JP5544716B2 - Method for cleaning circulating cooling water in steel manufacturing process - Google Patents

Method for cleaning circulating cooling water in steel manufacturing process Download PDF

Info

Publication number
JP5544716B2
JP5544716B2 JP2009004681A JP2009004681A JP5544716B2 JP 5544716 B2 JP5544716 B2 JP 5544716B2 JP 2009004681 A JP2009004681 A JP 2009004681A JP 2009004681 A JP2009004681 A JP 2009004681A JP 5544716 B2 JP5544716 B2 JP 5544716B2
Authority
JP
Japan
Prior art keywords
manganese
cooling water
filter
circulating cooling
water system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009004681A
Other languages
Japanese (ja)
Other versions
JP2010163488A (en
Inventor
貴史 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009004681A priority Critical patent/JP5544716B2/en
Publication of JP2010163488A publication Critical patent/JP2010163488A/en
Application granted granted Critical
Publication of JP5544716B2 publication Critical patent/JP5544716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄鋼製造工程における循環冷却水系洗浄方法に関する。詳しくは、本発明は、製鉄所の真空脱ガス法設備の直接水系における濾過器及び/又は冷却塔に発生するマンガン汚れやマンガン析出物を、製鉄所の操業を停止することなく、効率的に溶解させて除去する洗浄方法に関する。 The present invention relates to a method of cleaning the circulating cooling water system in the steel manufacturing process. Specifically, the present invention efficiently removes manganese dirt and manganese deposits generated in the filter and / or cooling tower in the direct water system of the vacuum degassing equipment of the steelworks without stopping the operation of the steelworks. dissolved relates washing and to be removed.

鉄鋼を製造するために、循環冷却水として大量の水が使用されている。このような循環冷却水系としては、例えば、高炉・転炉から発生する排ガス集塵循環冷却水や、製鋼工程で、鉄鋼に含まれる成分を調整するための脱ガス装置に使用される循環冷却水等が挙げられる。   A large amount of water is used as circulating cooling water to produce steel. As such a circulating cooling water system, for example, circulating cooling water used in exhaust gas dust collection circulating cooling water generated from a blast furnace / converter or a degassing device for adjusting components contained in steel in a steelmaking process. Etc.

即ち、高炉・転炉、特に高炉からは、塵芥を含む排ガスが大量に発生し、それらは集塵冷却水と接触させることで、排ガスの浄化と冷却を行い、浄化ガスは大気中へ放出される。一方、集塵冷却水は、濾過や沈殿処理等の固液分離処理を受け、処理水は冷却塔に移送されて冷却され、再度、前記集塵冷却水として循環使用されるように、循環冷却水系が形成されている。   That is, a large amount of exhaust gas containing dust is generated from blast furnaces and converters, especially blast furnaces, and these are brought into contact with dust-collecting cooling water to purify and cool the exhaust gas, and the purified gas is released into the atmosphere. The On the other hand, the dust-collected cooling water is subjected to solid-liquid separation treatment such as filtration and precipitation treatment, and the treated water is transferred to a cooling tower to be cooled and circulated and cooled again so as to be circulated and used as the dust-collected cooling water. An aqueous system is formed.

また、脱ガス装置は、鉄鋼製造中に溶鋼に取り込まれた水素や酸素、窒素、及びその他の有害元素等の除去や、炭素の除去による極低炭素鋼の製造等に、多目的に使用されている。
このような脱ガス装置を使用する脱ガス法としては、真空脱ガス法と取鍋脱ガス精錬法とが適用される。真空脱ガス法としては、流滴脱ガス法(取鍋流滴脱ガス法、真空造塊法、出鋼脱ガス法等)、真空容器内脱ガス法(DH(真空吸い上げ脱ガス)法、RH(還流
式脱ガス)法等)や取鍋攪拌脱ガス法(ガス攪拌法、電磁誘導攪拌法)があり、一方、取鍋脱ガス精錬法としては、アーク加熱取鍋脱ガス法(ASEA−SKF法、VAD法等)や真空脱炭法(VOD法、RH−OB法等)がある。
In addition, the degassing device is used for various purposes such as removal of hydrogen, oxygen, nitrogen and other harmful elements taken into the molten steel during steel production, and production of ultra-low carbon steel by removing carbon. Yes.
As a degassing method using such a degassing apparatus, a vacuum degassing method and a ladle degassing refining method are applied. As the vacuum degassing method, a drop degassing method (a ladle drop degassing method, a vacuum ingot method, a degassing steel degassing method, etc.), a degassing method in a vacuum vessel (DH (vacuum suction degassing) method, RH (reflux type degassing) method) and ladle stirring degassing method (gas stirring method, electromagnetic induction stirring method), while ladle degassing refining method includes arc heating ladle degassing method (ASEA) -SKF method, VAD method, etc.) and vacuum decarburization method (VOD method, RH-OB method, etc.).

このような脱ガス法では、高性能大容量の真空ポンプが使用されるが、近年、維持管理が比較的容易なスチームエジェクターを使用して、真空ポンプに代替するか、又は真空ポンプの負荷を低減する方法が採用されている。   In such a degassing method, a high-performance and large-capacity vacuum pump is used, but in recent years, a steam ejector that is relatively easy to maintain is used to replace the vacuum pump or to reduce the load of the vacuum pump. A reduction method is employed.

このスチームエジェクターは、溶鋼から不必要成分を真空状態で抽気したガスと高圧水蒸気とを接触させた後、コンデンサーで、冷却水と直接接触させて前記水蒸気を冷却、凝縮することにより、除塵と真空維持を行う装置である。発生した凝縮水はその後、濾過や沈殿処理等の固液分離処理を受け、処理水は冷却塔に移送されて冷却され、再度、前記冷却水として循環使用されるように、循環冷却水系が形成されている。   This steam ejector makes it possible to remove dust and vacuum by contacting the gas extracted from the molten steel in a vacuum state with high-pressure steam, and then bringing the steam into direct contact with cooling water using a condenser to cool and condense the steam. It is a device that performs maintenance. The generated condensed water is then subjected to solid-liquid separation treatment such as filtration and precipitation treatment, and the treated water is transferred to a cooling tower to be cooled, and a circulating cooling water system is formed so that it can be used again as the cooling water. Has been.

