JP5532236B2 - Manufacturing method of heat transfer tube for boiling - Google Patents

Manufacturing method of heat transfer tube for boiling Download PDF

Info

Publication number
JP5532236B2
JP5532236B2 JP2010135084A JP2010135084A JP5532236B2 JP 5532236 B2 JP5532236 B2 JP 5532236B2 JP 2010135084 A JP2010135084 A JP 2010135084A JP 2010135084 A JP2010135084 A JP 2010135084A JP 5532236 B2 JP5532236 B2 JP 5532236B2
Authority
JP
Japan
Prior art keywords
tube
boiling
heat transfer
outer tube
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010135084A
Other languages
Japanese (ja)
Other versions
JP2012002374A (en
Inventor
慎二 江頭
高史 小串
正英 岩崎
芳昭 成重
徹 門谷
守 中田
和宏 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Metal Products Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Metal Products Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2010135084A priority Critical patent/JP5532236B2/en
Publication of JP2012002374A publication Critical patent/JP2012002374A/en
Application granted granted Critical
Publication of JP5532236B2 publication Critical patent/JP5532236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、沸騰用伝熱管の製造方法に関し、特に、海水を熱源とする蒸発器に利用される沸騰用伝熱管の製造方法に関する。 The present invention relates to a method for manufacturing a heat transfer tube for boiling, and more particularly to a method for manufacturing a heat transfer tube for boiling used in an evaporator using seawater as a heat source.

従来、冷凍機用冷媒蒸発器の高性能化及び小型化を実現するために、伝熱管外表面に突起や溝を施した沸騰用伝熱管が種々提案されている(例えば、特許文献1〜3参照)。   Conventionally, in order to realize high performance and downsizing of a refrigerant evaporator for a refrigerator, various boiling heat transfer tubes having protrusions and grooves on the outer surface of the heat transfer tube have been proposed (for example, Patent Documents 1 to 3). reference).

特許文献1には、図13に示されるように、管の外表面に管周方向に延在する空洞部201及び管軸方向に延在する空洞部202が配設され、その空洞部201及び202が、各々間隙部203及び204を介して外部と連通している核沸騰型伝熱管200が開示されている。   In Patent Document 1, as shown in FIG. 13, a cavity 201 that extends in the pipe circumferential direction and a cavity 202 that extends in the pipe axis direction are disposed on the outer surface of the pipe. A nucleate boiling type heat transfer tube 200 is disclosed in which 202 communicates with the outside through gaps 203 and 204, respectively.

また、特許文献2には、図14に示されるように、管本体301と、この管本体301の外周面下に設けられた管軸方向に交差して延びる空洞302と、この空洞302に沿って設けられ、当該空洞302の内部空間と外部とを連絡する複数の開口部303と、管本体301から外側に突出して設けられたフィン304とを有する沸騰用伝熱管300が開示されている。   In Patent Document 2, as shown in FIG. 14, a pipe main body 301, a cavity 302 provided below the outer peripheral surface of the pipe main body 301 and extending in the pipe axis direction, and along the cavity 302 A boiling heat transfer tube 300 is disclosed that includes a plurality of openings 303 that communicate with the interior space of the cavity 302 and the outside, and fins 304 that protrude outward from the tube body 301.

また、特許文献3には、図15に示されるように、隣接する第1のフィン401及び第2のフィン402と、管本体403とにより管周方向に延在する空洞404を形成し、第1のフィン401の先端部と第2のフィン402の先端部との間に管周方向に交互に配置される流入口405及び排出口406を形成し、流入口405から冷媒を流入させ、排出口406から沸騰した冷媒の気泡を排出する沸騰用伝熱管400が開示されている。   Further, in Patent Document 3, as shown in FIG. 15, a cavity 404 extending in the pipe circumferential direction is formed by the adjacent first fin 401 and second fin 402 and the pipe body 403, and the first An inlet 405 and an outlet 406 that are alternately arranged in the pipe circumferential direction are formed between the tip of the first fin 401 and the tip of the second fin 402. A boiling heat transfer tube 400 that discharges bubbles of refrigerant that has boiled from an outlet 406 is disclosed.

特公昭64−2878号公報Japanese Patent Publication No. 64-2878 特開平6−323778号公報JP-A-6-323778 特開2005−121238号公報JP 2005-121238 A

上記した特許文献1〜3のように、沸騰用伝熱管では、伝熱管外表面に突起や溝など複雑な加工を施すために、銅管やアルミ管などの転造加工性の良い材料が選定されている(特許文献2の段落0018及び表1参照)。一方で、管内に熱源となる海水を流す場合には、耐海水性に優れたチタン管が採用されることがある。ところが、チタン管は、弾性強度が大きく沸騰用伝熱管としての転造加工を施すのが難しい。また、加工が可能になったとしてもシームレス管かつ肉厚が大きくなり大幅なコストアップとなる。   As described in Patent Documents 1 to 3 above, in the heat transfer tube for boiling, in order to perform complicated processing such as protrusions and grooves on the outer surface of the heat transfer tube, a material with good rolling processability such as a copper tube or an aluminum tube is selected. (See paragraph 0018 and Table 1 of Patent Document 2). On the other hand, when flowing seawater as a heat source in the pipe, a titanium pipe excellent in seawater resistance may be adopted. However, the titanium tube has a large elastic strength and is difficult to be rolled as a heat transfer tube for boiling. Moreover, even if processing becomes possible, the seamless pipe and the wall thickness are increased, resulting in a significant cost increase.

そこで、この発明は、上記のような課題を解決するためになされたものであり、転造加工性を確保しつつ耐海水性に優れた沸騰用伝熱管及びその製造方法を提供することを目的とする。   Then, this invention was made | formed in order to solve the above subjects, and it aims at providing the heat-transfer tube for boiling excellent in seawater resistance, and its manufacturing method, ensuring rolling workability. And

上記課題を解決するために、本発明の沸騰用伝熱管は、管内に熱源となる海水を流し、管外に浸漬された冷媒を沸騰させる沸騰用伝熱管において、内部に海水が流れるチタン製又はステンレス製の内管と、内管の外周面に設けられ、内管よりヤング率の小さい金属製の外管とを有する。   In order to solve the above-mentioned problems, the boiling heat transfer tube of the present invention is made of titanium or water in which the seawater flows inside the boiling heat transfer tube in which the seawater serving as a heat source flows in the tube and the refrigerant immersed outside the tube boils. It has a stainless steel inner pipe and a metal outer pipe provided on the outer peripheral surface of the inner pipe and having a Young's modulus smaller than that of the inner pipe.

上記構成によれば、耐海水性に優れたチタン製またはステンレス製の内管を用いると共に、転造加工性に優れた外管を用いることにより、転造加工性を確保しつつ耐海水性に優れた沸騰用伝熱管を得ることができる。   According to the above configuration, the inner tube made of titanium or stainless steel having excellent seawater resistance is used and the outer tube having excellent rolling processability is used, thereby ensuring seawater resistance while ensuring the rolling processability. An excellent heat transfer tube for boiling can be obtained.

また、本発明の沸騰用伝熱管の製造方法は、管内に熱源となる海水を流し、管外に浸漬された冷媒を沸騰させる沸騰用伝熱管の製造方法において、内部に海水が流れるチタン製又はステンレス製の内管の外周面には、内管よりヤング率の小さい金属製の外管が設けられ、外管に突起部を形成する転造加工では、当該加工前の外管の肉厚(t)と、フィン高さ(h)との比率(h/t)を0.6以上1.0以下にする。   In addition, the method for manufacturing a heat transfer tube for boiling according to the present invention is a method for manufacturing a heat transfer tube for boiling in which seawater as a heat source is caused to flow inside the tube, and the refrigerant immersed in the outside of the tube is boiled. In the outer peripheral surface of the stainless steel inner pipe, a metal outer pipe having a Young's modulus smaller than that of the inner pipe is provided, and in the rolling process for forming the protrusion on the outer pipe, the thickness of the outer pipe before the processing ( The ratio (h / t) between t) and the fin height (h) is 0.6 or more and 1.0 or less.

このように構成すれば、耐海水性に優れたチタン製またはステンレス製の内管を用いると共に、転造加工性に優れた外管を用いることにより、転造加工性を確保しつつ耐海水性に優れた沸騰用伝熱管を得ることができる。
また、この製造方法では、外管と内管との密着性を良好にすることができる。
If comprised in this way, while using the inner pipe | tube made from titanium or stainless steel excellent in seawater resistance, and using the outer pipe | tube excellent in rolling processability, seawater resistance is ensured while ensuring rolling processability. It is possible to obtain an excellent heat transfer tube for boiling.
Further, in this manufacturing method, the adhesion between the outer tube and the inner tube can be improved.

また、上記製造方法において、好ましくは、内管と外管との2重構造を形成する抽伸工程では、絞り嵌め治具のダイスアプローチ角度が2°より大きく且つ50°より小さい。このように構成すれば、外管と内管との密着性をより良好にすることができる。   In the above manufacturing method, preferably, in the drawing process for forming the double structure of the inner tube and the outer tube, the die approach angle of the interference fitting jig is larger than 2 ° and smaller than 50 °. If comprised in this way, the adhesiveness of an outer tube | pipe and an inner tube | pipe can be made more favorable.

また、上記製造方法において、好ましくは、内管を外管の内部に挿入する前に、外管を予熱しておく。   In the above manufacturing method, preferably, the outer tube is preheated before the inner tube is inserted into the outer tube.

また、上記製造方法において、好ましくは、内管と外管との間に接着層を設ける。これにより、内管と外管との密着性を向上させることができる。   In the above manufacturing method, preferably, an adhesive layer is provided between the inner tube and the outer tube. Thereby, the adhesiveness of an inner tube and an outer tube can be improved.

この発明による沸騰用伝熱管及びその製造方法では、転造加工性を確保しつつ耐海水性に優れた沸騰用伝熱管を提供することができる。   With the heat transfer tube for boiling and the manufacturing method thereof according to the present invention, it is possible to provide a heat transfer tube for boiling excellent in seawater resistance while ensuring rolling processability.

本発明の一実施形態に係る沸騰用伝熱管の(a)断面拡大写真、(b)平面拡大写真である。It is (a) cross-sectional enlarged photograph and (b) plane enlarged photograph of the heat exchanger tube for boiling which concerns on one Embodiment of this invention. 図1に示した沸騰用伝熱管の断面模式図である。It is a cross-sectional schematic diagram of the heat exchanger tube for boiling shown in FIG. 突起部の理想的な形状を示した断面模式図である。It is the cross-sectional schematic diagram which showed the ideal shape of the projection part. 本発明の一実施形態に係る沸騰用伝熱管の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the heat exchanger tube for a boiling which concerns on one Embodiment of this invention. 絞り嵌め治具であるダイスの断面図である。It is sectional drawing of the die | dye which is an interference fitting jig | tool. 転造加工における(a)フィン加工工程、(b)フィン刻み工程、(c)フィン潰し工程における管外表面の断面拡大写真である。It is a cross-sectional enlarged photograph of the tube outer surface in the (a) fin processing process, (b) fin notching process, and (c) fin crushing process in a rolling process. 転造加工における(a)フィン加工工程、(b)フィン刻み工程、(c)フィン潰し工程における管外表面の平面拡大写真である。It is the plane expansion photograph of the pipe outer surface in the (a) fin processing process, (b) fin notching process, and (c) fin crushing process in a rolling process. 外管の肉厚(t)とフィン高さ(h)とを示した外管の模式図である。It is the schematic of an outer tube | pipe which showed the thickness (t) and fin height (h) of the outer tube | pipe. 密着性試験で用いた治具を示した断面模式図である。It is the cross-sectional schematic diagram which showed the jig | tool used by the adhesive test. 内管への影響度評価基準を説明するための図である。It is a figure for demonstrating the influence evaluation criteria to an inner pipe. 沸騰試験結果を示したグラフである。It is the graph which showed the boiling test result. 沸騰試験での沸騰の様子を示した写真である。It is the photograph which showed the mode of the boiling in a boiling test. 特許文献1に開示された沸騰用伝熱管の外表面を示した拡大斜視図である。It is the expansion perspective view which showed the outer surface of the heat exchanger tube for boiling disclosed by patent document 1. 特許文献2に開示された沸騰用伝熱管の外表面を示した拡大斜視図である。It is the expansion perspective view which showed the outer surface of the heat exchanger tube for boiling disclosed by patent document 2. 特許文献3に開示された沸騰用伝熱管の外表面を示した(a)拡大斜視図、(b)拡大平面図、(c)拡大断面図である。It is (a) expanded perspective view, (b) expanded plan view, and (c) expanded sectional view which showed the outer surface of the heat exchanger tube for boiling indicated by patent documents 3.

以下、図面に基づいて、本発明に係る沸騰用伝熱管及びその製造方法について説明する。   Hereinafter, a boiling heat transfer tube and a method for manufacturing the same according to the present invention will be described with reference to the drawings.

沸騰用伝熱管1は、ターボ冷凍機やスクリュー冷凍機などの大型冷凍機の液冷媒中に浸漬された状態で当該液冷媒を加熱沸騰させるための伝熱管であって、管内に流れる海水を熱源とする。沸騰用伝熱管1では、図1に示すように、効率的に熱交換が行なわれるように、伝熱管外表面に複数の突起部21が形成されている。本実施形態の沸騰用伝熱管1は、図2に示すように、2重構造であって、チタン製またはステンレス製の内管10と、内管10よりヤング率の小さい金属製の外管20とを有している。   The heat transfer tube 1 for boiling is a heat transfer tube for heating and boiling the liquid refrigerant in a state where it is immersed in the liquid refrigerant of a large refrigerator such as a turbo refrigerator or a screw refrigerator, and the seawater flowing in the tube is used as a heat source. And In the heat transfer tube 1 for boiling, as shown in FIG. 1, a plurality of protrusions 21 are formed on the outer surface of the heat transfer tube so that heat exchange can be performed efficiently. As shown in FIG. 2, the heat transfer tube 1 for boiling of the present embodiment has a double structure, and an inner tube 10 made of titanium or stainless steel and a metal outer tube 20 having a Young's modulus smaller than that of the inner tube 10. And have.

内管10は、管内に海水を流すため、耐海水性に優れたチタン製またはステンレス製で構成されている。この内管10は、外径が約21mm(図2参照)である。   The inner pipe 10 is made of titanium or stainless steel having excellent seawater resistance in order to flow seawater through the pipe. The inner tube 10 has an outer diameter of about 21 mm (see FIG. 2).

外管20は、その外表面に突起部21を形成するために転造加工を施すので、転造加工性に優れた銅製、アルミニウム製などの内管10よりヤング率が小さい(100Gpa以下の)金属で構成されている。この外管20は、外径が約25mm(図2参照)である。本実施形態の外管20の外表面には、図1(b)に示すように、複数の突起部21が略格子状に配列されている。この突起部21は、理想的には、図3に示すように、根元から先端に向かって断面積が大きくなるように形成されている。また、突起部21の先端面22(フィンつぶし面)は、略正方形となっている。   Since the outer tube 20 is rolled to form the protrusions 21 on the outer surface thereof, the Young's modulus is smaller than that of the inner tube 10 made of copper, aluminum or the like excellent in rolling processability (100 Gpa or less). Consists of metal. The outer tube 20 has an outer diameter of about 25 mm (see FIG. 2). On the outer surface of the outer tube 20 of the present embodiment, as shown in FIG. 1B, a plurality of protrusions 21 are arranged in a substantially lattice shape. Ideally, as shown in FIG. 3, the protrusion 21 is formed so that the cross-sectional area increases from the root toward the tip. Moreover, the front end surface 22 (fin crushing surface) of the protrusion 21 is substantially square.

突起部21間に形成される溝部23は、核沸騰(発泡点を核にして気泡が発生していく沸騰)を形成する構造を有しており、微細な空洞である空洞部24と、その空洞部24と外部とを連通させる開口部25とから構成される。空洞部24に侵入した冷媒は、周囲の突起部21の壁面から熱が伝達されて沸騰する。この冷媒の沸騰により発生した気泡は、開口部25を介して離脱する。この溝部23(空洞部24及び開口部25)の形状は、理想的には、図3に示すように、下記式(1)を満たす。
θ>π/2−φ・・・(1)
ただし、θを「2φの角度をもつ扇形の接線と斜面24aとの角度」とする。
The groove 23 formed between the protrusions 21 has a structure that forms nucleate boiling (boiling in which bubbles are generated with the foaming point as a nucleus), and a cavity 24 that is a fine cavity, It is comprised from the opening part 25 which connects the cavity part 24 and the exterior. The refrigerant that has entered the cavity 24 is boiled by the transfer of heat from the wall surfaces of the surrounding projections 21. Bubbles generated by the boiling of the refrigerant are released through the opening 25. The shape of the groove 23 (the cavity 24 and the opening 25) ideally satisfies the following formula (1) as shown in FIG.
θ> π / 2−φ (1)
However, θ is assumed to be “an angle between a fan-shaped tangent having an angle of 2φ and the inclined surface 24a”.

次に、図4を参照して、本実施形態の沸騰用伝熱管1の製造方法について説明する。   Next, with reference to FIG. 4, the manufacturing method of the heat exchanger tube 1 for boiling of this embodiment is demonstrated.

まず、内管10及び外管20を所定の長さに切断し(ステップS1)、外管20の内部に内管10を挿入する(ステップS2)。この際、内管10と外管20とはルーズ状態になっている。なお、本実施形態では、挿入工程(ステップS2)において、外管20を予熱(約200℃で、抽伸において焼き付きを生じない程度)しておいても良い。そして、口付け加工を行なう(ステップS3)。口付け加工は、内管10及び外管20の先端部を縮径し、後工程の合わせ抽伸工程の際、当該先端部をダイス(絞り嵌め治具)30のダイス孔31に挿入できるようにするために行うものである。次に、本実施形態では、合わせ抽伸を行なう(ステップS4)。この合わせ抽伸とは、ルーズ状態の外管20と内管10とを、ダイス30(図5参照)により絞り嵌めにして、密着構造に仕上げる工程である。なお、ダイス30のアプローチ角度αは、2°<α<50°が好ましい。なお、ダイス30のダイス孔31の内径Dは、内管10及び外管20からなる密着構造の2重管の外径に相当する大きさに設定する。その後、ストレッチャー矯正を行ない(ステップS5)、当該2重管を所定の長さに切断する(ステップS6)。   First, the inner tube 10 and the outer tube 20 are cut into a predetermined length (step S1), and the inner tube 10 is inserted into the outer tube 20 (step S2). At this time, the inner tube 10 and the outer tube 20 are in a loose state. In the present embodiment, in the insertion step (step S2), the outer tube 20 may be preheated (about 200 ° C., to the extent that seizure does not occur in drawing). Then, lip processing is performed (step S3). In the crimping process, the distal end portions of the inner tube 10 and the outer tube 20 are reduced in diameter so that the distal end portion can be inserted into the die hole 31 of the die (squeeze fitting jig) 30 in the subsequent drawing and drawing step. Is what we do. Next, in this embodiment, combined drawing is performed (step S4). This combined drawing is a process in which the loose outer tube 20 and the inner tube 10 are squeezed with a die 30 (see FIG. 5) to finish the contact structure. The approach angle α of the die 30 is preferably 2 ° <α <50 °. Note that the inner diameter D of the die hole 31 of the die 30 is set to a size corresponding to the outer diameter of the double tube having a close contact structure including the inner tube 10 and the outer tube 20. Thereafter, stretcher correction is performed (step S5), and the double pipe is cut into a predetermined length (step S6).

そして、本実施形態では、外管20の外表面に転造加工(トップクロス加工)を行なう(ステップS7)。この転造加工工程では、外管20の外表面に、上記した突起部21及び溝部23を転造加工により形成するものであって、具体的には、(1)フィン加工工程、(2)フィン刻み工程、(3)フィン潰し工程を、この順番に行う。(1)フィン加工工程では、図6(a)及び7(a)に示すように、管周方向に沿うフィン21Aを外管20の外表面に形成する。(2)フィン刻み工程では、図6(b)及び図7(b)に示すように、上記した(1)フィン加工工程で形成されたフィン21Aを所定間隔で刻み、微細な凸部21Bを形成する。なお、この工程における刻み位置は、千鳥状に配置される。(3)フィン潰し工程では、図6(c)及び図7(c)に示すように、上記した(2)フィン刻み工程で形成された凸部21Bの先端を潰し、先端面(フィンつぶし面)22が略正方形の突起部21を形成する。本実施形態では、外管20の肉厚(t)と、フィン高さ(h)との比率(h/t)が、0.6〜1.0であることが好ましい。なお、上記した「外管の肉厚(t)」とは、図8に示すように、フィン加工前の素管20Aの肉厚であって、「フィン高さ(h)」とは、(1)フィン加工工程後(かつ、フィン刻み前)のフィン21Aの高さである。最後に、ストレッチャー矯正を行なって(ステップS8)、沸騰用伝熱管1が完成する。   In this embodiment, the outer surface of the outer tube 20 is subjected to rolling processing (top cross processing) (step S7). In this rolling process, the protrusion 21 and the groove 23 are formed on the outer surface of the outer tube 20 by rolling. Specifically, (1) a fin processing process, (2) A fin notching process and (3) fin crushing process are performed in this order. (1) In the fin processing step, as shown in FIGS. 6A and 7A, fins 21A are formed on the outer surface of the outer tube 20 along the tube circumferential direction. (2) In the fin notching step, as shown in FIGS. 6B and 7B, the fins 21A formed in the above-described (1) fin processing step are engraved at a predetermined interval, and the fine convex portions 21B are formed. Form. The step positions in this process are arranged in a staggered pattern. (3) In the fin crushing step, as shown in FIGS. 6 (c) and 7 (c), the tip of the convex portion 21B formed in the above-described (2) fin engraving step is crushed, and the tip surface (fin crushing surface) ) 22 forms a substantially square protrusion 21. In the present embodiment, the ratio (h / t) between the thickness (t) of the outer tube 20 and the fin height (h) is preferably 0.6 to 1.0. The “outer tube thickness (t)” is the thickness of the raw tube 20A before fin processing, as shown in FIG. 8, and the “fin height (h)” is ( 1) The height of the fins 21A after the fin processing step (and before the fins are cut). Finally, stretcher correction is performed (step S8), and the heat transfer tube 1 for boiling is completed.

(トップクロス形状の評価試験)
本試験では、突起部の先端面(以下、適宜、トップクロス形状とする)の形状が良好か否かを評価した。なお、評価基準として、突起部の間に設けられる溝部(空洞部、開口部)が健全に確保されているか否かを目視観察により評価した。この評価試験では、外管の肉厚(t)とフィンの高さ(h)との比率(h/t)毎(実施例1〜4、比較例1)に、トップクロス形状を観察した。その結果を以下の表1に示す。なお、いずれの評価試験においても、ダイスのアプローチ角度αは、45°とした。
(Top cross shape evaluation test)
In this test, it was evaluated whether or not the shape of the tip surface of the protrusion (hereinafter referred to as a top cross shape as appropriate) is good. In addition, as evaluation criteria, it was evaluated by visual observation whether or not the groove portions (cavities, openings) provided between the protrusions were soundly secured. In this evaluation test, the top cloth shape was observed for each ratio (Examples 1 to 4, Comparative Example 1) between the thickness (t) of the outer tube and the height (h) of the fin. The results are shown in Table 1 below. In any evaluation test, the approach angle α of the dice was 45 °.

試験No.1(実施例1)では、外管の肉厚(t)を1.5mmとし、フィンの高さ(h)を0.9mmとして、比率(h/t)を0.6とした。この実施例1では、トップクロス形状がほぼ良好であり、外管と内管との密着性が良好であることが確認できた。   Test No. 1 (Example 1), the thickness (t) of the outer tube was 1.5 mm, the height (h) of the fin was 0.9 mm, and the ratio (h / t) was 0.6. In Example 1, it was confirmed that the top cross shape was substantially good and the adhesion between the outer tube and the inner tube was good.

試験No.2(実施例2)では、外管の肉厚(t)を1.5mmとし、フィンの高さ(h)を1.0mmとして、比率(h/t)を0.7とした。この実施例2では、トップクロス形状が良好であり、外管と内管との密着性が良好であることが確認できた。   Test No. 2 (Example 2), the thickness (t) of the outer tube was 1.5 mm, the height (h) of the fin was 1.0 mm, and the ratio (h / t) was 0.7. In Example 2, it was confirmed that the top cross shape was good and the adhesion between the outer tube and the inner tube was good.

試験No.3(実施例3)では、外管の肉厚(t)を1.0mmとし、フィンの高さ(h)を0.9mmとして、比率(h/t)を0.9とした。この実施例3では、トップクロス形状が良好であり、外管と内管との密着性がほぼ良好であることが確認できた。   Test No. 3 (Example 3), the thickness (t) of the outer tube was 1.0 mm, the height (h) of the fin was 0.9 mm, and the ratio (h / t) was 0.9. In Example 3, it was confirmed that the top cross shape was good and the adhesion between the outer tube and the inner tube was almost good.

試験No.4(実施例4)では、外管の肉厚(t)を1.0mmとし、フィンの高さ(h)を1.0mmとして、比率(h/t)を1.0とした。この実施例4では、トップクロス形状が良好であり、外管と内管との密着性がほぼ良好であることが確認できた。   Test No. 4 (Example 4), the thickness (t) of the outer tube was 1.0 mm, the height (h) of the fin was 1.0 mm, and the ratio (h / t) was 1.0. In Example 4, it was confirmed that the top cross shape was good and the adhesion between the outer tube and the inner tube was almost good.

試験No.5(比較例1)では、外管の肉厚(t)を1.0mmとし、フィンの高さ(h)を1.2mmとして、比率(h/t)を1.2とした。この比較例1では、トップクロス形状が不良であり、外管と内管との密着性が不良であることが確認できた。   Test No. 5 (Comparative Example 1), the thickness (t) of the outer tube was 1.0 mm, the height (h) of the fin was 1.2 mm, and the ratio (h / t) was 1.2. In Comparative Example 1, it was confirmed that the top cross shape was poor and the adhesion between the outer tube and the inner tube was poor.

上記した合わせ抽伸(ステップS4参照)というのは、外管を収縮させて、内管と接合させているため、内管を締めるように内部応力が働いている。一方、転造加工というのは、外管の外側を持ち上げてフィンを立ち上げているので、外管を大きくするような力の作用となり、抽伸で得られた内部応力が開放される。このとき、フィンを高く転造加工するということは、その分、外管の肉厚全体まで加工することとなり、内部応力の開放が大きくなり、密着性が低下する。そのため、比較例1では、外管と内管との密着性が不良になったと考えられる。   In the above-described combined drawing (see step S4), since the outer tube is contracted and joined to the inner tube, the internal stress acts so as to tighten the inner tube. On the other hand, in the rolling process, since the fins are raised by lifting the outside of the outer tube, the force acts to enlarge the outer tube, and the internal stress obtained by drawing is released. At this time, rolling the fins to a high degree means that the entire thickness of the outer tube is processed accordingly, the release of internal stress is increased, and the adhesion is lowered. Therefore, in Comparative Example 1, it is considered that the adhesion between the outer tube and the inner tube is poor.

(外管と内管との密着性に関する評価試験)
本試験では、ダイス(図5参照)により抽伸した沸騰用伝熱管(ダイスのアプローチ角αが異なる実施例5〜8、比較例2及び3)の外管と内管との2重構造の密着性が良好か否かを評価した。なお、当該評価試験では、図9に示す装置により、密着性の評価を行なった(表1に示した密着性評価においても同様)。具体的には、抽伸した伝熱管を一定の長さに切断し、治具Aで外管の下端を支持し、治具Bで内管の上端を押し下げた。内管が押し出され始めたときの荷重Pを測定し、その荷重Pの値の大きさに応じて、密着性を評価した(荷重Pの値が大きいほど密着性が高いことを意味する)。具体的には、全ての評価試験結果のうち、最も高い密着性のグループを◎、その次を○、最も低い密着性のグループを×とし、外管と内管との密着性を相対的に評価した(表1に示した密着性評価においても同様)。絶対値での評価基準がないためである。その結果を以下の表2に示す。この評価試験では、抽伸による内管への影響についても評価した。具体的には、図10に示すように、抽伸前の伝熱管の長さをLとし、抽伸後の伝熱管の長さをL1として、伝熱管の伸び率(L1/L)を測定した。表2において、◎:外管の伸び率が0.7%以下の場合、○:外管の伸び率が3%以下の場合、×:抽伸できなかったため評価できず、とした。
(Evaluation test on adhesion between outer tube and inner tube)
In this test, the double-layer close contact between the outer tube and the inner tube of the boiling heat transfer tubes (Examples 5 to 8 having different approach angles α of the dice, Comparative Examples 2 and 3) drawn by a die (see FIG. 5) It was evaluated whether or not the property was good. In the evaluation test, adhesion was evaluated using the apparatus shown in FIG. 9 (the same applies to the adhesion evaluation shown in Table 1). Specifically, the drawn heat transfer tube was cut into a certain length, the lower end of the outer tube was supported by the jig A, and the upper end of the inner tube was pushed down by the jig B. The load P when the inner tube started to be pushed out was measured, and the adhesion was evaluated according to the magnitude of the value of the load P (the larger the value of the load P, the higher the adhesion). Specifically, among all the evaluation test results, the highest adhesion group is ◎, the next is ○, the lowest adhesion group is ×, and the adhesion between the outer tube and the inner tube is relatively Evaluation was performed (the same applies to the adhesion evaluation shown in Table 1). This is because there is no evaluation standard based on absolute values. The results are shown in Table 2 below. In this evaluation test, the influence of the drawing on the inner pipe was also evaluated. Specifically, as shown in FIG. 10, the length of the heat transfer tube before drawing was set to L, and the length of the heat transfer tube after drawing was set to L1, and the elongation rate (L1 / L) of the heat transfer tube was measured. In Table 2, ◎: When the elongation rate of the outer tube was 0.7% or less, ○: When the elongation rate of the outer tube was 3% or less, ×: Evaluation was not possible because drawing was not possible.

試験No.6(比較例2)では、ダイスのアプローチ角度を0°にした。この比較例2では、抽伸不可であり、外管と内管との密着性が不良であることが確認できた。   Test No. 6 (Comparative Example 2), the approach angle of the die was set to 0 °. In Comparative Example 2, it was impossible to draw, and it was confirmed that the adhesion between the outer tube and the inner tube was poor.

試験No.7及び8(実施例5及び6)では、ダイスのアプローチ角度を3°にした。この実施例5及び6では、内管への影響がなく、外管と内管との密着性がほぼ良好であることが確認できた。この場合、管表面近くだけが加工されるため、内管への影響が小さくなる。しかし、内部応力は表面に集中するため、転造加工時に開放されやすくなる。『内管と外管との密着性』より『内管への影響』を考慮すれば、ダイスのアプローチ角度が3°であるのが好ましい。   Test No. 7 and 8 (Examples 5 and 6), the die approach angle was 3 °. In Examples 5 and 6, it was confirmed that there was no effect on the inner tube and the adhesion between the outer tube and the inner tube was almost good. In this case, since only the vicinity of the pipe surface is processed, the influence on the inner pipe is reduced. However, since the internal stress is concentrated on the surface, it is easily released during the rolling process. In consideration of “influence on the inner pipe” rather than “adhesion between the inner pipe and outer pipe”, the approach angle of the die is preferably 3 °.

試験No.9及び10(実施例7及び8)では、ダイスのアプローチ角度を45°にした。この比較例2では、内管への影響がなく、外管と内管との密着性がほぼ良好であることが確認できた。この場合、管内部まで加工が入るため、内管が多少影響を受ける。一方、外管全体が加工されるため、内部応力が大きく、肉厚全体まで入るため、密着性は向上する。『内管への影響』より『内管と外管との密着性』を優先する場合は、ダイスのアプローチ角度が45°であるのが好ましい。   Test No. In 9 and 10 (Examples 7 and 8), the die approach angle was 45 °. In Comparative Example 2, it was confirmed that there was no effect on the inner tube and the adhesion between the outer tube and the inner tube was almost good. In this case, since the processing enters the inside of the pipe, the inner pipe is somewhat affected. On the other hand, since the entire outer tube is processed, the internal stress is large and the entire wall thickness is reached, so that the adhesion is improved. In the case where “adhesion between the inner tube and the outer tube” is given priority over “influence on the inner tube”, the approach angle of the die is preferably 45 °.

試験No.11(比較例3)では、ダイスのアプローチ角度を60°にした。この場合、内管が完全に加工されてしまい、反対に内部応力がたまらない。この比較例3では、抽伸不可であり、外管と内管との密着性が不良であることが確認できた。   Test No. 11 (Comparative Example 3), the approach angle of the dice was set to 60 °. In this case, the inner tube is completely processed, and the internal stress is not accumulated. In Comparative Example 3, it was impossible to draw, and it was confirmed that the adhesion between the outer tube and the inner tube was poor.

抽伸において、アプローチ角が小さいと、管の肉厚表面だけが加工される。一方、アプローチ角が大きいと、管の肉厚内部まで加工が入り込む。つまり、アプローチ角が小さいと、管表面だけが加工されることになり、締める方向の内部応力も必然的に小さく且つ肉厚表面に集中することになる。これに対して、アプローチ角が大きいと、管表面だけでなく管内部まで加工されることになり、締める方向の内部応力が大きく且つ肉厚全体に広がる。従って、内管に影響を及ぼさず、且つ、内部応力を大きくする角度(2°<α<50°)に設定する必要がある。   In drawing, if the approach angle is small, only the wall surface of the tube is processed. On the other hand, when the approach angle is large, processing enters into the wall thickness of the pipe. That is, when the approach angle is small, only the tube surface is processed, and the internal stress in the tightening direction is inevitably small and concentrated on the thick surface. On the other hand, when the approach angle is large, not only the tube surface but also the inside of the tube is processed, and the internal stress in the tightening direction is large and spreads over the entire thickness. Therefore, it is necessary to set an angle (2 ° <α <50 °) that does not affect the inner tube and increases the internal stress.

(沸騰試験)
本試験では、フィンの無いAl−Ti裸管(比較例)と本実施形態に係るAl−Tiトップクロス管(実施例)とについて、沸騰試験を行なった。この沸騰試験は、水を用いた試験であって、壁面過熱度と熱流速との相関関係、及び、熱流速と管外熱伝達係数との相関関係を調査した。壁面過熱度−熱流速のグラフ(図11(a)参照)から分かるように、裸管に比べて沸騰用伝熱管の方が小さい温度落差で伝熱されていることが分かった。同熱流速で比較するとAl−Tiトップクロス管(実施例)の過熱度は、Al−Ti裸管(比較例)に対して1/3程度であった。15〜100kW/mでは、過熱度は、ほとんど変化しない。つまり、1℃〜2℃の過熱度をもたせてやれば、飛躍的に熱流速を増加させることが可能である。
(Boiling test)
In this test, a boiling test was performed on an Al—Ti bare tube without fins (comparative example) and an Al—Ti top cross tube (example) according to this embodiment. This boiling test was a test using water, and investigated the correlation between the degree of wall superheat and the heat flow rate, and the correlation between the heat flow rate and the external heat transfer coefficient. As can be seen from the graph of wall surface superheat degree-heat flow rate (see FIG. 11A), it was found that the heat transfer tube for boiling was transferred with a smaller temperature drop than the bare tube. When compared at the same heat flow rate, the degree of superheat of the Al—Ti top cross tube (Example) was about 1/3 of that of the Al—Ti bare tube (Comparative Example). At 15-100 kW / m 2 , the degree of superheat hardly changes. That is, if the degree of superheating is 1 ° C. to 2 ° C., the heat flow rate can be dramatically increased.

また、熱流速と管外熱伝達係数との相関関係(図11(b)参照)から分かるように、Al−Ti裸管(比較例)の方がAl−Tiトップクロス管(実施例)より管外熱伝熱係数が大きいことが分かった。Al−Tiトップクロス管(実施例)の管外熱伝達係数は、Al−Ti裸管(比較例)の3〜4倍となっている。ただし、同様の実験を行なっている実験データを見ると、裸管の性能が本実験では2倍程度良くなっている。温度の計測方法の違い、管の表面粗さなどが原因と考えられる。
なお、沸騰用伝熱管のフィンの高さによって、伝熱性能上の差異があることも確認できた。
Further, as can be seen from the correlation between the heat flow rate and the heat transfer coefficient outside the tube (see FIG. 11B), the Al—Ti bare tube (comparative example) is better than the Al—Ti top cross tube (example). It was found that the heat transfer coefficient outside the tube was large. The external heat transfer coefficient of the Al—Ti top cross pipe (Example) is 3 to 4 times that of the Al—Ti bare pipe (Comparative Example). However, looking at the experimental data that conducts the same experiment, the performance of the bare tube is about twice as good in this experiment. This is probably due to differences in temperature measurement methods, pipe surface roughness, etc.
It was also confirmed that there was a difference in heat transfer performance depending on the fin height of the heat transfer tube for boiling.

図12(a)及び(b)の写真に示すように、実施例に係る沸騰用伝熱管では、比較例に係る裸管に比べて、気泡の発生箇所が多く、核沸騰になっていることが確認できた。また、比較例に係る裸管では、沸騰箇所が大まかとなっている。沸騰核の発生箇所の差が伝熱性能差に表れている。   As shown in the photographs of FIGS. 12A and 12B, the boiling heat transfer tube according to the example has more bubble generation sites and nucleate boiling than the bare tube according to the comparative example. Was confirmed. Moreover, in the bare tube which concerns on a comparative example, the boiling location is rough. The difference in the location of boiling nuclei appears in the difference in heat transfer performance.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態及び実施例に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態及び実施例の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment and an Example. The scope of the present invention is shown not only by the above description of the embodiments and examples but also by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

例えば、上記実施形態では、内管と外管との間に何も介在しないように2重構造にしたが、本発明はこれに限らず、内管と外管との間に接着層を入れて、内管と外管との密着性を向上させても良い。なお、この接着層としては、金属粉体が混入した樹脂等が好ましい。   For example, in the above embodiment, a double structure is adopted so that nothing is interposed between the inner tube and the outer tube. However, the present invention is not limited to this, and an adhesive layer is inserted between the inner tube and the outer tube. Thus, the adhesion between the inner tube and the outer tube may be improved. The adhesive layer is preferably a resin mixed with metal powder.

また、上記実施例では、チタン製の内管を用いる例について説明したが、本発明はこれに限らず、耐海水性の金属であれば、チタンだけでなくステンレス等が適用可能である。また、外管として、アルミニウムを用いたが、転造加工性に優れた材料として、内管よりヤング率が小さい材料であれば、アルミニウムに限らず、銅など適用可能である。   Moreover, although the example which uses a titanium inner pipe was demonstrated in the said Example, this invention is not restricted to this, If it is a seawater-resistant metal, not only titanium but stainless steel etc. are applicable. Moreover, although aluminum was used for the outer tube, as a material excellent in rolling workability, a material having a Young's modulus smaller than that of the inner tube is not limited to aluminum but can be applied to copper.

本発明を利用すれば、転造加工性を確保しつつ耐海水性に優れた沸騰用伝熱管及びその製造方法を提供することができる。   By utilizing the present invention, it is possible to provide a heat transfer tube for boiling excellent in seawater resistance while ensuring rolling processability, and a method for producing the same.

1 沸騰用伝熱管
10 内管
20 外管
21 突起部
22 先端面(フィンつぶし面)
23 溝部
24 空洞部
25 開口部
1 Heat transfer tube for boiling 10 Inner tube 20 Outer tube 21 Protrusion 22 Tip surface (fin crush surface)
23 Groove 24 Cavity 25 Opening

Claims (5)

管内に熱源となる海水を流し、管外に浸漬された冷媒を沸騰させる沸騰用伝熱管の製造方法において、
内部に海水が流れるチタン製又はステンレス製の内管、前記内管よりヤング率の小さい金属製の外管の内部に挿入する挿入工程と、
前記挿入工程後の前記内管と前記外管とを密着構造に仕上げる密着仕上工程と、
前記密着仕上工程後に前記外管に突起部を形成する転造加工工程と、
を有し、
前記転造加工工程は、
前記外管の外表面にフィンを加工するフィン加工工程と、
前記フィンを所定間隔で刻み、凸部を形成するフィン刻み工程と、
前記凸部の先端を潰して前記突起部を形成するフィン潰し工程と、
を有し、
前記フィン加工工程では、前記フィン加工前の前記外管の肉厚(t)と、フィン高さ(h)との比率(h/t)を0.6以上1.0以下にすることを特徴とする、沸騰用伝熱管の製造方法。
In the method of manufacturing a heat transfer tube for boiling, in which a seawater serving as a heat source flows in the tube and the refrigerant immersed outside the tube is boiled,
An insertion step of the titanium or stainless steel inner tube seawater flows therein, is inserted into the outer tube of small metal having a Young's modulus than the inner tube,
A close finishing process for finishing the inner tube and the outer tube after the inserting step into a close contact structure;
A rolling process step for forming a protrusion on the outer tube after the close-finishing step ;
Have
The rolling process step is
A fin processing step of processing fins on the outer surface of the outer tube;
A fin notching step for notching the fins at a predetermined interval to form a convex portion;
A fin crushing step of crushing the tip of the convex part to form the protrusion,
Have
Wherein the fin processing step, wherein the thickness of the outer tube before the fin processing (t), fin height to 0.6 to 1.0 and (h) ratio of (h / t) The manufacturing method of the heat exchanger tube for boiling.
前記密着仕上工程は、前記内管と前記外管との2重構造を合わせ抽伸により形成する抽伸工程であり、
前記抽伸工程では、絞り嵌め治具のダイスアプローチ角度が2°より大きく且つ50°より小さいことを特徴とする、請求項に記載の沸騰用伝熱管の製造方法。
The adhesion finishing step is a drawing step of forming by drawing the combined double structure of the outer tube and the inner tube,
2. The method of manufacturing a heat transfer tube for boiling according to claim 1 , wherein in the drawing step, a die approach angle of the interference fitting jig is larger than 2 ° and smaller than 50 °.
前記内管を前記外管の内部に挿入する前に、前記外管を予熱しておくことを特徴とする、請求項1又は2に記載の沸騰用伝熱管の製造方法。 The method of manufacturing a heat transfer tube for boiling according to claim 1 or 2 , wherein the outer tube is preheated before the inner tube is inserted into the outer tube. 前記内管と前記外管との間に接着層を設けることを特徴とする、請求項1〜3のいずれか1項に記載の沸騰用伝熱管の製造方法。 The method for manufacturing a heat transfer tube for boiling according to any one of claims 1 to 3 , wherein an adhesive layer is provided between the inner tube and the outer tube. 前記フィン刻み工程では、管軸方向に沿って前記フィンを刻むとともに千鳥状に前記フィンを刻むことを特徴とする、請求項1〜4のいずれか1項に記載の沸騰用伝熱管の製造方法。The method for manufacturing a heat transfer tube for boiling according to any one of claims 1 to 4, wherein in the fin cutting step, the fins are cut along a tube axis direction and the fins are cut in a staggered manner. .
JP2010135084A 2010-06-14 2010-06-14 Manufacturing method of heat transfer tube for boiling Active JP5532236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135084A JP5532236B2 (en) 2010-06-14 2010-06-14 Manufacturing method of heat transfer tube for boiling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135084A JP5532236B2 (en) 2010-06-14 2010-06-14 Manufacturing method of heat transfer tube for boiling

Publications (2)

Publication Number Publication Date
JP2012002374A JP2012002374A (en) 2012-01-05
JP5532236B2 true JP5532236B2 (en) 2014-06-25

Family

ID=45534572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135084A Active JP5532236B2 (en) 2010-06-14 2010-06-14 Manufacturing method of heat transfer tube for boiling

Country Status (1)

Country Link
JP (1) JP5532236B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356327A (en) * 1986-08-26 1988-03-10 Mitsubishi Heavy Ind Ltd Manufacture of finned pipe
JPS6373094A (en) * 1987-08-29 1988-04-02 Furukawa Electric Co Ltd:The Heat transfer tube for use in nucleate boiling type teat exchanger
JP2590250Y2 (en) * 1992-10-20 1999-02-10 神鋼メタルプロダクツ株式会社 Heat exchanger
JPH1110264A (en) * 1997-06-18 1999-01-19 Sumitomo Light Metal Ind Ltd Method for linking thin metallic tube by hydraulic expansion onto inner surface of existing heat transfer tube of multi-tube type heat exchanger and apparatus therefor and thin titanium tube used for lining by hydraulic expansion
JPH1144497A (en) * 1997-07-23 1999-02-16 Furukawa Electric Co Ltd:The Composite tube for refrigerant passage of aluminum alloy and its manufacture
JP2001347310A (en) * 2000-06-07 2001-12-18 Toshiba Corp Double pipe type heat exchanger, and manufacturing method of double heat transmission pipe
JP2003236639A (en) * 2002-02-18 2003-08-26 Kobe Steel Ltd Method for manufacturing boiling heat transfer pipe
CA2688835C (en) * 2007-05-31 2019-04-30 Amerifab, Inc. Layered heat exchanger pipe

Also Published As

Publication number Publication date
JP2012002374A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP2007271123A (en) Inner face-grooved heat transfer tube
JP6154610B2 (en) Aluminum alloy inner surface grooved heat transfer tube
KR20090023349A (en) A cu/al composite pipe and a manufacturing method thereof
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP6154611B2 (en) Aluminum alloy inner surface grooved heat transfer tube
JP2011153823A (en) Heat exchanger and air conditioner using the same
JP2001289585A (en) Inner grooved aluminum tube and heat exchanger comprising the same
JP4550451B2 (en) Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube
JP2008164245A (en) Heat exchanger
JP2010197002A (en) Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger
US9541336B2 (en) Evaporation heat transfer tube with a hollow cavity
JP2014517867A (en) High strength clad plate material for brazing using thin plate cast aluminum alloy and method for producing the same
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
JP2005076915A (en) Composite heat exchanger tube
JP2011094174A (en) Copper alloy seamless tube
JP5532236B2 (en) Manufacturing method of heat transfer tube for boiling
JP2006130558A (en) Method for manufacturing heat exchanger
CN102782167A (en) Copper alloys and heat exchanger tubes
JP2011080121A (en) Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle
JP2011021844A (en) Inner face grooved heat transfer tube and cross fin tube type heat exchanger for evaporator
US20200158446A1 (en) Internally enhanced heat exchanger tube
JP2008267779A (en) Heat transfer tube
JP5883383B2 (en) Internal grooved tube with excellent extrudability
JP2013092335A (en) Aluminum capillary tube for heat exchanger, and heat exchanger using the same
JP2010185610A (en) Heat exchanger and heat transfer tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5532236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250