JP5528131B2 - Stacked battery - Google Patents

Stacked battery Download PDF

Info

Publication number
JP5528131B2
JP5528131B2 JP2010011740A JP2010011740A JP5528131B2 JP 5528131 B2 JP5528131 B2 JP 5528131B2 JP 2010011740 A JP2010011740 A JP 2010011740A JP 2010011740 A JP2010011740 A JP 2010011740A JP 5528131 B2 JP5528131 B2 JP 5528131B2
Authority
JP
Japan
Prior art keywords
current collector
electrode body
positive electrode
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010011740A
Other languages
Japanese (ja)
Other versions
JP2011150913A (en
Inventor
香津雄 堤
和也 西村
一良 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2010011740A priority Critical patent/JP5528131B2/en
Publication of JP2011150913A publication Critical patent/JP2011150913A/en
Application granted granted Critical
Publication of JP5528131B2 publication Critical patent/JP5528131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、正極および負極を複数積層して構成した積層タイプの電極体を有する電池に関し、より具体的には、このような積層型電池の電極体と集電体との接触構造に関する。   The present invention relates to a battery having a stacked electrode body configured by stacking a plurality of positive electrodes and negative electrodes, and more specifically to a contact structure between an electrode body and a current collector of such a stacked battery.

近年、省エネルギーやCO削減への配慮から、風力発電や太陽光発電のような自然エネルギーを利用した発電設備で使用する電力平準化用の二次電池が開発されている。また、同様に環境問題対策として、自動車や電車などの車両に搭載する二次電池が開発されている。車両に二次電池を搭載した場合には、ブレーキ時の回生電力をこの搭載電池に蓄えておき、車両の動力源として使用することができるので、車両運行のエネルギー効率を高めるとともに、COの排出量を削減することができる。 In recent years, secondary batteries for power leveling used in power generation facilities using natural energy such as wind power generation and solar power generation have been developed in consideration of energy saving and CO 2 reduction. Similarly, secondary batteries mounted on vehicles such as cars and trains have been developed as countermeasures for environmental problems. When equipped with the secondary battery in a vehicle, keep stored regenerative electric power during braking to the mounting battery, because it can be used as a power source of the vehicle, to increase the energy efficiency of the vehicle operation, the CO 2 Emissions can be reduced.

上記のような車両用の電池には、従来の携帯機器等に用いられるものに比べて、高電圧および高エネルギー容量が要求されるため、大型の電池を使用する必要がある。大型の電池を使用する場合には、電池が設置されるスペースを効率的に利用する必要性が大きいことから、円筒形よりも角形の電池とすることが望ましい。このような大型の角形電池には、電池性能や生産性の観点から、円筒形電池に用いられる巻取り式の電極体よりも、セパレータを介して正極体と負極体とを交互に積層した電極体の方が適しているとされる(例えば、特許文献1参照)。   The vehicle battery as described above requires a high voltage and a high energy capacity as compared with those used in conventional portable devices and the like, and therefore a large battery needs to be used. In the case of using a large battery, it is desirable to use a square battery rather than a cylindrical battery because there is a great need to efficiently use the space where the battery is installed. In such a large square battery, from the viewpoint of battery performance and productivity, an electrode in which a positive electrode body and a negative electrode body are alternately stacked via separators rather than a wound electrode body used in a cylindrical battery. The body is more suitable (for example, refer to Patent Document 1).

このような、積層型の角形ニッケル水素二次電池の構造として、例えば、図5に示すようなプリーツ構造が提案されている(例えば、特許文献2参照)。この電池70では、対向配置された正極集電板73と負極集電板75との間に、絶縁部材からなる平面視で矩形の枠形部材77を介在させて電池のケーシング79を形成し、ケーシング79内に、プリーツ状に折り曲げられたセパレータ81を介して多数の正極体83および負極体85を交互に対向させて積層した電極体87が収納されている。   As a structure of such a stacked prismatic nickel-metal hydride secondary battery, for example, a pleated structure as shown in FIG. 5 has been proposed (see, for example, Patent Document 2). In this battery 70, a battery casing 79 is formed by interposing a rectangular frame-shaped member 77 in a plan view made of an insulating member between a positive electrode current collecting plate 73 and a negative electrode current collecting plate 75 which are arranged to face each other. Housed in the casing 79 is an electrode body 87 in which a large number of positive electrode bodies 83 and negative electrode bodies 85 are alternately opposed to each other via a separator 81 bent into a pleat shape.

この電池70では、両集電板73,75の対向方向Xに直交する方向Yに、正極体83と負極体85とがセパレータ81を介して交互に積層されており、平板状の正極体83および負極体85の各端面83a、85aを、正極集電板73、負極集電板75にそれぞれ接触させることによって、両電極体83,85と、対応する各集電板73,75との導通を確保している。   In this battery 70, positive electrode bodies 83 and negative electrode bodies 85 are alternately stacked via separators 81 in a direction Y orthogonal to the opposing direction X of the current collector plates 73, 75, and a plate-like positive electrode body 83. In addition, by bringing the end faces 83a and 85a of the negative electrode body 85 into contact with the positive electrode current collector plate 73 and the negative electrode current collector plate 75, respectively, the two electrode bodies 83 and 85 and the corresponding current collector plates 73 and 75 are electrically connected. Is secured.

特開2001−110381号公報JP 2001-110381 A 特開2003−272593号公報JP 2003-272593 A

しかしながら、このように構成された電池70では、正極体83および負極体85の寸法ばらつきにより、図5に破線の円で囲んで示すように、一部の正極体83または負極体85が、各集電板73,75に接触していない状態が発生することがある。この場合には、集電板73、75に接触しない正極体83または負極体85が、電池70の充放電容量にまったく寄与しないことになり、設計どおりのエネルギー容量が得られない。また、接触はしていても、接触圧が不十分なため、十分な充放電性能が得られない場合がある。   However, in the battery 70 configured in this way, due to the dimensional variation of the positive electrode body 83 and the negative electrode body 85, as shown in FIG. The state which is not contacting the current collecting plates 73 and 75 may generate | occur | produce. In this case, the positive electrode body 83 or the negative electrode body 85 not in contact with the current collector plates 73 and 75 does not contribute to the charge / discharge capacity of the battery 70 at all, and the designed energy capacity cannot be obtained. Moreover, even if it contacts, since sufficient contact pressure is inadequate, sufficient charging / discharging performance may not be obtained.

正極体83および負極体85を各集電板73,75に対して溶接することにより接触を確保することも考えられるが、その場合には、溶接屑が電池内に残留し、内部短絡のような不具合の原因となるほか、電極の溶接加工、溶接位置の調整などが煩雑で量産性においても問題がある。   It is conceivable to secure contact by welding the positive electrode body 83 and the negative electrode body 85 to the current collector plates 73 and 75. In this case, however, the welding waste remains in the battery, which may cause an internal short circuit. In addition to causing troubles, it is complicated to weld electrodes and adjust the welding position.

本発明の目的は、上記の課題を解決するために、製造が容易な構造を有しながら、内部抵抗が小さく、かつ内部短絡の発生が防止される、性能および信頼性に優れる積層型電池を提供することにある。   In order to solve the above-described problems, an object of the present invention is to provide a stacked battery excellent in performance and reliability that has a structure that can be easily manufactured, has a low internal resistance, and prevents the occurrence of an internal short circuit. It is to provide.

前記した目的を達成するために、本発明に係る積層型電池は、互いに対向配置された平板状の正極集電体および負極集電体と、前記正極集電体および負極集電体の間で、これら集電体の対向方向に直交する方向に、セパレータを介して対向して交互に積層された複数の正極体および負極体からなる電極体と、前記正極集電体と前記電極体との間、および、前記負極集電体と前記電極体との間に介在する、前記対向方向に塑性変形可能な導電素材を含むシート状の緩衝部材とを備え、前記緩衝部材の前記電極体に接触する面が、平滑な面として形成されている。ここで、「平滑な面」とは、緩衝部材の当該面が、凹凸や穴を有していないことを意味する。   In order to achieve the above-described object, a stacked battery according to the present invention includes a plate-like positive electrode current collector and a negative electrode current collector that are disposed to face each other, and the positive electrode current collector and the negative electrode current collector. An electrode body composed of a plurality of positive and negative electrode bodies that are alternately stacked opposite to each other in a direction orthogonal to the facing direction of the current collector, and the positive electrode current collector and the electrode body. And a sheet-like buffer member including a conductive material that is plastically deformable in the facing direction and is interposed between the negative electrode current collector and the electrode body, and contacts the electrode body of the buffer member The surface to be formed is formed as a smooth surface. Here, the “smooth surface” means that the surface of the buffer member does not have irregularities or holes.

この構成によれば、緩衝部材を設けたことにより、電極体と集電体とを確実に接触させることができるのみならず、正極体および負極体の寸法ばらつきなどに起因する接触圧のばらつきが、緩衝部材の塑性変形によって吸収される。したがって、集電体と正極体または負極体とが確実に接触するようになり、電極活物質の利用率が向上するので、電池のエネルギー容量が増大し、かつ、接触抵抗が低減して内部抵抗が減少するので、電池性能が向上する。しかも、緩衝部材の電極体に接触する面が平滑に形成されているので、電極体のセパレータが緩衝部材のバリのような突起物によって貫通することによる内部短絡の発生が防止される。なお、電極体は、好ましくは平板状であってもよい。   According to this configuration, by providing the buffer member, not only can the electrode body and the current collector be brought into contact with each other reliably, but also there is a variation in contact pressure due to a dimensional variation in the positive electrode body and the negative electrode body. It is absorbed by the plastic deformation of the buffer member. Accordingly, the current collector and the positive electrode body or the negative electrode body come into reliable contact with each other, and the utilization factor of the electrode active material is improved, so that the energy capacity of the battery is increased and the contact resistance is reduced to reduce the internal resistance. Battery performance is improved. In addition, since the surface of the buffer member that contacts the electrode body is formed smoothly, the occurrence of an internal short circuit due to the separator of the electrode body penetrating by a projection such as a burr of the buffer member is prevented. The electrode body may preferably have a flat plate shape.

本発明に係る上記の積層型電池において、前記緩衝部材が、前記対向方向に塑性変形可能な導電素材からなる緩衝シート部と、平滑な主面を有する導電素材からなる接触シート部とを、前記対向方向に互いに重ねて配置してなり、前記緩衝シート部が前記各集電体側に配置され、前記接触シート部が前記電極体側に配置されていてもよい。このように、緩衝部材の緩衝機能を発揮する部分と、電極体に接する部分とを別体に構成することにより、確実に内部短絡を防止しつつ電極体と集電体との接触を確保することのできる緩衝部材の作製が容易になる。   In the laminated battery according to the present invention, the buffer member includes a buffer sheet portion made of a conductive material plastically deformable in the facing direction, and a contact sheet portion made of a conductive material having a smooth main surface, The buffer sheet portions may be arranged to overlap each other in the facing direction, the buffer sheet portions may be arranged on the current collector side, and the contact sheet portions may be arranged on the electrode body side. In this way, by configuring the part that exhibits the buffering function of the buffer member and the part in contact with the electrode body separately, the contact between the electrode body and the current collector is ensured while reliably preventing an internal short circuit. This makes it easy to produce a shock absorbing member.

本発明に係る上記の積層型電池において、前記緩衝シート部を、例えば、発泡ニッケルで形成することができ、前記接触シート部を、例えば、ニッケルめっき鋼板で形成することができる。緩衝シート部に発泡ニッケルを使用することにより、適度な圧力吸収と良好な導電性が両立する。また、接触シート部にニッケルめっき鋼板を使用することにより、接触シート部をきわめて薄く形成して、電池の体積および重量の増加を最小限に抑制することが可能になる。   In the laminated battery according to the present invention, the buffer sheet portion can be formed of, for example, foamed nickel, and the contact sheet portion can be formed of, for example, a nickel-plated steel plate. By using foamed nickel for the buffer sheet portion, both moderate pressure absorption and good electrical conductivity are achieved. Further, by using a nickel-plated steel sheet for the contact sheet portion, the contact sheet portion can be formed extremely thin, and increase in the volume and weight of the battery can be suppressed to a minimum.

以上のように、本発明に係る積層型電池によれば、製造が容易な構造を有しながら、内部抵抗が低減され、かつ内部短絡の発生が防止されることにより、性能および信頼性が向上する。   As described above, according to the multilayer battery according to the present invention, the internal resistance is reduced and the occurrence of an internal short circuit is prevented while having a structure that is easy to manufacture, thereby improving performance and reliability. To do.

本発明の一実施形態に係る積層型電池が用いられる電池モジュールを示す部分破断側面図である。It is a partially broken side view showing a battery module in which a stacked battery according to an embodiment of the present invention is used. 図1の積層型電池の構造を示す部分破断断面図である。FIG. 2 is a partially broken cross-sectional view showing the structure of the stacked battery in FIG. 1. 図2の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 図2の積層型電池に用いられる緩衝部材の微細構造を模式的に示す断面図である。It is sectional drawing which shows typically the microstructure of the buffer member used for the laminated battery of FIG. 従来の積層型電池の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the conventional laminated battery.

以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments.

図1は、本発明の一実施形態に係る積層型電池(以下、単に「電池」と呼ぶ。)が適用される電池モジュールを示す部分破断断面図である。この電池モジュールBは、例えば、電車に搭載されるものであって、電池Cを、電池Cの厚み方向に複数個(本実施形態では30個)積層して構成したものであり、これらが絶縁材料からなるハウジングHによって覆われている。なお、本実施形態における電池Cは、水酸化ニッケルを主要な正極活物質とし、水素吸蔵合金を主要な負極活物質とし、アルカリ系水溶液を電解液とする、繰り返し充放電が可能なニッケル水素二次電池として構成されている。   FIG. 1 is a partially broken cross-sectional view showing a battery module to which a stacked battery (hereinafter simply referred to as “battery”) according to an embodiment of the present invention is applied. The battery module B is mounted on a train, for example, and is formed by stacking a plurality of batteries C (30 in the present embodiment) in the thickness direction of the battery C, and these are insulated. It is covered by a housing H made of material. Note that the battery C in this embodiment is a nickel-hydrogen secondary battery that can be repeatedly charged and discharged using nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy as a main negative electrode active material, and an alkaline aqueous solution as an electrolyte. It is configured as a secondary battery.

図2は、電池Cの構造の一例を示す部分破断断面図である。電池Cは、セパレータ11、正極体13および負極体15を含む電極体17と、電極体17を電解液とともに収容する角形形状のケーシング19とを備えている。ケーシング19は、絶縁素材からなる矩形の枠形部材21と、枠形部材21の二つの開口部をそれぞれ覆う、平板状の正極集電体23および負極集電体25とから構成されている。つまり、正極集電体23と負極集電体25とは、互いに対向するように配置されており、これら両集電体23,25の間、つまりケーシング19の内方に電極体17が収容されている。   FIG. 2 is a partially broken sectional view showing an example of the structure of the battery C. The battery C includes an electrode body 17 including a separator 11, a positive electrode body 13, and a negative electrode body 15, and a rectangular casing 19 that houses the electrode body 17 together with an electrolytic solution. The casing 19 includes a rectangular frame-shaped member 21 made of an insulating material, and a flat plate-shaped positive electrode current collector 23 and a negative electrode current collector 25 that respectively cover two openings of the frame-shaped member 21. That is, the positive electrode current collector 23 and the negative electrode current collector 25 are disposed so as to face each other, and the electrode body 17 is accommodated between the current collectors 23 and 25, that is, inside the casing 19. ing.

なお、枠形部材21を形成する絶縁素材として、本実施形態では変性ポリフェニレンエーテル(PPE)樹脂を用いているが、機械的強度、耐熱性および耐電解液性の観点から種々の材料を選択できる。また、両集電体23,25を形成する素材として、導電素材であるニッケルめっきを施した鋼板を用いているが、電気化学的な特性や機械的強度、耐食性などを考慮して、適宜選択することができる。   In this embodiment, a modified polyphenylene ether (PPE) resin is used as an insulating material for forming the frame-shaped member 21, but various materials can be selected from the viewpoint of mechanical strength, heat resistance, and electrolytic solution resistance. . In addition, as the material for forming both current collectors 23 and 25, a nickel-plated steel plate, which is a conductive material, is used. can do.

電極体17は、例えば、複数の正極体13と複数の負極体15とが、プリーツ状に折り曲げられたセパレータ11を介して所定の方向(本実施形態では両集電体23,25の対向方向Xに直交する方向Y)に交互に積層されて対向する積層構造を有している。ケーシング19の正極集電体23および負極集電体25は、導電性材料、例えばニッケルめっきを施した鋼板で形成されており、後述する構造によって正極体13は正極集電体23に、負極体15は負極集電体25に、それぞれ電気的に接続されている。   The electrode body 17 includes, for example, a plurality of positive electrode bodies 13 and a plurality of negative electrode bodies 15 in a predetermined direction (a facing direction of the current collectors 23 and 25 in this embodiment) via a separator 11 bent in a pleat shape. It has a laminated structure which is alternately laminated in the direction Y) orthogonal to X and faces each other. The positive electrode current collector 23 and the negative electrode current collector 25 of the casing 19 are formed of a conductive material, for example, a nickel-plated steel plate. The positive electrode body 13 is connected to the positive electrode current collector 23 by the structure described later. 15 are each electrically connected to the negative electrode current collector 25.

なお、電極体17は、プリーツ構造以外の積層構造を有していても良い。例えば、別体に形成された複数の袋状のセパレータにそれぞれ収容された正極体13と負極体15とを交互に積層して対向させてもよく、あるいは、別体の袋状のセパレータにそれぞれ収容された正極体13と負極とを、さらにプリーツ状のセパレータ11を介して互いに対向するように積層してもよい。   The electrode body 17 may have a laminated structure other than the pleated structure. For example, the positive electrode bodies 13 and the negative electrode bodies 15 respectively accommodated in a plurality of separate bag-shaped separators may be alternately stacked and face each other, or each of the separate bag-shaped separators may be opposed to each other. The accommodated positive electrode body 13 and negative electrode may be further laminated so as to face each other with a pleated separator 11 interposed therebetween.

次に、本実施形態に係る電池Cの電極体17と集電体23,25との接触構造について詳細に説明する。なお、以下の説明においては、代表として正極集電体23側についてのみ説明する場合があるが、負極集電体25側も正極集電体23側と同様の構造を有している。   Next, a contact structure between the electrode body 17 and the current collectors 23 and 25 of the battery C according to this embodiment will be described in detail. In the following description, only the positive electrode current collector 23 side may be described as a representative, but the negative electrode current collector 25 side also has the same structure as the positive electrode current collector 23 side.

正極集電体23と正極体13との間、および負極集電体25と負極体15との間には、それぞれ、対向方向Xに塑性変形可能な導電素材からなるシート状の緩衝部材31が介在している。すなわち、正極集電体23の内壁面23aに沿ってシート状の緩衝部材31が配置されており、正極体13の正極集電体23側の一端部13aが緩衝部材31の電極体17側の裏面(電極体接触面)31aに接触し、緩衝部材31の正極集電体側の表面(集電体接触面)31bが、正極集電体23の集電面となる内壁面23aに接触している。同様に、負極集電体25の内壁面25aに沿ってシート状の緩衝部材31が配置されており、負極体15の負極集電体側の一端部15aが、緩衝部材31の電極体17側の裏面31aに接触し、緩衝部材31の負極集電体側の表面31bが、負極集電体25の集電面となる内壁面25aに接触している。   Between the positive electrode current collector 23 and the positive electrode body 13 and between the negative electrode current collector 25 and the negative electrode body 15, sheet-like buffer members 31 made of a conductive material that can be plastically deformed in the facing direction X are respectively provided. Intervene. That is, the sheet-like buffer member 31 is arranged along the inner wall surface 23 a of the positive electrode current collector 23, and one end 13 a of the positive electrode body 13 on the positive electrode current collector 23 side is on the electrode body 17 side of the buffer member 31. The back surface (electrode body contact surface) 31 a contacts the positive electrode current collector side surface (current collector contact surface) 31 b of the buffer member 31 and the inner wall surface 23 a that serves as the current collector surface of the positive electrode current collector 23. Yes. Similarly, a sheet-like buffer member 31 is disposed along the inner wall surface 25 a of the negative electrode current collector 25, and one end 15 a on the negative electrode current collector side of the negative electrode body 15 is disposed on the electrode body 17 side of the buffer member 31. The surface 31 b on the negative electrode current collector side of the buffer member 31 is in contact with the inner surface 25 a that is the current collector surface of the negative electrode current collector 25.

なお、正極体13は、多孔質の発泡ニッケルやニッケル焼結体からなる基板に、活物質を含む合材を塗布したものを用いており、一方、負極体15には、ニッケルめっきを施した鋼板に多数の孔を形成したパンチングメタルからなる基板に、活物質を含む合材を塗布したものを用いている。正極および負極の集電体23,25は、ニッケルめっきを施した鋼板で形成されている。本実施形態の電池Cでは、正極体13、負極体15と、正極集電体23、負極集電体25との導通は、金属屑のような異物の混入の防止および工程の簡略化およびリサイクル性の向上のために溶接は行わず、対向方向Xの接触圧のみによって確保されている。   In addition, the positive electrode body 13 uses the thing which apply | coated the composite material containing an active material to the board | substrate which consists of porous foaming nickel or a nickel sintered compact, On the other hand, the negative electrode body 15 gave nickel plating A substrate made of a punching metal in which a large number of holes are formed in a steel plate is coated with a composite material containing an active material. The positive and negative electrode current collectors 23 and 25 are made of nickel-plated steel plates. In the battery C of the present embodiment, the conduction between the positive electrode body 13 and the negative electrode body 15 and the positive electrode current collector 23 and the negative electrode current collector 25 is to prevent entry of foreign matters such as metal scraps and to simplify and recycle the process. In order to improve the property, welding is not performed, and only the contact pressure in the facing direction X is ensured.

本実施形態において、緩衝部材31の電極体接触面31aは、多孔質体構造による凹凸や孔加工を有しない平滑な面として形成されている。より具体的には、図2の要部を拡大した図3に示すように、緩衝部材31は、対向方向Xに重ねて配置された緩衝シート部33と接触シート部35とから構成されている。緩衝シート部33は、対向方向Xに塑性変形可能な導電素材、例えば発泡ニッケルで形成されており、正極集電体23側に配置されている。一方、接触シート部35は、平滑な主面35aを有する導電素材、例えばニッケルめっきを施した鋼板で形成されており、緩衝シート部33の内側、すなわち電極体17側に配置されている。すなわち、接触シート部35の平滑な主面35aが、緩衝部材31の電極体接触面31aを形成しており、正極体13の一端部13aおよびプリーツ状のセパレータ11の折り曲げ部11aに接触している。   In this embodiment, the electrode body contact surface 31a of the buffer member 31 is formed as a smooth surface that does not have irregularities or hole processing due to the porous body structure. More specifically, as shown in FIG. 3 in which the main part of FIG. 2 is enlarged, the cushioning member 31 includes a cushioning sheet portion 33 and a contact sheet portion 35 that are arranged so as to overlap in the facing direction X. . The buffer sheet portion 33 is made of a conductive material that can be plastically deformed in the facing direction X, for example, foamed nickel, and is disposed on the positive electrode current collector 23 side. On the other hand, the contact sheet portion 35 is formed of a conductive material having a smooth main surface 35a, for example, a nickel-plated steel plate, and is disposed inside the buffer sheet portion 33, that is, on the electrode body 17 side. That is, the smooth main surface 35 a of the contact sheet portion 35 forms the electrode body contact surface 31 a of the buffer member 31, and comes into contact with the one end portion 13 a of the positive electrode body 13 and the bent portion 11 a of the pleated separator 11. Yes.

一般に、緩衝シート部33として用いられる塑性変形性に優れる発泡ニッケルのような多孔質の金属部材は、図4に模式的に示すように、表面に存在する細孔の開口縁部がバリ41を形成し、内部短絡の原因となり得る。また、例えば金属シートに孔加工した場合にも、孔の周縁にバリを生じる。しかしながら、図3のように、緩衝部材31を、互いに別体に形成された緩衝シート部33および接触シート部35によって構成することにより、緩衝部材31の、対向方向Xの圧力を吸収する機能を受け持つ部分(緩衝シート部33)と、内部短絡を防止しつつ電極体17との良好な接触性を確保する部分(接触シート部35)とを別個に形成することができる。したがって、確実に内部短絡を防止しつつ電極体17と集電体23との接触を確保することのできる緩衝部材31の作製が容易になる。また、接触シート部35をニッケルめっき鋼板で形成することにより、接触シート部35の厚さをきわめて薄く、例えば0.025〜0.1mmの範囲で形成することができるので、電池Cの体積および重量の増加が最小限に抑制される。   In general, a porous metal member such as foamed nickel excellent in plastic deformability used as the buffer sheet portion 33 has a burr 41 at the opening edge of the pores existing on the surface, as schematically shown in FIG. Can form and cause an internal short circuit. Further, for example, when holes are formed in a metal sheet, burrs are generated at the periphery of the holes. However, as shown in FIG. 3, the buffer member 31 is configured by the buffer sheet portion 33 and the contact sheet portion 35 formed separately from each other, thereby absorbing the pressure in the facing direction X of the buffer member 31. The part (buffer sheet part 33) which takes charge and the part (contact sheet part 35) which ensures favorable contact property with the electrode body 17 can be formed separately, preventing an internal short circuit. Therefore, it is easy to manufacture the buffer member 31 that can ensure contact between the electrode body 17 and the current collector 23 while reliably preventing an internal short circuit. Further, by forming the contact sheet portion 35 from a nickel-plated steel plate, the thickness of the contact sheet portion 35 can be very thin, for example, in the range of 0.025 to 0.1 mm. The increase in weight is minimized.

なお、緩衝部材31は、対向方向Xに塑性変形可能な導電素材を含み、かつ、その電極接触面31aが平滑な面として形成されていれば、図3に示した例に限らず、様々な構成をとることができる。例えば、接触シート部35として、ニッケルめっき鋼板の代わりに、発泡ニッケルを対向方向X、すなわち厚み方向にプレス加工したものを用いてもよい。あるいは、緩衝シート部33が2枚、またはそれ以上設けられていてもよい。さらには、緩衝部材31が単一物として形成されていてもよく、例えば、1枚の発泡ニッケルシートの一方の主面のみを平滑化処理したもの、または、ニッケルめっき鋼板にエンボス加工を施すことにより対向方向Xの塑性変形性を持たせたものを緩衝部材31として用いてもよい。   As long as the buffer member 31 includes a conductive material that can be plastically deformed in the facing direction X and the electrode contact surface 31a is formed as a smooth surface, the buffer member 31 is not limited to the example illustrated in FIG. Configuration can be taken. For example, instead of the nickel-plated steel sheet, the contact sheet portion 35 may be formed by pressing foamed nickel in the facing direction X, that is, in the thickness direction. Alternatively, two or more buffer sheet portions 33 may be provided. Furthermore, the buffer member 31 may be formed as a single object. For example, one of the main surfaces of one nickel foam sheet is smoothed, or the nickel-plated steel sheet is embossed. Thus, a material having plastic deformation in the facing direction X may be used as the buffer member 31.

本実施形態に係る電池Cによれば、緩衝部材31を設けたことにより、電極体17と集電体23,25とを確実に接触させることができるのみならず、正極体13および負極体15の寸法ばらつきなどに起因する接触圧のばらつきが、緩衝部材31の対向方向Xの塑性変形によって吸収される。したがって、集電体23,25と正極体13、負極体15とが確実に接触するようになり、電極活物質の利用率が向上するので、電池Cのエネルギー容量が増大する。さらには、接触抵抗が低減して内部抵抗が減少するので、電池性能が向上する。しかも、緩衝部材31の電極体接触面31aが平滑な面として形成されているので、電極体17のセパレータ11が緩衝部材31のバリのような突起物によって突き破られて内部短絡が発生することが防止される。   According to the battery C according to the present embodiment, by providing the buffer member 31, not only can the electrode body 17 and the current collectors 23 and 25 be brought into contact with each other, but also the positive electrode body 13 and the negative electrode body 15. Variations in contact pressure due to variations in dimensions of the buffer member 31 are absorbed by plastic deformation in the facing direction X of the buffer member 31. Accordingly, the current collectors 23 and 25 are positively contacted with the positive electrode body 13 and the negative electrode body 15, and the utilization factor of the electrode active material is improved, so that the energy capacity of the battery C is increased. Furthermore, since the contact resistance is reduced and the internal resistance is reduced, the battery performance is improved. In addition, since the electrode body contact surface 31a of the buffer member 31 is formed as a smooth surface, the separator 11 of the electrode body 17 is broken by protrusions such as burrs of the buffer member 31 and an internal short circuit occurs. Is prevented.

なお、本実施形態では、電池Cをニッケル水素二次電池として構成した例について説明したが、本発明は、他の種類の角形の一次電池および二次電池にも適用することが可能である。   In the present embodiment, the example in which the battery C is configured as a nickel hydride secondary battery has been described. However, the present invention can also be applied to other types of prismatic primary batteries and secondary batteries.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.

11 セパレータ
13 正極体
15 負極体
17 電極体
23 正極集電体
25 負極集電体
31 緩衝部材
31a 緩衝部材の電極体接触面
33 緩衝シート部
35 接触シート部
C 電池
X 正極集電体と負極集電体との対向方向
11 Separator 13 Positive electrode body 15 Negative electrode body 17 Electrode body 23 Positive electrode current collector 25 Negative electrode current collector 31 Buffer member 31a Electrode body contact surface 33 of buffer member Buffer sheet portion 35 Contact sheet portion C Battery X Positive electrode current collector and negative electrode collector Opposite direction to electrical body

Claims (3)

互いに対向配置された平板状の正極集電体および負極集電体と、
前記正極集電体および負極集電体の間で、これら集電体の対向方向に直交する方向に、セパレータを介して対向して交互に積層された複数の正極体および負極体からなる電極体と、
前記正極集電体と前記電極体との間、および、前記負極集電体と前記電極体との間にそれぞれ介在する、前記対向方向に塑性変形可能な導電素材を含むシート状の緩衝部材と、
を備え、
前記緩衝部材の、前記電極体に接触する面が、平滑な面として形成されており、
前記緩衝部材は、前記対向方向に塑性変形可能な導電素材からなる緩衝シート部と、平滑な主面を有する導電素材からなる接触シート部とを、前記対向方向に互いに重ねて配置してなり、前記緩衝シート部が前記各集電体側に配置され、前記接触シート部が前記電極体側に配置されている、
積層型電池。
A plate-like positive electrode current collector and a negative electrode current collector disposed opposite to each other;
An electrode body comprising a plurality of positive electrode bodies and negative electrode bodies that are alternately stacked opposite to each other via separators in a direction orthogonal to the facing direction of the current collectors between the positive electrode current collector and the negative electrode current collector When,
A sheet-like buffer member including a conductive material that is plastically deformable in the opposite direction, interposed between the positive electrode current collector and the electrode body, and between the negative electrode current collector and the electrode body; ,
With
The surface of the buffer member that contacts the electrode body is formed as a smooth surface ,
The buffer member is formed by arranging a buffer sheet portion made of a conductive material plastically deformable in the facing direction and a contact sheet portion made of a conductive material having a smooth main surface so as to overlap each other in the facing direction, The buffer sheet portion is disposed on each current collector side, and the contact sheet portion is disposed on the electrode body side,
Stacked battery.
請求項において、前記緩衝シート部が発泡ニッケルで形成されている積層型電池。 The stacked battery according to claim 1 , wherein the buffer sheet portion is formed of foamed nickel. 請求項1または2において、前記接触シート部がニッケルめっき鋼板で形成されている積層型電池。 The stacked battery according to claim 1 , wherein the contact sheet portion is formed of a nickel-plated steel plate.
JP2010011740A 2010-01-22 2010-01-22 Stacked battery Active JP5528131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010011740A JP5528131B2 (en) 2010-01-22 2010-01-22 Stacked battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010011740A JP5528131B2 (en) 2010-01-22 2010-01-22 Stacked battery

Publications (2)

Publication Number Publication Date
JP2011150913A JP2011150913A (en) 2011-08-04
JP5528131B2 true JP5528131B2 (en) 2014-06-25

Family

ID=44537725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010011740A Active JP5528131B2 (en) 2010-01-22 2010-01-22 Stacked battery

Country Status (1)

Country Link
JP (1) JP5528131B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125766B2 (en) * 2012-06-21 2017-05-10 川崎重工業株式会社 Manufacturing method and manufacturing apparatus for battery and buffer member
JP6778601B2 (en) * 2016-12-12 2020-11-04 川崎重工業株式会社 battery
JP7431072B2 (en) 2020-03-18 2024-02-14 Fdk株式会社 Square batteries and electrode groups for square batteries

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233120A (en) * 1998-02-12 1999-08-27 Yuasa Corp Electrode for alkaline storage battery and its manufacture
JP4499976B2 (en) * 2002-04-24 2010-07-14 川崎重工業株式会社 Battery with pressure absorption structure
RU2462794C2 (en) * 2008-04-11 2012-09-27 Кавасаки Юкогё Кабусики Кайся Sealed rectangular accumulator battery and battery module having said battery

Also Published As

Publication number Publication date
JP2011150913A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP6780345B2 (en) Power storage device and manufacturing method of power storage device
JP4532448B2 (en) Rectangular battery electrode unit, rectangular battery, and method of manufacturing rectangular battery electrode unit
KR101530803B1 (en) Secondary battery
JP6705358B2 (en) Method for manufacturing power storage device
JP2001256934A (en) Battery module case
JP2013093225A (en) Storage element, electric cell, and battery pack
JP2018028983A (en) Bipolar battery
JP5988669B2 (en) Battery stack
JP6838640B2 (en) Power storage device
JP2016122633A (en) Battery pack
JP5528131B2 (en) Stacked battery
KR101735511B1 (en) Battery cell with patterned shape and Method for manufacturing the same
JP2015215988A (en) Square battery
JP5422188B2 (en) Square battery
JP5809044B2 (en) Secondary battery
JP5485724B2 (en) Square battery
JP2019029226A (en) Method of manufacturing power storage element
JP2017212145A (en) Power storage device
JP2019125564A (en) Power storage module
US20220247023A1 (en) Power storage device
JP2017162711A (en) Battery module and battery pack
JP2014006963A (en) Battery and manufacturing method and apparatus of buffer member thereof
JP2018067382A (en) Power storage device
JP2013131371A5 (en)
JP6686789B2 (en) Stacked alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5528131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250