡粒子数(b)を数え、式(a)/〔(a)+(b)〕×100に代入して得られた値を融着率(%)とする。
上記により算出した融着率を基に以下の基準で評価した。
○:融着率80%以上
△:融着率50%以上80%未満
×:融着率50%未満
<Internal fusion of molded body>
After making a cut line with a depth of about 5 mm with a cutter knife along the straight line connecting the centers of a pair of long sides on the surface of a flat foam molded body of 400 mm long × 300 mm wide × 30 mm thick, this cut line The foamed molded product is divided into two by hand. And about the expanded particle of the torn surface of the divided | segmented expanded molded object, it fractures | ruptures in the number (a) of the expanded particle which is fracture | ruptured in the expanded particle about arbitrary ranges of 100-150, and the interface of expanded particles The number (b) of the expanded particles is counted, and the value obtained by substituting into the formula (a) / [(a) + (b)] × 100 is defined as the fusion rate (%).
Based on the fusion rate calculated as described above, evaluation was performed according to the following criteria.
○: Fusing rate 80% or more Δ: Fusing rate 50% or more and less than 80% ×: Fusing rate less than 50%

[実施例1]
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃、プロピレン単位:96質量%)2000gを押出機に供給して溶融混練してストランドカットにより造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た。
ポリプロピレン系樹脂粒子は、100粒あたり55mgの質量と、約1mmの平均粒子径を有していた。
次に、撹拌機付5Lオートクレーブに、前記ポリプロピレン系樹脂粒子800gを入れ、更に水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加えた。内容物を撹拌することで水性媒体と懸濁させ、10分間保持し、その後60℃に昇温することで水系懸濁液とした。
[Example 1]
Supply 2000 g of polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C., propylene unit: 96 mass%) to an extruder, melt knead and granulate pellets by strand cutting. As a result, spherical (egg-like) polypropylene resin particles were obtained.
The polypropylene resin particles had a mass of 55 mg per 100 grains and an average particle diameter of about 1 mm.
Next, 800 g of the polypropylene resin particles were placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were suspended in an aqueous medium by stirring, held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension.

次に、この懸濁液中にジクミルパーオキサイド0.7gを溶解させたスチレン単量体350gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。
次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレン単量体850gを4時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。
Next, 350 g of a styrene monomer in which 0.7 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles.
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and then 850 g of a styrene monomer in which 3.6 g of dicumyl peroxide was dissolved as a polymerization initiator was added dropwise over 4 hours. Polymerization (second polymerization) was carried out while absorbing the particles in one particle.

滴下終了後、120℃で1時間保持、次いで140℃に昇温し3時間保持して重合を完結することで複合樹脂粒子を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)28gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)20gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有複合樹脂粒子を得た。
After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 28 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid. -20 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added. After the addition, the temperature of the reaction system was raised to 130 ° C., and stirring was continued for 2 hours to obtain flame retardant-containing composite resin particles.

次に、常温まで冷却し、難燃剤含有複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから発泡性複合樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性複合樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約40倍に予備発泡させ、予備発泡粒子を得た。
Next, it cooled to normal temperature and took out the flame retardant containing composite resin particle from the 5L autoclave. After taking out, 2 kg of the flame retardant-containing composite resin particles and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a foaming agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Thereafter, the mixture was cooled to room temperature, and the expandable composite resin particles were taken out from the 5 L autoclave and dehydrated and dried.
Next, 1000 g of the obtained expandable composite resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk expansion ratio of about 40. Pre-foamed particles were obtained by pre-foaming twice.

更に、予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティ内に充填し、キャビティを含む成形型にゲージ圧力0.25MPaの水蒸気を50秒間導入して加熱した。水蒸気導入後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
Further, after pre-expanded particles were allowed to stand at room temperature for 1 day, they were filled into a cavity having a size of 400 mm × 300 mm × 30 mm, and steam having a gauge pressure of 0.25 MPa was introduced into a mold including the cavity for 50 seconds and heated. . After the introduction of water vapor, the foamed molded body was cooled until the maximum surface pressure of the foamed molded body decreased to 0.001 MPa to obtain a foamed molded body.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[実施例2]
複合樹脂粒子に、難燃剤6gと難燃助剤4gとを含浸させたこと以外は実施例1と同様にして、発泡成形体を得た。得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[実施例3]
複合樹脂粒子に、難燃剤10gと難燃助剤6gとを含浸させたことと、成形型にゲージ圧力0.21MPaの水蒸気を50秒間導入したこと以外は実施例1と同様にして、発泡成形体を得た。得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[実施例4]
複合樹脂粒子に、難燃剤10gと難燃助剤6gとを含浸させたことと、成形型にゲージ圧力0.33MPaの水蒸気を50秒間導入したこと以外は実施例1と同様にして、発泡成形体を得た。得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[Example 2]
A foamed molded article was obtained in the same manner as in Example 1 except that 6 g of the flame retardant and 4 g of the flame retardant aid were impregnated into the composite resin particles. Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.
[Example 3]
Foam molding in the same manner as in Example 1 except that the composite resin particles were impregnated with 10 g of a flame retardant and 6 g of a flame retardant aid, and water vapor having a gauge pressure of 0.21 MPa was introduced into the mold for 50 seconds. Got the body. Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.
[Example 4]
Foam molding in the same manner as in Example 1 except that the composite resin particles were impregnated with 10 g of the flame retardant and 6 g of the flame retardant aid, and water vapor having a gauge pressure of 0.33 MPa was introduced into the mold for 50 seconds. Got the body. Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[実施例5]
実施例1と同様にして得たポリプロピレン系樹脂粒子600gを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。
次に、この懸濁液中にジクミルパーオキサイド0.5gを溶解させたスチレン単量体250gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
[Example 5]
600 g of the polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave equipped with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium, and the aqueous medium was stirred and stirred. The suspension was suspended for 10 minutes and then heated to 60 ° C. to obtain an aqueous suspension.
Next, 250 g of styrene monomer in which 0.5 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.

次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。
次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド4.2gを溶解したスチレン単量体1150gを5.5時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。
滴下終了後、120℃で1時間保持した後に140℃に昇温し3時間保持して重合を完結することで複合樹脂粒子を得た。
Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles.
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and then 1150 g of a styrene monomer in which 4.2 g of dicumyl peroxide was dissolved was added dropwise over 5.5 hours. Polymerization (second polymerization) was performed while absorbing the particles.
After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.

その後、反応系の温度を60℃にして、この懸濁液中に、実施例1と同様の難燃剤20gと難燃助剤20gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有複合樹脂粒子を得た。
次に、常温まで冷却し、難燃剤含有複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから発泡性複合樹脂粒子を取り出し、脱水乾燥した。
Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of the same flame retardant and 20 g of the flame retardant aid were charged into this suspension. After the addition, the temperature of the reaction system was raised to 130 ° C., and stirring was continued for 2 hours to obtain flame retardant-containing composite resin particles.
Next, it cooled to normal temperature and took out the flame retardant containing composite resin particle from the 5L autoclave. After taking out, 2 kg of the flame retardant-containing composite resin particles and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a foaming agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Then, it cooled to normal temperature, took out the foamable composite resin particle from the 5L autoclave, and dehydrated and dried.

次に、得られた発泡性複合樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。
更に、予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティ内に充填し、キャビティを含む成形型にゲージ圧力0.22MPaの水蒸気を50秒間導入して加熱した。水蒸気導入後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
Next, 1000 g of the obtained expandable composite resin particles were put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming ratio of about 30. Pre-foamed particles were obtained by pre-foaming twice.
Further, after pre-expanded particles were allowed to stand at room temperature for 1 day, they were filled into a cavity having a size of 400 mm × 300 mm × 30 mm, and steam having a gauge pressure of 0.22 MPa was introduced into a mold including the cavity for 50 seconds and heated. . After the introduction of water vapor, the foamed molded body was cooled until the maximum surface pressure of the foamed molded body decreased to 0.001 MPa to obtain a foamed molded body.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[実施例6]
実施例1と同様にして得たポリプロピレン系樹脂粒子1000gを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加えた。内容物を攪拌して水性媒体と懸濁させ、10分間保持し、その後60℃に昇温することで水系懸濁液とした。
次に、この懸濁液中に、ジクミルパーオキサイド0.8gを溶解させたスチレン単量体400gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。
[Example 6]
1000 g of polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were stirred and suspended in an aqueous medium, held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension.
Next, 400 g of styrene monomer in which 0.8 g of dicumyl peroxide was dissolved was dropped into this suspension over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles.

次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド3gを溶解したスチレン単量体600gを3時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)を行った。
滴下終了後、120℃で1時間保持、次いで140℃に昇温し3時間保持して重合を完結することで複合樹脂粒子を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、実施例1と同じ難燃剤20gと難燃助剤20gを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有複合樹脂粒子を得た。
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate is added to the suspension, and then 600 g of a styrene monomer in which 3 g of dicumyl peroxide is dissolved is added dropwise over 3 hours to be absorbed by the polypropylene resin particles. The polymerization (second polymerization) was carried out.
After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of the same flame retardant and 20 g of the flame retardant aid were charged into this suspension. After the addition, the temperature of the reaction system was raised to 130 ° C., and stirring was continued for 2 hours to obtain flame retardant-containing composite resin particles.

次に、常温まで冷却し、難燃剤含有複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。
次に、得られた発泡性複合樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。
Next, it cooled to normal temperature and took out the flame retardant containing composite resin particle from the 5L autoclave. After taking out, 2 kg of the flame retardant-containing composite resin particles and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a foaming agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried, and expandable composite resin particles were obtained.
Next, 1000 g of the obtained expandable composite resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk expansion ratio of about 30. Pre-foamed particles were obtained by pre-foaming twice.

更に、予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティ内に充填し、キャビティを含む成形型にゲージ圧力0.22MPaの水蒸気を50秒間導入して加熱した。水蒸気導入後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
Further, after pre-expanded particles were allowed to stand at room temperature for 1 day, they were filled into a cavity having a size of 400 mm × 300 mm × 30 mm, and steam having a gauge pressure of 0.22 MPa was introduced into a mold including the cavity for 50 seconds and heated. . After the introduction of water vapor, the foamed molded body was cooled until the maximum surface pressure of the foamed molded body decreased to 0.001 MPa to obtain a foamed molded body.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[実施例7]
実施例1と同様にして複合樹脂粒子を含む懸濁液を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)20gを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、難燃剤含有複合樹脂粒子を得た。
次に、実施例1と同様にして発泡性複合樹脂粒子を得た。
次に、得られた発泡性複合樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約10倍に予備発泡させ、予備発泡粒子を得た。
[Example 7]
A suspension containing composite resin particles was obtained in the same manner as in Example 1.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) was added as a flame retardant to the suspension. The temperature was raised to 130 ° C. and stirring was continued for 2 hours to obtain flame retardant-containing composite resin particles.
Next, expandable composite resin particles were obtained in the same manner as in Example 1.
Next, 1000 g of the obtained expandable composite resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming factor of about 10 Pre-foamed particles were obtained by pre-foaming twice.

更に、予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティ内に充填し、キャビティを含む成形型にゲージ圧力0.22MPaの水蒸気を50秒間導入して加熱した。水蒸気導入後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
Further, after pre-expanded particles were allowed to stand at room temperature for 1 day, they were filled into a cavity having a size of 400 mm × 300 mm × 30 mm, and steam having a gauge pressure of 0.22 MPa was introduced into a mold including the cavity for 50 seconds and heated. . After the introduction of water vapor, the foamed molded body was cooled until the maximum surface pressure of the foamed molded body decreased to 0.001 MPa to obtain a foamed molded body.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[実施例8]
実施例7と同様にして形成した発泡性複合樹脂粒子を嵩発泡倍率約60倍へ予備発泡させて予備発泡粒子を得たこと以外は、実施例7と同様にして、発泡成形体を作製した。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[実施例9]
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」)1996gと、カーボンとしてファーネスブラック(三菱化学社製、商品名「#900」)4gとを混合し、この混合物を押出機に供給して溶融混練してストランドカットにより造粒ペレット化して、球状(卵状)のカーボン含有ポリプロピレン系樹脂粒子を得た。このカーボン含有ポリプロピレン系樹脂粒子を使用すること以外は実施例1と同様にして発泡成形体を得た。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[Example 8]
A foamed molded article was produced in the same manner as in Example 7, except that the foamable composite resin particles formed in the same manner as in Example 7 were pre-foamed to a bulk foaming ratio of about 60 times to obtain pre-foamed particles. .
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.
[Example 9]
1996 g of polypropylene resin (product name “F-744NP” manufactured by Prime Polymer Co., Ltd.) and 4 g of furnace black (product name “# 900” manufactured by Mitsubishi Chemical Corporation) as carbon are mixed, and this mixture is supplied to the extruder. Then, it was melt kneaded and granulated into pellets by strand cutting to obtain spherical (egg-like) carbon-containing polypropylene resin particles. A foam molded article was obtained in the same manner as in Example 1 except that the carbon-containing polypropylene resin particles were used.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[比較例1]
複合樹脂粒子に、実施例1と同じ難燃剤2gと難燃助剤2gとを含浸させたこと以外は実施例1と同様にして、発泡成形体を作製した。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[比較例2]
複合樹脂粒子に、実施例1と同じ難燃剤10gと難燃助剤6gとを含浸させたことと、成形型にゲージ圧力0.19MPaの水蒸気を50秒間導入して発泡成形体を得たこと以外は実施例1と同様にして、発泡成形体を作製した。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[Comparative Example 1]
A foam molded article was produced in the same manner as in Example 1 except that the composite resin particles were impregnated with 2 g of the same flame retardant as in Example 1 and 2 g of the flame retardant aid.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.
[Comparative Example 2]
The composite resin particles were impregnated with 10 g of the same flame retardant as in Example 1 and 6 g of the flame retardant aid, and water vapor with a gauge pressure of 0.19 MPa was introduced into the mold for 50 seconds to obtain a foam molded article. Except for the above, a foamed molded article was produced in the same manner as in Example 1.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[比較例3]
複合樹脂粒子に、実施例1と同じ難燃剤10gと難燃助剤6gとを含浸させたことと、成形型にゲージ圧力0.37MPaの水蒸気を50秒間導入して発泡成形体を得たこと以外は実施例1と同様にして、発泡成形体を作製した。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
[Comparative Example 3]
The composite resin particles were impregnated with 10 g of the same flame retardant as in Example 1 and 6 g of the flame retardant aid, and water vapor with a gauge pressure of 0.37 MPa was introduced into the mold for 50 seconds to obtain a foam molded article. Except for the above, a foamed molded article was produced in the same manner as in Example 1.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[比較例4]
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃)2000gを押出機に供給して溶融混練してストランドカットにより造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た。
このときのポリプロピレン系樹脂粒子を100粒あたり55mg、平均粒子径約1mmに調整した。
実施例1と同様にして得たポリプロピレン系樹脂粒子200gを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加えた。内容物を攪拌することで水性媒体と懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。
[Comparative Example 4]
By supplying 2000 g of polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C.) to an extruder, melt-kneading and granulating pellets by strand cutting, spherical (egg) Polypropylene resin particles were obtained.
Polypropylene resin particles at this time were adjusted to 55 mg per 100 particles and an average particle diameter of about 1 mm.
200 g of polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were suspended with an aqueous medium by stirring and held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension.

次に、この懸濁液中に、ジクミルパーオキサイド0.2gを溶解させたスチレン単量体100gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。
次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド5.4gを溶解したスチレン単量体1700gを8時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。
Next, 100 g of a styrene monomer in which 0.2 g of dicumyl peroxide was dissolved was dropped into this suspension over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles.
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and then 1700 g of a styrene monomer in which 5.4 g of dicumyl peroxide was dissolved was added dropwise over 8 hours. Polymerization (second polymerization) was carried out while absorbing.

滴下終了後、120℃で1時間保持、次いで140℃に昇温し3時間保持して重合を完結することで複合樹脂粒子を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、実施例1と同じ難燃剤20gと難燃助剤20gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有複合樹脂粒子を得た。
次に、常温まで冷却し、難燃剤含有複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of the same flame retardant and 20 g of the flame retardant aid were added to this suspension. After the addition, the temperature of the reaction system was raised to 130 ° C., and stirring was continued for 2 hours to obtain flame retardant-containing composite resin particles.
Next, it cooled to normal temperature and took out the flame retardant containing composite resin particle from the 5L autoclave. After taking out, 2 kg of the flame retardant-containing composite resin particles and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a foaming agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.

その後、常温まで冷却して5Lオートクレーブから発泡性複合樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性複合樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約30倍に予備発泡させ、予備発泡粒子を得た。
更に、予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティ内に充填し、キャビティを含む成形型にゲージ圧力0.22MPaの水蒸気を50秒間導入して加熱した。水蒸気導入後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
Thereafter, the mixture was cooled to room temperature, and the expandable composite resin particles were taken out from the 5 L autoclave and dehydrated and dried.
Next, 1000 g of the obtained expandable composite resin particles were put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming ratio of about 30. Pre-foamed particles were obtained by pre-foaming twice.
Further, after pre-expanded particles were allowed to stand at room temperature for 1 day, they were filled into a cavity having a size of 400 mm × 300 mm × 30 mm, and steam having a gauge pressure of 0.22 MPa was introduced into a mold including the cavity for 50 seconds and heated. . After the introduction of water vapor, the foamed molded body was cooled until the maximum surface pressure of the foamed molded body decreased to 0.001 MPa to obtain a foamed molded body.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

[比較例5]
実施例1と同様にして得たポリプロピレン系樹脂粒子1200gを攪拌機付5Lオートクレーブに入れ、更に水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加えた。内容物を攪拌することで水性媒体と懸濁させ、10分間保持し、その後60℃に昇温することで水系懸濁液とした。
次に、この懸濁液中にジクミルパーオキサイド1gを溶解させたスチレン単量体500gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。
[Comparative Example 5]
1200 g of polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave equipped with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were suspended with an aqueous medium by stirring, held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension.
Next, 500 g of a styrene monomer in which 1 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles.

次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド2.4gを溶解したスチレン単量体300gを1.5時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)を行った。
滴下終了後、120℃で1時間保持、次いで140℃に昇温し3時間保持して重合を完結することで複合樹脂粒子を得た。
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and then 300 g of a styrene monomer in which 2.4 g of dicumyl peroxide was dissolved was dropped over 1.5 hours. Polymerization (second polymerization) was performed while absorbing the particles.
After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining composite resin particles.

その後、反応系の温度を60℃にして、この懸濁液中に、実施例1と同じ難燃剤20gと難燃助剤20gとを投入した。投入後、反応系の温度を130℃に昇温し、2時間攪拌を続けることで難燃剤含有複合樹脂粒子を得た。
次に、常温まで冷却し、難燃剤含有複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の難燃剤含有複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of the same flame retardant and 20 g of the flame retardant aid were added to this suspension. After the addition, the temperature of the reaction system was raised to 130 ° C., and stirring was continued for 2 hours to obtain flame retardant-containing composite resin particles.
Next, it cooled to normal temperature and took out the flame retardant containing composite resin particle from the 5L autoclave. After taking out, 2 kg of the flame retardant-containing composite resin particles and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a foaming agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.

その後、常温まで冷却して5Lオートクレーブから発泡性複合樹脂粒子を取り出し、脱水乾燥させた。
次に、得られた発泡性複合樹脂粒子を笠原工業株式会社製PSX40予備発泡機に1000g投入し、PSX40予備発泡機内にゲージ圧力0.04MPaの水蒸気を導入して加熱して嵩発泡倍数約10倍に予備発泡させ、複合樹脂発泡粒子を得た。
更に、予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティ内に充填し、キャビティを含む成形型にゲージ圧力0.22MPaの水蒸気を50秒間導入して加熱した。水蒸気導入後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
得られた発泡成形体を用いて、燃焼速度、加熱寸法変化率及び成形体内部融着の評価を行った。結果を表1に示す。
Thereafter, the mixture was cooled to room temperature, and the expandable composite resin particles were taken out from the 5 L autoclave and dehydrated and dried.
Next, 1000 g of the obtained expandable composite resin particles was put into a PSX40 pre-foaming machine manufactured by Kasahara Kogyo Co., Ltd., and steam with a gauge pressure of 0.04 MPa was introduced into the PSX40 pre-foaming machine and heated to a bulk foaming factor of about 10 Double foaming was performed to obtain composite resin foamed particles.
Further, after pre-expanded particles were allowed to stand at room temperature for 1 day, they were filled into a cavity having a size of 400 mm × 300 mm × 30 mm, and steam having a gauge pressure of 0.22 MPa was introduced into a mold including the cavity for 50 seconds and heated. . After the introduction of water vapor, the foamed molded body was cooled until the maximum surface pressure of the foamed molded body decreased to 0.001 MPa to obtain a foamed molded body.
Using the obtained foamed molded product, the combustion rate, the heating dimensional change rate, and the internal fusion of the molded product were evaluated. The results are shown in Table 1.

Figure 0005545972
Figure 0005545972

複合樹脂粒子100質量部に対する難燃剤量が、発泡成形体に与える影響を考察するために、表1から抽出した結果を表2に示す。   Table 2 shows the results extracted from Table 1 in order to consider the influence of the amount of the flame retardant with respect to 100 parts by mass of the composite resin particles on the foamed molded product.

Figure 0005545972
Figure 0005545972

表2に記した通り、実施例1及び2では、燃焼速度、加熱寸法変化率及び成形体内部融着について良好な発泡成型体が得られた。また、1.4質量部の難燃剤量で所望の燃焼速度が得られており、特許文献1及び2より、難燃剤量を減らすことができる(省資源化、低コスト化が可能となる)。特に、実施例2は難燃剤0.3質量部、難燃助剤0.2質量部と低い配合量で燃焼速度0mm/minを満足した。
複合樹脂粒子100質量部に対する難燃剤量が0.3質量部より少ない比較例1では、燃焼速度が大きくなった。
発泡成形における蒸気圧(ゲージ圧)が、発泡成形体に与える影響を考察するために、表1から抽出した結果を表3に示す。
As described in Table 2, in Examples 1 and 2, good foamed molded articles were obtained with respect to the burning rate, the heating dimensional change rate, and the molded article internal fusion. Moreover, a desired combustion rate is obtained with a flame retardant amount of 1.4 parts by mass, and the amount of flame retardant can be reduced from Patent Documents 1 and 2 (resource saving and cost reduction are possible). . In particular, Example 2 satisfied a combustion rate of 0 mm / min with a low blending amount of 0.3 parts by mass of a flame retardant and 0.2 parts by mass of a flame retardant aid.
In Comparative Example 1 in which the amount of the flame retardant with respect to 100 parts by mass of the composite resin particles is less than 0.3 parts by mass, the combustion rate was increased.
Table 3 shows the results extracted from Table 1 in order to consider the influence of the vapor pressure (gauge pressure) in foam molding on the foam molded article.

Figure 0005545972
Figure 0005545972

表3に記した通り、実施例3及び4では燃焼速度、加熱寸法変化率及び成形体内部融着について良好な発泡成型体が得られた。
発泡成形における蒸気圧(ゲージ圧)が0.20MPaより小さい比較例2では、加熱寸法変化率が大きくなった。0.35MPaより大きい比較例3に関しては、発泡成形がうまく成されなかった。
複合樹脂比率(PP/PS)が、発泡成形体に与える影響を考察するために、表1から抽出した結果を表4に示す。
As described in Table 3, in Examples 3 and 4, good foamed molded articles were obtained with respect to the burning rate, the heating dimensional change rate, and the internal fusion of the molded article.
In Comparative Example 2 in which the vapor pressure (gauge pressure) in foam molding was smaller than 0.20 MPa, the heating dimensional change rate was large. For Comparative Example 3 greater than 0.35 MPa, foam molding was not successful.
Table 4 shows the results extracted from Table 1 in order to consider the influence of the composite resin ratio (PP / PS) on the foamed molded article.

Figure 0005545972
Figure 0005545972

表4に記した通り、実施例5及び6は燃焼速度、加熱寸法変化率及び成形体内部融着について良好な発泡成型体が得られた。
複合樹脂比率(PP/PS)のPSの割合が100質量部より小さい比較例5では、10倍までの予備発泡粒子しか得られず、発泡成形体においても成形体内部融着が悪化した。400質量部より大きい比較例4では、発泡成形がうまく成されなかった。
以上の表2〜4より、ポリプロピレン系樹脂100質量部と、ポリスチレン系樹脂100〜400質量部とを含有する複合樹脂粒子と、前記複合樹脂粒子中に存在し、かつ前記複合樹脂粒子100質量部に対して1.5質量部未満0.3質量部以上の難燃剤とから少なくとも構成されることを特徴とする難燃剤含有複合樹脂粒子を予備発泡させて複合樹脂発泡粒子を形成し、複合樹脂発泡粒子をゲージ圧力X(0.20MPa<X≦0.35MPa)の蒸気圧で発泡成形させて得られる発泡成形体は、燃焼速度、加熱寸法変化率及び成形体内部融着に優れた発泡成形体になるといえる。
As described in Table 4, in Examples 5 and 6, good foamed molded articles were obtained with respect to the burning rate, the heating dimensional change rate, and the inner fusion of the molded article.
In Comparative Example 5 in which the ratio of PS in the composite resin ratio (PP / PS) is smaller than 100 parts by mass, only pre-expanded particles up to 10 times were obtained, and the internal fusion of the molded body deteriorated even in the foamed molded body. In Comparative Example 4 larger than 400 parts by mass, foam molding was not successfully performed.
From the above Tables 2 to 4, composite resin particles containing 100 parts by mass of polypropylene resin and 100 to 400 parts by mass of polystyrene resin, and present in the composite resin particles, and 100 parts by mass of the composite resin particles The composite resin foamed particles are formed by pre-foaming the flame retardant-containing composite resin particles, which is at least composed of less than 1.5 parts by mass and 0.3 parts by mass or more of the flame retardant Foam molding obtained by foaming foamed particles with a vapor pressure of gauge pressure X (0.20 MPa <X ≦ 0.35 MPa) is a foam molding excellent in combustion rate, heating dimensional change rate and internal fusion of the molded body. It can be said that it becomes a body.

Claims (3)

分散剤を含む水性懸濁中に、ポリプロピレン系樹脂粒子100質量部と、スチレン系単量体100〜400質量部と、重合開始剤とを分散させる工程と、
得られた分散液を前記スチレン系単量体が実質的に重合しない温度に加熱して前記スチレン系単量体を前記ポリプロピレン系樹脂粒子に含浸させる工程と、
ポリプロピレン系樹脂粒子の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、前記スチレン系単量体の第1の重合を行って第1の粒子を得る工程と、
前記第1の重合工程に続いて、スチレン系単量体と、重合開始剤とを加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、前記第1の粒子への前記スチレン系単量体の含浸及び第2の重合を行って複合樹脂粒子を得る工程と、
前記第2の重合中の前記第1の粒子又は前記複合樹脂粒子に、前記複合樹脂粒子100質量部に対して1.5質量部未満0.3質量部以上の難燃剤としてのトリス(2,3−ジブロモプロピル)イソシアヌレートを含浸させて難燃剤含有複合樹脂粒子を得る工程と、
前記難燃剤含有複合樹脂粒子に発泡剤を含浸させて発泡性複合樹脂粒子を得る工程と、
予備発泡装置内にゲージ圧力0.005〜0.09MPaの水蒸気を導入して前記発泡性複合樹脂粒子を加熱することによって予備発泡粒子を得る工程と、
前記予備発泡粒子を成形型のキャビティ内へ充填し、0.20MPa<X≦0.35MPaの範囲のゲージ圧力Xの水蒸気で発泡成形させて発泡成形体を形成する工程と
を有する発泡成形体の製造方法。
A step of dispersing 100 parts by mass of polypropylene resin particles, 100 to 400 parts by mass of a styrene monomer, and a polymerization initiator in an aqueous suspension containing a dispersant;
Heating the obtained dispersion to a temperature at which the styrenic monomer is not substantially polymerized to impregnate the polypropylene resin particles with the styrenic monomer;
When the melting point of the polypropylene resin particles is T ° C., a step of obtaining the first particles by performing the first polymerization of the styrene monomer at a temperature of (T−10) ° C. to (T + 20) ° C. ,
Subsequent to the first polymerization step, a styrene monomer and a polymerization initiator are added, and the temperature is set to (T-25) ° C. to (T + 10) ° C., to the first particles. The step of impregnating the styrenic monomer and the second polymerization to obtain composite resin particles;
The first particle or the composite resin particle in the second polymerization has a tris (2,2) as a flame retardant of less than 1.5 parts by mass and more than 0.3 parts by mass with respect to 100 parts by mass of the composite resin particles. A step of impregnating 3-dibromopropyl) isocyanurate to obtain flame retardant-containing composite resin particles;
A step of impregnating the flame retardant-containing composite resin particles with a foaming agent to obtain expandable composite resin particles;
A step of obtaining prefoamed particles by introducing water vapor at a gauge pressure of 0.005 to 0.09 MPa into the prefoaming apparatus and heating the expandable composite resin particles;
A step of filling the pre-expanded particles into a cavity of a mold and foam-molding with water vapor having a gauge pressure X in the range of 0.20 MPa <X ≦ 0.35 MPa;
The manufacturing method of the foaming molding which has this.
前記難燃剤と共に、1質量部以下の2,3−ジメチル−2,3−ジフェニルブタンを含む難燃助剤を含浸させる請求項に記載の発泡成形体の製造方法。 The method for producing a foam molded article according to claim 1 , wherein the flame retardant is impregnated with a flame retardant aid containing 1 part by mass or less of 2,3-dimethyl-2,3-diphenylbutane. 前記発泡成形体が、0mm/minの燃焼速度(米国自動車安全基準FMVSS 302に準拠した方法により測定)を有し、かつ、1.0%未満の加熱寸法変化率(JIS K6767:1999KのB法に準拠した方法により80℃、168時間で測定)を有する請求項1又は2に記載の発泡成形体の製造方法The foamed molded product has a burning rate of 0 mm / min (measured by a method in accordance with US automobile safety standard FMVSS 302) and has a heating dimensional change rate of less than 1.0% (JIS K6767: Method B of 1999K). method for producing a foamed molded article according to Motomeko 1 or 2 that Yusuke 80 ° C., measured) in 168 hours by a method according to.
JP2010072913A 2010-03-26 2010-03-26 Method for producing foam molded article Active JP5545972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072913A JP5545972B2 (en) 2010-03-26 2010-03-26 Method for producing foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072913A JP5545972B2 (en) 2010-03-26 2010-03-26 Method for producing foam molded article

Publications (2)

Publication Number Publication Date
JP2011202108A JP2011202108A (en) 2011-10-13
JP5545972B2 true JP5545972B2 (en) 2014-07-09

Family

ID=44879088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072913A Active JP5545972B2 (en) 2010-03-26 2010-03-26 Method for producing foam molded article

Country Status (1)

Country Link
JP (1) JP5545972B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137363A1 (en) * 2014-03-10 2015-09-17 株式会社カネカ Styrene-based resin foam-molded article and method for manufacturing same
WO2017056743A1 (en) * 2015-09-29 2017-04-06 積水化成品工業株式会社 Styrene-modified polyolefin-based resin particles, method for producing same, foamable particles, foamed particles and foam molded body
JP2017066359A (en) * 2015-09-29 2017-04-06 積水化成品工業株式会社 Styrene modified polyolefin resin particle and manufacturing method therefor, expandable particle, foam particle and foam molded body
JP2017179140A (en) 2016-03-30 2017-10-05 積水化成品工業株式会社 Antioxidant-containing foamable resin particle and manufacturing method therefor, foam particle and foam molded body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970191B2 (en) * 2002-11-12 2007-09-05 積水化成品工業株式会社 Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JP2008075076A (en) * 2006-08-25 2008-04-03 Sekisui Plastics Co Ltd Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
JP5053675B2 (en) * 2007-03-27 2012-10-17 積水化成品工業株式会社 Modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam moldings
JP5138254B2 (en) * 2007-03-27 2013-02-06 積水化成品工業株式会社 Modified polystyrene resin particles containing self-extinguishing carbon, Modified polystyrene resin particles containing foam, self-extinguishing carbon, Modified polystyrene resin foam particles containing self-extinguishing carbon, Modified polystyrene resin foam containing self-extinguishing carbon Molded body and method for producing the same

Also Published As

Publication number Publication date
JP2011202108A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5138254B2 (en) Modified polystyrene resin particles containing self-extinguishing carbon, Modified polystyrene resin particles containing foam, self-extinguishing carbon, Modified polystyrene resin foam particles containing self-extinguishing carbon, Modified polystyrene resin foam containing self-extinguishing carbon Molded body and method for producing the same
JP5254103B2 (en) Carbon-containing modified polystyrene resin foamed particles and method for producing the same, carbon-containing modified polystyrene resin foamed article and method for producing the same
JP4718645B2 (en) Styrene modified polypropylene resin particles, expandable styrene modified polypropylene resin particles, styrene modified polypropylene resin foam particles, and method for producing styrene modified polypropylene resin foam molded article
JP5345329B2 (en) Carbon-containing modified polystyrene resin particles, expandable carbon-containing modified polystyrene resin particles, carbon-containing modified polystyrene resin foam particles, carbon-containing modified polystyrene resin foam moldings and methods for producing them
KR101115807B1 (en) Particle of carbon-containing modified polystyrene resin, expandable particle of carbon-containing modified polystyrene resin, expanded particle of carbon-containing modified polystyrene resin, molded foam of carbon-containing modified polystyrene resin, and processes for producing these
JP5918905B2 (en) Composite resin particles and expandable composite resin particles, pre-expanded particles and foamed molded products
JP5053675B2 (en) Modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam moldings
JP5545972B2 (en) Method for producing foam molded article
JP5722564B2 (en) Automotive exterior materials
JP5690632B2 (en) Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body
JP2013117037A (en) Foam molding body
JP2011068776A (en) Foam-molded article
WO2014157538A1 (en) Molded body of composite resin foam
JP2020050784A (en) Composite resin particle, expandable particle, expanded particle, and expanded molded body
JP5337442B2 (en) Foam molded body and method for producing the same
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
WO2013147040A1 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper
JP5785735B2 (en) Interior materials for railway vehicles
JP4887714B2 (en) Method for producing colored foamable styrene resin particles
JP5809902B2 (en) MODIFIED POLYPROPYLENE RESIN PARTICLE, ITS PREFOAMED PARTICLE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING FOAM MOLD
JP2012131057A (en) Foam molding and method for producing the same
JP2011231290A (en) Automotive member and method for producing the same
JP2012025908A (en) Automotive interior material
JP6209116B2 (en) Composite resin particles and production method thereof, expandable composite resin particles, pre-expanded composite resin particles, and composite resin foam molded article
JP2012188642A (en) Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5545972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150