JP5530825B2 - Screw compressor and its control device - Google Patents

Screw compressor and its control device Download PDF

Info

Publication number
JP5530825B2
JP5530825B2 JP2010138925A JP2010138925A JP5530825B2 JP 5530825 B2 JP5530825 B2 JP 5530825B2 JP 2010138925 A JP2010138925 A JP 2010138925A JP 2010138925 A JP2010138925 A JP 2010138925A JP 5530825 B2 JP5530825 B2 JP 5530825B2
Authority
JP
Japan
Prior art keywords
load operation
pressure
compressor
full load
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010138925A
Other languages
Japanese (ja)
Other versions
JP2012002156A (en
JP2012002156A5 (en
Inventor
隆史 齊藤
和也 金崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010138925A priority Critical patent/JP5530825B2/en
Priority to CN201110162775.5A priority patent/CN102287372B/en
Publication of JP2012002156A publication Critical patent/JP2012002156A/en
Publication of JP2012002156A5 publication Critical patent/JP2012002156A5/ja
Application granted granted Critical
Publication of JP5530825B2 publication Critical patent/JP5530825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、スクリュー圧縮機およびその制御装置に係り、特に吸入側にオンオフ式制御弁を備え、全負荷運転及び無負荷運転を繰り返すスクリュー圧縮機およびその制御装置に関する。   The present invention relates to a screw compressor and a control device therefor, and more particularly to a screw compressor that includes an on / off control valve on a suction side and repeats full load operation and no load operation, and a control device therefor.

従来のオンオフ式制御弁を備えたスクリュー圧縮機の圧力制御装置の例が、特許文献1に記載されている。この公報に記載のスクリュー圧縮機では、その吸入側にオンオフ式制御弁と吐出放風弁を設けている。そして、オンオフ式制御弁を全開にする全負荷運転により吐出側圧力を上昇させ、吐出側圧力が予め設定した設定値を超えるとオンオフ式制御弁を閉じるとともに放風弁を開放し、無負荷運転に切り替える。その後、吐出側のガス貯槽内圧力が低下して設定値以下になったら、オンオフ制御弁を開にするとともに放風弁を閉じて全負荷運転に戻している。また、スクリュー圧縮機の吐出側圧力を圧力スイッチで検出し、この検出値に応じて制御装置から全負荷−無負荷運転の切替え指令信号を発している。   An example of a pressure control device for a screw compressor provided with a conventional on / off control valve is described in Patent Document 1. In the screw compressor described in this publication, an on / off control valve and a discharge air discharge valve are provided on the suction side. Then, the discharge side pressure is increased by full load operation that fully opens the on / off type control valve, and when the discharge side pressure exceeds a preset value, the on / off type control valve is closed and the discharge valve is opened, and no load operation is performed. Switch to. After that, when the pressure in the gas storage tank on the discharge side decreases and falls below the set value, the on / off control valve is opened and the discharge valve is closed to return to full load operation. Further, the pressure on the discharge side of the screw compressor is detected by a pressure switch, and a switching command signal for full load / no load operation is issued from the control device in accordance with the detected value.

特公平1−33676号公報Japanese Patent Publication No. 1-33366

上記従来技術で示したオイルフリースクリュー圧縮機では、吐出側の温度上昇によるロータ同士の接触を防止するために、吸入側の制御弁をオンオフ式制御弁としており、全負荷−無負荷運転の切替え指令信号の基となる圧力設定値を固定している。そのため、スクリュー圧縮機の吐出圧力が所定の設定圧力になると、全負荷運転と無負荷運転が切り替えられていた。   In the oil-free screw compressor shown in the above prior art, the suction side control valve is an on / off type control valve to prevent contact between the rotors due to temperature increase on the discharge side, and switching between full load and no load operation The pressure setting value that is the basis of the command signal is fixed. Therefore, when the discharge pressure of the screw compressor reaches a predetermined set pressure, the full load operation and the no load operation are switched.

ところで、末端(ユーザー設備におけるガス運用機器)での消費流量が大きければ大きいほど、スクリュー圧縮機の吐出口から末端までの間の圧力損失が大きくなり、末端の圧力が低下する。そこで、スクリュー圧縮機の吐出圧力の設定値を、予想される最大消費流量時でも必要最低圧力が得られるように定めている。   By the way, the larger the consumption flow rate at the end (the gas operation equipment in the user equipment), the greater the pressure loss from the outlet of the screw compressor to the end, and the end pressure decreases. Therefore, the set value of the discharge pressure of the screw compressor is determined so that the necessary minimum pressure can be obtained even at the expected maximum consumption flow rate.

このように吐出圧力の設定値を定めているので、末端での消費流量が少なくなると、スクリュー圧縮機の吐出口から末端までの間の圧力損失が小さくなり、末端圧力が必要以上に上昇する。その結果、圧縮機は本来必要とされる圧力よりも高い吐出圧力で運転されることとなり、高圧運転により不要な電力を消費する。また、末端圧力が高いので、消費流量も必要以上に消費される。   Since the set value of the discharge pressure is determined in this way, when the consumption flow rate at the end decreases, the pressure loss from the discharge port to the end of the screw compressor decreases, and the end pressure rises more than necessary. As a result, the compressor is operated at a higher discharge pressure than is originally required, and unnecessary power is consumed by the high pressure operation. Moreover, since the terminal pressure is high, the consumption flow rate is also consumed more than necessary.

本発明は、上記従来技術の不具合に鑑みなされたもので、その目的は、オンオフ式制御弁を備えたスクリュー圧縮機において、不要に高い圧力でスクリュー圧縮機を運転するのを防止することにある。また、本発明の他の目的は、オンオフ式制御弁を備えたスクリュー圧縮機において、消費電力量を低減するとともに、必要以上に消費流量が増加することを防止することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to prevent the screw compressor provided with an on / off control valve from operating the screw compressor at an unnecessarily high pressure. . Another object of the present invention is to reduce power consumption and prevent an increase in consumption flow more than necessary in a screw compressor provided with an on / off control valve.

上記目的を達成するための本発明の特徴は、雄ロータと、雌ロータと、前記雄ロータと前記雌ロータを同期駆動するためのタイミングギアとを有し、吸入側から吸込まれたガスを圧縮する圧縮機本体と、前記圧縮機本体の吸入側に設けられ吸入ガス量を制御するオンオフ式制御弁と、前記圧縮機本体の吐出側に設けられ前記圧縮機本体から吐出される圧縮ガスの圧力を検出する吐出圧力検出手段と、前記圧縮機本体に隣り合って配置され、前記オンオフ式制御弁を前記吐出圧力検出手段が検出した吐出圧力に応じて制御する制御装置と、前記圧縮機本体の吐出側に接続され、負荷側の圧力を検出する末端圧力検出手段と、前記制御装置に設けられ、全負荷運転と無負荷運転を切り替える上限圧力設定値および下限圧力設定値を、全負荷運転と無負荷運転の双方を含む1サイクルの時間内における全負荷運転の割合に基づいて前記制御装置が変更するために、全負荷運転及び無負荷運転のそれぞれのサイクル時間を検出するサイクル時間検出手段とを有し、前記末端圧力検出手段が検出した圧力に基づいて前記制御装置が前記オンオフ式制御弁を制御するスクリュー圧縮機において、前記制御装置は、全負荷運転および無負荷運転のそれぞれのサイクル時間を計測する検出手段を備え、前記検出手段により計測した全負荷運転時間と無負荷運転時間から、全運転時間における全負荷運転時間の比を算出し、前記全運転時間における全負荷運転時間の比から圧縮機負荷率を算出するとともに、配管圧力損失、制御圧力設定値シフト量を算出し、全負荷運転と無負荷運転を切換える上限圧力設定値及び下限圧力設定値の最適値を逐次自動調整することにある。 In order to achieve the above object, the present invention is characterized by a male rotor, a female rotor, and a timing gear for synchronously driving the male rotor and the female rotor, and compressing the gas sucked from the suction side. A compressor main body, an on / off control valve provided on the suction side of the compressor main body for controlling the intake gas amount, and a pressure of the compressed gas discharged from the compressor main body provided on the discharge side of the compressor main body A discharge pressure detecting means for detecting the pressure, a control device that is arranged adjacent to the compressor body, and controls the on / off control valve according to the discharge pressure detected by the discharge pressure detecting means ; and is connected to the discharge side, and the terminal pressure detecting means for detecting a pressure in the load side, is provided in the control device, the upper limit pressure setting value and the lower limit pressure set value for switching the full load and no-load operation, and full load operation To the control device is changed based on the percentage of full-load operation within one cycle time including both load operation, and a cycle time detecting means for detecting the respective cycle time of full load operation and no-load operation And the control device controls the on / off control valve based on the pressure detected by the end pressure detecting means, and the control device has cycle times of full load operation and no load operation. A detection means for measuring, from the full load operation time and the no load operation time measured by the detection means, to calculate the ratio of the full load operation time in the total operation time, from the ratio of the full load operation time in the total operation time Calculate the compressor load factor, calculate the pipe pressure loss and control pressure set value shift amount, and set the upper limit pressure to switch between full-load operation and no-load operation It is to sequentially automatically adjusting the optimum value of the set value and the lower limit pressure value.

上記目的を達成する本発明の他の特徴は、吸入側にオンオフ式制御弁を吐出側に圧力検出手段をそれぞれ有するスクリュー圧縮機に設けられ、前記オンオフ式制御弁を前記吐出圧力検出手段が検出した吐出圧力に応じて制御するものであって、全負荷運転と無負荷運転を切り替える上限圧力設定値および下限圧力設定値を、全負荷運転と無負荷運転の双方を含む1サイクルの時間内における全負荷運転の割合に基づいて変更するために、全負荷運転及び無負荷運転のそれぞれのサイクル時間を検出するサイクル時間検出手段を備えたスクリュー圧縮機の制御装置において、前記サイクル時間検出手段により計測した全負荷運転時間と無負荷運転時間から、全運転時間における全負荷運転時間の比を算出し、前記全運転時間における全負荷運転時間の比から圧縮機負荷率を算出するとともに、配管圧力損失、制御圧力設定値シフト量を算出し、全負荷運転と無負荷運転を切換える上限圧力設定値及び下限圧力設定値の最適値を逐次自動調整することにある。
Another feature of the present invention that achieves the above object is that the screw compressor having an on / off control valve on the suction side and a pressure detection means on the discharge side is provided in the screw compressor, and the discharge pressure detection means detects the on / off control valve. The upper limit pressure setting value and the lower limit pressure setting value for switching between full load operation and no load operation are controlled within one cycle time including both full load operation and no load operation. Measured by the cycle time detecting means in the control device of the screw compressor provided with the cycle time detecting means for detecting the cycle times of the full load operation and the no load operation in order to change based on the ratio of the full load operation. The ratio of the full load operation time in the total operation time is calculated from the full load operation time and the no-load operation time. The compressor load factor is calculated from the ratio between the pipes, the pipe pressure loss and the control pressure set value shift amount are calculated, and the optimum values of the upper limit pressure set value and lower limit pressure set value for switching between full load operation and no load operation are successively calculated. It is to adjust automatically.

本発明によれば、オンオフ式制御弁を備えたスクリュー圧縮機において、スクリュー圧縮機の容量制御のための圧力設定値を、末端の消費流量に応じて自動調整したので、不要に高い圧力でスクリュー圧縮機を運転するのを防止できる。また、オンオフ式制御弁を備えたスクリュー圧縮機において、消費電力量を低減するとともに、必要以上に消費流量が増加するのを防止できる。   According to the present invention, in the screw compressor provided with the on-off type control valve, the pressure set value for controlling the capacity of the screw compressor is automatically adjusted according to the consumption flow rate at the end. It is possible to prevent the compressor from operating. Moreover, in the screw compressor provided with the on / off type control valve, it is possible to reduce the power consumption and to prevent the consumption flow rate from increasing more than necessary.

本発明に係るスクリュー圧縮機の一実施の形態の全体構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of one Embodiment of the screw compressor which concerns on this invention. 図1に示したスクリュー圧縮機を備える圧縮機設備の系統図である。It is a systematic diagram of compressor equipment provided with the screw compressor shown in FIG. 図1に示したスクリュー圧縮機を備える他の圧縮機設備の系統図である。It is a systematic diagram of the other compressor installation provided with the screw compressor shown in FIG. 図1に示したスクリュー圧縮機における吐出圧力の変化を説明する線図である。It is a diagram explaining the change of the discharge pressure in the screw compressor shown in FIG. 図1に示したスクリュー圧縮機における動力の変化を説明する線図である。It is a diagram explaining the change of the motive power in the screw compressor shown in FIG. 本発明に係るスクリュー圧縮機の制御フローチャートの一例である。It is an example of the control flowchart of the screw compressor which concerns on this invention. 図1に示したスクリュー圧縮機が備える制御装置の外観図である。It is an external view of the control apparatus with which the screw compressor shown in FIG. 1 is provided. 図7に示した制御装置が備える表示器の表示例である。8 is a display example of a display provided in the control device shown in FIG.

以下、本発明のいくつかの実施の形態について図1ないし図6を参照して説明する。図1は、本発明に係るスクリュー圧縮機1の全体構成を示す系統図である。図2および図3は、図1に示したスクリュー圧縮機を備える圧縮機設備の異なる系統図である。図2,3に示す圧縮機設備では、図1に示したスクリュー圧縮機が採用されており、ユーザー設備として示されている。   Several embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a system diagram showing an overall configuration of a screw compressor 1 according to the present invention. FIGS. 2 and 3 are different system diagrams of the compressor equipment including the screw compressor shown in FIG. The compressor equipment shown in FIGS. 2 and 3 employs the screw compressor shown in FIG. 1 and is shown as user equipment.

図2,3を参照して、圧縮機設備の全体構成を説明する。図2,3において、1はスクリュー圧縮機、2は制御装置、3はスクリュー圧縮機1の吐出圧力を検出する圧力検出器である。圧力検出器3は、圧縮機吐出口4に備えられている。5は、吐出側に設けたガス貯槽、6はフィルター、7はガス分離装置または除湿装置、8はガスヘッダー、9は需要側のガス運用機器である。これらガス貯槽5、フィルター6、ガス分離装置または除湿装置7、ガスヘッダー8、需要側のガス運用機器9は、需要側の所謂ユーザー設備を構成する。   With reference to FIG.2, 3, the whole structure of a compressor installation is demonstrated. 2 and 3, 1 is a screw compressor, 2 is a control device, and 3 is a pressure detector that detects the discharge pressure of the screw compressor 1. The pressure detector 3 is provided in the compressor discharge port 4. 5 is a gas storage tank provided on the discharge side, 6 is a filter, 7 is a gas separator or dehumidifier, 8 is a gas header, and 9 is a gas operation device on the demand side. These gas storage tank 5, filter 6, gas separator or dehumidifier 7, gas header 8, and demand side gas operation equipment 9 constitute so-called user equipment on the demand side.

図1を参照して、ユーザー設備が備えるスクリュー圧縮機1の圧力制御装置の構成を説明する。図1では、スクリュー圧縮機1の空気系統と容量制御装置を併せて示している。スクリュー圧縮機1では、歯数4枚の雄ロータ31と歯数6枚の雌ロータ32がタイミングギア33を用いて、非接触で同期回転している。これら、雄ロータ31と雌ロータ32とタイミングギア33とは、ケーシングに内蔵されており、圧縮機本体(エアブロック)16を構成する。一方のロータの軸端部には、駆動機であるモータ35がカップリング接続されている。   With reference to FIG. 1, the structure of the pressure control apparatus of the screw compressor 1 with which user equipment is provided is demonstrated. In FIG. 1, the air system and the capacity control device of the screw compressor 1 are shown together. In the screw compressor 1, a male rotor 31 having four teeth and a female rotor 32 having six teeth are synchronously rotated using a timing gear 33 in a non-contact manner. The male rotor 31, the female rotor 32, and the timing gear 33 are built in a casing and constitute a compressor body (air block) 16. A motor 35 as a driving machine is coupled to the shaft end of one rotor.

スクリュー圧縮機1(図2,3参照)を全負荷で運転した状態では、吸入口11から吸入した空気は吸入フィルター12を通り、全開状態の吸入弁(オンオフ式制御弁)13を通り圧縮機本体16へ流入する。圧縮機本体16で圧縮された高温高圧のガスは、逆止弁17、アフタークーラー18を通ってガス貯槽5へ送り込まれる。ガス貯槽5内に流入し溜められたガスは、ガス消費ライン19へ送られ消費される。なお、この状態では、吸入弁13と連動する放風弁14が閉になるように、放風弁を設定する。   When the screw compressor 1 (see FIGS. 2 and 3) is operated at full load, the air sucked from the suction port 11 passes through the suction filter 12 and passes through the fully opened suction valve (on-off control valve) 13. It flows into the main body 16. The high-temperature and high-pressure gas compressed by the compressor body 16 is sent to the gas storage tank 5 through the check valve 17 and the aftercooler 18. The gas flowing into and stored in the gas storage tank 5 is sent to the gas consumption line 19 and consumed. In this state, the air discharge valve is set so that the air discharge valve 14 interlocked with the intake valve 13 is closed.

消費流量が最大となる場合を除いて、全負荷運転時には消費流量よりもスクリュー圧縮機1の吐出量の方が多くなるようにスクリュー圧縮機設備を設定するのが一般的であるから、全負荷運転時には吐出側圧力が上昇していく。上昇する吐出側圧力は圧力検出器3で検出され、制御装置2へ送られる。制御装置2では、検出された吐出側圧力Pが予め設定した上限圧力設定値Pmax(後述する図4参照)に達すると、四方電磁弁24に指令信号を発して、四方電磁弁24の油通路を切り替える。そして、油圧ピストン15を作動させて吸入弁13を閉にし、それとともに放風弁14を開にして圧縮機本体16を無負荷運転状態にする。吸入弁13から圧縮機本体16へ漏れこんだガスは、圧縮機本体16から流出したのち、放風弁14および放風サイレンサ20を通って放風口21から大気へ放風される。   Since it is common to set the screw compressor equipment so that the discharge amount of the screw compressor 1 is larger than the consumed flow rate at the full load operation except for the case where the consumed flow rate becomes maximum, the full load During operation, the discharge side pressure increases. The increasing discharge-side pressure is detected by the pressure detector 3 and sent to the control device 2. In the control device 2, when the detected discharge side pressure P reaches a preset upper limit pressure set value Pmax (see FIG. 4 described later), a command signal is issued to the four-way solenoid valve 24, and the oil passage of the four-way solenoid valve 24. Switch. Then, the hydraulic piston 15 is actuated to close the suction valve 13, and at the same time, the air discharge valve 14 is opened to bring the compressor body 16 into a no-load operation state. The gas leaked from the suction valve 13 to the compressor main body 16 flows out of the compressor main body 16, and then is discharged from the air discharge port 21 to the atmosphere through the air discharge valve 14 and the air discharge silencer 20.

無負荷運転状態では、圧縮機本体16からガス貯槽5へガスは供給されない。その結果、ガス貯槽5を含む吐出側圧力Pが次第に低下する。予め設定した下限圧力設定値Pmin(後述する図4参照)まで吐出側圧力Pが低下すると、制御装置2は四方電磁弁24を切り替えて再度全負荷運転状態に戻す。   In the no-load operation state, no gas is supplied from the compressor body 16 to the gas storage tank 5. As a result, the discharge side pressure P including the gas storage tank 5 gradually decreases. When the discharge side pressure P decreases to a preset lower limit pressure set value Pmin (see FIG. 4 described later), the control device 2 switches the four-way solenoid valve 24 to return to the full load operation state again.

図1および図3を参照して、上記ユーザー設備に採用されたスクリュー圧縮機1の圧力制御方法について説明する。本発明のスクリュー圧縮機の圧力制御方法は、スクリュー圧縮機1の吸入側に設けたオンオフ式制御弁(吸入弁)13をスクリュー圧縮機1の吐出側に設けた圧力検出器3の検出圧力に応じて制御することで実行される。その際、スクリュー圧縮機1は全負荷運転および無負荷運転を繰り返すものであり、圧力制御装置は、スクリュー圧縮機1の負荷側の消費流量を算出し、この使用量に応じて、オンオフ式制御弁13をオフする上限圧力設定値およびオンオフ式制御弁13をオンする下限圧力設定値を変化させる。   With reference to FIG. 1 and FIG. 3, the pressure control method of the screw compressor 1 employ | adopted as the said user equipment is demonstrated. The pressure control method for the screw compressor according to the present invention is based on the detected pressure of the pressure detector 3 provided on the discharge side of the screw compressor 1 with an on / off control valve (suction valve) 13 provided on the suction side of the screw compressor 1. It is executed by controlling accordingly. At that time, the screw compressor 1 repeats full-load operation and no-load operation, and the pressure control device calculates the consumption flow rate on the load side of the screw compressor 1 and performs on-off control according to this usage amount. The upper limit pressure set value for turning off the valve 13 and the lower limit pressure set value for turning on the on / off control valve 13 are changed.

以下により詳細を説明する。オンオフ式制御弁(吸入弁)13のオンオフ圧力設定値を、以下のように設定する。圧縮機設備は、ガス運用機器9のような多数の末端機器を有している。この多数の末端の機器の中で、最低動作(使用)圧力が最も低い機器を予め選定し、その選定された末端機器の最低使用圧力に、裕度を考慮した圧力分だけ加算した暫定設定値圧力(下限値)を定める。   Details will be described below. The on / off pressure set value of the on / off control valve (suction valve) 13 is set as follows. The compressor facility has a number of end devices such as the gas operation device 9. Preliminary set value obtained by pre-selecting the lowest operating (operating) pressure device from among the multiple end devices, and adding the pressure to allow for tolerance to the minimum operating pressure of the selected end device. Determine the pressure (lower limit).

図3を参照してスクリュー圧縮機1の他の圧力制御方法について説明する。図1に示した圧縮機1を用いた圧縮機設備において、容量制御の精度を向上させるものである。圧縮機設備末端のガス運用機器9部に設けた圧力検出器10が検出した圧力と圧縮機の吐出部に設けた圧力検出器3の検出した圧力との圧力差を演算する。この圧力差と、全負荷−無負荷運転サイクル中にサンプル演算した圧力損失との偏差を、オンオフ式制御弁13をオフにする上限圧力設定値およびオンオフ式制御弁13をオンにする下限圧力設定値を自動調整する演算機能にフィードバックする。   With reference to FIG. 3, another pressure control method of the screw compressor 1 will be described. In the compressor equipment using the compressor 1 shown in FIG. 1, the accuracy of capacity control is improved. The pressure difference between the pressure detected by the pressure detector 10 provided in 9 parts of the gas operation equipment at the compressor equipment end and the pressure detected by the pressure detector 3 provided in the discharge part of the compressor is calculated. The difference between this pressure difference and the pressure loss sampled during the full load-no load operation cycle is set to an upper limit pressure setting value for turning on the on / off type control valve 13 and a lower limit pressure setting for turning on the on / off type control valve 13. Feedback to the calculation function that automatically adjusts the value.

上述した上限圧力設定および下限圧力設定値の自動調整演算を、図4および図5を参照して説明する。図4は本発明に係るスクリュー圧縮機1における吐出圧力の変化を示す線図、図5はその動力の変化を示す線図である。図4では横軸に経過時間、縦軸に吐出圧力の変化を示しており、図5では、横軸に経過時間、縦軸に動力の変化を示している。   The above-described automatic adjustment calculation of the upper limit pressure setting and the lower limit pressure set value will be described with reference to FIGS. FIG. 4 is a diagram showing a change in discharge pressure in the screw compressor 1 according to the present invention, and FIG. 5 is a diagram showing a change in power. In FIG. 4, the elapsed time is shown on the horizontal axis, and the change in discharge pressure is shown on the vertical axis. In FIG. 5, the elapsed time is shown on the horizontal axis, and the change in power is shown on the vertical axis.

図4に示すように、スクリュー圧縮機1を全負荷状態で運転したときは、圧縮機が1供給する空気量は消費流量より多い。そのため、圧縮機1の吐出側圧力が上昇し、上限圧力設定値Pmaxに達すると、スクリュー圧縮機1は全負荷運転から無負荷運転に切り替わる。   As shown in FIG. 4, when the screw compressor 1 is operated in a full load state, the amount of air supplied by the compressor 1 is larger than the consumed flow rate. Therefore, when the discharge side pressure of the compressor 1 increases and reaches the upper limit pressure set value Pmax, the screw compressor 1 is switched from full load operation to no load operation.

無負荷運転状態では、スクリュー圧縮機1から空気が供給されないので、ガス貯槽5内の空気が消費される。それに伴って圧縮機設備の圧力が低下する(線a参照)。吐出側圧力が下限圧力設定値Pminまで低下すると、スクリュー圧縮機1は無負荷運転から全負荷運転に切り替わり、吐出側圧力が再び上昇する。以後、同様の動作を繰り返す。   In the no-load operation state, since air is not supplied from the screw compressor 1, the air in the gas storage tank 5 is consumed. Along with this, the pressure of the compressor equipment decreases (see line a). When the discharge side pressure decreases to the lower limit pressure set value Pmin, the screw compressor 1 is switched from the no-load operation to the full load operation, and the discharge side pressure increases again. Thereafter, the same operation is repeated.

すなわち、図4において、Δtoは全負荷運転状態時間、Δtuは無負荷運転状態時間、Δt1は、全負荷運転状態時間Δtoと無負荷運転状態時間Δtuとを合計した第1サイクルの時間を示し、Δt2は、次の全負荷運転状態時間Δto’と無負荷運転状態時間Δtu’とを合計した第2サイクルの時間を示している。以後第3、第4、・・・とサイクルを繰り返す。   That is, in FIG. 4, Δto represents the full load operation state time, Δtu represents the no load operation state time, Δt1 represents the time of the first cycle obtained by adding the full load operation state time Δto and the no load operation state time Δtu, Δt2 indicates the time of the second cycle in which the next full load operation state time Δto ′ and the no-load operation state time Δtu ′ are summed. Thereafter, the third, fourth,... Cycle is repeated.

このとき、スクリュー圧縮機1の全負荷状態の動力は、以下のようになると考えられる。前述したように全負荷運転状態時間をΔto、無負荷運転状態時間Δtuとし、スクリュー圧縮機1の吐出風量をQとすると、消費流量Q’は次式で表される。   At this time, it is considered that the power in the full load state of the screw compressor 1 is as follows. As described above, assuming that the full load operation state time is Δto, the no-load operation state time Δtu, and the discharge air volume of the screw compressor 1 is Q, the consumed flow rate Q ′ is expressed by the following equation.

’=×Δto/(Δto+Δtu) (式1)
図2における圧縮機吐出口4とガス運用機器9との間の圧力損失ΔPは、一般的には消費流量’の二乗に比例して変化することが知られている。消費流量’が小さくなると圧力損失ΔPも小さくなる。ここで、圧力検出器3の上限圧力設定値Pmaxと下限圧力設定値Pminが変化しなければ、ガス運用機器9における圧力は、圧力損失ΔPが小さくなった分だけ必然的に高くなる。
Q ′ = Q × Δto / (Δto + Δtu) (Formula 1)
It is known that the pressure loss ΔP between the compressor discharge port 4 and the gas operation device 9 in FIG. 2 generally changes in proportion to the square of the consumption flow rate Q ′. As the consumed flow rate Q ′ decreases, the pressure loss ΔP also decreases. Here, if the upper limit pressure set value Pmax and the lower limit pressure set value Pmin of the pressure detector 3 do not change, the pressure in the gas operation device 9 inevitably increases by the amount that the pressure loss ΔP has decreased.

ガス運用機器9における圧力を必要以上に高くする必要は無いので、圧力損失ΔPが小さくなった分だけ圧力検出器3の設定値を図4に示す上限圧力設定値P’max、下限圧力設定値P’minに下げ(線b参照)れば、ガス運用機器9における圧力の上昇を防止できるとともに消費流量Q’の増加を防止できる。さらに、スクリュー圧縮機1の全負荷状態での運転動力も低減できる。   Since there is no need to increase the pressure in the gas operation device 9 more than necessary, the set values of the pressure detector 3 are set to the upper limit pressure set value P′max and the lower limit pressure set value shown in FIG. If it is lowered to P′min (see line b), it is possible to prevent an increase in pressure in the gas operation device 9 and an increase in the consumption flow rate Q ′. Furthermore, the driving power in the full load state of the screw compressor 1 can also be reduced.

図6に示したフローチャートを用いて、この様子を説明する。はじめにスクリュー圧縮機1の運転状態を調べる。スクリュー圧縮機1の運転状態が、全負荷運転(ロード)であれば、タイマ機能を用いて全負荷運転時間であるロード時間Δtoを計測する。運転状態が無負荷運転になるまでロード時間Δtoを更新する。無負荷運転(アンロード)に切り替わったら、タイマ機能を用いて無負荷運転時間Δtuを計測する。無負荷運転が終了するまで無負荷運転時間Δtuを更新し続ける。全運転時間における全負荷運転時間の比から、(式1)で圧縮機負荷率qを演算する。   This will be described with reference to the flowchart shown in FIG. First, the operating state of the screw compressor 1 is examined. If the operating state of the screw compressor 1 is full load operation (load), the load function Δto which is the full load operation time is measured using a timer function. The load time Δto is updated until the operation state becomes no-load operation. After switching to no-load operation (unload), the no-load operation time Δtu is measured using a timer function. The no-load operation time Δtu is continuously updated until the no-load operation is completed. The compressor load factor q is calculated by (Equation 1) from the ratio of the full load operation time in the total operation time.

この圧縮機負荷率qを用いて、配管圧力損失ΔPlossおよび制御圧力設定値シフト量ΔPsftを計算する。   Using this compressor load factor q, a pipe pressure loss ΔPloss and a control pressure set value shift amount ΔPsft are calculated.

ΔPloss=ΔP100*q**k
ΔPsft=ΔP100−ΔP (式2)
ここで、q**kはqのk乗を表し、*は2つの量の積を表す。ΔP100は、100%負荷時の圧縮機吐出口4から圧縮機設備の末端のガス運用機器9までの圧力損失である。全負荷−無負荷運転の幾つかのサイクルをサンプリングする。この動作を、所定時間間隔で実行する。
ΔPloss = ΔP100 * q ** k
ΔPsft = ΔP100−ΔP (Formula 2)
Here, q ** k represents q raised to the kth power, and * represents the product of two quantities. ΔP100 is a pressure loss from the compressor discharge port 4 at the time of 100% load to the gas operation device 9 at the end of the compressor equipment. Sample several cycles of full load-no load operation. This operation is executed at predetermined time intervals.

現状の負荷での配管圧力損失が、指標kの関数で示される。この指標kは、圧縮機吐出口4から圧縮機設備の末端のガス運用機器9までの設備構成により変化する。多くの機器での流動抵抗は速度の二乗に比例して増加するので、流量の二乗に比例して増加する。しかしながら除湿器等では必ずしも速度の二乗、すなわち流量の二乗に応じて流動抵抗は増加しない。その結果、指標kは多くの場合1〜2までの値となる。   The pipe pressure loss at the current load is shown as a function of the index k. This index k varies depending on the equipment configuration from the compressor discharge port 4 to the gas operation equipment 9 at the end of the compressor equipment. In many devices, the flow resistance increases in proportion to the square of the velocity, and therefore increases in proportion to the square of the flow rate. However, in a dehumidifier or the like, the flow resistance does not necessarily increase according to the square of the speed, that is, the square of the flow rate. As a result, the index k is a value from 1 to 2 in many cases.

この指標kを予め各末端機器構成を考慮して求めておけば、または機器構成に応じた係数テーブル等を利用して求めておけば、上記暫定設定値圧力以上であって、オンオフ式制御弁13をオフとする上限圧力設定値およびオンオフ制御弁13をオンとする下限圧力設定値の最適値(P’max,P’min)を制御装置が逐次自動調整する。   If this index k is determined in advance by considering each terminal device configuration, or if it is determined using a coefficient table or the like corresponding to the device configuration, it is equal to or higher than the tentative set value pressure and is an on-off control valve. The control device sequentially and automatically adjusts the optimum value (P′max, P′min) of the upper limit pressure setting value for turning off 13 and the lower limit pressure setting value for turning on the on / off control valve 13.

P’max=Pmax-ΔPsft
P’min=Pmin-ΔPsft (式3)
さらに自動調整された上限圧力設定値および下限圧力設定値で全負荷―無負荷運転を適宜繰り返し、この運転サイクルをフィードバックして刻々と変化する消費流量に対応する。すなわち、図6に示すように、スクリュー圧縮機1の全負荷運転時の動力は、Lmax〜Lminから、L’max〜L’minへ低減できる。これは、図5の線a(改善前)、線b(改善後)に対応する。
P'max = Pmax-ΔPsft
P'min = Pmin-ΔPsft (Formula 3)
Furthermore, full load-no-load operation is repeated as appropriate with the automatically adjusted upper and lower pressure set values, and this operation cycle is fed back to respond to the changing flow rate. That is, as shown in FIG. 6, the power during full load operation of the screw compressor 1 can be reduced from Lmax to Lmin to L′ max to L′ min. This corresponds to line a (before improvement) and line b (after improvement) in FIG.

以上述べたように、本実施の形態によれば、スクリュー圧縮機の負荷側における消費流量の使用量に応じて、吐出圧力の上限圧力設定値および下限圧力設定値を自動調整するので、スクリュー圧縮機の運転圧力を最適化できると共に、末端圧力を一定にすることができる。また、消費流量とスクリュー圧縮機の運転動力の増加を防止することができる。   As described above, according to the present embodiment, the upper limit pressure set value and the lower limit pressure set value of the discharge pressure are automatically adjusted according to the consumption amount of the consumed flow rate on the load side of the screw compressor. The operating pressure of the machine can be optimized and the end pressure can be kept constant. Further, it is possible to prevent an increase in the consumption flow rate and the operating power of the screw compressor.

図7に、図2および図3で用いた制御装置2の外観を示す。制御装置2の表面には、液晶表示器25、ボタン26およびランプ27等が設置されており、圧縮機1のたとえば、負荷無負荷切替圧力、省エネ設定、スケジュール運転設定等の設定、運転操作および運転状態を表示する。制御装置2の内部には、コントローラ(PLC)および入出力基板、リレー、タイマ30、電磁接触器、圧力検出器、温度検出器、四方電磁弁24が設置されている。   FIG. 7 shows an appearance of the control device 2 used in FIGS. On the surface of the control device 2, a liquid crystal display 25, a button 26, a lamp 27, and the like are installed. For example, setting of the compressor 1 such as no-load switching pressure, energy saving setting, schedule operation setting, Displays the operating status. Inside the control device 2, a controller (PLC), an input / output board, a relay, a timer 30, an electromagnetic contactor, a pressure detector, a temperature detector, and a four-way electromagnetic valve 24 are installed.

圧力検出器3が検出した圧力信号は、入出力基板を介してデジタルデータとしてコントローラ内に取り込まれ、コントローラ内で演算され、たとえば圧力設定値が閾値(設定値)を超えたときのような最適なタイミングで、四方電磁弁のオンオフ制御信号に変換されて出力される。これにより、圧縮機が効果的にオンオフ制御される。   The pressure signal detected by the pressure detector 3 is taken into the controller as digital data via the input / output board and is calculated in the controller. For example, an optimum value when the pressure set value exceeds a threshold value (set value). At an appropriate timing, it is converted into an on / off control signal for a four-way solenoid valve and output. Thereby, the compressor is effectively on / off controlled.

図6に示した制御フローを実行するために、基準上限圧力設定値および基準下限圧力設定値、圧縮機風量設定値、圧力損失設定値を、制御装置2が有する表示器25から入力する。図8に表示器25の表示内容の一例を示すように、表示器25が備えるボタン26によりページめくり方式で入力設定項目を変更できる。表示器2は液晶タッチパネルであり、ユーザーは容易に設定変更が可能である。図8では、機器構成が変化したとき、たとえばバルブの開閉により末端構成が変化したときに、指標kを更新入力する様子を示している。設定項目を選択すると表示手段がテンキーを表示し、タッチパネルからk値を1〜2の範囲で入力する。   In order to execute the control flow shown in FIG. 6, the reference upper limit pressure setting value, the reference lower limit pressure setting value, the compressor air volume setting value, and the pressure loss setting value are input from the display unit 25 of the control device 2. As shown in FIG. 8 as an example of the display contents of the display unit 25, the input setting items can be changed by a page turning method using a button 26 provided in the display unit 25. The display device 2 is a liquid crystal touch panel, and the user can easily change the setting. FIG. 8 shows a state in which the index k is updated and input when the device configuration changes, for example, when the terminal configuration changes due to opening / closing of a valve. When a setting item is selected, the display means displays a numeric keypad, and a k value is input in the range of 1 to 2 from the touch panel.

以上述べたように本実施例によれば、無負荷−全負荷運転を繰り返すスクリュー圧縮機において、末端側の構成が変化しても指標kを制御装置から入力するだけで、タイマ機能により無負荷運転と全負荷運転の比から負荷率を自動的に求め、基準上限圧力設定値および下限圧力設定値を変化させているので、圧縮機に無駄に高圧を発生させることがなく、省エネが図られる。また、比較的簡単な構成で省エネが可能になる。   As described above, according to the present embodiment, in a screw compressor that repeats no load-full load operation, even if the terminal side configuration is changed, the index function k is input from the control device, and no load is applied by the timer function. The load factor is automatically calculated from the ratio of operation to full load operation, and the reference upper limit pressure setting value and lower limit pressure setting value are changed, so that high pressure is not generated in the compressor and energy saving is achieved. . In addition, energy can be saved with a relatively simple configuration.

1…スクリュー圧縮機、2…制御装置、3…圧力検出器、4…圧縮機吐出口、5…ガス貯槽、8…ガスヘッダー、9…ガス運用機器、10…末端圧力検出器、13…吸入弁、14…放風弁、16…圧縮機本体(エアブロック)、18…アフタークーラー、19…ガス消費ライン、24…四方電磁弁、25…表示器、26…ボタン、27…ランプ、30…タイマ、31…雄ロータ、32…雌ロータ、33…タイミングギア、35…モータ。 DESCRIPTION OF SYMBOLS 1 ... Screw compressor, 2 ... Control apparatus, 3 ... Pressure detector, 4 ... Compressor discharge port, 5 ... Gas storage tank, 8 ... Gas header, 9 ... Gas operation apparatus, 10 ... Terminal pressure detector, 13 ... Inhalation Valves, 14 ... Ventilation valve, 16 ... Compressor body (air block), 18 ... After cooler, 19 ... Gas consumption line, 24 ... 4-way solenoid valve, 25 ... Indicator, 26 ... Button, 27 ... Lamp, 30 ... Timer, 31 ... male rotor, 32 ... female rotor, 33 ... timing gear, 35 ... motor.

Claims (2)

雄ロータと、雌ロータと、前記雄ロータと前記雌ロータを同期駆動するためのタイミングギアとを有し、吸入側から吸込まれたガスを圧縮する圧縮機本体と、
前記圧縮機本体の吸入側に設けられ吸入ガス量を制御するオンオフ式制御弁と、
前記圧縮機本体の吐出側に設けられ前記圧縮機本体から吐出される圧縮ガスの圧力を検出する吐出圧力検出手段と、
前記圧縮機本体に隣り合って配置され、前記オンオフ式制御弁を前記吐出圧力検出手段が検出した吐出圧力に応じて制御する制御装置と、
前記圧縮機本体の吐出側に接続され、負荷側の圧力を検出する末端圧力検出手段と、
前記制御装置に設けられ、全負荷運転と無負荷運転を切り替える上限圧力設定値および下限圧力設定値を、全負荷運転と無負荷運転の双方を含む1サイクルの時間内における全負荷運転の割合に基づいて前記制御装置が変更するために、全負荷運転及び無負荷運転のそれぞれのサイクル時間を検出するサイクル時間検出手段とを有し、
前記末端圧力検出手段が検出した圧力に基づいて前記制御装置が前記オンオフ式制御弁を制御するスクリュー圧縮機において、
前記制御装置は、前記サイクル時間検出手段により計測した全負荷運転時間と無負荷運転時間から、全運転時間における全負荷運転時間の比を算出し、前記全運転時間における全負荷運転時間の比から圧縮機負荷率を算出するとともに、配管圧力損失、制御圧力設定値シフト量を算出し、全負荷運転と無負荷運転を切換える上限圧力設定値及び下限圧力設定値の最適値を逐次自動調整することを特徴とするスクリュー圧縮機。
A compressor main body having a male rotor, a female rotor, a timing gear for synchronously driving the male rotor and the female rotor, and compressing the gas sucked from the suction side;
An on-off control valve provided on the suction side of the compressor body for controlling the amount of intake gas;
A discharge pressure detecting means provided on the discharge side of the compressor body for detecting the pressure of the compressed gas discharged from the compressor body;
A control device that is arranged adjacent to the compressor body and controls the on-off control valve according to the discharge pressure detected by the discharge pressure detecting means;
Terminal pressure detection means connected to the discharge side of the compressor body and detecting the pressure on the load side;
The upper limit pressure setting value and the lower limit pressure setting value, which are provided in the control device and switch between full load operation and no load operation, are set to the ratio of the full load operation within the time of one cycle including both full load operation and no load operation. A cycle time detecting means for detecting each cycle time of full load operation and no load operation in order for the control device to change based on ,
In the screw compressor in which the control device controls the on-off control valve based on the pressure detected by the terminal pressure detection means,
The control device calculates the ratio of the full load operation time in the total operation time from the full load operation time and the no load operation time measured by the cycle time detecting means, and from the ratio of the full load operation time in the total operation time. Calculate the compressor load factor, calculate pipe pressure loss and control pressure set value shift amount, and automatically and automatically adjust the optimum values of the upper limit pressure set value and lower limit pressure set value for switching between full load operation and no load operation. A screw compressor characterized by
吸入側にオンオフ式制御弁を、吐出側に吐出圧力検出手段を、それぞれ有するスクリュー圧縮機に設けられ、前記オンオフ式制御弁を前記吐出圧力検出手段が検出した吐出圧力に応じて制御するものであって、
全負荷運転と無負荷運転を切り替える上限圧力設定値および下限圧力設定値を、全負荷運転と無負荷運転の双方を含む1サイクルの時間内における全負荷運転の割合に基づいて変更するために、全負荷運転及び無負荷運転のそれぞれのサイクル時間を検出するサイクル時間検出手段を備えたスクリュー圧縮機の制御装置において
前記サイクル時間検出手段により検出した全負荷運転時間と無負荷運転時間から、全運転時間における全負荷運転時間の比を算出し、前記全運転時間における全負荷運転時間の比から圧縮機負荷率を算出するとともに、配管圧力損失、制御圧力設定値シフト量を算出し、全負荷運転と無負荷運転を切換える上限圧力設定値及び下限圧力設定値の最適値を逐次自動調整することを特徴とするスクリュー圧縮機の制御装置。
The on-off control valve to the suction side, the discharge pressure detection means on the discharge side, in which is provided a screw compressor having respectively, the on-off control valve is the discharge pressure detecting means for controlling in response to the discharge pressure detected There,
In order to change the upper limit pressure setting value and the lower limit pressure setting value for switching between full load operation and no load operation based on the ratio of full load operation within one cycle time including both full load operation and no load operation, In the control device for the screw compressor provided with the cycle time detecting means for detecting each cycle time of full load operation and no load operation,
The ratio of the full load operation time in the total operation time is calculated from the full load operation time and the no load operation time detected by the cycle time detection means, and the compressor load factor is calculated from the ratio of the full load operation time in the total operation time. The screw is characterized by calculating the pipe pressure loss and the control pressure set value shift amount, and automatically adjusting the optimum values of the upper limit pressure set value and lower limit pressure set value for switching between full-load operation and no-load operation. Compressor control device.
JP2010138925A 2010-06-18 2010-06-18 Screw compressor and its control device Active JP5530825B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010138925A JP5530825B2 (en) 2010-06-18 2010-06-18 Screw compressor and its control device
CN201110162775.5A CN102287372B (en) 2010-06-18 2011-06-17 Screw compressor and control apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138925A JP5530825B2 (en) 2010-06-18 2010-06-18 Screw compressor and its control device

Publications (3)

Publication Number Publication Date
JP2012002156A JP2012002156A (en) 2012-01-05
JP2012002156A5 JP2012002156A5 (en) 2012-11-29
JP5530825B2 true JP5530825B2 (en) 2014-06-25

Family

ID=45334050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138925A Active JP5530825B2 (en) 2010-06-18 2010-06-18 Screw compressor and its control device

Country Status (2)

Country Link
JP (1) JP5530825B2 (en)
CN (1) CN102287372B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5894867B2 (en) * 2012-06-08 2016-03-30 株式会社日立産機システム Oil-free screw compressor
JP5887217B2 (en) * 2012-06-29 2016-03-16 株式会社日立製作所 Mechanical equipment management system
KR101544037B1 (en) * 2014-12-19 2015-08-13 주식회사 건영기계 System and method for controlling driving of an air compressor for saving energy
US11448217B2 (en) 2018-03-30 2022-09-20 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor
CN113123957A (en) * 2021-04-09 2021-07-16 潍柴动力股份有限公司 Vehicle and air compressor load rate calculation system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470042B2 (en) * 1998-05-06 2003-11-25 株式会社日立製作所 Screw compressor pressure control method
JP3817420B2 (en) * 2000-10-31 2006-09-06 株式会社日立産機システム Variable rotational speed oil-free screw compressor and operation control method thereof
JP4627492B2 (en) * 2005-12-19 2011-02-09 株式会社日立産機システム Oil-cooled screw compressor
JP2007198199A (en) * 2006-01-25 2007-08-09 Hitachi Industrial Equipment Systems Co Ltd Capacity control device and capacity control method for screw compressor

Also Published As

Publication number Publication date
JP2012002156A (en) 2012-01-05
CN102287372A (en) 2011-12-21
CN102287372B (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5530825B2 (en) Screw compressor and its control device
US6287083B1 (en) Compressed air production facility
CN101184921B (en) Pump system and method of operating a pumping system
JP4786443B2 (en) Compressed air production facility
EP2261580A1 (en) Freezing apparatus
CN100587370C (en) Air conditioner
CN104633840B (en) Control method of air conditioning system and air conditioning system
US20020051709A1 (en) Oil free screw compressor operating at variable speeds and control method therefor
JP3125794B2 (en) Method and apparatus for controlling capacity of screw compressor
CN110107525B (en) Control method for system pressure of centrifugal air compression station
CN201311197Y (en) Hydrogen gas sintering furnace gas circuit automatic control system
JP4532327B2 (en) Compressor and operation control method thereof
JP2013040572A (en) Compression apparatus
AU2019204608A1 (en) Method of pumping in a system of vacuum pumps and system of vacuum pumps
CN110195920A (en) A kind of heat-exchange system and its control method and air conditioner
JP6997648B2 (en) Compressor system
JP4520608B2 (en) Screw compressor
CN111868386A (en) Gas compressor
JP3470042B2 (en) Screw compressor pressure control method
CN111794969A (en) Unloading control method of screw compressor
JP4742862B2 (en) Capacity control apparatus and method for inverter-driven positive displacement compressor
KR20170005410A (en) Method of Pumping in a Pumping System And Vacuum Pump System
CN102330687B (en) Method for controlling compressor load during normal operation of screw type compression multi-split air conditioner
JP4825573B2 (en) Operation control method of oil-free screw compressor with variable rotation speed
CN213687204U (en) Variable frequency pump set cloud control device based on load demand

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350