このような脱ガス装置を備える鉄鋼製造工程の循環冷却水系の一般的な構成を図1を参照して説明する。   The general structure of the circulating cooling water system of the steel manufacturing process provided with such a degassing apparatus is demonstrated with reference to FIG.

図1は、真空脱ガス装置1として、RH型脱ガス装置を用いた図であり、溶鋼2を含む取鍋3の上部に、上昇管4と下降管5を有する真空容器6を設け、上昇管4から溶鋼2を真空容器6に吸い上げ、溶鋼中の不純物を抽気後、下降管5から再度取鍋3に溶鋼を戻すように構成されている。なお、通常、溶鋼2の攪拌のためにアルゴンガス等の不活性ガスが溶鋼2に吹き込まれるが、図1では図示されていない。   FIG. 1 is a view using an RH type degassing apparatus as a vacuum degassing apparatus 1. A vacuum vessel 6 having a rising pipe 4 and a downfalling pipe 5 is provided on an upper portion of a ladle 3 containing molten steel 2, and ascending. The molten steel 2 is sucked up into the vacuum vessel 6 from the pipe 4, and after the impurities in the molten steel are extracted, the molten steel is returned from the downcomer pipe 5 to the ladle 3 again. Normally, an inert gas such as argon gas is blown into the molten steel 2 for stirring the molten steel 2, but this is not shown in FIG.

真空容器6はスチームエゼクター10と連結され、前記抽気ガスがスチームエゼクター10に送られると、エゼクタ―10内で高圧水蒸気11と混合された後、コンデンサー12、例えばバロメトリックコンデンサー等で、冷却塔19からのガス冷却・洗浄水13と直接接触し、排ガスは冷却・凝縮される。その結果、真空容器6内の真空度が維持される。
なお、図1では、1段のスチームエゼクター10が図示されているが、必要により復数段設けることができる。
The vacuum vessel 6 is connected to a steam ejector 10, and when the extracted gas is sent to the steam ejector 10, it is mixed with the high-pressure steam 11 in the ejector 10, and then cooled by a condenser 12, for example, a barometric condenser. The gas is directly contacted with the cooling / washing water 13 and the exhaust gas is cooled and condensed. As a result, the degree of vacuum in the vacuum vessel 6 is maintained.
In FIG. 1, a single-stage steam ejector 10 is shown, but a number of rebound stages can be provided if necessary.

不純物を含むスチームドレン14(凝縮水)はガスセパレーター(図示せず)に送られて集塵水とガスとに分離され、ガスは大気に放出される。一方、集塵水は、シールタンク15及び集塵水槽16を経て、固液分離のために濾過器17及び/又は沈殿池18に送られ、そこで懸濁物質が分離される。
濾過器17及び/又は沈殿池18で懸濁物質が分離除去された水は、冷却塔19に送給されて冷却され、再度スチームエゼクター10のコンデンサー12に送られる。
なお、集塵水は懸濁物質濃度が低い場合には、直接冷却塔19に送給される場合もある。
The steam drain 14 (condensed water) containing impurities is sent to a gas separator (not shown) and separated into dust collection water and gas, and the gas is released to the atmosphere. On the other hand, the dust collection water passes through the seal tank 15 and the dust collection water tank 16 and is sent to the filter 17 and / or the sedimentation basin 18 for solid-liquid separation, where the suspended substances are separated.
The water from which suspended substances are separated and removed in the filter 17 and / or the sedimentation basin 18 is sent to the cooling tower 19 to be cooled, and sent again to the condenser 12 of the steam ejector 10.
Note that the dust collection water may be directly fed to the cooling tower 19 when the suspended matter concentration is low.

濾過器17は必要に応じ、或いは定期的に逆洗水で逆洗洗浄され、逆洗排水は系外へ排出される。   The filter 17 is backwashed with backwashing water periodically or as necessary, and the backwash wastewater is discharged out of the system.

近年、鉄鋼用原材料の原産地の多様化と共に、原材料中の成分が変化し、不純物としてマンガンや亜鉛等を含むようになってきた。
原材料中のマンガンや亜鉛等は、上記脱ガス装置により溶鋼から除去され、水蒸気側に移行してコンデンサーで凝縮される結果、一定以上の濃度になると、マンガン或いはマンガンと亜鉛を含むスケールとして脱ガス循環水系中の配管壁や濾過器の濾材、冷却塔の充填材等、特に濾過器の濾材や冷却塔の充填材にマンガン汚れないしは析出物として付着する。
In recent years, with the diversification of the origin of steel raw materials, the components in the raw materials have changed, and manganese and zinc have been included as impurities.
Manganese, zinc, etc. in the raw material are removed from the molten steel by the above degassing device, and then moved to the water vapor side and condensed in the condenser. As a result, when the concentration exceeds a certain level, degassing is performed as a scale containing manganese or manganese and zinc. It adheres as manganese stains or precipitates to the piping wall in the circulating water system, the filter medium of the filter, the filler of the cooling tower, etc., particularly the filter medium of the filter and the filler of the cooling tower.

鉄鋼製造工程の循環冷却水系、特に濾過器の濾材や冷却塔の充填材に、マンガン汚れやマンガンスケールが付着すると、次のような問題が起こる。
・濾過器の逆洗頻度が多くなることで工業用水の使用量が増える。
・冷却塔の充填材に汚れが付くため、熱交換効率が低下して冷却水を十分に冷却できなくなる。
・真空脱ガス装置に送る冷却水が冷えなくなること及び真空脱ガス装置内部のバロメトリックコンデンサーが汚れていくことにより、真空に要する時間が長くなることで、真空脱ガス法設備の生産性が落ちる。
When manganese dirt and manganese scale adhere to the circulating cooling water system in the steel manufacturing process, particularly the filter medium and the cooling tower filler, the following problems occur.
-The amount of industrial water used increases as the frequency of backwashing the filter increases.
-Since the packing material in the cooling tower is contaminated, the heat exchange efficiency is lowered and the cooling water cannot be cooled sufficiently.
・ Cooling water sent to the vacuum degassing device becomes uncooled and the barometric condenser inside the vacuum degassing device becomes dirty. .

従来、製鉄所設備の操業中にマンガン析出物を溶解させる水処理薬剤に関しては、実用に至っている薬剤は提供されていないのが現状である。このため、従来は、上述の問題に対して、洗浄ないしはマンガンイオンや亜鉛イオンを強制的に酸化させて除去する方法や配管等を定期的に清掃することで対応している。マンガンイオンを強制的に酸化させて除去する方法としては、塩素、次亜塩素酸ソーダ又は過マンガン酸カリウムといった酸化剤を注入し、マンガンイオンを酸化させこれを濾過する方法などがあるが、この方法では、全残留塩素濃度1mg/L以上となるように酸化剤を添加すると金属の腐食が懸念され、また、対象水の水質の経時変化がある場合、残留塩素の管理は難しく設備腐食の危険性がある。   Conventionally, regarding water treatment chemicals that dissolve manganese precipitates during the operation of steelworks facilities, there are currently no practical chemicals. For this reason, conventionally, the above-mentioned problems are dealt with by periodically cleaning a method or piping forcibly oxidizing or removing manganese ions or zinc ions. Methods for forcibly oxidizing and removing manganese ions include a method of injecting an oxidizing agent such as chlorine, sodium hypochlorite or potassium permanganate, oxidizing manganese ions and filtering them. In this method, there is a concern about the corrosion of the metal if an oxidizing agent is added so that the total residual chlorine concentration is 1 mg / L or more, and if there is a change in the water quality of the target water over time, it is difficult to manage the residual chlorine and the risk of equipment corrosion There is sex.

このため、従来は、製鉄所設備の操業を停止して、濾過器や冷却塔の清掃を行うことで対応がなされているが、操業を停止しての清掃作業は生産性を著しく損なう。   For this reason, conventionally, countermeasures have been taken by stopping the operation of the steelworks equipment and cleaning the filter and the cooling tower. However, the cleaning operation after stopping the operation significantly impairs productivity.

なお、特許文献1には、ジホスホン酸又はポリホスホン酸を含む金属酸化物の溶解剤が記載され、金属酸化物として、鉄、アクチニド、ランタニド、クロム、鉛、マンガンの酸化物が記載されているが、鉄鋼製造工程における循環冷却水系用洗浄剤として使用できるとの記載はなされていない。   In addition, Patent Document 1 describes a metal oxide solubilizer containing diphosphonic acid or polyphosphonic acid, and iron, actinide, lanthanide, chromium, lead, and manganese oxides are described as metal oxides. There is no description that it can be used as a cleaning agent for a circulating cooling water system in a steel manufacturing process.

特表平5−507305号公報Japanese Patent Publication No. 5-507305

本発明は上記従来の実状に鑑みてなされたものであって、製鉄所の操業を停止することなく、その操業中に循環冷却水系内に設置された濾過器及び/又は冷却塔のマンガン汚れ又はマンガン析出物を溶解除去することができる循環冷却水系洗浄方法を提供することを目的とする。 The present invention has been made in view of the above-described conventional situation, and without stopping the operation of the steelworks, during the operation, the filter installed in the circulating cooling water system and / or manganese contamination of the cooling tower or It aims at providing the washing | cleaning method of the circulating cooling water system which can dissolve and remove a manganese deposit.

発明(請求項)の鉄鋼製造工程における循環冷却水系の洗浄方法は、鉄鋼製造工程における循環冷却水系に設置された濾過器及び/又は冷却塔に、マンガンによる汚れ又はマンガン析出物を溶解するための有効成分として、1−ヒドロキシエチリデン−1,1−ジホスホン酸のみを、100〜10000mg/Lの添加量で添加してマンガン汚れ又はマンガン析出物を溶解することを特徴とする The method for cleaning a circulating cooling water system in a steel production process of the present invention (Claim 1 ) dissolves dirt or manganese precipitates due to manganese in a filter and / or a cooling tower installed in the circulating cooling water system in the steel manufacturing process. As an active ingredient for this, only 1-hydroxyethylidene-1,1-diphosphonic acid is added at an addition amount of 100 to 10000 mg / L to dissolve manganese stains or manganese precipitates .

求項の鉄鋼製造工程における循環冷却水系の洗浄方法は、請求項において、前記濾過器の逆洗水に1−ヒドロキシエチリデン−1,1−ジホスホン酸を添加して、該濾過器の濾材に付着したマンガン汚れ又はマンガン析出物を溶解することを特徴とする。 The method of cleaning the circulating cooling water system in Motomeko 2 steel manufacturing process, according to claim 1, with the addition of 1-hydroxyethylidene-1,1-diphosphonic acid backwash water in the filter, of the filter It is characterized by dissolving manganese dirt or manganese deposits adhering to the filter medium.

請求項の鉄鋼製造工程における循環冷却水系の洗浄方法は、1又は2において、前記濾過器及び/又は冷却塔に導入される循環冷却水中に1−ヒドロキシエチリデン−1,1−ジホスホン酸を添加して、該濾過器の濾材及び/又は冷却塔の充填材に付着したマンガン汚れ又はマンガン析出物を溶解することを特徴とする The method for washing a circulating cooling water system in a steel production process according to claim 3 is the method of adding 1-hydroxyethylidene-1,1-diphosphonic acid in circulating cooling water introduced into the filter and / or cooling tower in 1 or 2 Then, manganese dirt or manganese deposits adhering to the filter medium of the filter and / or the filler of the cooling tower are dissolved .

求項の鉄鋼製造工程における循環冷却水系の洗浄方法は、請求項ないしのいずれか1項において、前記循環冷却水系が、脱ガス装置を含む循環冷却水系であることを特徴とする。 The method of cleaning the circulating cooling water system in Motomeko 4 steel manufacturing process, in any one of claims 1 to 3, the circulating cooling water system, characterized in that it is a circulating cooling water system comprising a degassing unit .

本発明で用いる1−ヒドロキシエチリデン−1,1−ジホスホン酸(以下「ホスホン酸(塩)」と記載する。)は、MnイオンとZnイオンが共存する水系において、Mnイオン、更にはMnイオンとZnイオンの析出を抑制する付着防止効果並びにMn析出物等からなる汚れの溶解作用に優れ、特に水中の微細粒子ないし粗粒子に吸着して粒子の成長を抑制すると共に溶解する作用が非常に高く、これにより、鉄鋼製造工程の循環冷却水系に設けられた濾過器及び/又は冷却塔において、既に設備系内に付着しているマンガン汚れ又はマンガン析出物を効果的に溶解除去することができる。しかも、設備腐食等の危険性も少なく、薬注管理も容易である。 1-Hydroxyethylidene-1,1-diphosphonic acid (hereinafter referred to as “phosphonic acid (salt)”) used in the present invention is an aqueous system in which Mn ions and Zn ions coexist. Excellent anti-adhesion effect that suppresses the precipitation of Zn ions and dissolution action of dirt composed of Mn precipitates, etc. Especially, it has a very high action of adsorbing to fine particles or coarse particles in water to suppress particle growth and dissolve. Thus, in the filter and / or cooling tower provided in the circulating cooling water system of the steel manufacturing process, manganese dirt or manganese deposits already adhered in the equipment system can be effectively dissolved and removed. Moreover, there is little risk of equipment corrosion, etc., and chemical administration is easy.

本発明においては、操業を停止することなく、ホスホン酸(塩)を循環冷却水系の適当な箇所に添加することにより、上記のマンガン汚れ又はマンガン析出物の溶解除去効果を有効に発揮することができ、次のような優れた効果を得ることができる。   In the present invention, by adding phosphonic acid (salt) to an appropriate portion of the circulating cooling water system without stopping the operation, the above-described dissolution and removal effect of manganese stains or manganese precipitates can be effectively exhibited. And the following excellent effects can be obtained.

・通常の操業中に濾過器の濾材や冷却塔の充填材の汚れを除去することができ、操業を停止しての清掃頻度やメンテナンス頻度を減らすことができる。
・濾過器の濾材の汚れ除去及び汚れ付着防止、マッドボール化の防止、濾材の流出防止により逆洗頻度や濾材の交換頻度を減少でき、工業用水の使用量を削減することができる。
・冷却塔の充填材の汚れを洗浄除去すると共に汚れ付着を防止することにより、冷却塔の冷却能力を維持することができ、冷却塔の水温上昇による生産性低下を防止すると共に、冷却塔の充填材の洗浄、交換頻度を低減することができる。また、冷却塔からの送水ラインの汚れ洗浄も可能となる。
・真空脱ガス法設備に送る冷却水温度を正常に保つこと並びに真空脱ガス法設備内部のバロメトリックコンデンサーの汚れ付着を防止することにより、真空に要する時間を正常に維持でき、真空脱ガス法設備の操業の安定化と高効率化による生産量の向上を図ることができる。
-During normal operation, the filter media and the cooling tower filler can be removed, and the frequency of cleaning and maintenance after the operation is stopped can be reduced.
・ Removal of filter media, prevention of soil adhesion, prevention of mudballing, and prevention of filter media outflow can reduce the frequency of backwashing and replacement of filter media, thereby reducing the amount of industrial water used.
・ Cleaning and removing dirt on the cooling tower filler and preventing the adhesion of dirt can maintain the cooling capacity of the cooling tower, prevent a decrease in productivity due to an increase in the cooling tower water temperature, The frequency of cleaning and replacement of the filler can be reduced. In addition, it is possible to clean the water supply line from the cooling tower.
・ By maintaining the temperature of the cooling water sent to the vacuum degassing equipment at a normal level and preventing dirt from adhering to the barometric condenser inside the vacuum degassing equipment, the time required for the vacuum can be maintained normally. The production volume can be improved by stabilizing the operation of the equipment and increasing the efficiency.

鉄鋼製造工程におけるRH型脱ガス装置を含む循環冷却水系の一例を示す系統図である。It is a systematic diagram which shows an example of the circulating cooling water system containing the RH type | mold degassing apparatus in a steel manufacturing process.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の循環冷却水系用洗浄剤の有効成分であるホスホン酸(塩)は、1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP)である。 The phosphonic acid (salt ) which is an active ingredient of the cleaning agent for circulating cooling water of the present invention is 1 -hydroxyethylidene-1,1-diphosphonic acid (HEDP) .

スホン酸(塩)は通常1〜100重量%程度の濃度の水溶液として用いられる。 E Suhon acid (salt) is used as an aqueous solution at a concentration of usually about 1 to 100 wt%.

本発明においては、このようなホスホン酸(塩)を鉄鋼製造工程の循環冷却水系の適当な箇所に薬注ポンプで添加することにより、系内に既に析出しているマンガン汚れ又はマンガン析出物を溶解させて除去する。この場合、ホスホン酸(塩)はその有効成分濃度として、洗浄対象とする設備への送水量に対して、100〜10000mg/L、特に100〜1000mg/L程度の比較的高い濃度となるように、所定時間、例えば5分〜100時間程度添加することが好ましい。この添加濃度が低過ぎると十分な洗浄効果が得られず、高過ぎてもそれ以上の効果が望めず、徒に薬剤コストが高騰して不経済である。   In the present invention, by adding such a phosphonic acid (salt) to an appropriate portion of the circulating cooling water system in the steel production process with a chemical injection pump, manganese stains or manganese precipitates already deposited in the system are removed. Dissolve and remove. In this case, the phosphonic acid (salt) has a relatively high concentration of 100 to 10000 mg / L, particularly about 100 to 1000 mg / L, relative to the amount of water supplied to the equipment to be cleaned, as the active ingredient concentration. It is preferable to add for a predetermined time, for example, about 5 minutes to 100 hours. If the added concentration is too low, a sufficient cleaning effect cannot be obtained, and if it is too high, no further effect can be expected, and the cost of the drug rises, which is uneconomical.

なお、Mnイオン及び/又はイオンの析出防止効果を得るためには、Mnイオン:0〜100mg/L、Znイオン:0〜100mg/L、Feイオン:0〜100mg/Lを含む、pH6〜10の水系において、ホスホン酸(塩)添加濃度0.1〜5.0mg/Lの範囲でMnイオンとZnイオンの析出を抑制する効果があるが、既に析出したマンガン汚れ又はマンガン析出物の溶解除去においては、pH6〜10の水系において、ホスホン酸(塩)添加濃度100mg/L以上の高濃度で効果が得られる。   In addition, in order to acquire the precipitation prevention effect of Mn ion and / or ion, pH 6-10 containing Mn ion: 0-100 mg / L, Zn ion: 0-100 mg / L, Fe ion: 0-100 mg / L In the aqueous system, there is an effect of suppressing precipitation of Mn ions and Zn ions within a phosphonic acid (salt) addition concentration range of 0.1 to 5.0 mg / L, but dissolution and removal of already deposited manganese stains or manganese precipitates In an aqueous system having a pH of 6 to 10, the effect can be obtained at a high concentration of phosphonic acid (salt) addition concentration of 100 mg / L or more.

本発明においては、ホスホン酸(塩)を鉄鋼製造工程の循環冷却水系のうち、特に濾過器及び/又は冷却塔に接触させて、濾過器及び/又は冷却塔におけるマンガン汚れ又はマンガン析出物の溶解除去を行うが、この場合、ホスホン酸(塩)の添加箇所は具体的には、図1に示す循環冷却水系において、次のような箇所とすることが好ましい。   In the present invention, phosphonic acid (salt) is brought into contact with a filter and / or a cooling tower in the circulating cooling water system in the steel production process, and manganese stains or manganese precipitates are dissolved in the filter and / or the cooling tower. In this case, the phosphonic acid (salt) is preferably added at the following location in the circulating cooling water system shown in FIG.

即ち、図1においてコンデンサー12からシールタンク15及び集塵水槽16を経て送給される集塵水中にはマンガンや亜鉛等の原材料由来の不純物が含まれており、操業を継続することによりこれらの濃度が高まり、マンガン汚れ又はマンガン析出物が水槽や配管、特に集塵水を処理する濾過器17や冷却塔19に付着するようになる。   That is, in FIG. 1, the dust collection water fed from the condenser 12 through the seal tank 15 and the dust collection tank 16 contains impurities derived from raw materials such as manganese and zinc, and these are maintained by continuing the operation. The concentration increases, and manganese dirt or manganese deposits adhere to the water tank and piping, in particular, the filter 17 and the cooling tower 19 that process the collected water.

従って、ホスホン酸(塩)は、図1の添加箇所Aにおいて、マンガン汚れ又はマンガン析出物が付着している冷却塔19に導入される水(冷却塔19への戻り水)に、この戻り水中のホスホン酸(塩)濃度が100〜10000mg/L、特に100〜1000mg/L程度となるように添加することが好ましい。   Accordingly, the phosphonic acid (salt) is added to the water (return water to the cooling tower 19) introduced into the cooling tower 19 to which manganese dirt or manganese deposits adhere at the addition site A in FIG. The phosphonic acid (salt) concentration is preferably 100 to 10000 mg / L, particularly preferably about 100 to 1000 mg / L.

また、同様に、図1の添加箇所Bにおいて、マンガン汚れ又はマンガン析出物が付着している濾過器17に導入される水に、この導入水中のホスホン酸(塩)濃度が100〜10000mg/L、特に100〜1000mg/L程度となるように添加することが好ましい。   Similarly, at the addition site B in FIG. 1, the phosphonic acid (salt) concentration in the introduced water is 100 to 10,000 mg / L in the water introduced into the filter 17 to which manganese dirt or manganese deposits adhere. In particular, it is preferable to add so as to be about 100 to 1000 mg / L.

更には、図1の添加箇所Cにおいて、濾過器17の逆洗水に、この逆洗水中のホスホン酸(塩)濃度が100〜10000mg/L、特に100〜1000mg/L程度となるように添加することが好ましい。   Furthermore, in addition part C of FIG. 1, it adds to the backwash water of the filter 17 so that the phosphonic acid (salt) density | concentration in this backwash water may be about 100-10000 mg / L, especially about 100-1000 mg / L. It is preferable to do.

このように、ホスホン酸(塩)を比較的高濃度で添加することにより、濾過器17や冷却塔19、更にはこの周辺の配管に付着しているマンガン汚れ又はマンガン析出物を効果的に溶解して除去することができる。なお、100〜1000mg/L程度の濃度では、マンガン汚れ又はマンガン析出物の溶解量は小さいが、ホスホン酸(塩)がマンガン汚れ又はマンガン析出物の隙間に浸透することにより効率的に除去することができるものと考えられる。   Thus, by adding phosphonic acid (salt) at a relatively high concentration, manganese dirt or manganese deposits adhering to the filter 17 and the cooling tower 19 and further to the surrounding piping are effectively dissolved. And can be removed. In addition, at a concentration of about 100 to 1000 mg / L, the amount of manganese stains or manganese precipitates dissolved is small, but phosphonic acid (salt) can be efficiently removed by penetrating into the gaps between manganese stains or manganese precipitates. Can be considered.

図1は、本発明を適用し得る鉄鋼製造工程の循環冷却水系の一例を示すものであって、本発明の適用対象は何ら図1に示す循環冷却水系に限定されるものではなく、本発明は鉄鋼製造工程の高炉・転炉から発生する排ガス集塵循環冷却水や、鉄鋼に含まれる成分を調整するための前記各種の脱ガス装置に使用される循環冷却水等を対象にするが、本発明は特に、図1に示すような脱ガス装置を備える循環冷却水系の濾過器及び/又は冷却塔において、その付着による障害が問題となるマンガン汚れ又はマンガン析出物の洗浄除去に有効である。   FIG. 1 shows an example of a circulating cooling water system in a steel manufacturing process to which the present invention can be applied, and the application target of the present invention is not limited to the circulating cooling water system shown in FIG. Is intended for exhaust gas dust collection circulating cooling water generated from blast furnaces and converters in the steel manufacturing process, circulating cooling water used in the various degassing devices for adjusting the components contained in steel, etc. The present invention is particularly effective for cleaning and removing manganese dirt or manganese deposits that cause problems due to adhesion in a circulating cooling water filter and / or cooling tower having a degassing apparatus as shown in FIG. .

なお、本発明の洗浄対象となる濾過器17としては、特に制限はなく、従来公知の様々な濾過器の中から適宜選ぶことができる。この濾過器としては、例えば、アンスラサイト、砂、けい砂、砂利、活性炭、プラスチックなどの濾材を用いる濾過器の他に、必要に応じて精密濾過膜、限外濾過膜、逆浸透膜などの濾過膜を用いる膜濾過器等も用いることができる。   In addition, there is no restriction | limiting in particular as the filter 17 used as the washing | cleaning object of this invention, It can select suitably from conventionally well-known various filters. As this filter, for example, in addition to a filter using a filter medium such as anthracite, sand, silica sand, gravel, activated carbon, plastic, etc., if necessary, a microfiltration membrane, an ultrafiltration membrane, a reverse osmosis membrane, etc. A membrane filter using a filtration membrane can also be used.

なお、集塵水の懸濁物質が大きな粒子で沈降しやすい場合や、懸濁物質の濃度が高い場合には、沈殿池を設けて濾過器と組み合わせて用いることが好ましい。
沈殿池18としても、公知の任意のものが採用できるが、好ましくは凝集沈殿槽や加圧浮上槽に凝集剤を添加することにより行う方式のものが採用できる。この凝集剤に特に制限はなく、例えば、従来公知のアニオン性高分子凝集剤、ノニオン性高分子凝集剤、カチオン性高分子凝集剤、両性高分子凝集剤、さらには無機凝集剤などを挙げることができる。無機凝集剤としては、例えばポリ塩化アルミニウム、硫酸バンド、塩化第二鉄、ポリ硫酸鉄などがある
In addition, when the suspended substance of dust collection water is easy to settle with a large particle, or when the density | concentration of a suspended substance is high, it is preferable to provide a sedimentation basin and to use in combination with a filter.
As the sedimentation basin 18, any known one can be adopted, but a system in which a flocculant is added to a coagulation sedimentation tank or a pressure levitation tank is preferably employed. The flocculant is not particularly limited, and examples thereof include conventionally known anionic polymer flocculants, nonionic polymer flocculants, cationic polymer flocculants, amphoteric polymer flocculants, and inorganic flocculants. Can do. Examples of inorganic flocculants include polyaluminum chloride, sulfate band, ferric chloride, and polyiron sulfate.

このような固液分離手段により、懸濁物質の分離が促進され、濾過器17及び/又は沈殿池18の出口では、通常、処理水中の懸濁物質濃度は循環する上に問題にならない程度、例えば50mg/L以下に処理されている。前述の如く、このように懸濁物質成分が分離された水は、次いで冷却塔19に送られ、そこで、大気と強制接触することで冷却されて、再度、前記のスチームエジェクター10のコンデンサー12に送られる。   By such solid-liquid separation means, the separation of suspended substances is promoted. At the outlet of the filter 17 and / or the sedimentation basin 18, the concentration of suspended substances in the treated water is usually not problematic for circulation. For example, it is processed to 50 mg / L or less. As described above, the water from which the suspended solid component has been separated is then sent to the cooling tower 19, where it is cooled by forced contact with the atmosphere, and is again supplied to the condenser 12 of the steam ejector 10. Sent.

なお、冷却塔19の戻り水は沈殿池18のみで処理されても良く、濾過器17及び沈殿池18で処理されても良く(即ち、沈殿池で固液分離して得られた分離水を濾過器に送給して処理する。)、濾過器17のみで処理されても良い。また、集塵水中の懸濁物質濃度が低い場合には、一部の水を直接冷却塔19に戻しても良い。   The return water of the cooling tower 19 may be treated only in the sedimentation basin 18 or may be treated in the filter 17 and the sedimentation basin 18 (that is, the separated water obtained by solid-liquid separation in the sedimentation basin is used. Processed by feeding to a filter)), or may be processed only by the filter 17. Moreover, when the suspended solid concentration in the dust collection water is low, a part of the water may be directly returned to the cooling tower 19.

本発明においては、必要に応じて、ホスホン酸(塩)と共に、他の薬剤、例えば一般に添加される防食剤や殺菌剤、ホスホン酸(塩)以外のスケール防止剤、消泡剤等を併用することができる。
前記防食剤としては、リン酸塩、重合リン酸塩、リン酸エステル等のリン系化合物、亜鉛、アルミニウム及びニッケルなどの多価金属の塩類等が挙げられる。
前記殺菌剤としては、例えば、アルキルジメチルベンジルアンモニウムクロライド等の四級アンモニウム塩、クロルメチルトリチアゾリン、クロルメチルイソチアゾリン、メチルイソチアゾリン、次亜塩素酸塩、及びブロム化ヒダントイン等の等の塩素系、臭素系、及び有機窒素硫黄系薬剤等が挙げられる。なお、殺菌剤としては、機器により殺菌成分を発生させる方法でも良く、例えば、被処理液に食塩を加え、又は加えずにそのまま被処理液を電気分解する方法等も適用することができる。
前記ホスホン酸以外のスケール防止剤としては、分子量が500〜100,000程度のポリカルボン酸類が挙げられ、具体的には、ポリマレイン酸、ポリアクリル酸などが例示される。また、カルボン酸系不飽和単量体単位と、非イオン性不飽和単量体単位及び/又はスルホン酸基含有不飽和単量体単位とを有する共重合体も使用でき、例えば、マレイン酸とイソブチレンの共重合体、マレイン酸とアミレンの共重合体、(メタ)アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体、(メタ)アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸とt−ブチルアクリルアミドの共重合体、(メタ)アクリル酸と2−ヒドロキシ−3−アリロキシプロパンスルホン酸の共重合体、(メタ)アクリル酸とイソプレンスルホン酸の共重合体、(メタ)アクリル酸とイソプレンスルホン酸と2−ヒドロキ シメチルメタクリレートとの共重合体、(メタ)アクリル酸とスチレンスルホン酸の共重合体などが例示される。
In the present invention, if necessary, together with phosphonic acid (salt), other agents, for example, generally added anticorrosives and bactericides, scale inhibitors other than phosphonic acid (salt), antifoaming agents, etc. are used in combination. be able to.
Examples of the anticorrosive include phosphorus compounds such as phosphates, polymerized phosphates and phosphates, and salts of polyvalent metals such as zinc, aluminum and nickel.
Examples of the disinfectant include quaternary ammonium salts such as alkyldimethylbenzylammonium chloride, chlorine-based bromine such as chloromethyltrithiazoline, chloromethylisothiazoline, methylisothiazoline, hypochlorite, and brominated hydantoin. And organic nitrogen sulfur chemicals. In addition, as a bactericidal agent, the method of generating a bactericidal component with an apparatus may be sufficient, for example, the method of electrolyzing a to-be-processed liquid as it is, without adding salt to a to-be-processed liquid, etc. is applicable.
Examples of the scale inhibitor other than the phosphonic acid include polycarboxylic acids having a molecular weight of about 500 to 100,000, and specific examples include polymaleic acid and polyacrylic acid. A copolymer having a carboxylic acid unsaturated monomer unit, a nonionic unsaturated monomer unit and / or a sulfonic acid group-containing unsaturated monomer unit can also be used. For example, maleic acid and Copolymer of isobutylene, copolymer of maleic acid and amylene, copolymer of (meth) acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, (meth) acrylic acid and 2-acrylamido-2-methylpropane A copolymer of sulfonic acid and t-butylacrylamide, a copolymer of (meth) acrylic acid and 2-hydroxy-3-allyloxypropane sulfonic acid, a copolymer of (meth) acrylic acid and isoprenesulfonic acid, (meta ) Copolymer of acrylic acid, isoprene sulfonic acid and 2-hydroxymethyl methacrylate, Copolymer of (meth) acrylic acid and styrene sulfonic acid Examples include bodies.

水系内に銅材質を含む場合には、例えば、ベンゾトリアゾールやトリルトリアゾール、メルカプトベンゾチアゾールなどのアゾール類を併用すれば、銅材質に対する防食性能を向上させることができて好ましい。
前記消泡剤としては、シリコーン系消泡剤、プルロニック系又はポリオキシアルキレン系消泡剤、及び鉱物油系消泡剤等が挙げられる。
When the aqueous material contains a copper material, for example, it is preferable to use an azole such as benzotriazole, tolyltriazole, or mercaptobenzothiazole in order to improve the anticorrosion performance of the copper material.
Examples of the antifoaming agent include silicone-based antifoaming agents, pluronic-based or polyoxyalkylene-based antifoaming agents, and mineral oil-based antifoaming agents.

次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。   Next, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to a following example at all unless the summary is exceeded.

[実施例1〜参考例1〜3、比較例1〜12]
Mn析出物の溶解机上試験を実施し、Mn析出物の溶解効果を確認した。
実施試験条件及び試験方法は以下の通りである。
[Examples 1 to 3 , Reference Examples 1 to 3, Comparative Examples 1 to 12]
The dissolution desk test of the Mn precipitate was carried out to confirm the dissolution effect of the Mn precipitate.
Implementation test conditions and test methods are as follows.

<机上試験条件>
・初期濃度 Mn析出物:1000mg/L
・pH 8
・静置時間 24時間
・水温 20℃
<Desktop test conditions>
Initial concentration Mn precipitate: 1000 mg / L
・ PH 8
・ Standing time 24 hours ・ Water temperature 20 ℃

<机上試験方法>
Mn析出物が混入されている液に薬剤添加有りのものと無し(ブランク)のものを作製し、24時間静置する。その後0.1μmの濾紙を用いて濾過を行い、得られた濾液のMnイオン濃度を原子吸光度計を用いて測定し、Mn析出物の溶解率を以下の式で算出した。
Mn析出物の溶解率(%)=[薬剤を添加し静置後の濾液のMnイオン濃度]/[Mn析出物の初期濃度:1000mg/L]×100
表1に各例における添加薬剤の種類と添加量とMn析出物の溶解率を示す。
<Desktop test method>
A liquid containing Mn precipitate is prepared with and without chemical addition (blank), and allowed to stand for 24 hours. Thereafter, filtration was performed using a 0.1 μm filter paper, the Mn ion concentration of the obtained filtrate was measured using an atomic absorptiometer, and the dissolution rate of the Mn precipitate was calculated by the following equation.
Dissolution rate (%) of Mn precipitate = [Mn ion concentration of filtrate after adding chemical and allowing to stand] / [initial concentration of Mn precipitate: 1000 mg / L] × 100
Table 1 shows the types and amounts of additive chemicals and the dissolution rate of Mn precipitates in each example.

Figure 0005544716
Figure 0005544716

表1より、本発明によれば1−ヒドロキシエチリデン−1,1−ジホスホン酸を100〜10000mg/L、好ましくは1000〜10000mg/Lの濃度で添加することにより、Mn析出物を効率的に洗浄除去することができることが分かる。 From Table 1, according to the present invention, by adding 1-hydroxyethylidene-1,1-diphosphonic acid at a concentration of 100 to 10000 mg / L, preferably 1000 to 10000 mg / L, Mn precipitates can be efficiently removed. It can be seen that it can be washed away.

1 RH型脱ガス装置
2 溶鋼
6 真空容器
10 スチ−ムエゼクター
11 高圧水蒸気
12 コンデンサー
17 濾過器
18 沈殿池
19 冷却塔
DESCRIPTION OF SYMBOLS 1 RH type degassing apparatus 2 Molten steel 6 Vacuum vessel 10 Steam ejector 11 High pressure steam 12 Condenser 17 Filter 18 Sedimentation basin 19 Cooling tower

Claims (4)

鉄鋼製造工程における循環冷却水系に設置された濾過器及び/又は冷却塔に、マンガンによる汚れ又はマンガン析出物を溶解するための有効成分として、1−ヒドロキシエチリデン−1,1−ジホスホン酸のみを、100〜10000mg/Lの添加量で添加してマンガン汚れ又はマンガン析出物を溶解することを特徴とする鉄鋼製造工程における循環冷却水系の洗浄方法。 The filter and / or cooling tower is installed in the circulating cooling water system in the steel production process, as an active ingredient for dissolving dirt or manganese precipitates by Mn, only 1-hydroxyethylidene-1,1-diphosphonic acid, A method for cleaning a circulating cooling water system in a steel manufacturing process, wherein manganese stains or manganese precipitates are dissolved by adding at an addition amount of 100 to 10,000 mg / L. 請求項において、前記濾過器の逆洗水に1−ヒドロキシエチリデン−1,1−ジホスホン酸を添加して、該濾過器の濾材に付着したマンガン汚れ又はマンガン析出物を溶解することを特徴とする鉄鋼製造工程における循環冷却水系の洗浄方法。 2. The method according to claim 1 , wherein 1-hydroxyethylidene-1,1-diphosphonic acid is added to the backwash water of the filter to dissolve manganese dirt or manganese deposits adhering to the filter medium of the filter. A method for cleaning a circulating cooling water system in a steel manufacturing process. 請求項1又は2において、前記濾過器及び/又は冷却塔に導入される循環冷却水中に1−ヒドロキシエチリデン−1,1−ジホスホン酸を添加して、該濾過器の濾材及び/又は冷却塔の充填材に付着したマンガン汚れ又はマンガン析出物を溶解することを特徴とする鉄鋼製造工程における循環冷却水系の洗浄方法。 In Claim 1 or 2 , 1-hydroxyethylidene-1,1-diphosphonic acid is added to circulating cooling water introduced into the filter and / or cooling tower, and the filter medium and / or cooling tower of the filter is added. A method for cleaning a circulating cooling water system in a steel manufacturing process, wherein manganese dirt or manganese deposits adhering to a filler are dissolved. 請求項ないしのいずれか1項において、前記循環冷却水系が、脱ガス装置を含む循環冷却水系であることを特徴とする鉄鋼製造工程における循環冷却水系の洗浄方法。 In any one of claims 1 to 3, the circulating cooling water system, a method of cleaning the circulating cooling water system in the steel manufacturing process, which is a circulating cooling water system comprising a degassing device.
JP2009004681A 2009-01-13 2009-01-13 Method for cleaning circulating cooling water in steel manufacturing process Active JP5544716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004681A JP5544716B2 (en) 2009-01-13 2009-01-13 Method for cleaning circulating cooling water in steel manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004681A JP5544716B2 (en) 2009-01-13 2009-01-13 Method for cleaning circulating cooling water in steel manufacturing process

Publications (2)

Publication Number Publication Date
JP2010163488A JP2010163488A (en) 2010-07-29
JP5544716B2 true JP5544716B2 (en) 2014-07-09

Family

ID=42579915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004681A Active JP5544716B2 (en) 2009-01-13 2009-01-13 Method for cleaning circulating cooling water in steel manufacturing process

Country Status (1)

Country Link
JP (1) JP5544716B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175440A (en) * 2012-02-13 2013-06-26 中机国能电力工程有限公司 Off-line physical chemistry cleaning method used for splash packing of power station cooling tower
JP5617863B2 (en) * 2012-03-30 2014-11-05 栗田工業株式会社 Cyanide wastewater treatment method
CN104511455B (en) * 2013-09-29 2016-07-06 宝山钢铁股份有限公司 A kind of graphite heat exchanger cleaning method for silicon-steel pickling line
JP7364180B2 (en) * 2019-02-13 2023-10-18 株式会社片山化学工業研究所 Manganese scale generation inhibitor and manganese scale generation inhibition method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113808A (en) * 1974-07-24 1976-02-03 Kurita Water Ind Ltd Tetsuoyobi doo fukumu sukeerunosenjozai
JPS528663A (en) * 1975-07-10 1977-01-22 Sakae Katayama Treatment of waste water used for dust collection from waste gas
JPS60177190A (en) * 1984-02-22 1985-09-11 Hitachi Elevator Eng & Serv Co Ltd Cleaning agent
JPS60260698A (en) * 1984-06-07 1985-12-23 栗田工業株式会社 Cleaning agent for neutralization
JPS63242399A (en) * 1987-03-13 1988-10-07 ザ・ダウ・ケミカル・カンパニー Preventive method by usage of aminosulfonic acid of scale formation and corrosion by manganese of water system
DE4408478A1 (en) * 1994-03-14 1995-09-21 Bayer Ag Water treatment agents
US5547612A (en) * 1995-02-17 1996-08-20 National Starch And Chemical Investment Holding Corporation Compositions of water soluble polymers containing allyloxybenzenesulfonic acid monomer and methallyl sulfonic acid monomer and methods for use in aqueous systems
SK115597A3 (en) * 1995-02-28 1998-06-03 Procter & Gamble Laundry pretreatment with peroxide bleaches containing chelators for iron, copper or manganese for reduced fabric damage
GB2303635A (en) * 1995-07-25 1997-02-26 Procter & Gamble Detergent compositions in compacted solid form
JP2003038909A (en) * 2001-07-31 2003-02-12 Kurita Water Ind Ltd Method for treating wet type dust collector circulating water of metal refining furnace exhaust gas
MXPA06003037A (en) * 2003-09-22 2006-06-23 Buckman Labor Inc Use of cerium salts to inhibit manganese deposition in water systems.
US7666963B2 (en) * 2005-07-21 2010-02-23 Akzo Nobel N.V. Hybrid copolymers
JP5577571B2 (en) * 2008-03-31 2014-08-27 栗田工業株式会社 Scale inhibitor for circulating cooling water system in steel manufacturing process, and scale prevention method

Also Published As

Publication number Publication date
JP2010163488A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP6374157B2 (en) Method for removing suspended solids from wastewater
JP5544716B2 (en) Method for cleaning circulating cooling water in steel manufacturing process
JP6153542B2 (en) Electrodes for electrochemically reducing the chemical oxygen demand of industrial waste
JP5577571B2 (en) Scale inhibitor for circulating cooling water system in steel manufacturing process, and scale prevention method
JP2004141799A (en) Silica-containing waste water treatment method
JP2014210232A (en) Method for processing alkaline waste water including calcium-eluting particles
JP6792490B2 (en) A method for removing suspended substances in an aqueous system that suppresses the formation of scales.
JP6389066B2 (en) Steel-based wastewater treatment method
JP5109505B2 (en) Method and apparatus for treating selenium-containing wastewater
JP4899565B2 (en) Water treatment apparatus and water treatment method
JP2019051450A (en) Method and device of treating silica-containing water
JP2010180102A (en) Method for refining salt solution
JP7391302B2 (en) Manganese scale generation inhibitor and manganese scale generation inhibition method
JP4577466B2 (en) Scale prevention method and scale inhibitor
JPH079192A (en) Drawing method and device for manufacture of welding wire
JP2006035039A (en) Water treating method
JP2014188455A (en) Membrane separation method and membrane separation apparatus
JP4579126B2 (en) Water treatment activated carbon and water treatment method using water treatment activated carbon
JP2019069399A (en) Processor and processing method for silica-containing water
JP4785353B2 (en) Method for crystallizing fluorine-containing water
JP5707677B2 (en) Iron scale adhesion prevention method and adhesion preventive agent for converter dust collection water system
JP2003200176A (en) Treatment method for fluorine-containing water and treatment apparatus therefor
RU2372408C2 (en) Method of water recycling for steel degassing installations
JP6367085B2 (en) Method and apparatus for phosphorus recovery and scale generation prevention in organic wastewater treatment
JPH05301098A (en) Treatment of aluminum electroplating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250