JP5542733B2 - Resin molded body, vacuum cleaner piping and vacuum cleaner - Google Patents

Resin molded body, vacuum cleaner piping and vacuum cleaner Download PDF

Info

Publication number
JP5542733B2
JP5542733B2 JP2011095638A JP2011095638A JP5542733B2 JP 5542733 B2 JP5542733 B2 JP 5542733B2 JP 2011095638 A JP2011095638 A JP 2011095638A JP 2011095638 A JP2011095638 A JP 2011095638A JP 5542733 B2 JP5542733 B2 JP 5542733B2
Authority
JP
Japan
Prior art keywords
resin
layer
vacuum cleaner
molded body
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011095638A
Other languages
Japanese (ja)
Other versions
JP2012224798A (en
Inventor
孝介 桑原
悟 天羽
登 藤田
剛 石田
誠一郎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011095638A priority Critical patent/JP5542733B2/en
Publication of JP2012224798A publication Critical patent/JP2012224798A/en
Application granted granted Critical
Publication of JP5542733B2 publication Critical patent/JP5542733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、中空フィラと、それを用いた樹脂成形体,樹脂成形体で構成される掃除機配管に関する。   The present invention relates to a hollow filler, a resin molded body using the hollow filler, and a vacuum cleaner pipe composed of the resin molded body.

一般に、家電製品には、鋼板やガラス,樹脂等から成る多くの家電用部品が使用されている。特に樹脂は他の材料に比較して安価でしかも軽量であるため、家電製品の部位に応じて使用される。中でもポリプロピレンを代表とするポリオレフィン樹脂は、耐薬品性に優れ、高強度であることから家電用部品として多用されている。   In general, many home appliance parts made of steel plate, glass, resin, and the like are used for home appliances. In particular, since resin is cheaper and lighter than other materials, it is used depending on the part of the home appliance. Among them, polyolefin resins typified by polypropylene are widely used as home appliance parts because of their excellent chemical resistance and high strength.

ポリオレフィン樹脂は比重が0.9程度と各種の樹脂の中でも軽量の部類に入る。また、さらに軽量化を図る際には樹脂中にガラスバルーンやシラスバルーンなどの内部に空気が入った中空のフィラを加えることでさらなる軽量化を図ることができる。(例えば、特許文献1参照)。   Polyolefin resins have a specific gravity of about 0.9 and are among the light weight of various resins. Further, when further reducing the weight, it is possible to further reduce the weight by adding a hollow filler in which air is contained in a resin such as a glass balloon or a shirasu balloon. (For example, refer to Patent Document 1).

しかしながら、例えば射出成型のように溶融状態にある樹脂材料に高圧が加わる手法で中空フィラを混合した樹脂材料を成型すると、中空フィラは破損を起こし易いと言う課題がある。破損した中空フィラは樹脂よりも重いガラスやセラミックスとして樹脂材料に含まれるため、軽量化を打ち消すと言う問題がある。   However, for example, when a resin material in which a hollow filler is mixed is molded by a technique in which a high pressure is applied to a molten resin material as in injection molding, there is a problem that the hollow filler is easily damaged. Since the damaged hollow filler is contained in the resin material as glass or ceramics heavier than the resin, there is a problem of negating the weight reduction.

そこで、中空フィラにシランカップリング処理によってフィラの滑り性を改善する方法が開示されている。(例えば、特許文献2参照)また、中空フィラ表面にゴムなど軟質の樹脂を被覆する方法が開示されている。(例えば、特許文献3参照)。   Therefore, a method for improving the slipperiness of the filler by silane coupling treatment to the hollow filler is disclosed. (For example, refer to Patent Document 2) In addition, a method of coating the hollow filler surface with a soft resin such as rubber is disclosed. (For example, refer to Patent Document 3).

特開2002−87831号公報JP 2002-87831 A 特開平4−298552号公報JP-A-4-298552 特開平6−226771号公報JP-A-6-226771

しかしながら、シランカップリングによる方法では滑りは改善するが中空フィラ自体の耐圧性が改善される訳ではないため、破損の防止効果は限定的であった。また、単純な樹脂被覆では被覆する樹脂と中空フィラが結合しているわけではないため、被覆樹脂がマトリックスの熱可塑性樹脂中に分散して効果が不十分であった。   However, the silane coupling method improves slipping, but does not improve the pressure resistance of the hollow filler itself, so that the damage prevention effect is limited. In addition, since the resin to be coated and the hollow filler are not bonded with a simple resin coating, the coating resin is dispersed in the thermoplastic resin of the matrix and the effect is insufficient.

本発明の目的は、掃除機配管などの軽量化,高強度に有効な中空フィラと、それを用いた樹脂成形体を提供することにある。   An object of the present invention is to provide a hollow filler effective for weight reduction and high strength of a vacuum cleaner pipe and the like, and a resin molded body using the same.

本発明の中空フィラは、中空部材と、中空部材表面に被覆され、下記式で表される化合物を含む第一の層と、第一の層を覆い、第一の層と結合した変性ポリオレフィンを含む第二の層と、を備えることを特徴とする。   The hollow filler of the present invention comprises a hollow member, a first layer coated on the surface of the hollow member and containing a compound represented by the following formula, and a modified polyolefin that covers the first layer and is bonded to the first layer. And a second layer.


(式中、nは0以上の整数、Xはアミノ基またはエポキシ基、Yは塩素または−OR(Rは水素またはアルキル鎖)で示される化合物。)

(In the formula, n is an integer of 0 or more, X is an amino group or an epoxy group, Y is a compound represented by chlorine or -OR (R is hydrogen or an alkyl chain).)

本発明によれば、化学結合によって固定された第二の層によって中空フィラの破損を防ぎ、ポリオレフィン樹脂と該中空フィラを含む樹脂成型体を軽量化することができる。さらに、ポリオレフィン樹脂と中空フィラの密着性が改善されるため、破壊時の中空部材表面における界面剥離を抑制し、その結果として樹脂成型体の強度を改善できる。   According to the present invention, the hollow filler can be prevented from being damaged by the second layer fixed by chemical bonding, and the resin molded body including the polyolefin resin and the hollow filler can be reduced in weight. Furthermore, since the adhesion between the polyolefin resin and the hollow filler is improved, interfacial peeling on the surface of the hollow member at the time of destruction can be suppressed, and as a result, the strength of the resin molded body can be improved.

本発明の家電製品(掃除機)を示す模式図。The schematic diagram which shows the household appliances (vacuum cleaner) of this invention. 本発明の家電製品(掃除機)の部品を示す模式図。The schematic diagram which shows the components of the household appliances (vacuum cleaner) of this invention. 本発明の樹脂成型体の断面図を示す模式図。The schematic diagram which shows sectional drawing of the resin molding of this invention. 本発明の中空フィラの断面図を示す模式図。The schematic diagram which shows sectional drawing of the hollow filler of this invention. (a)〜(c)は、図4に示す中空フィラの製造工程を模式的に示す工程図。(A)-(c) is process drawing which shows typically the manufacturing process of the hollow filler shown in FIG.

以下に、本発明の実施形態について適宜図面を参照しながら詳細に説明する。ここでは、まず、掃除機配管などに使用する樹脂成型体について説明した後に、樹脂成型体に使用する中空フィラについて説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. Here, after first describing the resin molded body used for the vacuum cleaner piping, the hollow filler used for the resin molded body will be described.

(家電製品及び樹脂成型体)
図2は図1に示す掃除機Lの一部をなす掃除機配管1であり、樹脂成型体100からなる。掃除機Lにおいて吸口2と掃除機本体3を繋ぐ配管として機能する。この配管は、空気・ゴミを通す円筒形状である。
(Household appliances and resin moldings)
FIG. 2 shows a vacuum cleaner pipe 1 that forms part of the vacuum cleaner L shown in FIG. In the vacuum cleaner L, it functions as piping connecting the suction mouth 2 and the vacuum cleaner body 3. This pipe has a cylindrical shape that allows air and dust to pass through.

樹脂成型体100は図3に示すように中空フィラ101とポリオレフィン樹脂102からなる。   As shown in FIG. 3, the resin molded body 100 includes a hollow filler 101 and a polyolefin resin 102.

このポリオレフィン樹脂102としては、ポリプロピレン,ポリエチレン,シクロオレフィンポリマー及びこれらを含む共重合体などが代表例として挙げられる。   Typical examples of the polyolefin resin 102 include polypropylene, polyethylene, cycloolefin polymers, and copolymers containing these.

図4に示す中空フィラ101の中空部材104としては、内部に真空もしくは気体層103を有する無機中空粒子類を用いることができる。このような中空フィラの中空部材104としては、ガラスバルーン,シラスバルーン,セライト,中空ガラス繊維などがある。これらの粒子のうち、好ましい直径は1マイクロメートル以上1ミリメートル以下である。この範囲以下の大きさでは一般に比重(真比重)が大きくなるために成型体重量の軽量化効果が得がたい。また、この範囲以上の大きさでは成型体表面に目視で判別可能である明確な凹凸が生じるなど意匠性に課題が生じる。また、これらの粒子の真比重は0.01以上1.0以下が好ましい。0.01未満の比重では中空フィラ101としての強度が低く成型には適さず、1.0以上ではポリオレフィン樹脂102に対して比重が高くなるために比重の低減効果が得られなくなる。   As the hollow member 104 of the hollow filler 101 shown in FIG. 4, inorganic hollow particles having a vacuum or a gas layer 103 inside can be used. Examples of the hollow member 104 of the hollow filler include glass balloons, shirasu balloons, celite, and hollow glass fibers. Among these particles, the preferred diameter is 1 micrometer or more and 1 millimeter or less. If the size is less than this range, the specific gravity (true specific gravity) generally increases, so it is difficult to obtain the effect of reducing the weight of the molded body. In addition, when the size is larger than this range, there is a problem in design properties such as clear irregularities that can be visually discerned on the surface of the molded body. The true specific gravity of these particles is preferably 0.01 or more and 1.0 or less. If the specific gravity is less than 0.01, the strength as the hollow filler 101 is low and is not suitable for molding. If the specific gravity is 1.0 or more, the specific gravity is higher than that of the polyolefin resin 102, so that the effect of reducing the specific gravity cannot be obtained.

図4に示す中空フィラ101の中空部材104の表面には第二の層106との化学結合を得るために第一の層105が形成される。この第一の層105は中空部材104の化学気相処理法,プラズマ気相処理法,紫外線照射法などによって中空部材104の表面を直接改質することでも得られるが、ガラスバルーンやシラスバルーンなどの中空部材を用いる場合にはシランカップリング剤,アルミネート,チタネート系表面処理剤など、より好ましくはシランカップリング剤を被覆することで形成される。各手法で第一の層105に導入する官能基としてはアミノ基,エポキシ基,カルボキシル基,無水酸基,アクリル基,メタクリル基,ビニル基,イソシアネート基などがあり、特に第二の層106に酸変性ポリオレフィンを用いる場合にはアミノ基やエポキシ基が好適である。   A first layer 105 is formed on the surface of the hollow member 104 of the hollow filler 101 shown in FIG. 4 in order to obtain a chemical bond with the second layer 106. The first layer 105 can also be obtained by directly modifying the surface of the hollow member 104 by a chemical vapor treatment method, a plasma vapor treatment method, an ultraviolet irradiation method or the like of the hollow member 104, but a glass balloon, a shirasu balloon, etc. When the hollow member is used, it is formed by coating a silane coupling agent, aluminate, titanate surface treatment agent, or the like, more preferably a silane coupling agent. The functional groups introduced into the first layer 105 by each method include amino groups, epoxy groups, carboxyl groups, hydroxyl groups-free, acrylic groups, methacryl groups, vinyl groups, isocyanate groups, and the like. When a modified polyolefin is used, an amino group or an epoxy group is preferable.

図4に示す中空フィラ101の第二の層106にはポリオレフィン樹脂102と親和性が高く、第一の層105との化学結合を得られる官能基を導入した変性ポリオレフィン樹脂が用いられる。例えばこのような官能基の導入方法としてはランダム重合,ブロック重合,グラフト重合などが挙げられる。導入される官能基には無水マレイン酸などの無水酸基,アミノ基,エポキシ基,水酸基,カルボキシル基,アクリル基,メタクリル基,ビニル基,イソシアネート基などがあり、先に示した第一の層105に合わせて選択する。特に無水マレイン酸の無水酸基を導入した無水マレイン酸変性ポリオレフィンを第二の層として用いるのが本構成では最も好ましく、それに合わせて第一の層105にはアミノ基,エポキシ基を用いるのが好適である。   As the second layer 106 of the hollow filler 101 shown in FIG. 4, a modified polyolefin resin having a functional group capable of obtaining a chemical bond with the first layer 105 having high affinity with the polyolefin resin 102 is used. For example, such functional group introduction methods include random polymerization, block polymerization, and graft polymerization. The functional groups to be introduced include hydroxyl-free groups such as maleic anhydride, amino groups, epoxy groups, hydroxyl groups, carboxyl groups, acrylic groups, methacryl groups, vinyl groups, isocyanate groups, etc., and the first layer 105 shown above. Select according to. In particular, it is most preferable to use a maleic anhydride-modified polyolefin into which a maleic anhydride-free hydroxyl group has been introduced as the second layer, and it is preferable to use an amino group or an epoxy group for the first layer 105 accordingly. It is.

中空フィラ101の形成方法を図5に示す。まず、中空フィラ101の中空部材104の表面に先に示した手法によって第一の層105を形成する(図5(b))。さらに変性ポリオレフィン樹脂の溶液と中空部材104を混合することによって第一の層105と化学結合を形成した第二の層106を得る(図5(c))。変性ポリオレフィン樹脂に溶解する溶剤としては2−ブタノン,ジメチルアセトアミド,トルエン,キシレン,酢酸メチル,酢酸エチル,酢酸ブチル,アセトン,メタノール,エタノール,2−プロパノール,n−ブタノール,2−メチルプロパノール,4−ヒドロキシ−4−メチル−2−ペンタノン,エチレングリコール,メチルセロソルブ,エチルセロソルブ,ブチルセロソルブなどの有機溶剤から1以上を選択する。これらは中空フィラへの第二の層106の形成後にろ過や熱処理などの手法で除去することが好ましい。また、第二の層106と第一の層105の化学結合を促進するために、混合後に熱処理,光照射,電子線照射などを施しても良い。また、第二の層106の分量は中空部材104の100重量部に対して1重量部から1000重量部とすることが好ましい。この範囲以下では被覆量が不足して所定の効果が得られず、この範囲以上では中空フィラ101の比重が大きくなるために軽量化の効果が損なわれる課題が生じる。   A method for forming the hollow filler 101 is shown in FIG. First, the first layer 105 is formed on the surface of the hollow member 104 of the hollow filler 101 by the method described above (FIG. 5B). Furthermore, the solution of the modified polyolefin resin and the hollow member 104 are mixed to obtain the second layer 106 in which a chemical bond is formed with the first layer 105 (FIG. 5C). Solvents soluble in the modified polyolefin resin include 2-butanone, dimethylacetamide, toluene, xylene, methyl acetate, ethyl acetate, butyl acetate, acetone, methanol, ethanol, 2-propanol, n-butanol, 2-methylpropanol, 4- One or more organic solvents such as hydroxy-4-methyl-2-pentanone, ethylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve are selected. These are preferably removed by a technique such as filtration or heat treatment after the formation of the second layer 106 on the hollow filler. In order to promote chemical bonding between the second layer 106 and the first layer 105, heat treatment, light irradiation, electron beam irradiation, or the like may be performed after mixing. The amount of the second layer 106 is preferably 1 part by weight to 1000 parts by weight with respect to 100 parts by weight of the hollow member 104. Below this range, the coating amount is insufficient, and a predetermined effect cannot be obtained. Above this range, the specific gravity of the hollow filler 101 increases, so that the effect of reducing the weight arises.

本発明の中空フィラ101には、第一の層105と第二の層106の化学結合を促進する反応促進剤,熱安定性を高める酸化防止剤を第二の層106に予め添加することで適宜加えることができる。上記反応促進剤としては、第一の層105と第二の層106の材質に応じて適切に選択されるが、第一の層にアミノ基を含み、第二の層に無水マレイン酸変性ポリオレフィンを含む場合にはトリエチルアミンなどのアミン類を用いることが好ましく、第一の層にエポキシ基を含み、第二の層に無水マレイン酸変性ポリオレフィンを含む場合にはイミダゾール類を用いると良い。また、フェノール類などの酸化防止剤は中空フィラ101上の第二の層106の熱分解を防ぐことができるために第二の層106に加えることが好ましい。   In the hollow filler 101 of the present invention, a reaction accelerator that promotes chemical bonding between the first layer 105 and the second layer 106 and an antioxidant that enhances thermal stability are added to the second layer 106 in advance. It can be added as appropriate. The reaction accelerator is appropriately selected according to the materials of the first layer 105 and the second layer 106. The first layer contains an amino group, and the second layer is a maleic anhydride-modified polyolefin. Is preferably used, and an amine such as triethylamine is preferably used. When the first layer contains an epoxy group and the second layer contains maleic anhydride-modified polyolefin, imidazoles may be used. Further, an antioxidant such as phenols is preferably added to the second layer 106 because it can prevent thermal decomposition of the second layer 106 on the hollow filler 101.

中空フィラ101はポリオレフィン樹脂102と混合することで樹脂成型体100とする。その混合方法としては熱混練法,プレス成型法,射出成型法などの樹脂成型に常用されるプロセスを用いることができる。また、中空フィラ101とポリオレフィン樹脂102の混合と、樹脂成型体100を得る成型工程を別に行っても良いし、押出成型や射出成型のように成型装置内に中空フィラ101とポリオレフィン樹脂102を投入して混合と成型を同時に行っても良い。   The hollow filler 101 is mixed with the polyolefin resin 102 to form a resin molded body 100. As the mixing method, a process commonly used for resin molding, such as a thermal kneading method, a press molding method, and an injection molding method, can be used. Further, the mixing of the hollow filler 101 and the polyolefin resin 102 and the molding process for obtaining the resin molded body 100 may be performed separately, or the hollow filler 101 and the polyolefin resin 102 are put into a molding apparatus like extrusion molding or injection molding. Then, mixing and molding may be performed simultaneously.

本発明の樹脂成型体には中空フィラ101,ポリオレフィン樹脂102の他に対候剤,着色顔料,可塑剤,中空フィラ101以外の固形フィラを含んでも良い。   In addition to the hollow filler 101 and the polyolefin resin 102, the resin molding of the present invention may contain a weathering agent, a coloring pigment, a plasticizer, and a solid filler other than the hollow filler 101.

本実施形態によれば、従来の樹脂成型体(例えば、特許文献1から3参照)で得られた樹脂成型体と比較して、成型時の中空フィラ101の破損を抑制し、ポリオレフィン樹脂102と中空フィラ101の密着性を改善できる。このために、軽量性と強度に優れた中空フィラ101を含む樹脂成型体100からなる掃除機配管1(家電用部品)、及びこの掃除機配管1を使用した掃除機L(家電製品)を得ることができる。ここで樹脂成型体の強度についてはJIS−K7162に準拠して行われる引張試験法において測定される引張強度が14MPa以上であると掃除機配管1として要求される強度を満足することができ、好適である。   According to this embodiment, compared with a resin molded body obtained with a conventional resin molded body (for example, see Patent Documents 1 to 3), the hollow filler 101 is prevented from being damaged during molding, and the polyolefin resin 102 The adhesion of the hollow filler 101 can be improved. For this reason, the vacuum cleaner pipe 1 (parts for household appliances) which consists of the resin molding 100 containing the hollow filler 101 excellent in light weight and intensity | strength, and the vacuum cleaner L (home appliances) using this vacuum cleaner pipe 1 are obtained. be able to. Here, the strength of the resin molded body can satisfy the strength required as the vacuum cleaner pipe 1 when the tensile strength measured by the tensile test method performed in accordance with JIS-K7162 is 14 MPa or more, and is preferable. It is.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、種々の形態で実施することができる。実施形態では、中空フィラ101を含む樹脂成型体100からなる掃除機配管1、及びこの掃除機配管1を使用した掃除機Lについて説明したが、本発明が適用される家電製品及び家電用塗装部品はこれに限定されるものではない。少なくとも樹脂製の家電用塗装部品,具体的には、洗濯機,冷蔵庫,炊飯器,エアーコンディショナー,空気清浄機等の家電製品に使用される家電用塗装部品に適用することができる。本発明は、前記した掃除機Lのほか、軽量で断熱性に優れたプラスチック部品が望まれる洗濯機,乾燥機,冷蔵庫等の家電製品及びその他の家電用塗装部品に適用されることが好ましい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, It can implement with a various form. In the embodiment, the vacuum cleaner pipe 1 including the resin molded body 100 including the hollow filler 101 and the vacuum cleaner L using the vacuum cleaner pipe 1 have been described. However, home appliances and home appliance coating parts to which the present invention is applied. Is not limited to this. It can be applied to at least resin-made paint parts for home appliances, specifically, home-use paint parts used for home appliances such as washing machines, refrigerators, rice cookers, air conditioners, and air purifiers. In addition to the cleaner L described above, the present invention is preferably applied to household appliances such as washing machines, dryers, refrigerators, and other coating parts for household appliances in which lightweight and excellent plastic parts are desired.

〔実施例〕
次に、実施例を説明する。
〔Example〕
Next, examples will be described.

(実施例1,2および比較例1,2)
本実施例では掃除機配管1を射出成形法により作製した。マトリックスとなる熱可塑性樹脂101には、ポリプロピレン(サンアロマー社製、商品名PM970W)を使用した。
(Examples 1 and 2 and Comparative Examples 1 and 2)
In this example, the vacuum cleaner pipe 1 was produced by an injection molding method. Polypropylene (manufactured by Sun Allomer, trade name: PM970W) was used for the thermoplastic resin 101 serving as a matrix.

中空フィラ102は表1に示す組成1,2,比較組成1,2に示す組成で調整した。ガラスバルーン(住友スリーエム、グラスバブルス S42XHS、真比重0.42),シランカップリング剤(信越シリコーン、KBM603:N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、KBM403:3−グリシドキシプロピルトリメトキシシラン),無水マレイン酸変性ポリオレフィン(日本製紙ケミカル、商品名アウローレン(登録商標)200S),タフテックH1031(旭化成ケミカルズ、水添スチレンブタジエンゴム)、及びトリエチルアミン(和光純薬工業),イミダゾール2E4MZ(四国化成工業),フェノール系酸化防止剤(エーピーアイコーポレーション、商品名ヨシノックス(登録商標)BB)を表1に示す配合量で含むものを使用した。   The hollow filler 102 was prepared using the compositions 1 and 2 shown in Table 1 and the compositions shown in Comparative compositions 1 and 2. Glass balloon (Sumitomo 3M, Glass Bubbles S42XHS, true specific gravity 0.42), Silane coupling agent (Shin-Etsu Silicone, KBM603: N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, KBM403: 3-glycid Xylpropyltrimethoxysilane), maleic anhydride modified polyolefin (Nippon Paper Chemicals, trade name Auroren (registered trademark) 200S), Tuftec H1031 (Asahi Kasei Chemicals, hydrogenated styrene butadiene rubber), and triethylamine (Wako Pure Chemical Industries, Ltd.), A compound containing imidazole 2E4MZ (Shikoku Kasei Kogyo Co., Ltd.) and a phenolic antioxidant (AP Corporation, trade name Yoshinox (registered trademark) BB) in the amounts shown in Table 1 was used.

ここで、KBM603は、下記式において、n=6,X=アミノ基,Y=−OCH3で表される化合物である。また、KBM403は、下記式において、n=5,X=エポキシ基,Y=−OCH3で表される化合物である。 Here, KBM603 is a compound represented by the following formula: n = 6, X = amino group, Y = —OCH 3 . KBM403 is a compound represented by the following formula: n = 5, X = epoxy group, Y = —OCH 3 .

いずれの掃除機配管1も中空フィラ101への第一の層105の形成,第二の層106の形成,中空フィラ102と熱可塑性樹脂101の混合・成型の3つの工程で形成される。   Each of the vacuum cleaner pipes 1 is formed by three processes of forming the first layer 105 on the hollow filler 101, forming the second layer 106, and mixing and molding the hollow filler 102 and the thermoplastic resin 101.

まず、表1に示す各シランカップリング剤をトルエン40重量部に溶解した処理液に、中空フィラの中空部材104(ガラスバルーン)を室温(25℃)にて4時間浸漬、攪拌することで中空部材104に第一の層105を被覆した。処理後に真空ろ過で処理液を分離除去し、100℃の防爆乾燥炉で30分の熱処理を施すことで残存した処理液を除去すると共に、第一の層105と中空フィラの中空部材104との化学結合を形成した。   First, a hollow filler 104 (glass balloon) is immersed in a treatment solution obtained by dissolving each silane coupling agent shown in Table 1 in 40 parts by weight of toluene at room temperature (25 ° C.) for 4 hours, and then hollowed. The member 104 was coated with the first layer 105. After the treatment, the treatment liquid is separated and removed by vacuum filtration, and the remaining treatment liquid is removed by performing a heat treatment for 30 minutes in an explosion-proof drying furnace at 100 ° C., and the first layer 105 and the hollow member 104 of the hollow filler are removed. A chemical bond was formed.

次に、実施例1,2、および比較例2における中空フィラへの第二の層106の形成には被覆樹脂(アウローレン200S、若しくはタフテックH1031),反応を促進するためのトリエチルアミンあるいはイミダゾール、さらに酸化防止剤をトルエンに溶解した溶液と、前記のシランカップリング処理後の中空フィラ102を30分混合して攪拌した。攪拌後の混合液を十分な排気雰囲気において室温で2時間乾燥した後に100℃の防爆乾燥炉で30分の熱処理を施すことで残存した処理液を除去すると共に、第一の層105と中空フィラの第二の層106との化学結合を形成し、中空フィラ101とした。なお、比較例1については第二の層106を形成しなかった。   Next, in the formation of the second layer 106 on the hollow filler in Examples 1 and 2 and Comparative Example 2, a coating resin (Aurolen 200S or Tuftec H1031), triethylamine or imidazole for promoting the reaction, A solution obtained by dissolving the antioxidant in toluene and the hollow filler 102 after the silane coupling treatment were mixed for 30 minutes and stirred. The mixed liquid after stirring is dried at room temperature in a sufficiently exhausted atmosphere for 2 hours and then subjected to a heat treatment for 30 minutes in an explosion-proof drying furnace at 100 ° C. to remove the remaining processing liquid, and the first layer 105 and the hollow filler A chemical bond was formed with the second layer 106 to form a hollow filler 101. In Comparative Example 1, the second layer 106 was not formed.

そして、各実施例,比較例において得られた中空フィラ101とポリオレフィン樹脂102(ポリプロピレン)を射出成型機(射出温度:240℃、射出圧力:25MPa)によって成型することで、それぞれの組成の円筒状の掃除機配管1(長さ500mm,直径50mm,厚み3mm)を得た。得られた試験片に対してアルキメデス法によって比重を測定した。   Then, the hollow filler 101 and the polyolefin resin 102 (polypropylene) obtained in each of the examples and comparative examples are molded by an injection molding machine (injection temperature: 240 ° C., injection pressure: 25 MPa), so that each composition has a cylindrical shape. Vacuum pipe 1 (length 500 mm, diameter 50 mm, thickness 3 mm) was obtained. Specific gravity was measured by the Archimedes method with respect to the obtained test piece.

(実施例3,4および比較例3,4)
本実施例では、樹脂成型体100を射出成形法により作製した。マトリックスとなる熱可塑性樹脂101はポリプロピレン(サンアロマー社製、商品名PM970W)である。実施例3,4および比較例3,4において用いた中空フィラ102の組成と製法は実施例1,2,比較例1,2と同一である。本検討では得られた中空フィラ101とポリオレフィン樹脂102の混合物を射出成型機(射出温度:240℃、射出圧力:25MPa)によって成型することで、一辺10mm,厚み0.5mmの板状の樹脂成型体100(試験片)を得た。得られた試験片に対してレーザフラッシュ法(Netzsch社、LFA447型)によって熱拡散率,DSC法(ティー・エイ・インスツルメント社、Q200)によって比熱を測定し、実施例1,2,比較例1,2において求めた比重から熱伝導率を算出した。
(Examples 3 and 4 and Comparative Examples 3 and 4)
In this example, the resin molded body 100 was produced by an injection molding method. The thermoplastic resin 101 serving as a matrix is polypropylene (trade name: PM970W, manufactured by Sun Allomer Co., Ltd.). The composition and manufacturing method of the hollow filler 102 used in Examples 3 and 4 and Comparative Examples 3 and 4 are the same as those in Examples 1 and 2 and Comparative Examples 1 and 2. In this study, the resulting mixture of hollow filler 101 and polyolefin resin 102 is molded by an injection molding machine (injection temperature: 240 ° C., injection pressure: 25 MPa), thereby forming a plate-shaped resin molding with a side of 10 mm and a thickness of 0.5 mm. A body 100 (test piece) was obtained. For the obtained specimens, the thermal diffusivity was measured by the laser flash method (Netzsch, LFA447 type) and the specific heat was measured by the DSC method (TA Instruments, Q200). The thermal conductivity was calculated from the specific gravity obtained in Examples 1 and 2.

(実施例5,6および比較例5,6)
本実施例では、樹脂成型体100を射出成形法により作製した。マトリックスとなる熱可塑性樹脂101はポリプロピレン(サンアロマー社製、商品名PM970W)である。実施例5,6および比較例5,6において用いた中空フィラ102の組成と製法は実施例1,2,比較例1,2と同一である。本検討では得られた中空フィラ101とポリオレフィン樹脂102の混合物を射出成型機(射出温度:240℃、射出圧力:25MPa)によって長さ100mm,幅20mm,厚み4mmのダンベル型の樹脂成型体100(JIS−K7139 A1型試験片)を得た。得られた試験片に対してJIS−K7162に準拠して行われる引張試験法によって引張強度を求めた。また、引張試験後の破断面を走査電子顕微鏡(日立 S−4800形)によって観察し、破断面に露出したガラスバルーンの表面に対してエネルギー分散型X線分析装置(堀場製作所 EX−350形)によって元素分析を行うことで炭素元素の分量を評価し、ガラスバルーン表面に残存した樹脂被覆量を比較した。
(Examples 5 and 6 and Comparative Examples 5 and 6)
In this example, the resin molded body 100 was produced by an injection molding method. The thermoplastic resin 101 serving as a matrix is polypropylene (trade name: PM970W, manufactured by Sun Allomer Co., Ltd.). The composition and manufacturing method of the hollow filler 102 used in Examples 5 and 6 and Comparative Examples 5 and 6 are the same as those in Examples 1 and 2 and Comparative Examples 1 and 2. In this study, the obtained mixture of the hollow filler 101 and the polyolefin resin 102 was injected into a dumbbell-shaped resin molding 100 (length: 100 mm, width: 20 mm, thickness: 4 mm) by an injection molding machine (injection temperature: 240 ° C., injection pressure: 25 MPa). JIS-K7139 A1 type test piece) was obtained. The tensile strength was calculated | required with respect to the obtained test piece with the tension test method performed based on JIS-K7162. The fracture surface after the tensile test was observed with a scanning electron microscope (Hitachi S-4800 type), and an energy dispersive X-ray analyzer (Horiba EX-350 type) was applied to the surface of the glass balloon exposed on the fracture surface. The amount of the carbon element was evaluated by performing elemental analysis, and the resin coating amount remaining on the glass balloon surface was compared.

以上の実施例1から6,比較例1から6についてそれぞれの項目において示した方法にて、比重,熱伝導率,引張強度とラスバルーン表面における炭素の質量濃度を測定した。その結果をそれぞれの組成に対して整理した結果を表2に示す。   Specific gravity, thermal conductivity, tensile strength, and mass concentration of carbon on the surface of the lath balloon were measured by the methods shown in the respective items for Examples 1 to 6 and Comparative Examples 1 to 6. Table 2 shows the result of arranging the results for each composition.

(評価結果)
実施例1,3(組成1)及び実施例2,4の(組成2)の樹脂組成物は、表1に示すように、比較例1,3(比較組成1)及び比較例2,4の(比較組成2)に示した樹脂組成物よりも比重が低減され、熱伝導率が低くなることが確認された。また、機械強度においても実施例5(組成1),実施例6(組成2)においては比較例5(比較組成1),比較例6(比較組成2)に比較すると、中空フィラの第一層(ガラスバルーン)表面における樹脂の界面剥離を防ぐことによって引張強度が改善されることが確認された。EDXで測定した炭素の質量濃度比較においては、実施例5(組成1),実施例6(組成2)においては、比較例5(比較組成1),比較例6(比較組成2)に対してガラスバルーン表面の炭素の質量濃度が高くなっており、ガラスバルーン表面により多い分量の被覆樹脂が残存していることが示された。
(Evaluation results)
As shown in Table 1, the resin compositions of Examples 1 and 3 (Composition 1) and Examples 2 and 4 (Composition 2) are those of Comparative Examples 1 and 3 (Comparative Composition 1) and Comparative Examples 2 and 4, respectively. It was confirmed that the specific gravity was reduced and the thermal conductivity was lower than that of the resin composition shown in (Comparative composition 2). Moreover, also in mechanical strength, in Example 5 (Composition 1), Example 6 (Composition 2), compared with Comparative Example 5 (Comparative Composition 1) and Comparative Example 6 (Comparative Composition 2), the first layer of the hollow filler (Glass balloon) It was confirmed that the tensile strength was improved by preventing interfacial peeling of the resin on the surface. In the mass concentration comparison of carbon measured by EDX, in Example 5 (Composition 1) and Example 6 (Composition 2), compared to Comparative Example 5 (Comparative Composition 1) and Comparative Example 6 (Comparative Composition 2). The mass concentration of carbon on the glass balloon surface was increased, indicating that a larger amount of coating resin remained on the glass balloon surface.

以上のように、本発明に係る中空フィラと熱可塑性樹脂から得られる樹脂組成物によって比重が低く、熱伝導率が軽減され、強度に優れた樹脂成型体が得られることが確認された。本実施例で開示する樹脂成型体からなる掃除機配管は軽量で必要な強度を有しており、掃除機の軽量化に寄与できる。   As described above, it was confirmed that the resin composition obtained from the hollow filler and the thermoplastic resin according to the present invention has a low specific gravity, a reduced thermal conductivity, and a resin molded article having excellent strength. The vacuum cleaner piping made of the resin molded body disclosed in the present embodiment is lightweight and has the necessary strength, and can contribute to weight reduction of the vacuum cleaner.

また、同じ材質の部材を洗濯機,乾燥機,冷蔵庫のプラスチック部品に適用することで、プラスチック部品の断熱化に寄与し、それぞれの製品において熱効率の改善に寄与できる。   In addition, by applying the same material to plastic parts of washing machines, dryers and refrigerators, it contributes to heat insulation of plastic parts and can contribute to improvement of thermal efficiency in each product.

1 掃除機配管
2 吸口
3 掃除機本体
100 樹脂成型体
101 中空フィラ
102 熱可塑性樹脂
103 真空もしくは気体層
104 中空部材
105 (中空フィラの)第一の層
106 (中空フィラの)第二の層
L 掃除機
DESCRIPTION OF SYMBOLS 1 Vacuum cleaner piping 2 Suction port 3 Vacuum cleaner main body 100 Resin molding 101 Hollow filler 102 Thermoplastic resin 103 Vacuum or gas layer 104 Hollow member 105 First layer 106 (of hollow filler) Second layer L (of hollow filler) Vacuum cleaner

Claims (7)

中空部材と、
中空部材表面に被覆され、下記式で表される化合物を含む第一の層と、
第一の層を覆い、第一の層と結合した無水マレイン酸変性ポリオレフィン樹脂を含む第二の層と、を備える中空フィラが、前記無水マレイン酸変性ポリオレフィン樹脂と異なるポリオレフィン樹脂中に分散していることを特徴とする樹脂成形体
(式中、nは0以上の整数、Xはアミノ基またはエポキシ基、Yは塩素または−OR(Rは水素またはアルキル鎖)で示される化合物。)
A hollow member;
A first layer coated on the surface of the hollow member and containing a compound represented by the following formula:
Covering the first layer, the second layer comprising a first layer and bound maleic anhydride-modified polyolefin resin, an empty filler in which Ru provided with, dispersed in different polyolefin resin and the maleic anhydride-modified polyolefin resin A resin molded body characterized by being made .
(In the formula, n is an integer of 0 or more, X is an amino group or an epoxy group, Y is a compound represented by chlorine or -OR (R is hydrogen or an alkyl chain).)
請求項1において、第一の層の前記化合物がアミノ基またはエポキシ基を有するケイ素化合物であることを特徴とする樹脂成形体The resin molded product according to claim 1, wherein the compound of the first layer is a silicon compound having an amino group or an epoxy group. 請求項1または2において、前記ポリオレフィン樹脂がポリプロピレンであることを特徴とする樹脂成形体。 Oite to claim 1 or 2, resin molding the polyolefin resin is characterized polypropylene der Rukoto. 請求項3において、前記樹脂成形体の比重が0.80以下であることを特徴とする樹脂成形体。 4. The resin molded body according to claim 3, wherein the specific gravity of the resin molded body is 0.80 or less . 請求項3または4において、前記引張強度が14MPa以上(JIS−K7162に準拠)であることを特徴とする樹脂成形体。 5. The resin molded body according to claim 3, wherein the tensile strength is 14 MPa or more (based on JIS-K7162) . 請求項乃至5のいずれかに記載の樹脂成形体が、掃除機本体と吸い口とを繋ぐ掃除機配管であることを特徴とする掃除機配管 Cleaner pipe, wherein the resin molded body according to any one of claims 1 to 5, a vacuum cleaner pipe connecting the cleaner body and mouthpiece. 請求項に記載の掃除機配管を備えたことを特徴とする掃除機。 A vacuum cleaner comprising the vacuum cleaner pipe according to claim 6 .
JP2011095638A 2011-04-22 2011-04-22 Resin molded body, vacuum cleaner piping and vacuum cleaner Expired - Fee Related JP5542733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095638A JP5542733B2 (en) 2011-04-22 2011-04-22 Resin molded body, vacuum cleaner piping and vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095638A JP5542733B2 (en) 2011-04-22 2011-04-22 Resin molded body, vacuum cleaner piping and vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2012224798A JP2012224798A (en) 2012-11-15
JP5542733B2 true JP5542733B2 (en) 2014-07-09

Family

ID=47275333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095638A Expired - Fee Related JP5542733B2 (en) 2011-04-22 2011-04-22 Resin molded body, vacuum cleaner piping and vacuum cleaner

Country Status (1)

Country Link
JP (1) JP5542733B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279830B2 (en) 2016-09-21 2022-03-22 Dic Corporation Surface-treated spinel particles, method for producing the same, resin composition, and molded article
JP2019006938A (en) * 2017-06-28 2019-01-17 パナソニックIpマネジメント株式会社 Polyolefin resin composition, polyolefin resin molded article, and electric vacuum cleaner
JP2019014798A (en) * 2017-07-05 2019-01-31 パナソニックIpマネジメント株式会社 Polyolefin resin composition, polyolefin resin molding using the same, and vacuum cleaner using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139783A (en) * 1991-11-06 1993-06-08 Asahi Glass Co Ltd Glass balloon contained forming composition
JP3493774B2 (en) * 1993-12-28 2004-02-03 Jfeスチール株式会社 Melt molding mixture of long glass fiber reinforced polypropylene and polypropylene and molded article thereof
ATE360662T1 (en) * 2003-12-30 2007-05-15 3M Innovative Properties Co FILLED COMPOSITE
JP2006241340A (en) * 2005-03-04 2006-09-14 Sumitomo Chemical Co Ltd Resin composition and its molded article
JP5145638B2 (en) * 2006-01-06 2013-02-20 パナソニック株式会社 Resin composition

Also Published As

Publication number Publication date
JP2012224798A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
US10385174B2 (en) Fiber reinforced thermoplastic resin molding material, and fiber reinforced thermoplastic resin molded article
JP6155652B2 (en) Fiber reinforced polypropylene resin composition
EP2221339B1 (en) Molded article of filler-reinforced polypropylene resin composition
KR101843220B1 (en) Carbon-fiber reinforced polypropylene resin composition, molding material, and molded articles
US10494525B2 (en) Polyamide composition including hollow glass microspheres and articles and methods relating to the same
EP3560987A1 (en) Glass fiber-reinforced resin molded article
JP6957859B2 (en) Fiber-reinforced thermoplastic resin molded products and fiber-reinforced thermoplastic resin molded materials
JP2009197359A (en) Reinforcing fiber, and fiber-reinforced composite material
JP5542733B2 (en) Resin molded body, vacuum cleaner piping and vacuum cleaner
JP2010532406A (en) Thermoplastic polyamide resin with improved coating adhesion
WO2018105682A1 (en) Graft copolymer-containing solid product and use thereof
JP6294077B2 (en) Method for producing exfoliated graphite derivative and method for producing exfoliated graphite / resin composite material
CN105295325B (en) Low-density molding materials comprising surface-modified microspheres
JP2018024766A (en) Molding material
JP2007217679A (en) Polyarylene sulfide resin composition and molded article
JP2022020762A (en) Polymer-metal hybrid article
JP6142539B2 (en) Molding material
JP6107155B2 (en) Prepreg
JP5657700B2 (en) Multilayer structure and manufacturing method thereof
WO2005028562A1 (en) Polymer composition for molded-article molding, molded article, hydrophilic molded article and process for producing the same, and layered article
JP2018024765A (en) Fiber-reinforced polypropylene-based resin composition
KR101266794B1 (en) Light weight polypropylene composite composition having excellent painting and impact resistance and manufacturing method thereof
JP2009280781A (en) Polypropylene-based resin composition
JPWO2018180332A1 (en) Filler reinforced resin structure
JP2018024763A (en) Prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5542733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees