JP5532383B2 - Method for producing conductive polymer film - Google Patents

Method for producing conductive polymer film Download PDF

Info

Publication number
JP5532383B2
JP5532383B2 JP2009142776A JP2009142776A JP5532383B2 JP 5532383 B2 JP5532383 B2 JP 5532383B2 JP 2009142776 A JP2009142776 A JP 2009142776A JP 2009142776 A JP2009142776 A JP 2009142776A JP 5532383 B2 JP5532383 B2 JP 5532383B2
Authority
JP
Japan
Prior art keywords
conductive polymer
conductive layer
substrate
coating agent
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009142776A
Other languages
Japanese (ja)
Other versions
JP2010285588A (en
Inventor
恭子 宮西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Original Assignee
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp filed Critical Nagase Chemtex Corp
Priority to JP2009142776A priority Critical patent/JP5532383B2/en
Publication of JP2010285588A publication Critical patent/JP2010285588A/en
Application granted granted Critical
Publication of JP5532383B2 publication Critical patent/JP5532383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、π共役系導電性高分子膜の製造方法に関する。さらに詳しくは、π共役系導電性高分子が付与された基材を、高湿度雰囲気下で処理または温水中で処理することによって、π共役系導電性高分子膜の導電性を向上させる製造方法に関する。   The present invention relates to a method for producing a π-conjugated conductive polymer film. In more detail, the manufacturing method which improves the electroconductivity of (pi) conjugated system conductive polymer film by processing the base material provided with (pi) conjugated system conductive polymer in a high-humidity atmosphere, or processing in warm water. About.

従来、包装フィルム、電子波シールド材、偏光フィルムなどの帯電を防止するために、π共役系導電性高分子膜を含むフィルムが好適に用いられている。さらに、タッチパネル、電子ペーパー、無機EL、有機ELなどの透明電極としても、π共役系導電性高分子膜の適用が開発されている。このようなπ共役系導電性高分子膜は、通常、π共役系導電性高分子を主成分とするコーティング剤を、基材にウェットコーティングして乾燥させることによって形成される。   Conventionally, a film including a π-conjugated conductive polymer film is suitably used to prevent charging of a packaging film, an electron wave shielding material, a polarizing film, and the like. Further, application of π-conjugated conductive polymer films has been developed as transparent electrodes such as touch panels, electronic paper, inorganic EL, and organic EL. Such a π-conjugated conductive polymer film is usually formed by wet-coating a substrate with a coating agent mainly containing a π-conjugated conductive polymer and drying it.

例えば、特許文献1は、ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとからなる導電性高分子を主成分とする水系の帯電防止コーティング用組成物を記載している。引用文献1は、このコーティング用組成物をプラスチック基材に塗布することによって、密着性、透明性、導電性、耐溶剤性、および耐水性に優れた塗膜が形成されることを記載している。   For example, Patent Document 1 describes an aqueous antistatic coating composition mainly composed of a conductive polymer composed of poly (3,4-dialkoxythiophene) and a polyanion. Cited Document 1 describes that a coating film excellent in adhesion, transparency, conductivity, solvent resistance, and water resistance is formed by applying this coating composition to a plastic substrate. Yes.

しかし、このような帯電防止コーティング用組成物は、一般的に、導電性向上剤として高沸点有機溶剤(N−メチルピロリドン、ジメチルスルホキシド、エチレングリコールなど)を含む。このような導電性向上剤は、特許文献2または特許文献3に記載されている。高沸点有機溶剤を含むコーティング用組成物を用いて製膜すると、多量の高沸点有機溶剤が揮発物として発生し、環境に対して負荷をかけることになる。さらに、製品中に残留する高沸点有機溶剤が、アウトガス発生原因となる点も問題である。   However, such antistatic coating compositions generally contain a high-boiling organic solvent (N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol, etc.) as a conductivity improver. Such a conductivity improver is described in Patent Document 2 or Patent Document 3. When a film is formed using a coating composition containing a high-boiling organic solvent, a large amount of the high-boiling organic solvent is generated as volatiles, which places a burden on the environment. Another problem is that the high-boiling organic solvent remaining in the product causes outgassing.

特許文献4は、ジカルボン酸を不揮発性の導電性向上剤として用い、π共役系導電性高分子膜の導電性を向上させることを記載している。しかし、導電性向上剤としてジカルボン酸を用いると、膜中でジカルボン酸が結晶化して目視で観察されるため、実用化という点では問題が残る。   Patent Document 4 describes that dicarboxylic acid is used as a nonvolatile conductivity improver to improve the conductivity of the π-conjugated conductive polymer film. However, when dicarboxylic acid is used as the conductivity improver, the dicarboxylic acid crystallizes in the film and is visually observed, so that there remains a problem in terms of practical use.

特開2002−60736号公報JP 2002-60736 A 特開2003−253143号公報JP 2003-253143 A 国際公開2004/106404号International Publication No. 2004/106404 特開2007−119548号公報JP 2007-119548 A

本発明の目的は、従来の問題を解決し、導電性向上剤を用いることなく、導電性の高いπ共役系導電性高分子膜を製造する方法を提供することにある。   An object of the present invention is to solve the conventional problems and provide a method for producing a highly conductive π-conjugated conductive polymer film without using a conductivity improver.

本発明者らは、上記課題を解決するために鋭意検討した結果、π共役系導電性高分子が付与された基材を、高湿度雰囲気下で処理または温水中で処理することによって、π共役系導電性高分子膜の導電性を向上させることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a substrate provided with a π-conjugated conductive polymer is treated in a high-humidity atmosphere or in warm water, thereby obtaining π-conjugation. It discovered that the electroconductivity of a conductive polymer film was improved, and completed this invention.

すなわち、本発明は、π共役系導電性高分子膜の製造方法を提供し、該方法は、基材に、π共役系導電性高分子を含有するコーティング剤を付与する工程;該基材に付与された該コーティング剤を乾燥させる工程;および該乾燥後の基材を、10℃以上の温度でかつ70%以上の湿度を有する高湿度雰囲気下で処理、または30℃以上の温水中で処理する工程を包含する。   That is, the present invention provides a method for producing a π-conjugated conductive polymer film, the method comprising applying a coating agent containing a π-conjugated conductive polymer to a substrate; Drying the applied coating agent; and treating the substrate after drying in a high humidity atmosphere having a temperature of 10 ° C. or higher and a humidity of 70% or higher, or in warm water of 30 ° C. or higher. The process of carrying out is included.

1つの実施態様では、上記高湿度雰囲気下での処理工程は、20℃以上の温度でかつ80%以上の湿度を有する高湿度雰囲気下で行われる。   In one embodiment, the treatment step in the high humidity atmosphere is performed in a high humidity atmosphere having a temperature of 20 ° C. or higher and a humidity of 80% or higher.

ある実施態様では、上記温水中での処理工程は、40℃以上の温水中で行われる。   In a certain embodiment, the process process in the said warm water is performed in 40 degreeC or more warm water.

他の実施態様では、上記π共役系導電性高分子は、ポリチオフェン誘導体である。   In another embodiment, the π-conjugated conductive polymer is a polythiophene derivative.

さらに他の実施態様では、上記ポリチオフェン誘導体が、ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体である。   In still another embodiment, the polythiophene derivative is a complex of poly (3,4-dialkoxythiophene) and a polyanion.

本発明によれば、導電性向上剤(高沸点有機溶剤)を用いることなく、導電性の高いπ共役系導電性高分子膜を製造し得る。さらに、本発明の方法で得られるπ共役系導電性高分子膜は、高沸点有機溶剤を用いないため、アウトガスが発生せず、環境に対する負荷も少ない。   According to the present invention, a π-conjugated conductive polymer film having high conductivity can be produced without using a conductivity improver (high boiling point organic solvent). Furthermore, since the π-conjugated conductive polymer film obtained by the method of the present invention does not use a high boiling point organic solvent, no outgas is generated and the burden on the environment is small.

以下、本発明のπ共役系導電性高分子膜の製造方法(以下、本発明の製造方法と記載する場合がある)について、詳細に説明する。本発明の製造方法は、基材に、π共役系導電性高分子を含有するコーティング剤を付与する工程(付与工程);該基材に付与された該コーティング剤を乾燥させる工程(乾燥工程);および該乾燥後の基材を、10℃以上の温度でかつ70%以上の湿度を有する高湿度雰囲気下で処理、または30℃以上の温水中で処理する工程(処理工程)を包含する。   Hereinafter, the method for producing a π-conjugated conductive polymer film of the present invention (hereinafter sometimes referred to as the production method of the present invention) will be described in detail. The production method of the present invention includes a step of applying a coating agent containing a π-conjugated conductive polymer to a substrate (application step); a step of drying the coating agent applied to the substrate (drying step) And a step of treating the substrate after drying in a high humidity atmosphere having a temperature of 10 ° C. or higher and a humidity of 70% or higher, or in warm water of 30 ° C. or higher (processing step).

本明細書において、「高湿度雰囲気下で処理」とは、10℃以上の温度でかつ70%以上の湿度を有する雰囲気下に暴露することをいい、例えば、10℃以上の温度でかつ70%以上の湿度に設定した恒温恒湿槽に静置することなどが挙げられる。   In this specification, “treatment in a high humidity atmosphere” means exposure to an atmosphere having a temperature of 10 ° C. or higher and a humidity of 70% or higher. For example, the temperature is 10 ° C. or higher and 70%. For example, it may be left in a constant temperature and humidity chamber set to the above humidity.

さらに、本明細書において、「温水中で処理」とは、温水中に浸漬することをいう。   Further, in the present specification, “treatment in warm water” means soaking in warm water.

(付与工程)
本発明の製造方法は、基材に、π共役系導電性高分子を含有するコーティング剤を付与する工程を包含する。
(Granting process)
The production method of the present invention includes a step of applying a coating agent containing a π-conjugated conductive polymer to a substrate.

本発明の製造方法に用いる基材は、特に限定されず、その材料、形状、構造、大きさなどは、目的に応じて適宜選択し得る。   The base material used in the production method of the present invention is not particularly limited, and the material, shape, structure, size, and the like can be appropriately selected according to the purpose.

例えば、基材の材料としては、シリコンウェハー、ガラス板などの無機基材;ポリエステル、ポリイミド、ポリアミド、ポリスルホン、ポリカーボネート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、これらの混合物、これらのポリマーの原料であるモノマーの組み合わせを構成単位とする共重合体(ランダム共重合体、ブロック共重合体など)など;フェノール樹脂、エポキシ樹脂、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)などのプラスチックシート(プラスチックフィルム)などが挙げられる。   For example, the material of the substrate includes inorganic substrates such as silicon wafers and glass plates; polyester, polyimide, polyamide, polysulfone, polycarbonate, polyvinyl chloride, polyethylene, polypropylene, mixtures thereof, and monomers that are raw materials for these polymers Copolymers (random copolymers, block copolymers, etc.) with a combination of the above as structural units; Plastic sheets (plastic films) such as phenol resins, epoxy resins, acrylonitrile-butadiene-styrene copolymers (ABS resins) Etc.

これらの材料は、単独で用いてもよく、2種以上を併用してもよい。これらの中でも、優れた透明性および可撓性を有する点で、ポリエチレンテレフタレート(PET)樹脂またはポリエチレンナフタレート(PEN)樹脂が好ましい。基材の形状としては、例えば、シート(フィルム)状、板状などが好適に挙げられる。   These materials may be used alone or in combination of two or more. Among these, a polyethylene terephthalate (PET) resin or a polyethylene naphthalate (PEN) resin is preferable in that it has excellent transparency and flexibility. Suitable examples of the shape of the substrate include a sheet (film) shape and a plate shape.

本発明の製造方法に用いるコーティング剤は、π共役系導電性高分子を含有する。π共役系導電性高分子は特に限定されず、例えば、以下のモノマーを重合させて得られるポリマーが挙げられる。   The coating agent used in the production method of the present invention contains a π-conjugated conductive polymer. The π-conjugated conductive polymer is not particularly limited, and examples thereof include polymers obtained by polymerizing the following monomers.

ピロール、N−メチルピロール、N−エチルピロール、N−フェニルピロール、N−ナフチルピロール、N−メチル−3−メチルピロール、N−メチル−3−エチルピロール、N−フェニル−3−メチルピロール、N−フェニル−3−エチルピロール、3−メチルピロール、3−エチルピロール、3−n−ブチルピロール、3−メトキシピロール、3−エトキシピロール、3−n−プロポキシピロール、3−n−ブトキシピロール、3−フェニルピロール、3−トルイルピロール、3−ナフチルピロール、3−フェノキシピロール、3−メチルフェノキシピロール、3−アミノピロール、3−ジメチルアミノピロール、3−ジエチルアミノピロール、3−ジフェニルアミノピロール、3−メチルフェニルアミノピロール、3−フェニルナフチルアミノピロールなどのピロール誘導体;アニリン、o−クロロアニリン、m−クロロアニリン、p−クロロアニリン、o−メトキシアニリン、m−メトキシアニリン、p−メトキシアニリン、o−エトキシアニリン、m−エトキシアニリン、p−エトキシアニリン、o−メチルアニリン、m−メチルアニリン、p−メチルアニリンなどのアニリン誘導体;チオフェン、3−メチルチオフェン、3−n−ブチルチオフェン、3−n−ペンチルチオフェン、3−n−ヘキシルチオフェン、3−n−ヘプチルチオフェン、3−n−オクチルチオフェン、3−n−ノニルチオフェン、3−n−デシルチオフェン、3−n−ウンデシルチオフェン、3−n−ドデシルチオフェン、3−メトキシチオフェン、3−ナフトキシチオフェン、3,4−エチレンジオキシチオフェンなどのチオフェン誘導体。   Pyrrole, N-methylpyrrole, N-ethylpyrrole, N-phenylpyrrole, N-naphthylpyrrole, N-methyl-3-methylpyrrole, N-methyl-3-ethylpyrrole, N-phenyl-3-methylpyrrole, N -Phenyl-3-ethylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-butylpyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-n-propoxypyrrole, 3-n-butoxypyrrole, 3 -Phenylpyrrole, 3-toluylpyrrole, 3-naphthylpyrrole, 3-phenoxypyrrole, 3-methylphenoxypyrrole, 3-aminopyrrole, 3-dimethylaminopyrrole, 3-diethylaminopyrrole, 3-diphenylaminopyrrole, 3-methyl Phenylaminopyrrole, 3-phenylnaphthyl Pyrrole derivatives such as aminopyrrole; aniline, o-chloroaniline, m-chloroaniline, p-chloroaniline, o-methoxyaniline, m-methoxyaniline, p-methoxyaniline, o-ethoxyaniline, m-ethoxyaniline, p -Aniline derivatives such as ethoxyaniline, o-methylaniline, m-methylaniline, p-methylaniline; thiophene, 3-methylthiophene, 3-n-butylthiophene, 3-n-pentylthiophene, 3-n-hexylthiophene 3-n-heptylthiophene, 3-n-octylthiophene, 3-n-nonylthiophene, 3-n-decylthiophene, 3-n-undecylthiophene, 3-n-dodecylthiophene, 3-methoxythiophene, 3 -Naphthoxythiophene, 3,4-ethylene Thiophene derivatives such as dioxythiophene.

これらのモノマーは、単独で用いてもよく、2種以上を併用してもよい。単独で用いる場合は、ホモポリマーが得られ、2種以上を用いる場合は、ランダム共重合体、ブロック共重合体などの共重合体が得られる。これらの中でも、ピロール、アニリン、チオフェン、3,4−エチレンジオキシチオフェンなどが好ましく、3,4−エチレンジオキシチオフェンがより好ましい。   These monomers may be used independently and may use 2 or more types together. When used alone, a homopolymer is obtained, and when two or more kinds are used, a copolymer such as a random copolymer or a block copolymer is obtained. Among these, pyrrole, aniline, thiophene, 3,4-ethylenedioxythiophene and the like are preferable, and 3,4-ethylenedioxythiophene is more preferable.

本発明の製造方法に用いるコーティング剤は、必要に応じて、ドーパント、バインダー樹脂、塗布性向上剤など一般的にコーティング剤に含まれる成分を含有し得る。   The coating agent used in the production method of the present invention may contain components generally contained in the coating agent, such as a dopant, a binder resin, and a coating property improver, as necessary.

また、電導度を向上させるために導電性高分子層にドーパントを添加することが望ましい。ドーパントとしては、例えば、ヘキサフルオロリン、ヘキサフルオロヒ素、ヘキサフルオロアンチモン、テトラフルオロホウ素、過塩素酸などのハロゲン化物アニオン;ヨウ素、臭素、塩素などのハロゲンアニオン;メタンスルホン酸、ドデシルスルホン酸などのアルキル基置換有機スルホン酸アニオン;カンファースルホン酸などの環状スルホン酸アニオン;ベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンジスルホン酸などのアルキル基置換または無置換のベンゼンモノあるいはジスルホン酸アニオン;2−ナフタレンスルホン酸、1,7−ナフタレンジスルホン酸などの1〜3個のスルホン酸基を有するアルキル基置換または無置換ナフタレンスルホン酸アニオン;アントラセンスルホン酸、アントラキノンスルホン酸、アルキルビフェニルスルホン酸、ビフェニルジスルホン酸などのアルキル基置換または無置換のビフェニルスルホン酸イオン;ポリスチレンスルホン酸、スルホン化ポリエーテル、スルホン化ポリエステル、スルホン化ポリイミド、ナフタレンスルホン酸ホルマリン縮合体などの高分子スルホン酸アニオンあるいは置換または無置換の芳香族スルホン酸アニオン;ビスサルチレートホウ素、ビスカテコレートホウ素などのホウ素化合物アニオン;モリブドリン酸、タングストリン酸、タングストモリブドリン酸などのヘテロポリ酸アニオンなどが挙げられる。これらのドーパントは、単独で用いてもよく、2種以上を併用してもよい。   Further, it is desirable to add a dopant to the conductive polymer layer in order to improve conductivity. Examples of the dopant include halide anions such as hexafluorophosphorus, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, and perchloric acid; halogen anions such as iodine, bromine, and chlorine; methanesulfonic acid, dodecylsulfonic acid, and the like. Alkyl group-substituted organic sulfonate anions; cyclic sulfonate anions such as camphor sulfonic acid; alkyl group-substituted or unsubstituted benzene mono- or disulfonate anions such as benzene sulfonic acid, paratoluene sulfonic acid, dodecyl benzene sulfonic acid, and benzene disulfonic acid Alkyl group-substituted or unsubstituted naphthalene sulfonate anions having 1 to 3 sulfonic acid groups such as 2-naphthalene sulfonic acid and 1,7-naphthalenedisulfonic acid; anthracene sulfonic acid, a Alkyl group-substituted or unsubstituted biphenyl sulfonate ions such as traquinone sulfonic acid, alkyl biphenyl sulfonic acid, biphenyl disulfonic acid; polystyrene sulfonic acid, sulfonated polyether, sulfonated polyester, sulfonated polyimide, naphthalene sulfonate formalin condensate Polymer sulfonate anions such as substituted or unsubstituted aromatic sulfonate anions; Boron compound anions such as bissaltylate boron and biscatecholate boron; Heteropoly such as molybdophosphoric acid, tungstophosphoric acid, tungstomolybdophosphoric acid And acid anions. These dopants may be used independently and may use 2 or more types together.

ドーパントの含有量は、π共役系導電性高分子1モルに対して0.1〜10モルの範囲であることが好ましく、1〜7モルの範囲であることがより好ましい。ドーパントの含有量が0.1モル未満の場合、π共役系導電性高分子へのドーピング効果が弱くなる傾向にあり、ドーパントを用いる効果が得られない。特に、ドーパントとしてポリアニオンを用いた場合、ポリアニオンの含有量が0.1モル未満になると、ドーパントを用いる効果が得られないだけではなく、溶媒への分散性および溶解性が低くなり、均一な分散液を得ることが困難になることがある。一方、ドーパントの含有量が10モルを超える場合、π共役系導電性高分子が占める割合が低くなり、十分な導電性が得られにくくなる。   The content of the dopant is preferably in the range of 0.1 to 10 mol, and more preferably in the range of 1 to 7 mol, with respect to 1 mol of the π-conjugated conductive polymer. When the content of the dopant is less than 0.1 mol, the doping effect on the π-conjugated conductive polymer tends to be weak, and the effect of using the dopant cannot be obtained. In particular, when a polyanion is used as a dopant, if the polyanion content is less than 0.1 mol, not only the effect of using the dopant is not obtained, but also the dispersibility and solubility in the solvent are lowered, and uniform dispersion is achieved. It may be difficult to obtain a liquid. On the other hand, when the content of the dopant exceeds 10 moles, the proportion of the π-conjugated conductive polymer is low, and it is difficult to obtain sufficient conductivity.

バインダー樹脂としては、溶剤に可溶な樹脂または溶剤に分散可能な樹脂が好ましい。例えば、バインダー樹脂としては、熱硬化性樹脂が好ましく、このような樹脂としては、メラミン樹脂、ポリウレタン樹脂、エポキシ樹脂、アルキド樹脂、不飽和ポリエステル樹脂などが挙げられる。これらのバインダー樹脂は、単独で用いてもよく、2種以上を併用してもよい。   As the binder resin, a resin soluble in a solvent or a resin dispersible in a solvent is preferable. For example, the binder resin is preferably a thermosetting resin, and examples of such a resin include melamine resin, polyurethane resin, epoxy resin, alkyd resin, and unsaturated polyester resin. These binder resins may be used alone or in combination of two or more.

π共役系導電性高分子の微粒子を溶剤に分散した分散液または溶剤に溶解したコーティング剤を、基材上にコーティングし、乾燥して導電層(導電性高分子膜)を形成すると、π共役系導電性高分子微粒子同士が固く網目状に絡み合って、再び溶剤に溶解しなくなる。   When a dispersion of π-conjugated conductive polymer fine particles dispersed in a solvent or a coating agent dissolved in a solvent is coated on a substrate and dried to form a conductive layer (conductive polymer film), π-conjugated The conductive polymer fine particles are tightly entangled with each other in the form of a network and are not dissolved again in the solvent.

しかし、この導電層上に、さらに溶剤系のコーティング剤を付与する際、コーティング方式によっては物理的にπ共役系導電性高分子微粒子が脱落する場合がある。したがって、このような脱落を防止し得るため、導電性高分子微粒子の分散液に、有機溶媒に可溶なバインダー樹脂を混合するのが好ましい。   However, when a solvent-based coating agent is further applied on the conductive layer, the π-conjugated conductive polymer fine particles may physically fall off depending on the coating method. Therefore, in order to prevent such falling off, it is preferable to mix a binder resin soluble in an organic solvent into the dispersion of conductive polymer fine particles.

導電層における導電性高分子とバインダー樹脂との比率は、好ましくは固形分比1:0〜1:20であり、より好ましくは1:0〜1:10である。   The ratio of the conductive polymer to the binder resin in the conductive layer is preferably a solid content ratio of 1: 0 to 1:20, more preferably 1: 0 to 1:10.

塗布性向上剤は、組成物の各成分と溶剤とを混合して導電性コーティング剤を形成した場合に、これを基体表面に塗布するのを容易にする機能を有する。   The coating property improver has a function of facilitating application of the composition on the substrate surface when the components of the composition and the solvent are mixed to form a conductive coating agent.

塗布性向上剤は特に限定されず、目的に応じて適宜選択し得る。例えば、水溶性アクリル系共重合物、シリコン変性水溶性アクリルポリマー、ポリエーテル変性水溶性ジメチルシロキサン、フッ素系変性ポリマーなどが挙げられ、これらの中でも、ポリエーテル変性水溶性ジメチルシロキサンが好ましい。塗布性向上剤は、単独で用いてもよく、2種以上を併用してもよい。   The coatability improver is not particularly limited and may be appropriately selected depending on the purpose. For example, water-soluble acrylic copolymer, silicon-modified water-soluble acrylic polymer, polyether-modified water-soluble dimethylsiloxane, fluorine-based modified polymer and the like can be mentioned, and among these, polyether-modified water-soluble dimethylsiloxane is preferable. A coatability improver may be used independently and may use 2 or more types together.

塗布性向上剤の含有量は特に限定されず、通常、コーティング剤中に好ましくは0.01質量%〜10質量%、より好ましくは0.1質量%〜1質量%の割合で含有される。   The content of the coatability improver is not particularly limited, and is usually preferably 0.01 to 10% by mass, more preferably 0.1 to 1% by mass in the coating agent.

溶剤は、π共役系導電性高分子などを分散または溶解させるために用いられる。本発明の製造方法で用いる溶剤は、導電性向上剤として用いられる高沸点有機溶剤とは異なり、沸点が高くても120〜130℃程度の溶剤である。このような溶剤としては、例えば、水、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、アセトン、メチルエチルケトン、メチルブチルケトン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、プロピオン酸メチル、アセトニトリル、テトラヒドロフラン、ジオキサンなどが挙げられる。これらの中でも、水またはエタノールが好ましい。溶剤は、単独で用いてもよく、2種以上を併用してもよい。   The solvent is used for dispersing or dissolving the π-conjugated conductive polymer. The solvent used in the production method of the present invention is a solvent having a high boiling point of about 120 to 130 ° C., unlike the high boiling point organic solvent used as a conductivity improver. Examples of such solvents include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, methyl butyl ketone, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, and methyl propionate. , Acetonitrile, tetrahydrofuran, dioxane and the like. Among these, water or ethanol is preferable. A solvent may be used independently and may use 2 or more types together.

溶剤の量は、π共役系導電性高分子などを溶解あるいは均一に分散させ、コーティング剤として基材に付与し得る量であればよい。通常、コーティング剤中の固形分濃度が好ましくは20質量%以下となるように溶剤が用いられ、より好ましくは0.1〜10質量%である。固形分濃度が0.1質量%未満の場合、基材への濡れ性が不足することがある。一方、固形分濃度が20質量%を超える場合、均一に付与するのが難しくなり、形成される導電層の外観に劣ることがある。さらに、コーティング剤の貯蔵安定性が悪くなる場合がある。   The amount of the solvent may be an amount that can dissolve or uniformly disperse the π-conjugated conductive polymer and can be applied to the substrate as a coating agent. Usually, the solvent is used so that the solid content concentration in the coating agent is preferably 20% by mass or less, and more preferably 0.1 to 10% by mass. When the solid content concentration is less than 0.1% by mass, the wettability to the substrate may be insufficient. On the other hand, when solid content concentration exceeds 20 mass%, it becomes difficult to provide uniformly and it may be inferior to the external appearance of the conductive layer formed. Furthermore, the storage stability of the coating agent may deteriorate.

組成物中に含有され得るその他の成分は、特に限定されず、当該分野で用いられる一般的な添加剤などの中から適宜選択して用い得る。例えば、紫外線吸収剤、酸化防止剤、重合禁止剤、表面改質剤、脱泡剤、可塑剤、抗菌剤、界面活性剤、金属微粒子などが挙げられる。これらの成分は、単独で用いてもよく、2種以上を併用してもよい。   Other components that can be contained in the composition are not particularly limited, and can be appropriately selected from general additives used in the field. For example, ultraviolet absorbers, antioxidants, polymerization inhibitors, surface modifiers, defoaming agents, plasticizers, antibacterial agents, surfactants, metal fine particles, and the like can be mentioned. These components may be used independently and may use 2 or more types together.

本発明の製造方法において、基材にコーティング剤を付与する方法は、特に限定されず、例えば、塗布法、印刷法などが好適に挙げられる。   In the production method of the present invention, the method for applying the coating agent to the substrate is not particularly limited, and examples thereof include a coating method and a printing method.

塗布法としては、公知の方法の中から適宜選択し得、例えば、スピンコート法、ローラコート法、バーコート法、ディップコート法、グラビアコート法、カーテンコート法、ダイコート法、スプレーコート法、ドクターコート法、ニーダーコート法などが挙げられる。   The coating method can be appropriately selected from known methods, for example, spin coating method, roller coating method, bar coating method, dip coating method, gravure coating method, curtain coating method, die coating method, spray coating method, doctor Examples thereof include a coating method and a kneader coating method.

印刷法としては、公知の方法の中から適宜選択し得、例えば、スクリーン印刷法、スプレー印刷法、インクジェット印刷法、凸版印刷法、凹版印刷法、平版印刷法などが挙げられる。   As a printing method, it can select suitably from well-known methods, For example, a screen printing method, a spray printing method, an inkjet printing method, a relief printing method, an intaglio printing method, a lithographic printing method etc. are mentioned.

付与されるコーティング剤の量は、目的に応じて適宜選択し得、特に限定されない。例えば、乾燥後の導電層の厚みが、好ましくは0.01μm〜10μm、より好ましくは0.1μm〜1μmとなるように付与される。   The amount of the coating agent to be applied can be appropriately selected according to the purpose and is not particularly limited. For example, the thickness of the conductive layer after drying is preferably 0.01 μm to 10 μm, more preferably 0.1 μm to 1 μm.

(乾燥工程)
本発明の製造方法は、基材に付与されたコーティング剤を乾燥させる工程を包含する。乾燥は、通常の通風乾燥機、熱風乾燥機、赤外線乾燥機、ホットプレートなどの乾燥機などを用いて行われる。乾燥温度は適宜選択し得、例えば60℃〜150℃が好ましい。60℃未満の場合、溶剤が完全に留去できない恐れがあり、150℃を超える場合、基材の材質によっては耐久性に悪影響がある恐れがある。
(Drying process)
The manufacturing method of this invention includes the process of drying the coating agent provided to the base material. Drying is performed using a normal ventilation dryer, a hot air dryer, an infrared dryer, a dryer such as a hot plate, or the like. The drying temperature can be appropriately selected. For example, 60 ° C to 150 ° C is preferable. If the temperature is lower than 60 ° C, the solvent may not be completely distilled off. If the temperature exceeds 150 ° C, the durability may be adversely affected depending on the material of the substrate.

(処理工程)
本発明の製造方法は、乾燥後の基材を、10℃以上の温度でかつ70%以上の湿度を有する高湿度雰囲気下で処理、または30℃以上の温水中で処理する工程を包含する。
(Processing process)
The production method of the present invention includes a step of treating the substrate after drying in a high humidity atmosphere having a temperature of 10 ° C. or higher and a humidity of 70% or higher, or in warm water of 30 ° C. or higher.

高湿度雰囲気下で処理する場合、温度は、好ましくは20℃以上、より好ましくは40℃以上であり、好ましくは150℃以下、より好ましくは140℃以下であり得る。湿度は、好ましくは75%以上、より好ましくは80%以上であり得る。   When processing in a high humidity atmosphere, the temperature is preferably 20 ° C or higher, more preferably 40 ° C or higher, preferably 150 ° C or lower, more preferably 140 ° C or lower. The humidity can be preferably 75% or more, more preferably 80% or more.

一方、温水中で処理する場合、水温は、好ましくは40℃以上、より好ましくは60℃以上であり、好ましくは100℃以下、より好ましくは95℃以下であり得る。   On the other hand, when processing in warm water, water temperature becomes like this. Preferably it is 40 degreeC or more, More preferably, it is 60 degreeC or more, Preferably it is 100 degrees C or less, More preferably, it may be 95 degrees C or less.

処理時間は、処理温度、高分子膜の用途、生産性などを考慮して適宜設定し得る。高湿度雰囲気下で処理する場合、処理時間は特に限定されないが、好ましくは1時間〜1000時間、より好ましくは1時間〜240時間であり得る。一方、温水中で処理する場合、処理時間は特に限定されないが、好ましくは1時間〜1000時間、より好ましくは1時間〜240時間であり得る。   The treatment time can be appropriately set in consideration of the treatment temperature, the use of the polymer film, productivity, and the like. When processing in a high-humidity atmosphere, the processing time is not particularly limited, but may be preferably 1 hour to 1000 hours, more preferably 1 hour to 240 hours. On the other hand, when processing in warm water, processing time is not specifically limited, However, Preferably it is 1 hour-1000 hours, More preferably, it may be 1 hour-240 hours.

このように、乾燥後の基材を湿潤な環境下に暴露(処理)することによって、導電性向上剤を用いなくても、導電性の高いπ共役系導電性高分子膜が得られる。   In this way, by exposing (treating) the dried substrate in a wet environment, a highly conductive π-conjugated conductive polymer film can be obtained without using a conductivity improver.

本発明の製造方法で得られる高分子膜の初期表面抵抗率は、特に限定されず、高分子膜の用途に応じて適宜選択し得る。表面抵抗率は、例えば、JIS K6911などに従って測定することができ、あるいは、市販の表面抵抗率計を用いて簡便に測定することもできる。   The initial surface resistivity of the polymer film obtained by the production method of the present invention is not particularly limited, and can be appropriately selected according to the use of the polymer film. The surface resistivity can be measured according to, for example, JIS K6911 or can be simply measured using a commercially available surface resistivity meter.

以下、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to a following example.

(調製例1:コーティング剤の調製)
10.4質量部のポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体の水分散体(H.C.スタルク株式会社製:BaytronPH500、固形分1.2質量%)、2.7質量部のポリエステル樹脂水分散体(ナガセケムテックス株式会社製:ガブセンES−210、固形分25.0質量%)、4.2質量部のメラミン系架橋剤(住友化学株式会社製:SumitexResinM−3)、適量の水、適量の変性エタノール、少量の界面活性剤、および少量のレベリング剤を混合して1時間撹拌した。次いで、得られた混合物を400メッシュのSUS製の篩でろ過し、コーティング剤Aを調製した。
(Preparation Example 1: Preparation of coating agent)
10.4 parts by mass of an aqueous dispersion of a complex of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid (HC Starck Co., Ltd .: Baytron PH500, solid content 1.2% by mass), 2.7 parts by mass of polyester resin aqueous dispersion (manufactured by Nagase ChemteX Corporation: Gabsen ES-210, solid content 25.0% by mass), 4.2 parts by mass of melamine-based crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd .: Sumitex Resin M-3), an appropriate amount of water, an appropriate amount of denatured ethanol, a small amount of surfactant, and a small amount of leveling agent were mixed and stirred for 1 hour. Subsequently, the obtained mixture was filtered through a 400 mesh SUS sieve to prepare a coating agent A.

(調製例2:コーティング剤の調製)
10.4質量部のポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体の水分散体(H.C.スタルク株式会社製:BaytronP、固形分1.3質量%)、2.7質量部のポリエステル樹脂水分散体(ナガセケムテックス株式会社製:ガブセンES−210、固形分25.0質量%)、4.2質量部のメラミン系架橋剤(住友化学株式会社製:SumitexResinM−3)、適量の水、適量の変性エタノール、少量の界面活性剤、および少量のレベリング剤を混合して1時間撹拌した。次いで、得られた混合物を400メッシュのSUS製の篩でろ過し、コーティング剤Bを調製した。
(Preparation Example 2: Preparation of coating agent)
An aqueous dispersion of a complex of 10.4 parts by mass of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid (manufactured by HC Starck Co., Ltd .: BaytronP, solid content 1.3% by mass), 2.7 parts by mass of polyester resin aqueous dispersion (manufactured by Nagase ChemteX Corporation: Gabsen ES-210, solid content 25.0% by mass), 4.2 parts by mass of melamine-based crosslinking agent (manufactured by Sumitomo Chemical Co., Ltd .: Sumitex Resin M-3), an appropriate amount of water, an appropriate amount of denatured ethanol, a small amount of surfactant, and a small amount of leveling agent were mixed and stirred for 1 hour. Subsequently, the obtained mixture was filtered through a 400 mesh SUS sieve to prepare a coating agent B.

(実施例1)
基材(東レルミラーT60(東レ株式会社製:厚み188μm))上に、上記調製例1で得られたコーティング剤Aを、ワイヤーバーNo.8を用いてバーコート法により塗布した(ウエット膜厚12μm)。次いで、130℃で15分乾燥させることにより、基材上に導電層(膜厚0.12μm)を形成した。次いで、導電層の表面抵抗率を、JIS K6911に従い、三菱化学株式会社製ロレスタ−GP(MCP−T600)を用いて測定した。結果を表1に示す。
Example 1
The coating agent A obtained in Preparation Example 1 above was applied to a wire bar No. on a base material (Toray Mirror T60 (Toray Industries, Inc .: thickness 188 μm)). 8 was applied by a bar coating method (wet film thickness 12 μm). Subsequently, the conductive layer (film thickness 0.12 micrometer) was formed on the base material by making it dry at 130 degreeC for 15 minutes. Subsequently, the surface resistivity of the conductive layer was measured according to JIS K6911 using Loresta GP (MCP-T600) manufactured by Mitsubishi Chemical Corporation. The results are shown in Table 1.

次いで、この導電層が形成された基材を、温度が23℃でかつ湿度が85%の環境下に静置し、240時間後の導電層の表面抵抗率を測定した。結果を表1に示す。   Next, the substrate on which the conductive layer was formed was left in an environment where the temperature was 23 ° C. and the humidity was 85%, and the surface resistivity of the conductive layer after 240 hours was measured. The results are shown in Table 1.

(実施例2)
温度が40℃でかつ湿度が100%の環境下に120時間静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、120時間後の導電層の表面抵抗率を測定した。結果を表1に示す。
(Example 2)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that it was allowed to stand for 120 hours in an environment where the temperature was 40 ° C. and the humidity was 100%, and the surface resistance of the conductive layer after 120 hours. The rate was measured. The results are shown in Table 1.

(実施例3)
温度が60℃でかつ湿度が93%の環境下に静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
(Example 3)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that it was left in an environment where the temperature was 60 ° C. and the humidity was 93%, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

(実施例4)
温度が80℃でかつ湿度が100%の環境下に120時間静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、120時間後の導電層の表面抵抗率を測定した。結果を表1に示す。
Example 4
A conductive layer was formed on the base material in the same procedure as in Example 1 except that it was left to stand for 120 hours in an environment where the temperature was 80 ° C. and the humidity was 100%, and the surface resistance of the conductive layer after 120 hours. The rate was measured. The results are shown in Table 1.

(実施例5)
温度が100℃でかつ湿度が100%の環境下に1時間静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、1時間後の導電層の表面抵抗率を測定した。結果を表1に示す。
(Example 5)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that it was allowed to stand for 1 hour in an environment where the temperature was 100 ° C. and the humidity was 100%, and the surface resistance of the conductive layer after 1 hour The rate was measured. The results are shown in Table 1.

(実施例6)
温度が120℃でかつ湿度が100%の環境下に1時間静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、1時間後の導電層の表面抵抗率を測定した。結果を表1に示す。
(Example 6)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that it was left to stand in an environment where the temperature was 120 ° C. and humidity was 100% for 1 hour, and the surface resistance of the conductive layer after 1 hour The rate was measured. The results are shown in Table 1.

(実施例7)
温度が134℃でかつ湿度が100%の環境下に1時間静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、1時間後の導電層の表面抵抗率を測定した。結果を表1に示す。
(Example 7)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that it was allowed to stand for 1 hour in an environment where the temperature was 134 ° C. and humidity was 100%, and the surface resistance of the conductive layer after 1 hour The rate was measured. The results are shown in Table 1.

(実施例8)
上記調製例2で得られたコーティング剤Bを用いたこと以外は、実施例5と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
(Example 8)
A conductive layer was formed on the substrate in the same procedure as in Example 5 except that the coating agent B obtained in Preparation Example 2 was used, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

(実施例9)
上記調製例2で得られたコーティング剤Bを用いたこと以外は、実施例6と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
Example 9
A conductive layer was formed on the substrate in the same procedure as in Example 6 except that the coating agent B obtained in Preparation Example 2 was used, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

(実施例10)
上記調製例2で得られたコーティング剤Bを用いたこと以外は、実施例7と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
(Example 10)
A conductive layer was formed on the substrate in the same procedure as in Example 7 except that the coating agent B obtained in Preparation Example 2 was used, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

(比較例1)
温度が5℃でかつ湿度が93%の環境下に静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
(Comparative Example 1)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that it was left in an environment where the temperature was 5 ° C. and the humidity was 93%, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

(比較例2)
温度が23℃でかつ湿度が60%の環境下に静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
(Comparative Example 2)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that the sample was left standing in an environment where the temperature was 23 ° C. and the humidity was 60%, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

(比較例3)
温度が40℃でかつ湿度が46%の環境下に静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
(Comparative Example 3)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that the sample was left standing in an environment where the temperature was 40 ° C. and the humidity was 46%, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

(比較例4)
温度が80℃でかつ湿度が10%の環境下に静置したこと以外は、実施例1と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。結果を表1に示す。
(Comparative Example 4)
A conductive layer was formed on the substrate in the same procedure as in Example 1 except that the sample was left standing in an environment where the temperature was 80 ° C. and the humidity was 10%, and the surface resistivity of the conductive layer was measured. The results are shown in Table 1.

Figure 0005532383
Figure 0005532383

表1に示すように、導電層が形成された基材を、高湿度雰囲気下で処理(静置)することによって、膜の導電性が向上することがわかった。   As shown in Table 1, it was found that the conductivity of the film was improved by treating (standing) the base material on which the conductive layer was formed in a high humidity atmosphere.

なお、高湿度雰囲気下処理後の表面抵抗率が、処理前の表面抵抗率の何倍であるかを、表面抵抗変化率として示した。この表面抵抗変化率の値が小さいほど、効率よく表面抵抗率を低下させていることがわかる。   In addition, it was shown as surface resistance change rate how many times the surface resistivity after a process in a high humidity atmosphere is the surface resistivity before a process. It can be seen that the smaller the value of the surface resistivity change rate, the more efficiently the surface resistivity is lowered.

(実施例11)
実施例1と同様の手順で基材上に導電層を形成し、導電層の表面抵抗率を測定した。次いで、この導電層が形成された基材を、60℃の温水に24時間浸漬した。次いで、温水から基材を取り出し、乾燥後、導電層の表面抵抗率を測定した。結果を表2に示す。
(Example 11)
A conductive layer was formed on the substrate in the same procedure as in Example 1, and the surface resistivity of the conductive layer was measured. Next, the base material on which the conductive layer was formed was immersed in warm water at 60 ° C. for 24 hours. Subsequently, the base material was taken out from the warm water, and after drying, the surface resistivity of the conductive layer was measured. The results are shown in Table 2.

(実施例12)
80℃の熱水に1時間浸漬したこと以外は、実施例11と同様の手順で基材上に導電層を形成し、1時間後の導電層の表面抵抗率を測定した。結果を表2に示す。
(Example 12)
A conductive layer was formed on the substrate in the same procedure as in Example 11 except that it was immersed in hot water at 80 ° C. for 1 hour, and the surface resistivity of the conductive layer after 1 hour was measured. The results are shown in Table 2.

(比較例5)
23℃の水に240時間浸漬したこと以外は、実施例11と同様の手順で基材上に導電層を形成し、240時間後の導電層の表面抵抗率を測定した。結果を表2に示す。
(Comparative Example 5)
A conductive layer was formed on the substrate in the same procedure as in Example 11 except that it was immersed in water at 23 ° C. for 240 hours, and the surface resistivity of the conductive layer after 240 hours was measured. The results are shown in Table 2.

Figure 0005532383
Figure 0005532383

表2に示すように、導電層が形成された基材を、温水中で処理(浸漬)することによって、膜の導電性が向上することがわかった。   As shown in Table 2, it was found that the conductivity of the film was improved by treating (immersing) the base material on which the conductive layer was formed in warm water.

本発明によれば、導電性向上剤(高沸点有機溶剤)を用いることなく、導電性の高いπ共役系導電性高分子膜を製造し得る。さらに、本発明の方法で得られるπ共役系導電性高分子膜は、高沸点有機溶剤を用いないため、アウトガスが発生せず、環境に対する負荷も少ない。したがって、本発明の製造方法は、包装フィルム、電子波シールド材、偏光フィルムなどの帯電防止フィルム、タッチパネル、電子ペーパー、無機EL、有機ELなどの透明電極などの製造に有用である。   According to the present invention, a π-conjugated conductive polymer film having high conductivity can be produced without using a conductivity improver (high boiling point organic solvent). Furthermore, since the π-conjugated conductive polymer film obtained by the method of the present invention does not use a high boiling point organic solvent, no outgas is generated and the burden on the environment is small. Therefore, the production method of the present invention is useful for producing an antistatic film such as a packaging film, an electron wave shielding material, a polarizing film, a transparent electrode such as a touch panel, electronic paper, inorganic EL, and organic EL.

Claims (3)

π共役系導電性高分子膜の製造方法であって、
基材に、π共役系導電性高分子を含有するコーティング剤を付与する工程;
該基材に付与された該コーティング剤を乾燥させる工程;および
該乾燥後の基材を、23℃以上の温度でかつ85%以上の湿度を有する高湿度雰囲気下で処理、または60℃以上の温水中で処理する工程;
を包含する、方法。
A method for producing a π-conjugated conductive polymer film,
Applying a coating agent containing a π-conjugated conductive polymer to the substrate;
Drying the coating agent applied to the substrate; and treating the dried substrate at a temperature of 23 ° C. or higher and a high humidity atmosphere having a humidity of 85 % or higher, or 60 ° C. or higher. Treating in warm water;
Including the method.
前記π共役系導電性高分子が、ポリチオフェン誘導体である、請求項に記載の製造方法。 The production method according to claim 1 , wherein the π-conjugated conductive polymer is a polythiophene derivative. 前記ポリチオフェン誘導体が、ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体である、請求項に記載の製造方法。 The production method according to claim 2 , wherein the polythiophene derivative is a complex of poly (3,4-dialkoxythiophene) and a polyanion.
JP2009142776A 2009-06-15 2009-06-15 Method for producing conductive polymer film Expired - Fee Related JP5532383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142776A JP5532383B2 (en) 2009-06-15 2009-06-15 Method for producing conductive polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142776A JP5532383B2 (en) 2009-06-15 2009-06-15 Method for producing conductive polymer film

Publications (2)

Publication Number Publication Date
JP2010285588A JP2010285588A (en) 2010-12-24
JP5532383B2 true JP5532383B2 (en) 2014-06-25

Family

ID=43541536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142776A Expired - Fee Related JP5532383B2 (en) 2009-06-15 2009-06-15 Method for producing conductive polymer film

Country Status (1)

Country Link
JP (1) JP5532383B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291133A (en) * 2005-04-14 2006-10-26 Shin Etsu Polymer Co Ltd Conductive polymeric coating material and its production method, and conductive crosslinked article
AU2007310044B8 (en) * 2006-10-24 2012-06-28 Mitsubishi Chemical Corporation Method for giving electrical conductivity to material, method for producing conductive material, and conductive material

Also Published As

Publication number Publication date
JP2010285588A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
KR100910435B1 (en) Conductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, conductive coating film, antistatic pressure-sensitive adhesive, antisatatic pressure-sensitive adhesive layer, protective material, and process for producing the same
KR101414461B1 (en) Coating composition for electrostatic dissipative
JP2007246905A (en) Conductive coating composition for protective film and method of manufacturing coating film using the same
JP5480295B2 (en) Polymer film using conductive polymer solution composition and its structure
JP2007531233A (en) Composition for coating organic electrode and method for producing highly transparent organic electrode using the same
JP6607832B2 (en) Conductive polymer dispersion and method for producing the same, and conductive film and method for producing the same
TWI466918B (en) Novel polyvinyl sulfonic acid, its manufacturing method and use thereof
JP5176162B2 (en) Low temperature thermosetting conductive coating composition
US9460826B2 (en) Conductive composition for forming a ground electrode of a liquid crystal display, and a method of forming a ground electrode using the same
WO2017008970A1 (en) Conductive transparent coating
JP5608443B2 (en) Conductive composition
US20130092878A1 (en) Thermoplastic based electronic conductive inks and method of making the same
JP6504706B2 (en) Method for producing conductive polymer organic solvent dispersion
KR20100110836A (en) Process for the preparation of coatings exhibiting increased conductivity based on polythiophene and its derivatives
JP5532383B2 (en) Method for producing conductive polymer film
JP6900308B2 (en) Conductive polymer dispersion liquid and its manufacturing method, and conductive film and its manufacturing method
JP2010083940A (en) Method for preventing electrification of polyamide film, antistatic film and manufacturing method of the same
KR20090087530A (en) Transparence conductive coating composition
JP6548329B2 (en) Alcohol-containing conductive polymer dispersion liquid and method for producing conductive film
KR20120086209A (en) Method for forming uniform conducting polymer electrode and the electrode material
KR101163940B1 (en) Method for forming conducting polymer electrode containing metal nano particle and the electrode material
JP5324517B2 (en) Conductive coating composition
KR101970698B1 (en) A high molecule copolymer with a excellent water-resisting, chemical-resisting, and weather-resisting property, and it's fabrication method.
JP2019104858A (en) Manufacturing method of conductive polymer dispersion, and manufacturing method of conductive film
JP7291555B2 (en) Conductive polymer-containing liquid, conductive film, and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5532383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees