JP5540699B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP5540699B2
JP5540699B2 JP2009297898A JP2009297898A JP5540699B2 JP 5540699 B2 JP5540699 B2 JP 5540699B2 JP 2009297898 A JP2009297898 A JP 2009297898A JP 2009297898 A JP2009297898 A JP 2009297898A JP 5540699 B2 JP5540699 B2 JP 5540699B2
Authority
JP
Japan
Prior art keywords
capacitor
voltage
semiconductor switch
series
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009297898A
Other languages
Japanese (ja)
Other versions
JP2011139593A (en
Inventor
章弘 小高
貴志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009297898A priority Critical patent/JP5540699B2/en
Publication of JP2011139593A publication Critical patent/JP2011139593A/en
Application granted granted Critical
Publication of JP5540699B2 publication Critical patent/JP5540699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、交流電源を整流した直流電力を交流電力に変換して電動機を駆動する電力変換装置に関する。   The present invention relates to a power converter that drives a motor by converting DC power obtained by rectifying an AC power source into AC power.

電力変換装置を用いて2つの巻線を有する電動機(以下、2相電動機という)を可変速駆動するものとしては、例えば特許文献1に示すものが知られている。
図2はこの種の電力変換装置の従来技術を示す回路図であり、1は単相交流電源、2は2つの巻線2a,2bを備えた2相電動機、3は電力変換装置である。
For example, Japanese Patent Application Laid-Open No. H10-260260 discloses a variable speed drive of an electric motor having two windings (hereinafter referred to as a two-phase electric motor) using a power converter.
FIG. 2 is a circuit diagram showing the prior art of this type of power converter, wherein 1 is a single-phase AC power source, 2 is a two-phase motor provided with two windings 2a and 2b, and 3 is a power converter.

電力変換装置3は、単相倍電圧整流回路31とインバータ回路32とから構成されている。単相倍電圧整流回路31は、ダイオードDPとダイオードDNとを2個直列に接続して構成したダイオード直列回路と、コンデンサCPとコンデンサCNとを2個直列に接続して構成したコンデンサ直列回路とを並列接続して構成している。インバータ回路32は、IGBT等のスイッチング素子とダイオードとを逆並列に接続して構成した第1の半導体スイッチTMPと半導体スイッチTMNとを直列接続して構成した第1の半導体スイッチ直列回路と、半導体スイッチTAPと半導体スイッチTANとを直列接続して構成した第2の半導体スイッチ直列回路とを並列接続して構成している。なお、41はコンデンサCPの電圧Edpを検出する電圧検出手段、42はコンデンサCNの電圧Ednを検出する電圧検出手段である。 The power conversion device 3 includes a single-phase voltage doubler rectifier circuit 31 and an inverter circuit 32. The single-phase voltage doubler rectifier circuit 31 is configured by connecting a diode series circuit in which two diodes D P and D N are connected in series, and two capacitors C P and C N in series. A capacitor series circuit is connected in parallel. The inverter circuit 32 includes a first semiconductor switch series circuit configured by connecting in series a first semiconductor switch TMP and a semiconductor switch TMN that are configured by connecting switching elements such as IGBTs and diodes in antiparallel. The semiconductor switch TAP and the semiconductor switch TAN are connected in series to a second semiconductor switch series circuit configured in series. The voltage detecting means for detecting a voltage E dp of the capacitor C P is 41, 42 is a voltage detecting means for detecting the voltage E dn of the capacitor C N.

また、電力変換装置3は、半導体スイッチTMPと半導体スイッチTMNとの直列接続点,半導体スイッチTAPと半導体スイッチTANとの直列接続点,コンデンサCPとコンデンサCNとの直列接続点に3つの出力端子M,A,Cを備え、負荷である2相電動機2に接続されている。そして、インバータ回路32により、出力端子M−C間電圧vMCおよび出力端子A−C間の電圧vACの振幅および周波数を調整することにより、2相電動機2の可変速駆動を実現するのであるが、このような2相電動機2を電力変換装置3で可変速駆動する場合には、電気的に90度位相の異なる電圧を2相電動機2に印加し、その電圧の大きさと周波数とを調整することにより2相電動機2の可変速駆動を行っている。 The power converter 3, the series connection point of the semiconductor switches T MP and the semiconductor switch T MN, series connection point between the semiconductor switch T AP and semiconductor switches T AN, the series connection point between the capacitor C P and capacitor C N Are provided with three output terminals M, A, and C, and are connected to a two-phase motor 2 as a load. The inverter circuit 32 adjusts the amplitude and frequency of the voltage v MC between the output terminals M and C and the voltage v AC between the output terminals A and C, thereby realizing variable speed driving of the two-phase motor 2. However, when such a two-phase motor 2 is driven at a variable speed by the power conversion device 3, voltages that are electrically different in phase by 90 degrees are applied to the two-phase motor 2 and the magnitude and frequency of the voltage are adjusted. By doing so, the variable speed drive of the two-phase motor 2 is performed.

図3は図2の制御装置10の構成を示すブロック図である。図において、電圧指令生成手段11では、外部から入力されるか、あるいは電力変換制御装置3自身で生成した出力周波数指令f*に基づいて、出力端子M−C間,A−C間の出力電圧指令vMC *,vAC *を演算する。これら出力電圧指令vMC *,vAC *から例えば数1を用いて振幅が1のキャリア三角波と比較するための変調信号λMC *,λAC *を演算する。 FIG. 3 is a block diagram showing a configuration of the control device 10 of FIG. In the figure, the voltage command generating means 11 outputs the output voltage between the output terminals MC and AC based on the output frequency command f * input from the outside or generated by the power conversion control device 3 itself. The commands v MC * and v AC * are calculated. From these output voltage commands v MC * and v AC * , for example, the modulation signals λ MC * and λ AC * for comparison with a carrier triangular wave having an amplitude of 1 are calculated using Equation 1.

ここで、
dp:コンデンサCPの電圧検出値
dn:コンデンサCNの電圧検出値
XC *:出力端子M−C間,A−C間の出力電圧指令(XはMまたはA)
すなわち、図3に示すように、出力電圧指令vMC *は、除算器13aに入力され、加算器12により加算されたコンデンサCPの電圧検出値EdpとコンデンサCNの電圧検出値Ednとの加算値Edp+Ednによって除算される。一方、除算器14ではコンデンサCPの電圧検出値Edpが前記加算値Edp+Ednによって除算され、この除算された値Edp/(Edp+Edn)が加算器15aにより除算器13aの出力vMC */(Edp+Edn)に加算されて変調信号λMC *を演算する。同様に、出力電圧指令vAC *は、除算器13bに入力されて前記加算値Edp+Ednによって除算され、加算器15bにより除算器13bの出力vAC */(Edp+Edn)に除算器14の出力Edp/(Edp+Edn)が加算されて変調信号λAC *を演算する。
here,
E dp : Voltage detection value of capacitor C P E dn : Voltage detection value of capacitor C N v XC * : Output voltage command between output terminals MC and AC (X is M or A)
That is, as shown in FIG. 3, the output voltage command v MC * is input to the divider 13a, and the voltage detection value E dp of the capacitor C P and the voltage detection value E dn of the capacitor C N added by the adder 12. And the addition value E dp + E dn . On the other hand, in the divider 14, the voltage detection value E dp of the capacitor C P is divided by the added value E dp + E dn , and this divided value E dp / (E dp + E dn ) is added to the divider 13a by the adder 15a. The modulation signal λ MC * is calculated by adding to the output v MC * / (E dp + E dn ). Similarly, the output voltage command v AC * is input to the divider 13b, divided by the added value E dp + E dn , and divided by the adder 15b to the output v AC * / (E dp + E dn ) of the divider 13b. The output E dp / (E dp + E dn ) of the unit 14 is added to calculate the modulation signal λ AC * .

このように演算された変調信号λMC *,λAC *とキャリア発生器16からの三角波キャリアとをそれぞれ比較器17a,17bにより比較し、半導体スイッチTMP,TMN,TAP,TANの各IGBTのオンオフ信号を得て所望の出力線間電圧を得るようにしている。 The thus calculated modulation signals λ MC * , λ AC * and the triangular wave carrier from the carrier generator 16 are compared by the comparators 17a, 17b, respectively, and the semiconductor switches T MP , T MN , T AP , T AN are compared. An ON / OFF signal of each IGBT is obtained to obtain a desired output line voltage.

特開平3−78494号公報Japanese Patent Laid-Open No. 3-78494

従来の電力変換装置3では、2つのコンデンサCP,コンデンサCNの電圧が不平衡になることがある。この現象は、特に電力変換装置3の出力周波数が低い場合に顕著となり、どちらか一方のコンデンサの電圧が著しく増加するとともに、他方のコンデンサの電圧が著しく低下する。このような場合、電圧が増加するコンデンサではコンデンサの耐圧を超える虞がある。 In the conventional power converting apparatus 3, sometimes two capacitors C P, the voltage of the capacitor C N becomes unbalanced. This phenomenon becomes prominent particularly when the output frequency of the power conversion device 3 is low, and the voltage of one of the capacitors increases remarkably and the voltage of the other capacitor decreases remarkably. In such a case, a capacitor whose voltage increases may exceed the withstand voltage of the capacitor.

この2つのコンデンサが不平衡になる理由を以下に説明する。
図2に示した電力変換装置3において、説明を簡単にするために入力の整流ダイオードDp,Dnに流れる電流を無視すると、コンデンサCPに流れる電流は、半導体スイッチ(IGBT)TMPに流れる電流iTMPと半導体スイッチ(IGBT)TAPに流れる電流iTAPとの和になる。同様に、コンデンサCNに流れる電流は、半導体スイッチTMNに流れる電流iTMNと半導体スイッチTANに流れる電流iTANとの和になる。
The reason why these two capacitors are unbalanced will be described below.
The power converter 3 shown in FIG. 2, the rectifier diode D p of the input in order to simplify the explanation, ignoring the current flowing through the D n, the current flowing through the capacitor C P is the semiconductor switch (IGBT) T MP the sum of the currents i TAP flowing through the current i TMP and the semiconductor switch (IGBT) T AP flowing. Similarly, the current flowing through the capacitor C N is the sum of the currents i TAN flowing through the current i TMN and semiconductor switches T AN flowing through the semiconductor switch T MN.

一方、図4は上アームの半導体スイッチTMP,TAPに流れる電流の概念波形図を示すものであり、図示のごとく上アームのIGBTに流れる電流iTXPはパルス列波形となる(以下、XはMまたはAとする)。 On the other hand, FIG. 4 shows a conceptual waveform diagram of the current flowing through the upper arm semiconductor switches T MP and T AP , and the current i TXP flowing through the upper arm IGBT as shown in the figure becomes a pulse train waveform (hereinafter, X is M or A).

次に、パルス列電流の平均値iTXP(AVG)を計算する。図5は、三角波キャリアの1周期分の電流波形を示したものである。キャリア1周期内にIGBTに電流が流れる時間比率は、変調率λxそのものであるので、出力電流の大きさをIとすれば,キャリア1周期内の電流平均値iTXP(AVG)は数2で表せる。 Next, the average value i TXP (AVG) of the pulse train current is calculated. FIG. 5 shows a current waveform for one cycle of the triangular wave carrier. Since the time ratio of the current flowing through the IGBT within one carrier cycle is the modulation factor λ x itself, if the output current is I, the average current value i TXP (AVG) within one carrier cycle is It can be expressed as

ここで、M相,A相の出力電流をそれぞれiM,iAとおけば、半導体スイッチTMP,TAPに流れるパルス列電流の平均値iTMP(AVG),iTAP(AVG)は、数2に数1を代入してそれぞれ次の数3,数4で表せる。 Here, if the M-phase and A-phase output currents are i M and i A , respectively, the average values i TMP (AVG) and i TAP (AVG) of the pulse train currents flowing through the semiconductor switches T MP and T AP are Substituting equation 1 into 2, it can be expressed by the following equations 3 and 4.

このとき、コンデンサCpに流れるパルス列電流の平均値iCP(AVG)は、半導体スイッチTMPと半導体スイッチTAPとに流れるパルス列電流の平均値の和として考えることができるから、数5で表すことができる。 At this time, the average value i CP (AVG) of the pulse train current flowing through the capacitor C p can be considered as the sum of the average values of the pulse train currents flowing through the semiconductor switch T MP and the semiconductor switch T AP. be able to.

以上の数式を用いてコンデンサCPに流入する電流iCP(AVG)を計算した例を図6に示す。ただし、図6(a)(b)に示すように、ここでの計算は電力変換装置3の負荷として先述の2相電動機2を想定し、出力端子A−C間電圧vACを出力端子M−C間電圧vMCに対して電気的に90度位相を進ませた場合の例であり、またコンデンサの静電容量値は十分大きく、かつコンデンサの電圧変動はないものとし、さらに負荷に流れる電流も理想的な正弦波電流とした場合の計算結果である。 Figure 6 shows the example of calculation of the current i CP (AVG) flowing into the capacitor C P using the above equations. However, as shown in FIGS. 6A and 6B, the calculation here assumes the above-described two-phase motor 2 as a load of the power conversion device 3, and the output terminal A-C voltage v AC is set as the output terminal M. This is an example in which the phase is electrically advanced 90 degrees with respect to the voltage V MC between −C, the capacitance value of the capacitor is sufficiently large, and there is no voltage fluctuation of the capacitor, and further flows to the load. The current is also a calculation result when an ideal sine wave current is used.

図6(c)のコンデンサCpの電流iCP(AVG)に着目すると、電流iCP(AVG)には出力周波数成分を含んだ脈動成分が含まれていることがわかる。コンデンサ電圧は脈動成分だけを考えると、コンデンサCPの電圧脈動成分ΔvCPは、電流iCP(AVG)を用いて次式で表せる。 Focusing on the current i CP (AVG ) of the capacitor C p in FIG. 6C, it can be seen that the current i CP (AVG) includes a pulsation component including an output frequency component. When the capacitor voltage considered only pulsating components, the voltage ripple component Delta] v CP of the capacitor C P is expressed by the following equation using the current i CP (AVG).

すなわち、図6(c)に示したように、コンデンサCpの電流iCP(AVG)は電力変換装置3の出力周波数成分を含んだ脈動電流になることから、コンデンサCPには脈動電圧が発生する。同様な理由でコンデンサCNにも脈動電圧が発生する。このときコンデンサCPとコンデンサCNの脈動電圧は、互いに位相が反転したような状態となることから、コンデンサCPとコンデンサCNの電圧が不平衡となる。 That is, as shown in FIG. 6 (c), the capacitor C p of the current i CP (AVG) from becoming a pulsating current containing the output frequency components of the power converter 3, the pulsating voltage to capacitor C P Occur. Pulsation voltage is generated in the capacitor C N for the same reason. At this time, the pulsating voltages of the capacitor C P and the capacitor C N are in a state in which the phases are reversed with each other, so that the voltages of the capacitor C P and the capacitor C N become unbalanced.

ここで、数6から明らかなように、出力周波数が低いほど、コンデンサCPの電圧の脈動成分ΔvCPは大きくなり、また、2つのコンデンサCPとコンデンサCNとの電圧差も出力周波数が低いほど大きくなる。 Here, as the number 6 is apparent, the lower the output frequency, pulsation component Delta] v CP of the voltage of the capacitor C P becomes large, the voltage difference between the two capacitors C P and capacitor C N is also the output frequency The lower the value, the larger.

上述のように、従来の電力変換装置3では2つのコンデンサが不平衡になるため、コンデンサの静電容量値を必要以上に高くするか、もしくは2つのコンデンサの電圧を平衡させるための回路を新たに追加する等、コンデンサの電圧上昇を抑制するための対策をとる必要があり、電力変換装置3が大型かつ高価になるという問題があった。   As described above, since the two capacitors are unbalanced in the conventional power conversion device 3, a circuit for increasing the capacitance value of the capacitors more than necessary or balancing the voltages of the two capacitors is newly provided. For example, it is necessary to take measures for suppressing the voltage rise of the capacitor, and the power converter 3 becomes large and expensive.

この発明は、上記問題を解消し、2つのコンデンサの電圧のアンバランスを抑制し、小型で安価な電力変換装置を提供することを目的とする。   An object of the present invention is to solve the above-described problem, to suppress a voltage imbalance between two capacitors, and to provide a small and inexpensive power conversion device.

上記目的を達成するために、この発明は、第1の半導体スイッチと第2の半導体スイッチとを直列に接続して構成した第1の半導体スイッチ直列回路と、第3の半導体スイッチと第4の半導体スイッチとを直列に接続して構成した第2の半導体スイッチ直列回路と,第1のコンデンサと第2のコンデンサとを直列に接続して構成したコンデンサ直列回路とを並列接続し、前記第1の半導体スイッチと前記第2の半導体スイッチの直列接続点,前記第の半導体スイッチと前記第の半導体スイッチの直列接続点,前記第1のコンデンサと前記第2のコンデンサの直列接続点を負荷への接続端子とした電力変換装置において、電力変換装置の出力電圧指令を生成する電圧指令生成手段と、前記第1のコンデンサの電圧と前記第2のコンデンサの電圧との偏差を演算する電圧偏差演算手段と、出力周波数に基づいて前記偏差の増幅ゲインを調整するゲイン調整手段と、前記偏差に前記増幅ゲインを乗じた値を前記出力電圧指令に加算する加算手段とを備えるものである。 In order to achieve the above object, the present invention provides a first semiconductor switch series circuit configured by connecting a first semiconductor switch and a second semiconductor switch in series, a third semiconductor switch, and a fourth semiconductor switch. A second semiconductor switch series circuit configured by connecting semiconductor switches in series and a capacitor series circuit configured by connecting a first capacitor and a second capacitor in series are connected in parallel, and Loaded at a series connection point of the semiconductor switch and the second semiconductor switch, a series connection point of the third semiconductor switch and the fourth semiconductor switch, and a series connection point of the first capacitor and the second capacitor In the power converter as a connection terminal to the power converter, voltage command generating means for generating an output voltage command of the power converter, the voltage of the first capacitor, and the second capacitor Adds the voltage deviation calculating means for calculating a deviation between the pressure, a gain adjusting means for adjusting the amplification gain of the deviation on the basis of the output frequency, the value obtained by multiplying the amplification gain in the difference to the output voltage command Adding means .

この発明に係る電力変換装置によれば、2つのコンデンサ電圧の偏差の増幅ゲインを出力周波数に基づいて調整し、この偏差を増幅した値により出力電圧指令を補正して新たな出力電圧指令を生成することにより、2つのコンデンサの電圧のアンバランスを抑制することができる。この結果、コンデンサの静電容量値を必要以上に高くしたり、2つのコンデンサの電圧を平衡させるための回路を追加する必要がなくなるので、小型で安価な電力変換装置を提供することが可能になる。   According to the power conversion device of the present invention, the amplification gain of the deviation between the two capacitor voltages is adjusted based on the output frequency, and the output voltage command is corrected by a value obtained by amplifying the deviation to generate a new output voltage command. By doing so, the imbalance of the voltage of two capacitors can be suppressed. As a result, it is not necessary to increase the capacitance value of the capacitor more than necessary or to add a circuit for balancing the voltages of the two capacitors, so that it is possible to provide a small and inexpensive power conversion device. Become.

この発明の実施の形態を示すブロック図Block diagram showing an embodiment of the present invention 電力変換装置を示す回路図Circuit diagram showing power converter 従来の制御装置の構成を示すブロック図Block diagram showing the configuration of a conventional control device 上アームの半導体スイッチに流れる電流の概念波形図Conceptual waveform diagram of current flowing in semiconductor switch of upper arm 三角波キャリアの1周期分の電流の概念波形図Conceptual waveform diagram of current for one period of triangular wave carrier コンデンサに流入する電流の概念波形図Conceptual waveform diagram of current flowing into the capacitor

図1はこの発明の電力変換装置3の制御装置10の構成を示すブロック図である。ここで、図3と同一機能を有するものについては同一の符号を付してその説明を省略する。
従来技術と異なる点は、2つのコンデンサCP,CNの電圧検出値Edpと電圧検出値Ednとの偏差を演算する加算器21,出力周波数指令f*に基づいて増幅ゲインを調整するゲイン演算部22,乗算器23,加算器24a,24bからなる不平衡抑制手段20を新たに追加した点である。この不平衡抑制手段20では、2つのコンデンサCP,CNの電圧検出値Edpと電圧検出値Ednとの差電圧Edp−Ednにゲイン演算部22で演算されたゲインを乗じた値を出力電圧指令vMC *,vAC *の補正量としてそれぞれ加算し、新たな出力電圧指令vMC **,vAC **を生成する。
FIG. 1 is a block diagram showing the configuration of the control device 10 of the power conversion device 3 of the present invention. Here, components having the same functions as those in FIG.
The difference from the prior art is that the amplification gain is adjusted based on the adder 21 that calculates the deviation between the voltage detection value E dp and the voltage detection value E dn of the two capacitors C P and C N and the output frequency command f *. This is a point in which an unbalance suppression means 20 including a gain calculation unit 22, a multiplier 23, and adders 24a and 24b is newly added. In this unbalance suppression means 20, the difference voltage E dp −E dn between the voltage detection value E dp and the voltage detection value E dn of the two capacitors C P and C N is multiplied by the gain calculated by the gain calculation unit 22. The values are added as correction amounts of the output voltage commands v MC * and v AC * , respectively, and new output voltage commands v MC ** and v AC ** are generated.

このような構成において、例えば、コンデンサCPの電圧が上昇し、コンデンサCNの電圧が減少すると、上アームの半導体スイッチTMP,TAPのオン時間を増加させ、下アームの半導体スイッチTMN,TANのオン時間を減少させることになる。すなわち、コンデンサCPの電圧が上昇し、コンデンサCNの電圧が減少した際には、加算器21で求めたコンデンサCPの電圧検出値EdpとコンデンサCNの電圧検出値Ednとの差電圧を乗算器23でゲイン倍した値が、加算器24a,24bにより出力電圧指令vMC *,vAC *にそれぞれ加算されて新たな出力電圧指令vMC **,vAC **が得られる。これにより、上アームの半導体スイッチTMP,TAPのオン時間を増加させ、下アームの半導体スイッチTMN,TANのオン時間を減少させることになる。これは、上側コンデンサCPから流出する電流を増加させ、下側コンデンサCNに流入する電流を減少させることになるから、結果としてコンデンサの電圧不平衡を抑制する作用となる。 In such a configuration, for example, when the voltage of the capacitor C P rises and the voltage of the capacitor C N decreases, the on-time of the upper arm semiconductor switches T MP and T AP is increased, and the lower arm semiconductor switch T MN is increased. , TAN on time is reduced. That is, when the voltage of the capacitor C P rises and the voltage of the capacitor C N decreases, the voltage detection value E dp of the capacitor C P obtained by the adder 21 and the voltage detection value E dn of the capacitor C N The value obtained by multiplying the difference voltage by the multiplier 23 is added to the output voltage commands v MC * and v AC * by the adders 24a and 24b, respectively, thereby obtaining new output voltage commands v MC ** and v AC **. It is done. As a result, the on-time of the upper-arm semiconductor switches T MP and T AP is increased, and the on-time of the lower-arm semiconductor switches T MN and T AN is decreased. This increases the current flowing out of the upper capacitor C P, because would reduce the current flowing into the lower capacitor C N, the effect of suppressing voltage unbalance of the capacitor as a result.

逆に、コンデンサCPの電圧が減少し、コンデンサCNの電圧が上昇した際には、加算器21で求めたコンデンサCPの電圧検出値EdpとコンデンサCNの電圧検出値Ednとの差電圧を乗算器23でゲイン倍した値はマイナスの補正量となる。この補正量が加算器24a,24bにより出力電圧指令vMC *,vAC *にそれぞれ加算されることになるから、下アームの半導体スイッチTMN,TANのオン時間を増加させ、上アームの半導体スイッチTMP,TAPのオン時間を減少させることになる。これは、下側コンデンサCNから流出する電流を増加させ、上側コンデンサCPに流入する電流を減少させることになるから、結果としてコンデンサの電圧不平衡を抑制する作用となる。 On the contrary, when the voltage of the capacitor C P decreases and the voltage of the capacitor C N increases, the voltage detection value E dp of the capacitor C P obtained by the adder 21 and the voltage detection value E dn of the capacitor C N A value obtained by multiplying the difference voltage by the gain by the multiplier 23 is a negative correction amount. Since this correction amount is added to the output voltage commands v MC * and v AC * by the adders 24a and 24b, respectively, the ON time of the lower arm semiconductor switches T MN and T AN is increased, and the upper arm The on-time of the semiconductor switches T MP and T AP is reduced. This increases the current flowing out from the lower capacitor C N and decreases the current flowing into the upper capacitor C P , resulting in the effect of suppressing the voltage imbalance of the capacitor.

このように、コンデンサCPの電圧検出値EdpとコンデンサCNの電圧検出値Ednとの差電圧に基づいて新たな出力電圧指令vMC **,vAC **を得ることにより、2つのコンデンサCP,CNの電圧のアンバランスを抑制することが可能になる。 Thus, by obtaining new output voltage commands v MC ** and v AC ** based on the voltage difference between the voltage detection value E dp of the capacitor C P and the voltage detection value E dn of the capacitor C N , 2 It is possible to suppress the voltage imbalance of the two capacitors C P and C N.

ところで、上記のコンデンサ電圧の不平衡抑制手段20を適用した場合、所望とする出力電圧指令に2つのコンデンサ電圧の差電圧を重畳することになるから、当然のことながら電力変換装置3の出力電圧vMC,vACは本来の所望とする電圧vMC *,vAC *が出力されない。電力変換装置3の負荷として電動機を考えた場合、このような状態で運転を継続すると、出力電圧が著しく歪み、結果としてトルクの脈動を引き起こし、電動機から騒音,振動が発生する虞がある。 By the way, when the capacitor voltage unbalance suppression means 20 is applied, a difference voltage between the two capacitor voltages is superimposed on a desired output voltage command. As for v MC and v AC, the originally desired voltages v MC * and v AC * are not output. When the electric motor is considered as the load of the power conversion device 3, if the operation is continued in such a state, the output voltage is significantly distorted, resulting in torque pulsation, and there is a possibility that noise and vibration are generated from the electric motor.

しかしながら、前述したとおりコンデンサの電圧不平衡は、電力変換装置3の出力周波数が低いほど顕著になることから、図1のゲイン演算部22に示すように、ゲイン演算部22に出力周波数指令f*を入力し、この出力周波数指令f*の増加に応じて増幅ゲインを低減させるようにすればよい。さらに、ある運転周波数以上ではコンデンサ電圧の不平衡抑制を行わなくてもよいことが予め分かっていれば、その運転周波数を予めゲイン演算部22に設定しておき、この設定された運転周波数以上では偏差増幅ゲインを0とするようにしてもよい。 However, the voltage unbalance of the capacitor as described above, from becoming noticeable lower the output frequency of the power converter 3, as shown in the gain computing section 22 of FIG. 1, the output to the gain calculating unit 22 a frequency instruction f * And the amplification gain may be reduced as the output frequency command f * increases. Furthermore, if it is known in advance that it is not necessary to suppress unbalance suppression of the capacitor voltage at a certain operating frequency or higher, the operating frequency is set in the gain calculation unit 22 in advance, and at or above this set operating frequency. The deviation amplification gain may be set to zero.

このように制御することで,低周波数時、すなわち電動機の始動時に、コンデンサ電圧の不平衡を抑制するように電力変換装置3が動作し、起動時のみ若干の振動が電動機より発生するものの問題なく始動でき、一旦始動が完了して運転周波数が高い状態で運転しているときには、2つのコンデンサの電圧アンバランスが著しく大きくなることもなく、所望の出力電圧を出力できる。   By controlling in this way, the power conversion device 3 operates so as to suppress unbalance of the capacitor voltage at a low frequency, that is, at the start of the motor, and there is no problem although slight vibration is generated from the motor only at the time of starting. When the engine can be started and once the operation is completed and the operation frequency is high, the voltage imbalance between the two capacitors is not significantly increased, and a desired output voltage can be output.

1…単相交流電源、2…2相電動機、3…電力変換装置、31…単相倍電圧整流回路、32…インバータ回路、11…電圧指令生成手段、16…キャリア発生器、22…ゲイン演算部。
DESCRIPTION OF SYMBOLS 1 ... Single phase alternating current power supply, 2 ... Two phase motor, 3 ... Power converter, 31 ... Single phase voltage doubler rectifier circuit, 32 ... Inverter circuit, 11 ... Voltage command production | generation means, 16 ... Carrier generator, 22 ... Gain calculation Department.

Claims (3)

第1の半導体スイッチと第2の半導体スイッチとを直列に接続して構成した第1の半導体スイッチ直列回路と、第3の半導体スイッチと第4の半導体スイッチとを直列に接続して構成した第2の半導体スイッチ直列回路と,第1のコンデンサと第2のコンデンサとを直列に接続して構成したコンデンサ直列回路とを並列接続し、前記第1の半導体スイッチと前記第2の半導体スイッチの直列接続点,前記第の半導体スイッチと前記第の半導体スイッチの直列接続点,前記第1のコンデンサと前記第2のコンデンサの直列接続点を負荷への接続端子とした電力変換装置において、
電力変換装置の出力電圧指令を生成する電圧指令生成手段と、前記第1のコンデンサの電圧と前記第2のコンデンサの電圧との偏差を演算する電圧偏差演算手段と、出力周波数に基づいて前記偏差の増幅ゲインを調整するゲイン調整手段と、前記偏差に前記増幅ゲインを乗じた値を前記出力電圧指令に加算する加算手段とを備えたことを特徴とする電力変換装置。
A first semiconductor switch series circuit configured by connecting a first semiconductor switch and a second semiconductor switch in series, and a first semiconductor switch configured by connecting a third semiconductor switch and a fourth semiconductor switch in series. Two semiconductor switch series circuits and a capacitor series circuit configured by connecting a first capacitor and a second capacitor in series, and connecting the first semiconductor switch and the second semiconductor switch in series. In a power conversion device having a connection point, a series connection point of the third semiconductor switch and the fourth semiconductor switch, and a series connection point of the first capacitor and the second capacitor as a connection terminal to a load,
A voltage command generating means for generating an output voltage command of the power converter, and a voltage deviation calculation means for calculating a deviation between the voltage and the voltage of the second capacitor of the first capacitor, on the basis of the output frequency A power converter comprising: gain adjusting means for adjusting an amplification gain of deviation; and addition means for adding a value obtained by multiplying the deviation by the amplification gain to the output voltage command .
出力周波数指令の増加に応じて前記増幅ゲインを低減させることを特徴とする請求項1に記載の電力変換装置。   The power conversion apparatus according to claim 1, wherein the amplification gain is reduced according to an increase in an output frequency command. 予め設定された運転周波数以上では前記増幅ゲインを零とすることを特徴とする請求項1または2に記載の電力変換装置。   The power conversion apparatus according to claim 1 or 2, wherein the amplification gain is set to zero at a preset operating frequency or higher.
JP2009297898A 2009-12-28 2009-12-28 Power converter Expired - Fee Related JP5540699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297898A JP5540699B2 (en) 2009-12-28 2009-12-28 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297898A JP5540699B2 (en) 2009-12-28 2009-12-28 Power converter

Publications (2)

Publication Number Publication Date
JP2011139593A JP2011139593A (en) 2011-07-14
JP5540699B2 true JP5540699B2 (en) 2014-07-02

Family

ID=44350439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297898A Expired - Fee Related JP5540699B2 (en) 2009-12-28 2009-12-28 Power converter

Country Status (1)

Country Link
JP (1) JP5540699B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000707B2 (en) * 2012-10-16 2015-04-07 Toshiba International Corporation Use of cooling fan in adjustable speed drives
JP6907855B2 (en) * 2017-09-22 2021-07-21 富士電機株式会社 3-level chopper and its control circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378494A (en) * 1989-08-17 1991-04-03 Matsushita Electric Ind Co Ltd Motor driving controller
JP3186369B2 (en) * 1993-09-09 2001-07-11 富士電機株式会社 Control circuit of three-level inverter
JP3188603B2 (en) * 1995-03-23 2001-07-16 オークマ株式会社 Inverter control device
JP2003219508A (en) * 2002-01-21 2003-07-31 Hitachi Ltd Vehicle controller
JP3783641B2 (en) * 2002-03-25 2006-06-07 日産自動車株式会社 Motor control device

Also Published As

Publication number Publication date
JP2011139593A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP6503277B2 (en) Controller and AC motor drive
WO2007129456A1 (en) Power converter
US11218107B2 (en) Control device for power converter
WO2016010159A1 (en) Direct-type ac power conversion device
US10951152B2 (en) Power conversion apparatus
JPWO2005088822A1 (en) MOTOR CONTROL DEVICE AND MODULATION WAVE COMMAND GENERATION METHOD FOR PWM INVERTER
JP2009207282A (en) Power supply circuit, and motor drive unit and air conditioner using the same
CN113330680A (en) Direct power conversion device
Rajaei et al. Single-phase induction motor drive system using z-source inverter
US11277077B2 (en) Power conversion device suppressing waveform distortion in an output voltage
WO2016114330A1 (en) Five-level power conversion device and control method
CN111656665B (en) Power conversion device
JP5953881B2 (en) 3-level rectifier controller
JP5286309B2 (en) Power supply circuit and control circuit thereof
JP5540699B2 (en) Power converter
Hiraide et al. Current harmonics reduction method of electrolytic capacitor-less diode rectifier using inverter-controlled IPM motor
JP7202244B2 (en) power converter
WO2018179234A1 (en) H-bridge converter and power conditioner
JP2019030042A (en) Electric power conversion system
JP2014007854A (en) Power conversion system
JP6513564B2 (en) Inverter device capable of resonance avoidance
JP6754022B1 (en) Power converter
WO2023226011A1 (en) Controlling of variable dc bus voltage in a motor
CN111819781B (en) Rectifying circuit device
JP6930275B2 (en) Power converter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees