JP5528591B2 - Electromagnetic wave transparent decorative parts - Google Patents

Electromagnetic wave transparent decorative parts Download PDF

Info

Publication number
JP5528591B2
JP5528591B2 JP2013038257A JP2013038257A JP5528591B2 JP 5528591 B2 JP5528591 B2 JP 5528591B2 JP 2013038257 A JP2013038257 A JP 2013038257A JP 2013038257 A JP2013038257 A JP 2013038257A JP 5528591 B2 JP5528591 B2 JP 5528591B2
Authority
JP
Japan
Prior art keywords
layer
film thickness
electromagnetic wave
reflectance
characteristic curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013038257A
Other languages
Japanese (ja)
Other versions
JP2013118405A (en
Inventor
正雄 出雲
賢 今泉
瑞樹 小川
寛 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013038257A priority Critical patent/JP5528591B2/en
Publication of JP2013118405A publication Critical patent/JP2013118405A/en
Application granted granted Critical
Publication of JP5528591B2 publication Critical patent/JP5528591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Aerials (AREA)

Description

この発明は、電磁波を送受信する電子機器の筐体などに使用される電磁波透過性加飾部品に関するものである。   The present invention relates to an electromagnetic wave transmitting decorative part used for a housing of an electronic device that transmits and receives electromagnetic waves.

従来の電磁波透過性加飾部品においては、絶縁材料に導電材料の粒子が互いに接触しないように蒸着することにより金属光沢を得ていた(例えば、特許文献1)。   In conventional electromagnetic wave transmissive decorative parts, metallic luster has been obtained by evaporating the insulating material so that the particles of the conductive material do not contact each other (for example, Patent Document 1).

特開2001−26071号公報JP 2001-26071 A

電磁波を送受信する装置においては、電磁波を遮蔽することなくアンテナの性能を十分に確保するために、金属部品の適用が制限されていた。一方、装置のデザイン性を高めるために、金属光沢を呈する電磁波透過性加飾部品が求められていた。前記特許文献1は絶縁材料に導電材料の粒子が互いに接触しないように蒸着することにより装飾部にて金属光沢を得ていた。しかしながら、従来の電磁波透過性加飾部品においては、装飾部が金属色に見えるよう絶縁部の全面に導電材料が形成されているが、導電材料の内部には電流が流れるため装飾部に照射される電磁波が損失を生じ、十分なアンテナ特性が得られないという問題があった。   In a device that transmits and receives electromagnetic waves, the application of metal parts has been limited in order to ensure sufficient antenna performance without shielding electromagnetic waves. On the other hand, in order to improve the design of the apparatus, there has been a demand for an electromagnetic wave transmitting decorative part exhibiting a metallic luster. In Patent Document 1, metallic luster is obtained at the decorative portion by depositing the conductive material on the insulating material so that the particles of the conductive material do not contact each other. However, in conventional electromagnetic wave transparent decorative parts, a conductive material is formed on the entire surface of the insulating portion so that the decorative portion looks like a metal color. However, since a current flows inside the conductive material, the decorative portion is irradiated. There was a problem that the electromagnetic wave generated lost, and sufficient antenna characteristics could not be obtained.

この発明は、前述のような問題を解決するためになされたもので、電磁波を遮蔽することなく、クリアな金属光沢を呈する電磁波透過性加飾部品を得ることを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an electromagnetic wave transmitting decorative part that exhibits a clear metallic luster without shielding electromagnetic waves.

この発明に係る電磁波透過性加飾部品は、部品の表面に、膜厚が100nm以下の透明体層と、膜厚が5nm以上、波長域400nm〜800nmにおける平均透過率が65%以下かつ平均反射率が20%以上であるSi層とGe層の積層体を形成したものである。 The electromagnetic wave transmissive decorative component according to the present invention has a transparent layer having a film thickness of 100 nm or less, a film thickness of 5 nm or more, and an average transmittance of 65% or less and an average reflection in a wavelength range of 400 nm to 800 nm on the surface of the component. A stacked body of a Si layer and a Ge layer having a rate of 20% or more is formed.

この発明によれば、部品の表面に、膜厚が100nm以下の透明体層と、膜厚が5nm以上、波長域400nm〜800nmにおける平均透過率が65%以下かつ平均反射率が20%以上であるSi層とGe層の積層体を形成したため、電磁波を遮蔽することなく、クリアな金属光沢を呈する電磁波透過性加飾部品が実現可能となる。 According to this invention, the transparent layer having a film thickness of 100 nm or less, the film thickness of 5 nm or more, the average transmittance in the wavelength region of 400 nm to 800 nm is 65% or less, and the average reflectance is 20% or more on the surface of the component. Since a laminated body of a certain Si layer and Ge layer is formed, an electromagnetic wave transmitting decorative part that exhibits a clear metallic luster without shielding electromagnetic waves can be realized.

本発明の実施の形態1に係わる電磁波透過性加飾部品を示す断面図である。It is sectional drawing which shows the electromagnetic wave permeability decoration component concerning Embodiment 1 of this invention. Geの透過率特性を説明する図である。It is a figure explaining the transmittance | permeability characteristic of Ge. Geの反射率特性を説明する図である。It is a figure explaining the reflectance characteristic of Ge. 基板の反射/透過特性を説明する図である。It is a figure explaining the reflection / transmission characteristic of a board | substrate. 樹脂基板の反射率特性を説明する図である。It is a figure explaining the reflectance characteristic of a resin substrate. Ge/MgF2/TiNの反射率特性を説明する図である。It is a figure explaining the reflectance characteristic of Ge / MgF2 / TiN. Ge/YbF3/TiNの反射率特性を説明する図である。It is a figure explaining the reflectance characteristic of Ge / YbF3 / TiN. Ge/ZnS/TiNの反射率特性を説明する図であるIt is a figure explaining the reflectance characteristic of Ge / ZnS / TiN. 従来の電磁波透過性加飾部品を説明する断面図である。It is sectional drawing explaining the conventional electromagnetic wave transmission decorative component. 電磁波の透過損を検討するための計算モデルを説明する図である。It is a figure explaining the calculation model for examining the transmission loss of electromagnetic waves. 電磁波の透過損を計算した結果を説明する図である。It is a figure explaining the result of having calculated the transmission loss of electromagnetic waves. 本発明の実施の形態2に係わる電磁波透過性加飾部品を示す断面図である。It is sectional drawing which shows the electromagnetic wave permeability decoration component concerning Embodiment 2 of this invention. Ge/Siの反射率特性を説明する図である。It is a figure explaining the reflectance characteristic of Ge / Si. Ge/Si/MgF2/TiNの反射率特性を説明する図である。It is a figure explaining the reflectance characteristic of Ge / Si / MgF2 / TiN. Ge/Si/YbF3/TiNの反射率特性を説明する図である。It is a figure explaining the reflectance characteristic of Ge / Si / YbF3 / TiN. Ge/Si/ZnS/TiNの反射率特性を説明する図であるIt is a figure explaining the reflectance characteristic of Ge / Si / ZnS / TiN.

実施の形態1.
図1は本発明の実施の形態1に係わる電磁波透過性加飾部品20を示す断面図で、カーナビゲーション筐体の意匠を構成する部品である。
部品1の上に膜厚が100nm以下の透明体層2と、半導体層または半金属層3が設けられている。部品1を構成する材料は、例えば、TiNのようなセラミックス基板、ポリカーボネート樹脂(PC樹脂)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、PC樹脂とABS樹脂のポリマーアロイ(PC+ABS樹脂)、ポリメタクリル酸メチル(PMMA樹脂)、ポリアミド樹脂(PA樹脂)などの樹脂、またはガラス繊維などのフィラーを配合した樹脂、などの絶縁体かつ電波透過性を有するものである。なお、カーナビゲーション筐体等に用いられるこれらセラミックス部品、樹脂部品は、通常、顔料等の含有により所定の色を呈するように調整されている。
また、透明体層2は、電磁波を吸収しない非金属材料であって、波長380nm〜780nmの可視域において透明性を有するものである。例えば、SiO、MgF、Al、AlF、YF、YbF、ZnSが代表として挙げられる。
さらに、半導体層または半金属層3としてはGe、Si、α-−Sn、Se、Teが代表として挙げられ、金属光沢を呈するものであれば、特に制限はないが、電磁波に影響を及ぼさない範囲として、半導体または半金属の導電率が10S/m以下であれば、より好ましい。
ここで、半金属とは、金属性伝導を示すが、通常の金属より電気抵抗が大きい元素をいう。長周期型周期表においては、ホウ素とアスタチンを結ぶ斜めの線が金属と非金属との境界線であり、この境界線付近の元素(B、C、Si、P、Ge、As、Se、Sn、Te、Bi、Po、At)のうち、半導体(Ge、Si、α−Sn、Se、Te)を除くものを意味する。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing an electromagnetic wave transmissive decorative component 20 according to Embodiment 1 of the present invention, which is a component constituting the design of a car navigation housing.
A transparent layer 2 having a thickness of 100 nm or less and a semiconductor layer or a semi-metal layer 3 are provided on the component 1. The material constituting the component 1 is, for example, a ceramic substrate such as TiN, polycarbonate resin (PC resin), acrylonitrile / butadiene / styrene resin (ABS resin), polymer alloy of PC resin and ABS resin (PC + ABS resin), polymethacryl An insulator such as a resin such as methyl acid (PMMA resin) and polyamide resin (PA resin), or a resin blended with a filler such as glass fiber, and has radio wave permeability. In addition, these ceramic parts and resin parts used for a car navigation housing or the like are usually adjusted so as to exhibit a predetermined color due to inclusion of a pigment or the like.
Moreover, the transparent body layer 2 is a non-metallic material that does not absorb electromagnetic waves, and has transparency in the visible region with a wavelength of 380 nm to 780 nm. For example, SiO 2, MgF 2, Al 2 O 3, AlF 3, YF 3, YbF 3, ZnS may be mentioned as representative.
Further, Ge, Si, α--Sn, Se, Te can be cited as representative examples of the semiconductor layer or the semi-metal layer 3, and there is no particular limitation as long as it exhibits a metallic luster, but it does not affect electromagnetic waves. More preferably, the conductivity of the semiconductor or semimetal is 10 3 S / m or less.
Here, the semi-metal refers to an element that exhibits metallic conductivity but has a higher electrical resistance than a normal metal. In the long-period periodic table, an oblique line connecting boron and astatine is a boundary line between a metal and a non-metal, and elements (B, C, Si, P, Ge, As, Se, Sn, near the boundary line) , Te, Bi, Po, At) means those excluding semiconductors (Ge, Si, α-Sn, Se, Te).

透明体層2、半導体層または半金属層3は、例えば、真空蒸着にて形成することができる。透明体層2を例として形成方法の一例を挙げる。真空蒸着装置の所定位置に部品1を設置し、所定の蒸着材料をタングステンにて形成されたフィラメントに設置する。真空蒸着装置を真空排気し、所定の真空度に到達したらタングステンフィラメントに通電を行い、蒸着材料を蒸発させ、透明体層2を形成する。
このような薄膜形成方法は、いわゆる、抵抗加熱方式と呼ばれる方法で、基板に対する熱影響を抑制することが可能で、樹脂部品への薄膜形成に適している。この他、真空蒸着においては、材料を電子ビームにて溶融させる方法もあるが、一般的には、蒸発材料の輻射熱が大きいため、熱影響をきらう部品を用いる場合には大きな真空槽が必要になる。また、上記抵抗加熱方式での真空蒸着に際し、イオンガンやアンテナ式ボンバード装置を用いて、部品1の表面をArイオンやO2イオン等にて照射すると、透明体層2の膜密着性が向上し、好ましい。ここで、アンテナ式ボンバード装置とは蒸着室に円形コイルを設け、これを電極としてチャンバー全体にプラズマを生成させる装置を言う。
半導体層または半金属層3は透明体層2と同様にして形成することができる。特に、真空蒸着装置のような真空排気を必要とする工程においては、透明体層の形成と半導体層または半金属層の形成を連続的に行うことで、排気/大気開放の時間的ロスが生じることがないため、製造コストの上昇を抑制でき好適である。
The transparent body layer 2, the semiconductor layer, or the semimetal layer 3 can be formed by, for example, vacuum deposition. An example of the forming method will be given taking the transparent layer 2 as an example. The component 1 is installed at a predetermined position of the vacuum evaporation apparatus, and a predetermined evaporation material is installed on a filament formed of tungsten. The vacuum deposition apparatus is evacuated, and when a predetermined degree of vacuum is reached, the tungsten filament is energized to evaporate the deposition material and form the transparent body layer 2.
Such a thin film forming method is a so-called resistance heating method, which can suppress the thermal effect on the substrate and is suitable for forming a thin film on a resin component. In addition, in vacuum deposition, there is a method of melting the material with an electron beam, but in general, since the radiant heat of the evaporation material is large, a large vacuum chamber is required when using components that are not affected by heat. Become. In addition, when the surface of the component 1 is irradiated with Ar ions, O2 ions, or the like using an ion gun or an antenna bombardment device in the vacuum evaporation by the resistance heating method, the film adhesion of the transparent body layer 2 is improved. preferable. Here, the antenna-type bombard apparatus refers to an apparatus in which a circular coil is provided in a vapor deposition chamber and plasma is generated in the entire chamber using this as an electrode.
The semiconductor layer or metalloid layer 3 can be formed in the same manner as the transparent body layer 2. In particular, in a process that requires evacuation such as a vacuum deposition apparatus, a time loss of evacuation / opening to the atmosphere occurs by continuously forming a transparent body layer and a semiconductor layer or a semi-metal layer. Therefore, it is preferable that an increase in manufacturing cost can be suppressed.

図2は部品1をガラスとした場合のGeの透過率特性を示す図で、横軸は波長(nm)、縦軸は透過率(%)であり、特性曲線11〜17が各々Ge膜厚1nm、3nm、5nm、10nm、20nm、40nm、100nmに対する透過率特性を示している。
図2から分かるように、Geは膜厚の増加と共に透過率が低下することが分かる。膜厚が5nmより厚くなると、400nm〜800nmの可視域での平均透過率が65%以下となる。発明者らの調査によれば、Ge膜厚が5nm程度から弱い金属光沢を呈し始め、10nm〜400nmではっきりとした金属光沢を呈するようになる。よって、金属光沢を呈する加飾としては400nm〜800nmの可視域での平均透過率が65%以下の場合に実現され、好ましくは5%程度以下となる。
FIG. 2 is a graph showing the transmittance characteristics of Ge when the component 1 is made of glass. The horizontal axis represents wavelength (nm), the vertical axis represents transmittance (%), and the characteristic curves 11 to 17 represent the Ge film thickness. The transmittance characteristics for 1 nm, 3 nm, 5 nm, 10 nm, 20 nm, 40 nm, and 100 nm are shown.
As can be seen from FIG. 2, the transmittance of Ge decreases with increasing film thickness. When the film thickness is thicker than 5 nm, the average transmittance in the visible region of 400 nm to 800 nm is 65% or less. According to the investigation by the inventors, the Ge film thickness starts to show a weak metallic luster from about 5 nm and becomes clear metallic luster at 10 nm to 400 nm. Therefore, the decoration exhibiting metallic luster is realized when the average transmittance in the visible region of 400 nm to 800 nm is 65% or less, and preferably about 5% or less.

図3は部品1をガラスとした場合のGeの反射率特性を示す図で、横軸は波長(nm)、縦軸は反射率(%)であり、特性曲線21〜29が各々Ge膜厚1nm、3nm、5nm、10nm、1000nm、400nm、100nm、20nm、40nmに対する反射率特性を示している。1000nmと400nmの反射率を示す特性曲線25,26はほとんど重なっている。
上述の通り、発明者らの調査によれば、Ge膜厚が5nm程度から弱い金属光沢を呈し始め、10nm〜400nmではっきりとした金属光沢を呈するようになる。よって、金属光沢を呈する加飾としては400nm〜800nmの可視域での平均反射率が20%以上の場合に実現され、好ましくは40%程度以上となる。
FIG. 3 is a diagram showing the reflectance characteristics of Ge when the component 1 is made of glass. The horizontal axis represents wavelength (nm), the vertical axis represents reflectance (%), and the characteristic curves 21 to 29 represent the Ge film thickness. The reflectance characteristics with respect to 1 nm, 3 nm, 5 nm, 10 nm, 1000 nm, 400 nm, 100 nm, 20 nm, and 40 nm are shown. The characteristic curves 25 and 26 showing the reflectivities of 1000 nm and 400 nm almost overlap.
As described above, according to the investigation by the inventors, the Ge film thickness starts to show a weak metallic luster from about 5 nm, and becomes clear metallic luster at 10 nm to 400 nm. Therefore, the decoration exhibiting metallic luster is realized when the average reflectance in the visible region of 400 nm to 800 nm is 20% or more, and preferably about 40% or more.

ところで、光学膜の設計においては通常、ベースとなる基板を規定して計算させる必要があり、本発明においてはガラス基板を用いている。ガラス基板は光学業界において最も一般的に用いられるものであるため、その光学特性(屈折率、吸収係数)は詳細に知られており、非常に扱いやすいものである。一方、カーナビゲーション用筐体や携帯電話用筐体に用いられるセラミックス材料(ガラス基板を除く)や樹脂材料の場合、通常は顔料等によって着色され、その光学特性は一定しておらず、光学材料として扱うのはガラス基板に比して困難である。さらに、樹脂材料はこのような顔料等の添加による強制的な着色のみならず、成型時の圧力、温度、時間等により、光学特性が変わることが知られており、ガラス基板のように安定した光学特性を有するものではない。そのため、通常のセラミックス部品や樹脂部品に対して上述した膜形成を実施しても、ガラス基板をベースとした光学シミュレーションで得られた反射特性が得られない場合が生じる。   By the way, in designing an optical film, it is usually necessary to calculate by defining a base substrate. In the present invention, a glass substrate is used. Since glass substrates are the most commonly used in the optical industry, their optical properties (refractive index, absorption coefficient) are known in detail and are very easy to handle. On the other hand, ceramic materials (excluding glass substrates) and resin materials used in car navigation housings and mobile phone housings are usually colored with pigments, etc., and their optical properties are not constant, so optical materials It is difficult to handle as compared with a glass substrate. Furthermore, the resin material is known not only to be forcedly colored by the addition of such pigments, but also to change its optical properties depending on the pressure, temperature, time, etc. at the time of molding, and is stable like a glass substrate. It does not have optical properties. For this reason, even if the above-described film formation is performed on a normal ceramic part or resin part, the reflection characteristics obtained by the optical simulation based on the glass substrate may not be obtained.

図4はTiNとガラスの透過率特性及び反射率特性を比較した図であり、特性曲線31はガラスの反射率、特性曲線32はTiNの透過率、特性曲線33はTiNの反射率、特性曲線34はガラスの透過率を示している。図4より、ガラス基板は可視域において高い透明性を有し、反射、透過共に平坦なスペクトルを有していることが分かる。一方、TiN基板はガラス基板に比して可視域における透明性が低く、反射、透過共にスペクトルは平坦ではなく、色を持つことが分かる。   FIG. 4 is a diagram comparing the transmittance characteristics and reflectance characteristics of TiN and glass. The characteristic curve 31 is the reflectance of glass, the characteristic curve 32 is the transmittance of TiN, the characteristic curve 33 is the reflectance of TiN, and the characteristic curve. Reference numeral 34 denotes the transmittance of the glass. FIG. 4 shows that the glass substrate has high transparency in the visible range and has a flat spectrum for both reflection and transmission. On the other hand, it can be seen that the TiN substrate has lower transparency in the visible region than the glass substrate, and the spectrum is not flat in both reflection and transmission, and has a color.

図5は樹脂基板の反射率特性を比較した図であり、特性曲線41が各々黒樹脂基板の反射率、特性曲線42が赤樹脂基板の反射率を示している。図5より、黒樹脂基板は可視域において低い反射率を有し、比較的平坦なスペクトルを有していることが分かる。一方、赤樹脂基板は380nm〜580nmにおいて黒樹脂基板とほぼ同等の低い反射率を有し、650nm〜780nmにおいては70%以上の高い反射率を有しており、比較的TiN基板に近い反射スペクトルを有していることが分かる。
このように、樹脂基板の場合には、添加される顔料等により様々な着色が可能である。このことは、樹脂基板のスペクトルは添加される顔料によって様々に変化し、一様ではないことを意味している。本発明はそのような問題を解決するためになされたもので、セラミックス材料表面や樹脂材料表面に、屈折率が安定している透明体層を設け、下地基板の光学特性の影響を低減し、光学シミュレーションで得られた反射特性を再現性良く実現できる電波透過型加飾樹脂基板を実現するものである。
FIG. 5 is a graph comparing the reflectance characteristics of the resin substrates. The characteristic curve 41 indicates the reflectance of the black resin substrate, and the characteristic curve 42 indicates the reflectance of the red resin substrate. 5 that the black resin substrate has a low reflectance in the visible range and a relatively flat spectrum. On the other hand, the red resin substrate has a low reflectance almost equal to that of the black resin substrate at 380 nm to 580 nm, and has a high reflectance of 70% or more at 650 nm to 780 nm, and the reflection spectrum is relatively close to that of the TiN substrate. It can be seen that
Thus, in the case of a resin substrate, various coloring is possible by the pigment etc. which are added. This means that the spectrum of the resin substrate varies depending on the pigment added and is not uniform. The present invention was made in order to solve such a problem. A transparent body layer having a stable refractive index is provided on the ceramic material surface or the resin material surface to reduce the influence of the optical characteristics of the base substrate. The present invention realizes a radio wave transmitting decorative resin substrate that can realize the reflection characteristics obtained by optical simulation with good reproducibility.

図6は、透明体層2にMgFを用いた場合の例で、Ge(32.61nm)/MgF/TiN基板構造の電磁波透過性加飾部品の反射率をMgF(透明体)の膜厚との関係で表した図である。図中、特性曲線51はMgF膜厚0nmの場合、特性曲線52はMgF膜厚40nmの場合、特性曲線53はMgF膜厚100nmの場合、特性曲線54はMgF膜厚150nmの場合、特性曲線55はGe(32.61nm)/ガラス基板の場合を表している。 FIG. 6 is an example in the case of using MgF 2 for the transparent body layer 2, and the reflectance of the electromagnetic wave transmitting decorative part of the Ge (32.61 nm) / MgF 2 / TiN substrate structure is made of MgF 2 (transparent body). It is a figure represented by the relationship with a film thickness. In the figure, the characteristic curve 51 is when the MgF 2 film thickness is 0 nm, the characteristic curve 52 is when the MgF 2 film thickness is 40 nm, the characteristic curve 53 is when the MgF 2 film thickness is 100 nm, and the characteristic curve 54 is when the MgF 2 film thickness is 150 nm. The characteristic curve 55 represents the case of Ge (32.61 nm) / glass substrate.

図7は、透明体層2にYbFを用いた場合の例で、Ge(32.61nm)/YbF/TiN基板構造の電磁波透過性加飾部品の反射率をYbF(透明体)の膜厚との関係で表した図である。図中、特性曲線61はYbF膜厚0nmの場合、特性曲線62はYbF膜厚35nmの場合、特性曲線63はYbF膜厚100nmの場合、特性曲線64はYbF膜厚150nmの場合、特性曲線65はGe(32.61nm)/ガラス基板の場合を表している。 FIG. 7 shows an example in which YbF 3 is used for the transparent body layer 2, and the reflectivity of the electromagnetically transparent decorative part having a Ge (32.61 nm) / YbF 3 / TiN substrate structure is shown as that of YbF 3 (transparent body). It is a figure represented by the relationship with a film thickness. In the figure, when the YbF 3 film thickness is 0 nm, the characteristic curve 61 is when the YbF 3 film thickness is 35 nm, the characteristic curve 63 is when the YbF 3 film thickness is 100 nm, and the characteristic curve 64 is when the YbF 3 film thickness is 150 nm. The characteristic curve 65 represents the case of Ge (32.61 nm) / glass substrate.

図8は、透明体層2にZnSを用いた場合の例で、Ge(32.61nm)/ZnS/TiN基板構造の電磁波透過性加飾部品の反射率をZnS(透明体)の膜厚との関係で表した図である。図中、特性曲線71はZnS膜厚0nmの場合、特性曲線72はZnS膜厚20nmの場合、特性曲線73はZnS膜厚40nmの場合、特性曲線74はZnS膜厚80nmの場合、特性曲線75はGe(32.61nm)/ガラス基板の場合を表している。   FIG. 8 shows an example of the case where ZnS is used for the transparent body layer 2, and the reflectance of the electromagnetically transparent decorative component having a Ge (32.61 nm) / ZnS / TiN substrate structure is compared with the film thickness of the ZnS (transparent body). FIG. In the figure, the characteristic curve 71 is a ZnS film thickness of 0 nm, the characteristic curve 72 is a ZnS film thickness of 20 nm, the characteristic curve 73 is a ZnS film thickness of 40 nm, and the characteristic curve 74 is a ZnS film thickness of 80 nm. Represents the case of Ge (32.61 nm) / glass substrate.

図6〜8より、透明体層2を設けることで、TiN基板のような吸収を有し、フラットでない反射特性を呈する基板において、全ての場合において反射率が向上することが分かる。特に、約20nm以上の透明体層2を設けることにより、ガラス基板を用いた場合とほぼ同等の反射率が得られている。
一方、本発明の目的は金属調の電磁波透過性加飾部品を得ることにあるため、膜厚の上限については光の干渉の影響を考慮する必要がある。図6〜8より、MgFの場合(屈折率1.38:at600nm)で約150nm、YbFの場合(屈折率1.52:at600nm)で約150nm、ZnSの場合(屈折率2.33:at600nm)で約80nm、すなわち屈折率が1.38〜2.33(at600nm)の透明体層2の膜厚が約100nmになると干渉の影響が大きくなる。反射率特性が光の干渉の影響を受けてフラットでなくなると、色度バランスがくずれ、外観上、何らかの色を呈することを意味する。
すなわち、金属光沢を得るためには、干渉の影響が出ない範囲の透明体膜厚とすることが好ましい。以上より、概ね1.3〜2.4の屈折率(at600nm)を有する透明体層2の膜厚は100nm以下が好ましく、40nm〜100nmの範囲がより好適と言える。
6 to 8, it can be seen that the provision of the transparent body layer 2 improves the reflectivity in all cases in a substrate having absorption like a TiN substrate and exhibiting non-flat reflection characteristics. In particular, by providing the transparent body layer 2 having a thickness of about 20 nm or more, almost the same reflectance as that obtained when a glass substrate is used is obtained.
On the other hand, since the object of the present invention is to obtain a metallic-tone electromagnetic wave transmissive decorative part, it is necessary to consider the influence of light interference for the upper limit of the film thickness. 6 to 8, in the case of MgF 2 (refractive index 1.38: at 600 nm), about 150 nm, in the case of YbF 3 (refractive index 1.52: at 600 nm), about 150 nm, in the case of ZnS (refractive index 2.33: When the thickness of the transparent layer 2 having a refractive index of 1.38 to 2.33 (at 600 nm) is about 100 nm, the influence of interference becomes large. If the reflectance characteristic is not flat due to the influence of light interference, it means that the chromaticity balance is lost and some color appears in appearance.
That is, in order to obtain a metallic luster, it is preferable to set the transparent film thickness within a range in which the influence of interference does not occur. From the above, the film thickness of the transparent body layer 2 having a refractive index (at 600 nm) of approximately 1.3 to 2.4 is preferably 100 nm or less, and more preferably in the range of 40 nm to 100 nm.

なお、顔料等により着色された樹脂部品に対し、基板の保護や膜密着性の改善を目的として透明の樹脂を上塗りする場合もあり、一種の透明体層の形成と言えなくもないが、カーナビゲーション用筐体や携帯電話用筐体のような曲率や凹凸を有する部品に100nm以下の薄膜を均一に形成することは困難である。そのため、部品の保護や膜密着性の改善を目的として樹脂部品に上塗りされる透明樹脂は、通常、厚みが10μm以上になり、透明性に問題が生じる。また、樹脂の塗布/乾燥工程が必要となるため、コスト上昇の原因ともなる。これに対し、本発明に係わる透明体層2は厚みが100nm以下と薄く、加飾のための層形成の際の蒸着工程に組み込むことができるため、実質的に工数が増加することがなく、コスト上昇は最小に抑えられ、コスト的な問題も生じない。   A transparent resin may be overcoated on a resin component colored with a pigment or the like for the purpose of protecting the substrate or improving the film adhesion. It is difficult to uniformly form a thin film having a thickness of 100 nm or less on a component having curvature or unevenness, such as a navigation case or a mobile phone case. Therefore, a transparent resin that is overcoated on a resin part for the purpose of protecting the part or improving film adhesion usually has a thickness of 10 μm or more, which causes a problem in transparency. In addition, since a resin coating / drying step is required, the cost increases. On the other hand, since the transparent body layer 2 according to the present invention is as thin as 100 nm or less and can be incorporated into the vapor deposition process in forming a layer for decoration, the man-hour is not substantially increased. The increase in cost is minimized, and there is no cost problem.

次に、これら半導体層または半金属層3により加飾を行うことによるメリットにつき説明する。従来、部品の加飾は、部品表面にAlやSnのような金属材料を形成することにより行われてきた。その理由は、金属膜の場合、上記Geにて説明したように、膜厚の増加と共に透過率が低下し金属光沢を呈する特性を有しているため、加飾の際の膜厚制御が容易となるからである。しかしながら、これら加飾部品をカーナビゲーションや携帯電話のようなアンテナ装置の筐体として使用する場合には以下のような問題が生ずる。ここでは携帯電話を例として説明する。
すなわち、近年の携帯電話の筐体はデザイン性を重視することから、携帯電話と基地局との間で電波を送受信するためのアンテナが筐体の内部に配置されていることが多く、金属膜を形成した加飾部品は使用が制限され、筐体外観のデザイン面で制約となっていた。最近、この問題を解消するために、これら金属膜を島状に形成する、いわゆる、不連続蒸着技術が開発され、実用化されてきている。
Next, the merit by performing decoration with these semiconductor layers or semi-metal layers 3 will be described. Conventionally, decoration of a component has been performed by forming a metal material such as Al or Sn on the surface of the component. The reason for this is that in the case of a metal film, as explained in the above Ge, since the transmittance decreases with increasing film thickness and exhibits a metallic luster, it is easy to control the film thickness during decoration. Because it becomes. However, when these decorative parts are used as a casing of an antenna device such as a car navigation system or a mobile phone, the following problems arise. Here, a mobile phone will be described as an example.
That is, since the case of a mobile phone in recent years places importance on design, an antenna for transmitting and receiving radio waves between the mobile phone and a base station is often disposed inside the case. Use of the decorative parts that form the shape is restricted, and the design of the exterior of the housing is restricted. Recently, in order to solve this problem, a so-called discontinuous deposition technique for forming these metal films in an island shape has been developed and put into practical use.

図9は従来のアンテナ装置における装飾部を表わす断面図であり、80は装飾部、81は絶縁部、82は導電材料の粒子を表わす。従来のアンテナ装置における装飾部80においては、導電材料82は粒子状で接続しないように形成されているため、一部電波は装飾部80を透過することになる。
しかしながら、装飾部80が金属色に見えるよう絶縁部81の全面に導電材料82が形成されており、導電材料82の内部には電流が流れるため装飾部80に照射される電磁波が損失を生じ、十分なアンテナ特性が得られないという問題があった。
また、一般的には、蒸着物質が不連続となるのは、〜数10Å以下程度の極薄膜においてであり、通常、100Åを超えるような膜厚においてはこれら島が接触してしまうことから、アンテナ特性が損なわれるようになる。従って、一般的には、前述の不連続蒸着には厚みの制限が存在する。膜厚に制限が存在すると、アンテナ装置の筐体のような矩形部材、曲面を有する部材の全面に均一に膜形成することが困難で、歩留まりの低下に繋がる。
この他、レーザや露光技術を用いて金属膜にパターン形成し不連続を実現する方法も考えられるが、コストが上昇するため、適用範囲は制限される。
FIG. 9 is a cross-sectional view showing a decorative portion in a conventional antenna device, where 80 is a decorative portion, 81 is an insulating portion, and 82 is a particle of a conductive material. In the decorative portion 80 in the conventional antenna device, the conductive material 82 is formed so as not to be connected in the form of particles, so that part of the radio wave passes through the decorative portion 80.
However, the conductive material 82 is formed on the entire surface of the insulating portion 81 so that the decorative portion 80 looks like a metal color, and an electric current flows inside the conductive material 82, so that the electromagnetic wave applied to the decorative portion 80 is lost, There was a problem that sufficient antenna characteristics could not be obtained.
In general, the vapor deposition material is discontinuous in an ultrathin film of about ˜10 Å or less, and these islands usually come into contact at a film thickness exceeding 100 、. Antenna characteristics are impaired. Therefore, in general, there is a thickness limitation in the discontinuous deposition described above. When the film thickness is limited, it is difficult to form a film uniformly on the entire surface of a rectangular member or curved member such as a casing of the antenna device, which leads to a decrease in yield.
In addition, although a method of realizing pattern discontinuity by forming a pattern on a metal film using a laser or an exposure technique is also conceivable, since the cost increases, the application range is limited.

本発明に係わる電磁波透過性加飾部品はこのような問題を解決することを目的として開発されたものである。すなわち、従来の導電材料に変えて半導体膜もしくは半金属膜を用いるため、電磁波透過性加飾部品が電磁波の透過を遮断することがなく、アンテナ装置の筐体として、金属光沢を確保した上で所定のアンテナ特性を容易に確保することができる。また、従来の不連続蒸着に比して、半導体膜もしくは半金属膜の膜厚の制限が厳しくないため製造が容易で製造コストが低減されるという利点がある。   The electromagnetic wave transmitting decorative part according to the present invention has been developed for the purpose of solving such problems. That is, since a semiconductor film or a semi-metal film is used instead of the conventional conductive material, the electromagnetic wave transmitting decorative part does not block the transmission of the electromagnetic wave, and the metallic luster is secured as the casing of the antenna device. Predetermined antenna characteristics can be easily ensured. In addition, as compared with the conventional discontinuous vapor deposition, there is an advantage that the production is easy and the production cost is reduced because the film thickness of the semiconductor film or the semimetal film is not strictly limited.

金属膜、半導体膜と電磁波との透過、遮蔽の関係は概ね以下のように理解することができる。すなわち、携帯電話にて使用される電磁波はセンチ波、極超短波と呼ばれ、波長範囲で言うと概ね1mm〜1m程度である。金属膜の場合、これら電磁波が照射されると、自由電子がバリアを作り(分極作用)、膜中への進入を防ぐ。そのため、電磁波は金属膜により反射されることになる。一方、半導体膜の場合、金属膜のような自由電子を持たないため、金属膜にて生じる分極作用が生じることはない。半導体においては、例えば、Siが約1.1eV(波長1127nmの電磁波が持つエネルギーに相当)、Geが約0.7eV(波長1850nmの電磁波が持つエネルギーに相当)のバンドギャップを有し、バンドギャップに相当する波長より長い波長の電磁波は吸収されることがないため、これら半導体を表面に形成しても、アンテナ装置にて使用される電磁波は筐体を透過することが可能となる。   The relationship between transmission and shielding between the metal film, the semiconductor film, and the electromagnetic wave can be generally understood as follows. In other words, electromagnetic waves used in mobile phones are called centimeter waves and ultrashort waves, and are approximately 1 mm to 1 m in the wavelength range. In the case of a metal film, when these electromagnetic waves are irradiated, free electrons create a barrier (polarization action) and prevent entry into the film. Therefore, the electromagnetic wave is reflected by the metal film. On the other hand, in the case of a semiconductor film, since it does not have free electrons like a metal film, the polarization effect generated in the metal film does not occur. In a semiconductor, for example, Si has a band gap of about 1.1 eV (corresponding to the energy of an electromagnetic wave having a wavelength of 1127 nm) and Ge has a band gap of about 0.7 eV (corresponding to the energy of an electromagnetic wave having a wavelength of 1850 nm). Therefore, even when these semiconductors are formed on the surface, the electromagnetic waves used in the antenna device can pass through the housing.

図11は電磁波を十分に透過させるために必要な半導体または半金属に求められる導電率について検討した結果である。図10に示した1次元の計算モデルに基づき、左方からの平面波が半導体層または半金属層(誘電率εr、導電率σ)に垂直に入射した場合の透過損Tを算出した。ただし半導体層または半金属層の厚さは100nmとした。
なお、誘電率εrは1、16、50の場合について求めたが、透過損Tに対してほとんど影響しない。電磁波を十分に透過し、携帯電話としての機能を満足する透過損Tのしきい値を−0.1dB以下とすると、半導体または半金属に求められる導電率は10S/m以下であることが分かる。本実施の形態1で説明したGeまたはSiの導電率はそれぞれ2.1S/m(at 300K)、3.16×10−4S/m(at 300K)であり、いずれも10S/mよりはるかに低い。
FIG. 11 shows the results of studying the electrical conductivity required for a semiconductor or semimetal necessary for sufficiently transmitting electromagnetic waves. Based on the one-dimensional calculation model shown in FIG. 10, the transmission loss T was calculated when the plane wave from the left was incident perpendicularly to the semiconductor layer or the semimetal layer (dielectric constant εr, conductivity σ). However, the thickness of the semiconductor layer or the semimetal layer was 100 nm.
The dielectric constant εr was obtained for the cases of 1, 16, and 50, but has little influence on the transmission loss T. When the threshold value of transmission loss T that sufficiently transmits electromagnetic waves and satisfies the function as a mobile phone is −0.1 dB or less, the electrical conductivity required for a semiconductor or a semimetal is 10 3 S / m or less. I understand. The conductivity of Ge or Si described in the first embodiment is 2.1 S / m (at 300 K) and 3.16 × 10 −4 S / m (at 300 K), respectively, and 10 3 S / m. Much lower.

なお、上記実施の形態1においては部品1を構成する材料としては上記に挙げた樹脂に限らず、その他の熱可塑性樹脂または熱硬化性樹脂、さらにはセラミックスなどの他の絶縁体でも特に問題はなく、同様の効果を奏することはいうまでもない。
また、半導体層または半金属層3の成膜方法として真空蒸着法を用いた方法につき説明したが、半導体層または半金属層3の製法としてはこれに限られることはなく、部品表面に熱的損傷を与えない方法であればいずれの方法でも良く、スパッタ法、イオンプレーティング法、スピンコート法などの物理的方法や、CVD法、メッキ法などの化学的方法を用いることも可能であることは言うまでもない。
さらに、上記実施の形態1においては、カーナビゲーション筐体への適用例を示したが、例えばカメラ、携帯用音楽再生機、携帯用ゲーム機、携帯用の通信機、ラジオ、テレビ、ノート型パソコン、ノート型ワープロ、ビデオカメラ、電子手帳、各種の赤外線式または無線式リモートコントローラ、電卓、自動車用電子制御機器など、各種電磁波を送受信する電子機器に適用することが可能であることは言うまでもない。
Ge、Siを代表とする半導体は電磁波のみならず、近赤外〜遠赤外光を透過する特性を有するため、例えば、赤外線センサーを利用する機器の筐体としても同様の効果を奏することは言うまでもない。
In the first embodiment, the material constituting the component 1 is not limited to the above-described resins, but other thermoplastic resins or thermosetting resins, and other insulators such as ceramics are particularly problematic. Needless to say, the same effect can be obtained.
Moreover, although the method using the vacuum evaporation method as the film forming method of the semiconductor layer or the semimetal layer 3 has been described, the method of manufacturing the semiconductor layer or the semimetal layer 3 is not limited to this, and the surface of the component is thermally applied. Any method may be used as long as it does not cause damage. It is also possible to use a physical method such as sputtering, ion plating, or spin coating, or a chemical method such as CVD or plating. Needless to say.
Furthermore, in the first embodiment, an example of application to a car navigation housing has been shown. For example, a camera, a portable music player, a portable game machine, a portable communication device, a radio, a television, a notebook personal computer. Needless to say, the present invention can be applied to electronic devices that transmit and receive various electromagnetic waves, such as notebook word processors, video cameras, electronic notebooks, various infrared or wireless remote controllers, calculators, and electronic control devices for automobiles.
Since semiconductors represented by Ge and Si have the property of transmitting not only electromagnetic waves but also near-infrared to far-infrared light, for example, the same effect can be obtained as a housing of a device using an infrared sensor. Needless to say.

以上のように、本発明の実施の形態1によれば、部品1の表面に、膜厚が100nm以下の透明体層2と、膜厚が5nm以上、波長域400nm〜800nmにおける平均透過率が65%以下かつ平均反射率が20%以上である半導体層または半金属層3を形成することで、電磁波を遮断することなくデザイン性を高めることが可能な電磁波透過性加飾部品が低コストかつ容易に実現できる。   As described above, according to the first embodiment of the present invention, the transparent body layer 2 having a film thickness of 100 nm or less and the average transmittance in the wavelength region of 400 nm to 800 nm are formed on the surface of the component 1. By forming the semiconductor layer or the semi-metal layer 3 having an average reflectance of 65% or less and an average reflectance of 20% or more, an electromagnetic wave-transmitting decorative part capable of improving design without blocking electromagnetic waves is low in cost. It can be easily realized.

実施の形態2.
図12は本発明の実施の形態2に係わる電磁波透過性加飾部品を示す断面図で、部品1の上に透明体層2が設けられ、透明体層2の上には半導体層または半金属層としてSi層4、Ge層5からなる積層体が設けられている。かかる構成とすることで、Ge層単体よりも高い反射率が実現可能となる。
Embodiment 2. FIG.
FIG. 12 is a cross-sectional view showing an electromagnetic wave transmitting decorative part according to Embodiment 2 of the present invention, in which a transparent body layer 2 is provided on the part 1, and a semiconductor layer or a semimetal is formed on the transparent body layer 2. A laminated body including a Si layer 4 and a Ge layer 5 is provided as a layer. With such a configuration, it is possible to realize a higher reflectance than that of the Ge layer alone.

図13は部品1をガラス基板とした場合のGe/Si多層膜の反射率特性を示す図で、特性曲線91はGe膜厚32.61nm/Si膜厚7.45nm/ガラス基板、特性曲線92はGe膜厚32.61nm/ガラス基板、特性曲線93はGe膜厚14.67nm/Si膜厚19.78nm/ガラス基板、特性曲線94はGe膜厚10.0nm/Si膜厚22.71nm/ガラス基板である。横軸は波長(nm)、縦軸は反射率(%)である。
Ge単体で最も高い反射率が得られるGe膜厚32.61nm/ガラス基板よりも、所定の膜厚のSiを下地に形成し、Ge/Si/ガラス基板の構成とした場合のほうが高い反射率が得られることが分かる。最も高い反射率が得られるGe膜厚14.67nm/Si膜厚19.78nm/ガラス基板の場合で、Ge層単独の場合に比して平均で約10%程度の反射率向上が実現される。
FIG. 13 is a diagram showing the reflectance characteristics of the Ge / Si multilayer film when the component 1 is a glass substrate. The characteristic curve 91 is a Ge film thickness of 32.61 nm / Si film thickness of 7.45 nm / glass substrate, a characteristic curve 92. Is Ge film thickness 32.61 nm / glass substrate, characteristic curve 93 is Ge film thickness 14.67 nm / Si film thickness 19.78 nm / glass substrate, characteristic curve 94 is Ge film thickness 10.0 nm / Si film thickness 22.71 nm / It is a glass substrate. The horizontal axis represents wavelength (nm), and the vertical axis represents reflectance (%).
Higher reflectivity when Ge of a predetermined thickness is formed on the base and a Ge / Si / glass substrate configuration than a Ge film thickness of 32.61 nm / glass substrate that provides the highest reflectivity with Ge alone It can be seen that In the case of a Ge film thickness of 14.67 nm / Si film thickness of 19.78 nm / glass substrate that provides the highest reflectivity, an improvement in reflectivity of about 10% on average is realized compared to the case of a Ge layer alone. .

また、図13から分かるように、Ge単体の場合に比して、Ge膜厚14.67nm/Si膜厚19.78nm/ガラス基板の構成の方が可視域全域に渡りフラットな反射率特性を示す。このことは金属光沢の観点から見ると好ましい。
すなわち、Ge単体の場合に比して、Ge膜厚14.67nm/Si膜厚19.78nm/ガラス基板の構成の方が色を持たない、よりクリアで明るい金属光沢が実現されることになる。発明者らの調査により、これらGe/Si/ガラス基板の構成がGe層単体に比して反射率特性に効果的であるのは、Ge層5の膜厚がほぼ35nm以下の場合に限られ、Ge層5の膜厚が35nmを超えるとGe膜厚32.61nm/ガラス基板よりも高い反射率が得られなくなることが分かっている。
また、Ge膜厚が1nm以下になると短波長域と長波長域での反射率特性のバランスがくずれ、可視域全域においてはむしろ反射率が下がることが確認されている。さらに、Si膜厚にも制限があり、5nm以下及び30nm以上の厚みではSi/Ge/ガラス基板の構成としてもGe膜厚32.61nm/ガラス基板よりも高い反射率が得られなくなることが分かっている。
以上の結果、発明者らは、ガラス基板上に5nm〜30nmのSi層4を形成し、その後、1nm〜35nmのGe層5を形成することにより、波長400nm〜800nmにおいて55%以上の平均反射率を有し、Ge層単体に比して、クリアな金属光沢を呈する電磁波透過性加飾部品が実現されることを見出した。
Further, as can be seen from FIG. 13, the configuration of the Ge film thickness of 14.67 nm / Si film thickness of 19.78 nm / glass substrate has a flat reflectance characteristic over the entire visible range as compared with the case of Ge alone. Show. This is preferable from the viewpoint of metallic luster.
That is, compared to the case of Ge alone, the Ge film thickness of 14.67 nm / Si film thickness of 19.78 nm / glass substrate has a clearer and brighter metallic luster that has no color. . According to the investigation by the inventors, the configuration of these Ge / Si / glass substrates is more effective for the reflectance characteristics than the Ge layer alone when the thickness of the Ge layer 5 is approximately 35 nm or less. It has been found that when the thickness of the Ge layer 5 exceeds 35 nm, a reflectance higher than that of the Ge film thickness of 32.61 nm / glass substrate cannot be obtained.
Further, it has been confirmed that when the Ge film thickness is 1 nm or less, the balance between the reflectance characteristics in the short wavelength region and the long wavelength region is lost, and the reflectance is rather lowered in the entire visible region. Furthermore, there is a limit to the Si film thickness, and it is understood that, when the thickness is 5 nm or less and 30 nm or more, the Si / Ge / glass substrate cannot obtain a higher reflectance than the Ge film thickness of 32.61 nm / glass substrate. ing.
As a result of the above, the inventors formed an Si layer 4 having a thickness of 5 nm to 30 nm on a glass substrate, and then formed a Ge layer 5 having a thickness of 1 nm to 35 nm, whereby an average reflection of 55% or more at a wavelength of 400 nm to 800 nm. It has been found that an electromagnetic wave-transmitting decorative part having a high rate and exhibiting a clear metallic luster as compared with a Ge layer alone is realized.

次に、実施の形態1と同様にして、部品1がセラミックスや着色された樹脂部品のような平坦な反射特性を有しない場合に、透明体層2を設ける効果につき説明する。
図14は、透明体層にMgFを用いた場合の例で、Ge(14.67nm)/Si(19.58nm)/MgF/TiN基板構造の電磁波透過性加飾部品の反射率をMgF(透明体)の膜厚との関係で表した図である。図中、特性曲線101はMgF膜厚0nmの場合、特性曲線102はMgF膜厚20nmの場合、特性曲線103はMgF膜厚100nmの場合、特性曲線104はMgF膜厚150nmの場合、特性曲線105はGe(14.67nm)/Si(19.58nm)/ガラス基板の場合を表している。
Next, in the same manner as in the first embodiment, the effect of providing the transparent body layer 2 when the component 1 does not have flat reflection characteristics such as ceramics or a colored resin component will be described.
FIG. 14 shows an example in which MgF 2 is used for the transparent body layer. The reflectivity of the electromagnetic wave transmissive decorative component having the Ge (14.67 nm) / Si (19.58 nm) / MgF 2 / TiN substrate structure is shown in FIG. It is the figure represented by the relationship with the film thickness of 2 (transparent body). In the figure, the characteristic curve 101 is when the MgF 2 film thickness is 0 nm, the characteristic curve 102 is when the MgF 2 film thickness is 20 nm, the characteristic curve 103 is when the MgF 2 film thickness is 100 nm, and the characteristic curve 104 is when the MgF 2 film thickness is 150 nm. The characteristic curve 105 represents the case of Ge (14.67 nm) / Si (19.58 nm) / glass substrate.

図15は、透明体層にYbFを用いた場合の例で、Ge(14.67nm)/Si(19.58nm)/YbF/TiN基板構造の電磁波透過性加飾部品の反射率をYbF(透明体)の膜厚との関係で表した図である。図中、特性曲線111はYbF膜厚0nmの場合、特性曲線112はYbF膜厚20nmの場合、特性曲線113はYbF膜厚80nmの場合、特性曲線114はYbF膜厚135nmの場合、特性曲線115はGe(14.67nm)/Si(19.58nm)/ガラス基板の場合を表している。 FIG. 15 shows an example in which YbF 3 is used for the transparent body layer, and the reflectance of the electromagnetic wave transmissive decorative component having the Ge (14.67 nm) / Si (19.58 nm) / YbF 3 / TiN substrate structure is shown as YbF. It is the figure represented by the relationship with the film thickness of 3 (transparent body). In the figure, the characteristic curve 111 is when the YbF 3 film thickness is 0 nm, the characteristic curve 112 is when the YbF 3 film thickness is 20 nm, the characteristic curve 113 is when the YbF 3 film thickness is 80 nm, and the characteristic curve 114 is when the YbF 3 film thickness is 135 nm. The characteristic curve 115 represents the case of Ge (14.67 nm) / Si (19.58 nm) / glass substrate.

図16は、透明体層にZnSを用いた場合の例で、Ge(14.67nm)/Si(19.58nm)/ZnS/TiN基板構造の電磁波透過性加飾部品の反射率をZnS(透明体)の膜厚との関係で表した図である。図中、特性曲線121はZnS膜厚0nmの場合、特性曲線122はZnS膜厚15nmの場合、特性曲線123はZnS膜厚40nmの場合、特性曲線124はZnS膜厚60nmの場合、特性曲線125はGe(14.67nm)/Si(19.58nm)/ガラス基板の場合を表している。   FIG. 16 shows an example of the case where ZnS is used for the transparent body layer. The reflectance of the electromagnetic wave transmitting decorative part having a Ge (14.67 nm) / Si (19.58 nm) / ZnS / TiN substrate structure is shown as ZnS (transparent It is the figure represented by the relationship with the film thickness of a body. In the figure, the characteristic curve 121 is a ZnS film thickness of 0 nm, the characteristic curve 122 is a ZnS film thickness of 15 nm, the characteristic curve 123 is a ZnS film thickness of 40 nm, the characteristic curve 124 is a ZnS film thickness of 60 nm, and the characteristic curve 125. Represents the case of Ge (14.67 nm) / Si (19.58 nm) / glass substrate.

図14〜16から分かるように、透明体層2を設けることで、TiN基板のようなフラットでない反射特性を有する基板において、全ての場合において反射率が向上する。特に、約20nm以上の透明体層を設けることにより、ガラス基板を用いた場合とほぼ同等の反射率が得られている。一方、膜厚が約60nmになると干渉の影響が大きくなる。
すなわち、金属光沢を得るためには、概ね1.3〜2.4の屈折率(at600nm)を有する透明体層2の膜厚は60nm以下が好ましく、20nm〜60nmの範囲がより好適と言える。
As can be seen from FIGS. 14 to 16, the provision of the transparent body layer 2 improves the reflectivity in all cases on a substrate having non-flat reflection characteristics such as a TiN substrate. In particular, by providing a transparent body layer having a thickness of about 20 nm or more, almost the same reflectance as that obtained when a glass substrate is used is obtained. On the other hand, when the film thickness is about 60 nm, the influence of interference increases.
That is, in order to obtain metallic luster, the thickness of the transparent body layer 2 having a refractive index (at 600 nm) of approximately 1.3 to 2.4 is preferably 60 nm or less, and more preferably in the range of 20 nm to 60 nm.

以上、本発明の実施の形態2によれば、部品1の表面に、膜厚が60mm以下の透明体層2と、膜厚が5nm〜30nmのSi層4と、膜厚が1nm〜35nmのGe層5を形成することで、実施の形態1の効果に加え、よりクリアな金属光沢を有する電磁波透過性加飾部品が低コストかつ容易に実現できる。   As described above, according to the second embodiment of the present invention, the transparent body layer 2 having a thickness of 60 mm or less, the Si layer 4 having a thickness of 5 nm to 30 nm, and the thickness of 1 nm to 35 nm are formed on the surface of the component 1. By forming the Ge layer 5, in addition to the effects of the first embodiment, an electromagnetic wave transmitting decorative part having a clearer metallic luster can be easily realized at low cost.

1 部品、2 透明体層、3 半導体層または半金属層、4 Si層、5 Ge層、80 装飾部、81 絶縁部、82 導電材料 1 part, 2 transparent body layer, 3 semiconductor layer or semi-metal layer, 4 Si layer, 5 Ge layer, 80 decorative part, 81 insulating part, 82 conductive material

Claims (4)

部品の表面に、膜厚が100nm以下の透明体層と、膜厚が5nm以上、波長域400nm〜800nmにおける平均透過率が65%以下かつ平均反射率が20%以上であるSi層とGe層の積層体を形成したことを特徴とする電磁波透過性加飾部品。   A transparent body layer having a film thickness of 100 nm or less, a Si layer and a Ge layer having an average transmittance of 65% or less and an average reflectance of 20% or more in a wavelength range of 400 nm to 800 nm on the surface of the component An electromagnetic wave-transmitting decorative part, characterized in that a laminated body is formed. 前記Si層の膜厚が5nm〜30nmかつ前記Ge層の膜厚が1nm〜35nmであることを特徴とする請求項に記載の電磁波透過性加飾部品。 2. The electromagnetic wave transmissive decorative component according to claim 1 , wherein the Si layer has a thickness of 5 nm to 30 nm and the Ge layer has a thickness of 1 nm to 35 nm. 前記透明体層の屈折率が波長600nmにおいて1.3〜2.4であることを特徴とする請求項またはに記載の電磁波透過性加飾部品。 Electromagnetically transparent decorative part according to claim 1 or 2, wherein the refractive index of the transparent layer is from 1.3 to 2.4 at a wavelength of 600 nm. 前記透明体層が少なくともSiO、MgF、Al、AlF、YF、YbF、ZnSのいずれかを主成分であることを特徴とする請求項からのいずれか一つに記載の電磁波透過性加飾部品。 Any one of claims 1 to 3, wherein the transparent layer is composed mainly of any one of at least SiO 2, MgF 2, Al 2 O 3, AlF 3, YF 3, YbF 3, ZnS The electromagnetically transparent decorative component as described in 1.
JP2013038257A 2013-02-28 2013-02-28 Electromagnetic wave transparent decorative parts Expired - Fee Related JP5528591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038257A JP5528591B2 (en) 2013-02-28 2013-02-28 Electromagnetic wave transparent decorative parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038257A JP5528591B2 (en) 2013-02-28 2013-02-28 Electromagnetic wave transparent decorative parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009176362A Division JP2011029548A (en) 2009-07-29 2009-07-29 Electromagnetic wave transmitting decorative component

Publications (2)

Publication Number Publication Date
JP2013118405A JP2013118405A (en) 2013-06-13
JP5528591B2 true JP5528591B2 (en) 2014-06-25

Family

ID=48712708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038257A Expired - Fee Related JP5528591B2 (en) 2013-02-28 2013-02-28 Electromagnetic wave transparent decorative parts

Country Status (1)

Country Link
JP (1) JP5528591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835030A (en) * 2016-12-13 2017-06-13 西南技术物理研究所 Infrared high antireflection film structure of wide-angle multiband and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108834391B (en) * 2018-07-25 2019-05-14 深圳市弘海电子材料技术有限公司 A kind of novel FPC composite electromagnetic shielding film and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130406B2 (en) * 1993-05-14 2001-01-31 三菱電機株式会社 Separation plate between radio wave and infrared ray and its manufacturing method
JP3865584B2 (en) * 2000-12-07 2007-01-10 セントラル硝子株式会社 Glass for bending and / or tempering
JP2003149434A (en) * 2002-09-06 2003-05-21 Mitsubishi Electric Corp Optical film for ir region and optical element
JP5017207B2 (en) * 2007-09-18 2012-09-05 信越ポリマー株式会社 Radio wave transmitting decorative member
JP5207899B2 (en) * 2008-09-25 2013-06-12 三菱電機株式会社 Electromagnetic wave transmissive decorative substrate and casing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835030A (en) * 2016-12-13 2017-06-13 西南技术物理研究所 Infrared high antireflection film structure of wide-angle multiband and preparation method thereof

Also Published As

Publication number Publication date
JP2013118405A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5250023B2 (en) Decorative parts
JP6400062B2 (en) Electromagnetic wave transmitting metallic luster member, article using the same, and metallic thin film
JP6461619B2 (en) Radio wave transmission type multilayer optical coating
JP4863906B2 (en) Glittering film and method for producing the glittering film
JP6665781B2 (en) Housing parts, electronic equipment, and manufacturing method of housing parts
CN105144045A (en) Conductive structure and preparation method therefor
JP5528591B2 (en) Electromagnetic wave transparent decorative parts
JP5207899B2 (en) Electromagnetic wave transmissive decorative substrate and casing
JP2011029548A (en) Electromagnetic wave transmitting decorative component
CN110850656A (en) Array substrate, manufacturing method thereof, display panel and display device
JP6944425B2 (en) Electromagnetic wave transmissive metallic luster member, articles using this, and metal thin film
TW202106650A (en) Window having metal layer that transmits microwave signals and reflects infrared signals
WO2019208504A1 (en) Electromagnetic wave transparent metallic luster article, and metal thin film
WO2018180476A1 (en) Structure, decorative film, method for producing structure, and method for producing decorative film
JP2011025634A (en) Electromagnetic wave transmissive decorative component
JP4051740B2 (en) Antireflection film
CN110636943B (en) Transparent conductive film and image display device
JP5438355B2 (en) Optical thin film laminate and electronic device case
JP2013231232A (en) Decorative component
JP3534384B2 (en) Conductive antireflection film and method of manufacturing the same
JP2017181911A (en) Radio wave transmissive infrared reflection laminate and closing member
WO2019208494A1 (en) Electromagnetic wave transmissive metallic luster product and metal thin film
JP2019188807A (en) Electromagnetic wave transmissive metallic luster product and metal thin film
JP2019188809A (en) Electromagnetic wave transmissible metallic sheen article
WO2024020721A1 (en) Optical structure and method for manufacturing optical structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R151 Written notification of patent or utility model registration

Ref document number: 5528591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees