JP5527516B2 - Variable magnification optical system and optical apparatus provided with the variable magnification optical system - Google Patents

Variable magnification optical system and optical apparatus provided with the variable magnification optical system Download PDF

Info

Publication number
JP5527516B2
JP5527516B2 JP2009244218A JP2009244218A JP5527516B2 JP 5527516 B2 JP5527516 B2 JP 5527516B2 JP 2009244218 A JP2009244218 A JP 2009244218A JP 2009244218 A JP2009244218 A JP 2009244218A JP 5527516 B2 JP5527516 B2 JP 5527516B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
focal length
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009244218A
Other languages
Japanese (ja)
Other versions
JP2011090186A (en
Inventor
雅史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009244218A priority Critical patent/JP5527516B2/en
Publication of JP2011090186A publication Critical patent/JP2011090186A/en
Application granted granted Critical
Publication of JP5527516B2 publication Critical patent/JP5527516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、変倍光学系、及び、この変倍光学系を備える光学機器に関する。 The present invention relates to a variable magnification optical system and an optical apparatus including the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開平9−15502号公報Japanese Patent Laid-Open No. 9-15502

しかしながら、従来の望遠系の変倍光学系では、高い光学性能を維持しながら変倍比を大きくすることが困難であった。   However, in the conventional telephoto variable power optical system, it is difficult to increase the zoom ratio while maintaining high optical performance.

本発明はこのような課題に鑑みてなされたものであり、高い光学性能を有する変倍光学系、及び、この変倍光学系を備える光学機器を提供することを目的とする。 The present invention has been made in view of such a problem, a variable magnification optical system having high optical performance, and aims to provide an optical apparatus equipped with this zoom optical system.

前記課題を解決するために、本発明に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、広角端状態から望遠端状態に変倍する際に、第1レンズ群と第2レンズ群との間隔が増大し、第2レンズ群と第3レンズ群との間隔が減少し、第3レンズ群と第4レンズ群との間隔が一旦減少した後増大し、第3レンズ群の少なくとも一部は、光軸に沿って移動することにより無限遠から近距離物体までの合焦を行い、望遠端状態での全系の焦点距離をftとし、広角端状態での全系の焦点距離をfwとし、第1レンズ群の焦点距離をf1とし、第2レンズ群の焦点距離をf2としたとき、次式
8.80 < ft/(−f2) < 12.00
0.40 < fw/f1 < 0.60
2.00 < f1/(−f2) < 4.80
の条件を満足する。
In order to solve the above problems, a variable magnification optical system according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction. A third lens group having a positive power and a fourth lens group having a positive refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group and the second lens group The distance increases, the distance between the second lens group and the third lens group decreases, the distance between the third lens group and the fourth lens group decreases once, and then increases, at least a part of the third lens group , Focusing from infinity to a short distance object by moving along the optical axis, the focal length of the entire system in the telephoto end state is ft, the focal length of the entire system in the wide angle end state is fw, When the focal length of the first lens group is f1, and the focal length of the second lens group is f2, the following formula 8.80 < ft / (− f2) <12.00
0.40 <fw / f1 <0.60
2.00 <f1 / (− f2) <4.80
Satisfy the conditions.

また、このような変倍光学系は、広角端状態から望遠端状態に変倍する際に、第1レンズ群及び第4レンズ群の少なくとも一方が光軸に沿って移動することが好ましい。 In such a variable magnification optical system, it is preferable that at least one of the first lens group and the fourth lens group move along the optical axis when zooming from the wide-angle end state to the telephoto end state.

また、このような変倍光学系は、第3レンズ群の焦点距離をf3としたとき、次式
2.50 < ft/f3 < 4.50
の条件を満足することが好ましい。
Also, in such a variable magnification optical system, when the focal length of the third lens group is f3, the following formula 2.50 <ft / f3 <4.50
It is preferable to satisfy the following conditions.

また、本発明に係る光学機器は、上述の変倍光学系のいずれかを備える。 An optical apparatus according to the present invention includes any of the above-described variable magnification optical systems.

本発明に係る変倍光学系、及び、この変倍光学系を備える光学機器を以上のように構成すると、高い光学性能を得ることができる。 Variable magnification optical system according to the present invention, and, when forming the optical apparatus equipped with this variable power optical system as described above, it is possible to obtain a high optical performance.

第1実施例による変倍光学系のレンズ構成を示す断面図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態を示す。FIG. 2 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the first example, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. 第1実施例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での無限遠合焦状態における収差図を、(b)は中間焦点距離状態での無限遠合焦状態における収差図を、(c)は望遠端状態での無限遠合焦状態における収差図を示す。FIG. 4 is various aberration diagrams in the infinite focus state in the first embodiment, (a) is an aberration diagram in the infinite focus state in the wide-angle end state, and (b) is infinite focus in the intermediate focal length state. FIG. 4C shows aberration diagrams in the infinitely focused state in the telephoto end state. 第2実施例による変倍光学系のレンズ構成を示す断面図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態を示す。It is sectional drawing which shows the lens structure of the variable magnification optical system by 2nd Example, (a) shows a wide angle end state, (b) shows an intermediate | middle focal-distance state, (c) shows a telephoto end state. 第2実施例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での無限遠合焦状態における収差図を、(b)は中間焦点距離状態での無限遠合焦状態における収差図を、(c)は望遠端状態での無限遠合焦状態における収差図を示す。FIG. 6 is a diagram illustrating various aberrations in the infinitely focused state according to the second embodiment, where (a) illustrates an aberration diagram in the infinitely focused state at the wide-angle end state, and (b) illustrates infinitely focused in the intermediate focal length state. FIG. 4C shows aberration diagrams in the infinitely focused state in the telephoto end state. 参考例による変倍光学系のレンズ構成を示す断面図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態を示す。It is sectional drawing which shows the lens structure of the variable magnification optical system by a reference example , (a) shows a wide angle end state, (b) shows an intermediate | middle focal-distance state, (c) shows a telephoto end state. 参考例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での無限遠合焦状態における収差図を、(b)は中間焦点距離状態での無限遠合焦状態における収差図を、(c)は望遠端状態での無限遠合焦状態における収差図を示す。FIG. 5A is an aberration diagram in an infinite focus state in a reference example , FIG. 5A is an aberration diagram in an infinite focus state in a wide-angle end state, and FIG. 5B is an infinite focus state in an intermediate focal length state. FIG. 4C shows aberration diagrams in the infinitely focused state at the telephoto end state. 本実施形態に係る変倍光学系を搭載するデジタル一眼レフカメラの断面図を示す。1 is a cross-sectional view of a digital single-lens reflex camera equipped with a variable magnification optical system according to the present embodiment. 本実施形態に係る変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、本願の好ましい実施形態について図面を参照して説明する。まず、本実施形態の変倍光学系ZLは、図1に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、最も像面側に配置され、正の屈折力を有する最終レンズ群GLと、を有して構成される。そして、広角端状態から望遠端状態に変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と最終レンズ群GLとの間隔が変化する。このような構成により、本実施形態の変倍光学系ZLは、Fナンバーが2.8〜4.2と明るく、高い光学性能を得ることができる。   Hereinafter, preferred embodiments of the present application will be described with reference to the drawings. First, as shown in FIG. 1, the variable magnification optical system ZL of the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. And a third lens group G3 having a positive refractive power and a final lens group GL which is disposed closest to the image plane and has a positive refractive power. Then, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the third lens group G3 changes. Then, the distance between the third lens group G3 and the final lens group GL changes. With such a configuration, the variable magnification optical system ZL of the present embodiment has a bright F number of 2.8 to 4.2 and can obtain high optical performance.

また、本実施形態に係る変倍光学系ZLは、単独または複数のレンズ群、または部分レンズ群を光軸に沿って移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群を有しても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、第3レンズ群G3の少なくとも一部を光軸に沿って移動させ、合焦レンズ群とするのが望ましい。このように小型で軽量の第3レンズ群G3で合焦することで、迅速な合焦を行うことができる。   In addition, the variable magnification optical system ZL according to the present embodiment moves a single lens group, a plurality of lens groups, or a partial lens group along the optical axis to perform focusing from an object at infinity to a near object. You may have a lens group. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is desirable to move at least a part of the third lens group G3 along the optical axis to form a focusing lens group. By focusing with the small and lightweight third lens group G3 in this way, quick focusing can be performed.

また、本実施形態に係る変倍光学系ZLは、望遠端状態での変倍光学系ZL全系の焦点距離をftとし、第2レンズ群G2の焦点距離をf2としたとき、以下の条件式(1)を満足することが望ましい。   In the variable magnification optical system ZL according to the present embodiment, when the focal length of the entire variable magnification optical system ZL in the telephoto end state is ft and the focal length of the second lens group G2 is f2, the following conditions are satisfied. It is desirable to satisfy Formula (1).

8.80 < ft/(−f2) < 12.00 (1) 8.80 <ft / (− f2) <12.00 (1)

条件式(1)は、望遠端状態での変倍光学系ZL全系の焦点距離と第2レンズ群G2の焦点距離との適切な比を規定するものである。この条件式(1)の上限値を上回ると、第2レンズ群G2のパワーが強くなり、広角端での歪曲収差の補正が困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を11.00にすることが好ましい。反対に、条件式(1)の下限値を下回ると、第2レンズ群G2の変倍効果が小さくなるため、望遠端での全長が長くなる。また、望遠端での光学全長の増長は、望遠側の周辺光量の低下を招くため、こちらも好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を9.10にすることが好ましい。   Conditional expression (1) defines an appropriate ratio between the focal length of the entire variable magnification optical system ZL in the telephoto end state and the focal length of the second lens group G2. Exceeding the upper limit of conditional expression (1) is not preferable because the power of the second lens group G2 becomes strong and it becomes difficult to correct distortion at the wide-angle end. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 11.00. On the contrary, if the lower limit value of conditional expression (1) is not reached, the zooming effect of the second lens group G2 becomes small, so that the total length at the telephoto end becomes long. In addition, an increase in the total optical length at the telephoto end causes a decrease in the amount of peripheral light on the telephoto side. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 9.10.

また、本実施形態に係る変倍光学系ZLは、広角端状態での変倍光学系ZL全系の焦点距離をfwとし、第1レンズ群G1の焦点距離をf1としたとき、以下の条件式(2)を満足することが望ましい。   In the variable magnification optical system ZL according to the present embodiment, when the focal length of the entire variable magnification optical system ZL in the wide-angle end state is fw and the focal length of the first lens group G1 is f1, the following conditions are satisfied. It is desirable to satisfy Formula (2).

0.40 < fw/f1 < 0.60 (2) 0.40 <fw / f1 <0.60 (2)

条件式(2)は、広角端状態での変倍光学系ZL全系の焦点距離と第1レンズ群G1の焦点距離との適切な比を規定するものである。この条件式(2)の上限値を上回ると、第1レンズ群G1のパワーが強くなり、望遠端での球面収差、軸上色収差の補正が困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を0.58にすることが好ましい。反対に、条件式(2)の下限値を下回ると、第1レンズ郡G1のパワーが弱くなり、変倍時の第1レンズ群G1の移動量が大きくなる。望遠端での光学全長の増長は、望遠側の周辺光量の低下を招くため、こちらも好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を0.42にすることが好ましい。   Conditional expression (2) defines an appropriate ratio between the focal length of the entire variable magnification optical system ZL in the wide-angle end state and the focal length of the first lens group G1. Exceeding the upper limit of conditional expression (2) is not preferable because the power of the first lens group G1 becomes strong and it becomes difficult to correct spherical aberration and axial chromatic aberration at the telephoto end. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.58. On the other hand, if the lower limit value of conditional expression (2) is not reached, the power of the first lens group G1 becomes weak and the amount of movement of the first lens group G1 during zooming becomes large. Since the increase in the total optical length at the telephoto end causes a decrease in the peripheral light amount on the telephoto side, this is also not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.42.

また、本実施形態に係る変倍光学系ZLは、以下の条件式(3)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (3).

2.00 < f1/(−f2) < 4.80 (3) 2.00 <f1 / (− f2) <4.80 (3)

条件式(3)は、第2レンズ群G2の焦点距離に対する、適切な第1レンズ群G1の焦点距離を規定するものである。この条件式(3)の上限値を上回ると、第2レンズ群G2のパワーが強くなり、広角端での像面湾曲、歪曲収差の補正が困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を4.30にすることが好ましい。反対に、条件式(3)の下限値を下回ると、第1レンズ群G1のパワーが強くなり、望遠端での球面収差、軸上色収差の補正が困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の下限値を2.50にすることが好ましい。   Conditional expression (3) defines an appropriate focal length of the first lens group G1 with respect to the focal length of the second lens group G2. Exceeding the upper limit of conditional expression (3) is not preferable because the power of the second lens group G2 becomes strong and it becomes difficult to correct curvature of field and distortion at the wide angle end. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3) to 4.30. On the other hand, if the lower limit value of conditional expression (3) is not reached, the power of the first lens group G1 becomes strong, and it becomes difficult to correct spherical aberration and axial chromatic aberration at the telephoto end. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 2.50.

また、本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態に変倍する際に、第1レンズ群G1及び最終レンズ群GLの少なくとも一方が光軸に沿って移動することが望ましい。このような構成とする事で、変倍に係る各レンズ群のパワーを弱くし、ズーム全域で良好な光学性能を確保する事が可能となる。所定のズーム比(例えば、本実施形態に係る変倍光学系では5倍程度)を達成するためには、第1レンズ群G1及び最終レンズ群GLの少なくとも一方を光軸にそって移動させて変倍しないと、各レンズ群の屈折力が強くなりすぎ、収差の補正が困難になる。特に、第2レンズ群G2の屈折力が強くなりすぎると像面湾曲が大きくなり補正することが困難になり、第3レンズ群G3の屈折力が強くなりすぎると合焦時の収差補正が困難になる。   In the zoom optical system ZL according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, at least one of the first lens group G1 and the final lens group GL moves along the optical axis. Is desirable. By adopting such a configuration, it is possible to weaken the power of each lens group related to zooming and to ensure good optical performance over the entire zoom range. In order to achieve a predetermined zoom ratio (for example, about 5 times in the variable magnification optical system according to the present embodiment), at least one of the first lens group G1 and the final lens group GL is moved along the optical axis. Unless zooming is performed, the refractive power of each lens unit becomes too strong, and it becomes difficult to correct aberrations. In particular, if the refractive power of the second lens group G2 becomes too strong, the curvature of field becomes large and correction becomes difficult, and if the refractive power of the third lens group G3 becomes too strong, it is difficult to correct aberrations during focusing. become.

また、本実施形態に係る変倍光学系ZLは、第3レンズ群G3の焦点距離をf3としたとき、以下の条件式(4)を満足することが望ましい。   In addition, it is desirable that the zoom optical system ZL according to the present embodiment satisfies the following conditional expression (4) when the focal length of the third lens group G3 is f3.

2.50 < ft/f3 < 4.50 (4) 2.50 <ft / f3 <4.50 (4)

条件式(4)は、望遠端状態での変倍光学系ZL全系の焦点距離と第1レンズ群G1の焦点距離との適切な比を規定するものである。この条件式(4)の上限値を上回ると、第1レンズ群G1のパワーが強くなり、望遠端での球面収差、軸上色収差の補正がと困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の上限値を3.00にすることが好ましい。反対に、条件式(4)の下限値を下回ると、第1レンズ群G1のパワーが弱くなり、変倍時の第1レンズ群G1の移動量が大きくなる。望遠端での光学全長の増長は、望遠側の周辺光量の低下を招くため、こちらも好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の下限値を2.30にすることが好ましい。   Conditional expression (4) defines an appropriate ratio between the focal length of the entire variable magnification optical system ZL in the telephoto end state and the focal length of the first lens group G1. Exceeding the upper limit of conditional expression (4) is not preferable because the power of the first lens group G1 becomes strong and it becomes difficult to correct spherical aberration and axial chromatic aberration at the telephoto end. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 3.00. On the other hand, if the lower limit value of conditional expression (4) is not reached, the power of the first lens group G1 becomes weak and the amount of movement of the first lens group G1 during zooming increases. Since the increase in the total optical length at the telephoto end causes a decrease in the peripheral light amount on the telephoto side, this is also not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 2.30.

図7に、上述の変倍光学系ZLを備える光学機器として、デジタル一眼レフカメラ1(以後、単にカメラと記す)の略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、変倍光学系2(変倍光学系ZL)で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。   FIG. 7 shows a schematic cross-sectional view of a digital single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an optical apparatus including the above-described variable magnification optical system ZL. In this camera 1, light from an object (subject) (not shown) is condensed by a variable magnification optical system 2 (variable magnification optical system ZL) and imaged on a focusing screen 4 via a quick return mirror 3. . The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、変倍光学系2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図7に記載のカメラ1は、変倍光学系ZLを着脱可能に保持するものでも良く、変倍光学系ZLと一体に成形されるものでも良い。また、カメラ1は、いわゆる一眼レフカメラでも良く、クイックリターンミラー等を有さないコンパクトカメラでも良い。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and the light of the object (subject) (not shown) collected by the zoom optical system 2 is reflected on the image sensor 7. A subject image is formed on the screen. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1. In addition, the camera 1 shown in FIG. 7 may hold | maintain the variable magnification optical system ZL so that attachment or detachment is possible, and may be shape | molded integrally with the variable magnification optical system ZL. The camera 1 may be a so-called single-lens reflex camera or a compact camera without a quick return mirror or the like.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

まず、上述の説明及び以降に示す実施例においては、4,5群構成を示したが、以上の構成条件等は、6群、7群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   First, in the above description and the embodiments described below, the configuration of the fourth and fifth groups is shown. However, the above configuration conditions and the like can be applied to other group configurations such as the sixth group and the seventh group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。特に、第2レンズ群G2、最終レンズ群GLまたは最終レンズ群GLの直前に配置されたレンズ群の少なくとも一部を防振レンズ群とするのが好ましい。   In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, it is preferable that at least a part of the second lens group G2, the last lens group GL, or the lens group disposed immediately before the final lens group GL is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。全てのレンズ面を球面または平面で構成できるので、望遠系ズームレンズとしても好ましい。また、レンズ面が非球面の場合、この非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. Since all lens surfaces can be constituted by spherical surfaces or flat surfaces, it is also preferable as a telephoto zoom lens. In addition, when the lens surface is aspheric, this aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface made of glass with an aspherical shape, and a composite type in which resin is formed on the glass surface in an aspherical shape. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、最終レンズ群GL近傍または最終レンズ群GLの直前に配置されたレンズ群内に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop S is preferably arranged in the vicinity of the final lens group GL or in the lens group arranged immediately before the final lens group GL. However, the role of the aperture stop S is not provided in the lens frame without providing a member as an aperture stop. You may substitute.

さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

本実施形態に係る変倍光学系ZLは、35mmフィルムサイズ換算での焦点距離が広角端状態で50〜70mm程度であり、また、望遠端状態で300〜400mm程度である。また、本実施形態に係る変倍光学系ZLは、第3レンズ群G3が1つの単レンズと1つの接合レンズとを有するのが好ましい。   In the variable magnification optical system ZL according to this embodiment, the focal length in terms of 35 mm film size is about 50 to 70 mm in the wide-angle end state, and is about 300 to 400 mm in the telephoto end state. In the variable magnification optical system ZL according to the present embodiment, it is preferable that the third lens group G3 has one single lens and one cemented lens.

なお、本願を分かり易く説明するために実施形態の構成要件を付して説明したが、本願がこれに限定されるものではないことは言うまでもない。   In addition, in order to explain this application in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present application is not limited to this.

以下、本実施形態の変倍光学系ZLの製造方法の概略を、図8を参照して説明する。まず、各レンズを配置してレンズ群をそれぞれ準備する(ステップS100)。具体的に、本実施形態では、例えば、物体側から順に、物体側に凸面を向けた負メニスカスレンズL101と物体側に凸面を向けた正メニスカスレンズL102との接合レンズ、両凸レンズL103、及び、物体側に凸面を向けた正メニスカスレンズL104を配置して第1レンズ群G1とし、物体側から順に、物体側に凸面を向けた負メニスカスレンズL201、両凹レンズL202と両凸レンズL203との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL204を配置して第2レンズ群G2とし、物体側から順に、物体側に凸面を向けた負メニスカスレンズL301と両凸レンズL302との接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL303を配置して第3レンズ群G3とし、物体側から順に、物体側に凸面を向けた正メニスカスレンズL401、両凸レンズL402と両凹レンズL403との接合レンズ、両凹レンズL404と物体側に凸面を向けた正メニスカスレンズL405との接合レンズ、両凸レンズL406、物体側に凸面を向けた負メニスカスレンズL407と両凸レンズL408との接合レンズ、物体側に凹面を向けた負メニスカスレンズL409、及び、両凸レンズL410を配置して最終レンズ群GLとする。このようにして準備した各レンズ群を配置して変倍光学系ZLを製造する。   Hereinafter, the outline of the manufacturing method of the variable magnification optical system ZL of this embodiment is demonstrated with reference to FIG. First, each lens is arranged and a lens group is prepared (step S100). Specifically, in this embodiment, for example, in order from the object side, a cemented lens of a negative meniscus lens L101 having a convex surface facing the object side and a positive meniscus lens L102 having a convex surface facing the object side, a biconvex lens L103, and A positive meniscus lens L104 having a convex surface facing the object side is arranged to form the first lens group G1, and a negative meniscus lens L201 having a convex surface facing the object side, a biconcave lens L202, and a biconvex lens L203 in order from the object side. A negative meniscus lens L204 having a concave surface facing the object side to form a second lens group G2, and a cemented lens of a negative meniscus lens L301 having a convex surface facing the object side and a biconvex lens L302 in order from the object side, A positive meniscus lens L303 having a convex surface facing the object side is arranged as a third lens group G3, and in order from the object side, A positive meniscus lens L401 with a convex surface facing the side, a cemented lens with a biconvex lens L402 and a biconcave lens L403, a cemented lens with a biconcave lens L404 and a positive meniscus lens L405 with a convex surface facing the object side, a biconvex lens L406, on the object side A final lens group GL is formed by arranging a cemented lens of a negative meniscus lens L407 having a convex surface and a biconvex lens L408, a negative meniscus lens L409 having a concave surface on the object side, and a biconvex lens L410. The variable power optical system ZL is manufactured by arranging the lens groups thus prepared.

この場合、広角端状態から望遠端状態に変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と最終レンズ群GLとの間隔が変化し、第3レンズ群G3の少なくとも一部は、光軸に沿って移動することにより無限遠から近距離物体までの合焦を行うように配置する(ステップS200)。また、望遠端状態での変倍光学系ZL全系の焦点距離をftとし、第2レンズ群G2の焦点距離をf2とし、第3レンズ群G3の焦点距離をf3としたとき、前出の条件式(1)及び(2)を満足するよう各レンズ群を配置する(ステップS300)。   In this case, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the third lens group G3 is changed. The distance between the third lens group G3 and the final lens group GL changes, and at least a part of the third lens group G3 moves along the optical axis to focus from an infinite distance to a close object. Arrange to do so (step S200). Further, when the focal length of the entire variable magnification optical system ZL in the telephoto end state is ft, the focal length of the second lens group G2 is f2, and the focal length of the third lens group G3 is f3, the above-mentioned Each lens group is arranged so as to satisfy the conditional expressions (1) and (2) (step S300).

以下、本願の各実施例を、添付図面に基づいて説明する。図1、図3及び図5に、変倍光学系ZL1〜ZL3の屈折力配分及び広角端状態(W)から望遠端状態(T)への焦点距離状態の変化における各レンズ群の移動の様子を示す。各図中、(a)は広角端状態での各レンズ群を、(b)は中間焦点距離状態でのレンズ群を、(c)は望遠端状態でのレンズ群を、それぞれ示す。第1及び第2実施例に係る変倍光学系ZL1,ZL2は、図1及び図3に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する最終レンズ群GLとから構成され、広角端から望遠端への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と最終レンズ群GLとの空気間隔が変化するように、第1レンズ群G1と第3レンズ群G3と最終レンズ群GLとが物体方向に移動し、第2レンズ群G2が移動する。無限遠物体から近距離物体への合焦は、第3レンズ群G3を物体方向に移動させることによって行う。   Embodiments of the present application will be described below with reference to the accompanying drawings. 1, 3, and 5 show how the lens groups move in the refractive power distribution of the variable magnification optical systems ZL <b> 1 to ZL <b> 3 and the change in the focal length state from the wide-angle end state (W) to the telephoto end state (T). Indicates. In each figure, (a) shows each lens group in the wide-angle end state, (b) shows a lens group in the intermediate focal length state, and (c) shows a lens group in the telephoto end state. As shown in FIGS. 1 and 3, the variable magnification optical systems ZL1 and ZL2 according to the first and second examples include a first lens group G1 having a positive refractive power and a negative refractive power in order from the object side. 2, a third lens group G3 having a positive refractive power, and a final lens group GL having a positive refractive power, and at the time of zooming from the wide angle end to the telephoto end, The air gap between the lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the air gap between the third lens group G3 and the final lens group GL. So that the first lens group G1, the third lens group G3, and the final lens group GL move in the object direction, and the second lens group G2 moves. Focusing from an infinite object to a close object is performed by moving the third lens group G3 in the object direction.

参考例に係る変倍光学系ZL3は、図5に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折率を有する第4レンズ群G4と、正の屈折力を有する最終レンズ群GLとから構成され、広角端から望遠端への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群と最終レンズ群GLとの空気間隔が減少するように、第1レンズ群G1と第3レンズ群G3と第4レンズ群G4と最終レンズ群GLとが物体方向に移動し、第2レンズ群G2が移動する。無限遠物体から近距離物体への合焦は、第3レンズ群G3を物体方向に移動させることによって行う。 As shown in FIG. 5, the variable magnification optical system ZL3 according to the reference example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, A third lens group G3 having a negative refractive index, a fourth lens group G4 having a negative refractive index, and a final lens group GL having a positive refractive power, and at the time of zooming from the wide-angle end to the telephoto end. The air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens group G4. The first lens group G1, the third lens group G3, the fourth lens group G4, and the final lens group GL so that the air distance between the fourth lens group and the final lens group GL decreases. Moves in the object direction, and the second lens group G2 moves. Focusing from an infinite object to a close object is performed by moving the third lens group G3 in the object direction.

〔第1実施例〕
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1の変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL101と物体側に凸面を向けた正メニスカスレンズL102との接合レンズ、両凸レンズL103、及び、物体側に凸面を向けた正メニスカスレンズL104から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL201、両凹レンズL202と両凸レンズL203との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL204から構成されている。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL301と両凸レンズL302との接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL303から構成されている。最終レンズ群GLは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL401、両凸レンズL402と両凹レンズL403との接合レンズ、両凹レンズL404と物体側に凸面を向けた正メニスカスレンズL405との接合レンズ、両凸レンズL406、物体側に凸面を向けた負メニスカスレンズL407と両凸レンズL408との接合レンズ、物体側に凹面を向けた負メニスカスレンズL409、及び、両凸レンズL410から構成されている。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example. In the variable magnification optical system ZL1 of FIG. 1, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L101 having a convex surface facing the object side and a positive meniscus lens L102 having a convex surface facing the object side. , A biconvex lens L103, and a positive meniscus lens L104 having a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L201 having a convex surface facing the object side, a cemented lens of a biconcave lens L202 and a biconvex lens L203, and a negative meniscus lens L204 having a concave surface facing the object side. It is configured. The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L301 having a convex surface facing the object side and a biconvex lens L302, and a positive meniscus lens L303 having a convex surface facing the object side. . The final lens group GL includes, in order from the object side, a positive meniscus lens L401 having a convex surface facing the object side, a cemented lens of the biconvex lens L402 and the biconcave lens L403, and a positive meniscus lens L405 having a convex surface facing the biconcave lens L404 and the object side. And a biconvex lens L406, a negative meniscus lens L407 having a convex surface facing the object side and a biconvex lens L408, a negative meniscus lens L409 having a concave surface facing the object side, and a biconvex lens L410. Yes.

また、第1実施例において、最終レンズ群GLの負メニスカスレンズL407と両凸レンズL408との接合レンズを、光軸と略直交方向の成分を持つように移動することにより手ブレによる像ブレ補正(防振)を行う。開口絞りS及び固定絞りFSは、最終レンズ群GL内に位置し、広角端から望遠端への変倍時に際して最終レンズ群GLと一体に移動するよう構成されている。   Further, in the first embodiment, image blur correction due to camera shake is performed by moving the cemented lens of the negative meniscus lens L407 and the biconvex lens L408 of the final lens group GL so as to have a component substantially orthogonal to the optical axis ( Anti-vibration). The aperture stop S and the fixed stop FS are located in the final lens group GL, and are configured to move together with the final lens group GL at the time of zooming from the wide angle end to the telephoto end.

以下の表1に、第1実施例の諸元の値を掲げる。この表1において、fは全系の焦点距離、FNOはFナンバー、2ωは画角(単位は「°」)、Bfはバックフォーカスをそれぞれ表している。さらに、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、面間隔は各光学面から次の光学面までの光軸上の間隔を、屈折率及びアッベ数はそれぞれd線(λ=587.6nm)に対する値を示している。また、全長は物体面から像面までの距離を示している。ここで、以下の全ての諸元値において掲載されている焦点距離、曲率半径、面間隔、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。尚、曲率半径0.000は平面を示し、空気の屈折率1.00000は省略してある。なお、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Table 1 below lists values of specifications of the first embodiment. In Table 1, f represents the focal length of the entire system, FNO represents the F number, 2ω represents the angle of view (unit is “°”), and Bf represents the back focus. Furthermore, the surface number is the order of the lens surfaces from the object side along the direction of travel of the light beam, the surface interval is the distance on the optical axis from each optical surface to the next optical surface, and the refractive index and Abbe number are each The value for the d-line (λ = 587.6 nm) is shown. The total length indicates the distance from the object plane to the image plane. Here, “mm” is generally used for the focal length, the radius of curvature, the surface interval, and other length units listed in all the following specifications, but the optical system is proportionally enlarged or reduced. However, the same optical performance can be obtained, and the present invention is not limited to this. The radius of curvature of 0.000 indicates a plane, and the refractive index of air of 1.0000 is omitted. The description of these symbols and the description of the specification table are the same in the following examples.

(表1)
広角端 中間焦点距離 望遠端
f = 56.500 〜 104.999 〜 291.995
F.NO = 2.880 〜 3.400 〜 4.143
2ω = 43.005 〜 22.963 〜 8.313
像高 = 21.600 〜 21.600 〜 21.600
全長 =250.598 〜 261.251 〜 286.598
Bf = 38.468 〜 54.739 〜 74.133

面番号 曲率半径 面間隔 屈折率 アッベ数
1 220.000 2.000 1.829595 33.23
2 93.651 7.825 1.497820 82.56
3 549.729 0.100
4 129.641 7.472 1.497820 82.56
5 -1000.000 0.100
6 94.611 7.632 1.497820 82.56
7 1000.000 (d1)
8 214.531 1.800 1.830291 44.44
9 33.737 8.540
10 -65.839 1.400 1.487490 70.23
11 40.923 6.500 1.846660 23.78
12 -715.946 3.536
13 -46.644 1.400 1.798720 47.26
14 -141.024 (d2)
15 630.978 1.400 1.863045 29.44
16 77.504 6.370 1.718918 54.49
17 -132.494 0.100
18 118.440 3.625 1.753959 52.38
19 2994.076 (d3)
20 38.228 7.749 1.501201 69.51
21 1046.461 0.100
22 45.744 5.926 1.497820 82.56
23 -1641.460 1.400 1.870384 35.40
24 53.778 4.400
25 0.000 4.400 開口絞りS
26 -100.026 1.400 1.779485 35.95
27 33.135 4.053 1.508539 69.14
28 83.510 0.100
29 36.912 6.120 1.515928 57.19
30 -142.908 9.000
31 214.043 1.400 1.877741 37.07
32 24.474 6.591 1.830219 24.21
33 -109.122 0.906
34 0.000 14.063 固定絞りFS
35 -23.497 1.400 1.849392 24.58
36 -61.589 0.100
37 97.156 3.516 1.487490 70.23
38 -135.285 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 120.005
第2レンズ群 8 -30.9276
第3レンズ群 15 90.400
最終レンズ群 20 164.396
(Table 1)
Wide angle end Intermediate focal length Telephoto end
f = 56.500 to 104.999 to 291.995
F.NO = 2.880 to 3.400 to 4.143
2ω = 43.005 〜 22.963 〜 8.313
Image height = 21.600 to 21.600 to 21.600
Total length = 250.598 to 261.251 to 286.598
Bf = 38.468 to 54.739 to 74.133

Surface number Curvature radius Surface spacing Refractive index Abbe number
1 220.000 2.000 1.829595 33.23
2 93.651 7.825 1.497820 82.56
3 549.729 0.100
4 129.641 7.472 1.497820 82.56
5 -1000.000 0.100
6 94.611 7.632 1.497820 82.56
7 1000.000 (d1)
8 214.531 1.800 1.830291 44.44
9 33.737 8.540
10 -65.839 1.400 1.487490 70.23
11 40.923 6.500 1.846660 23.78
12 -715.946 3.536
13 -46.644 1.400 1.798720 47.26
14 -141.024 (d2)
15 630.978 1.400 1.863045 29.44
16 77.504 6.370 1.718918 54.49
17 -132.494 0.100
18 118.440 3.625 1.753959 52.38
19 2994.076 (d3)
20 38.228 7.749 1.501201 69.51
21 1046.461 0.100
22 45.744 5.926 1.497820 82.56
23 -1641.460 1.400 1.870384 35.40
24 53.778 4.400
25 0.000 4.400 Aperture stop S
26 -100.026 1.400 1.779485 35.95
27 33.135 4.053 1.508539 69.14
28 83.510 0.100
29 36.912 6.120 1.515928 57.19
30 -142.908 9.000
31 214.043 1.400 1.877741 37.07
32 24.474 6.591 1.830219 24.21
33 -109.122 0.906
34 0.000 14.063 Fixed aperture FS
35 -23.497 1.400 1.849392 24.58
36 -61.589 0.100
37 97.156 3.516 1.487490 70.23
38 -135.285 (Bf)

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 120.005
Second lens group 8 -30.9276
Third lens group 15 90.400
Last lens group 20 164.396

この第1実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、及び、第3レンズ群G3と最終レンズ群GLとの軸上空気間隔d3は変倍に際して変化する。次の表2に、この第1実施例に係る変倍光学系ZL1の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。   In the first embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens The axial air distance d3 between the group G3 and the final lens group GL changes upon zooming. Table 2 below shows variable interval data at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL1 according to the first example.

(表2)
広角端 中間焦点距離 望遠端
d1 2.000 25.389 52.462
d2 48.576 32.442 2.400
d3 29.130 16.257 25.179
(Table 2)
Wide angle end Intermediate focal length Telephoto end
d1 2.000 25.389 52.462
d2 48.576 32.442 2.400
d3 29.130 16.257 25.179

次の表3に、この第1実施例における条件式対応値を示す。なおこの表3において、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f3は第3レンズ群G3の焦点距離を、ftは望遠端状態での変倍光学系ZL全系の合成焦点距離を、fwは広角端状態での変倍光学系ZL全系の焦点距離を、それぞれ表している。以降の実施例においても、特にことわりのない場合は、この符号の説明は同様である。   Table 3 below shows values corresponding to the conditional expressions in the first embodiment. In Table 3, f1 is the focal length of the first lens group G1, f2 is the focal length of the second lens group G2, f3 is the focal length of the third lens group G3, and ft is the change in the telephoto end state. The combined focal length of the entire magnifying optical system ZL system and fw represents the focal length of the entire magnifying optical system ZL system in the wide-angle end state. In the following embodiments, the description of the reference numerals is the same unless otherwise specified.

(表3)
(1)ft/(−f2)=9.44
(2)fw/f1=0.47
(3)f1/(−f2)=3.88
(4)ft/f3=3.23
(Table 3)
(1) ft / (− f2) = 9.44
(2) fw / f1 = 0.47
(3) f1 / (− f2) = 3.88
(4) ft / f3 = 3.23

この第1実施例の広角端状態での無限遠合焦状態の収差図を図2(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図2(b)に、望遠端状態での無限遠合焦状態の収差図を図2(c)にそれぞれ示す。各収差図において、非点収差図中の実線はサジタル像面を、破線はメリディオナル像面を示し、FNOはFナンバーを、Yは像高を表す。また、各収差図中でd,gはそれぞれd線(λ=587.6nm)、g線(λ=435.6nm)における収差を表す。各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた光学性能を有することがわかる。   FIG. 2A shows an aberration diagram in the infinite focus state in the wide-angle end state of this first embodiment, and FIG. 2B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 2C shows aberration diagrams in the infinitely focused state in the end state. In each graph showing astigmatism, the solid line represents the sagittal image plane, the broken line represents the meridional image plane, FNO represents the F number, and Y represents the image height. In each aberration diagram, d and g represent aberrations at the d-line (λ = 587.6 nm) and g-line (λ = 435.6 nm), respectively. As is apparent from each aberration diagram, in the first example, various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent optical performance is obtained.

〔第2実施例〕
図3は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図3の変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL101と物体側に凸面を向けた正メニスカスレンズL102との接合レンズ、物体側に凸面を向けた正メニスカスレンズL103、及び、両凸レンズL104から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL201、両凹レンズL202と両凸レンズL203との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL204から構成されている。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL301と両凸レンズL302との接合レンズ、及び、両凸レンズL303から構成されている。最終レンズ群GLは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL401、物体側に凸面を向けた正メニスカスレンズL402と物体側に凸面を向けた負メニスカスレンズL403との接合レンズ、両凹レンズL404と物体側に凸面を向けた正メニスカスレンズL405との接合レンズ、両凸レンズL406、物体側に凸面を向けた負メニスカスレンズL407と両凸レンズL408との接合レンズ、物体側に凹面を向けた負メニスカスレンズL409、及び、両凸レンズL410から構成されている。
[Second Embodiment]
FIG. 3 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example. In the variable magnification optical system ZL2 of FIG. 3, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L101 having a convex surface facing the object side and a positive meniscus lens L102 having a convex surface facing the object side. And a positive meniscus lens L103 having a convex surface facing the object side, and a biconvex lens L104. The second lens group G2 includes, in order from the object side, a negative meniscus lens L201 having a convex surface facing the object side, a cemented lens of a biconcave lens L202 and a biconvex lens L203, and a negative meniscus lens L204 having a concave surface facing the object side. It is configured. The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L301 having a convex surface facing the object side and a biconvex lens L302, and a biconvex lens L303. The final lens group GL includes, in order from the object side, a positive meniscus lens L401 having a convex surface facing the object side, a positive meniscus lens L402 having a convex surface facing the object side, and a negative meniscus lens L403 having a convex surface facing the object side. A cemented lens of a biconcave lens L404 and a positive meniscus lens L405 with a convex surface facing the object side, a biconvex lens L406, a cemented lens of a negative meniscus lens L407 with a convex surface facing the object side and a biconvex lens L408, and a concave surface on the object side It consists of a negative meniscus lens L409 and a biconvex lens L410.

また、第2実施例において、最終レンズ群GLの物体側に凸面を向けた負メニスカスレンズL407と両凸レンズL408との接合レンズを、光軸と略直交方向の成分を持つように移動することにより手ブレによる像ブレ補正(防振)を行う。開口絞りS及び固定絞りFSは、最終レンズ群GL内に位置し、広角端から望遠端への変倍時に際して最終レンズ群GLと一体に移動するよう構成されている。   In the second embodiment, the cemented lens of the negative meniscus lens L407 having a convex surface facing the object side of the final lens group GL and the biconvex lens L408 is moved so as to have a component substantially orthogonal to the optical axis. Perform image stabilization (anti-vibration) due to camera shake. The aperture stop S and the fixed stop FS are located in the final lens group GL, and are configured to move together with the final lens group GL at the time of zooming from the wide angle end to the telephoto end.

以下の表4に、第2実施例の諸元の値を掲げる。   Table 4 below lists values of specifications of the second embodiment.

(表4)
広角端 中間焦点距離 望遠端
f = 56.500 〜 105.000 〜 292.001
F.NO = 2.880 〜 3.400 〜 4.120
2ω = 43.378 〜 23.079 〜 8.363
像高 = 21.600 〜 21.600 〜 21.600
全長 =231.598 〜 253.524 〜 288.599
Bf = 38.468 〜 53.240 〜 77.319

面番号 曲率半径 面間隔 屈折率 アッベ数
1 140.474 2.000 1.903660 31.27
2 79.683 7.833 1.497820 82.56
3 260.963 0.100
4 128.558 6.460 1.497820 82.56
5 2025.998 0.100
6 94.283 8.417 1.497820 82.56
7 -3186.206 (d1)
8 178.910 1.800 1.841402 43.57
9 32.757 8.999
10 -56.796 1.400 1.487490 70.23
11 42.117 6.500 1.846660 23.78
12 -353.422 4.770
13 -44.732 1.400 1.804000 46.57
14 -117.057 (d2)
15 162.650 1.400 1.870755 33.03
16 60.623 7.028 1.617556 63.57
17 -141.700 0.100
18 111.034 4.084 1.754999 52.31
19 -858.409 (d3)
20 41.427 5.758 1.593190 67.90
21 135.638 0.100
22 36.182 5.277 1.497820 82.56
23 92.181 1.400 1.839503 33.04
24 33.111 6.400
25 0.000 3.400 開口絞りS
26 -90.593 1.400 1.767090 42.02
27 51.340 3.521 1.540770 67.69
28 167.473 0.100
29 39.527 6.473 1.487490 70.23
30 -128.351 10.253
31 372.055 1.400 1.874446 35.06
32 25.533 6.973 1.764710 26.31
33 -104.750 5.501
34 0.000 10.659 固定絞りFS
35 -23.739 1.400 1.867859 31.59
36 -50.530 0.100
37 72.209 3.493 1.558700 66.97
38 -281.869 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 119.801
第2レンズ群 8 -30.692
第3レンズ群 15 76.387
最終レンズ群 20 275.133
(Table 4)
Wide angle end Intermediate focal length Telephoto end
f = 56.500 to 105.000 to 292.001
F.NO = 2.880 to 3.400 to 4.120
2ω = 43.378 to 23.079 to 8.363
Image height = 21.600 to 21.600 to 21.600
Total length = 231.598 to 253.524 to 288.599
Bf = 38.468 to 53.240 to 77.319

Surface number Curvature radius Surface spacing Refractive index Abbe number
1 140.474 2.000 1.903660 31.27
2 79.683 7.833 1.497820 82.56
3 260.963 0.100
4 128.558 6.460 1.497820 82.56
5 2025.998 0.100
6 94.283 8.417 1.497820 82.56
7 -3186.206 (d1)
8 178.910 1.800 1.841402 43.57
9 32.757 8.999
10 -56.796 1.400 1.487490 70.23
11 42.117 6.500 1.846660 23.78
12 -353.422 4.770
13 -44.732 1.400 1.804000 46.57
14 -117.057 (d2)
15 162.650 1.400 1.870755 33.03
16 60.623 7.028 1.617556 63.57
17 -141.700 0.100
18 111.034 4.084 1.754999 52.31
19 -858.409 (d3)
20 41.427 5.758 1.593190 67.90
21 135.638 0.100
22 36.182 5.277 1.497820 82.56
23 92.181 1.400 1.839503 33.04
24 33.111 6.400
25 0.000 3.400 Aperture stop S
26 -90.593 1.400 1.767090 42.02
27 51.340 3.521 1.540770 67.69
28 167.473 0.100
29 39.527 6.473 1.487490 70.23
30 -128.351 10.253
31 372.055 1.400 1.874446 35.06
32 25.533 6.973 1.764710 26.31
33 -104.750 5.501
34 0.000 10.659 Fixed aperture FS
35 -23.739 1.400 1.867859 31.59
36 -50.530 0.100
37 72.209 3.493 1.558700 66.97
38 -281.869 (Bf)

[Lens focal length]
Lens group Start surface Focal length First lens group 1 119.801
Second lens group 8 -30.692
Third lens group 15 76.387
Last lens group 20 275.133

この第2実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、及び、第3レンズ群G3と最終レンズ群GLとの軸上空気間隔d3は変倍に際して変化する。次の表5に、この第2実施例に係る変倍光学系ZL2の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。   In the second embodiment, the axial air gap d1 between the first lens group G1 and the second lens group G2, the axial air gap d2 between the second lens group G2 and the third lens group G3, and the third lens The axial air distance d3 between the group G3 and the final lens group GL changes upon zooming. Table 5 below shows variable interval data at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL2 according to the second example.

(表5)
広角端 中間焦点距離 望遠端
d1 2.000 25.003 49.695
d2 46.417 30.945 2.400
d3 8.715 8.337 23.186
(Table 5)
Wide angle end Intermediate focal length Telephoto end
d1 2.000 25.003 49.695
d2 46.417 30.945 2.400
d3 8.715 8.337 23.186

次の表6に、この第2実施例における条件式対応値を示す。   Table 6 below shows values corresponding to the conditional expressions in the second embodiment.

(表6)
(1)ft/(−f2)=9.51
(2)fw/f1=0.47
(3)f1/(−f2)=3.90
(4)ft/f3=3.82
(Table 6)
(1) ft / (− f2) = 9.51
(2) fw / f1 = 0.47
(3) f1 / (− f2) = 3.90
(4) ft / f3 = 3.82

この第2実施例の広角端状態での無限遠合焦状態の収差図を図4(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図4(b)に、望遠端状態での無限遠合焦状態の収差図を図4(c)にそれぞれ示す。これらの各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた光学性能を有することがわかる。   FIG. 4A shows an aberration diagram in the infinite focus state in the wide-angle end state of this second embodiment, and FIG. 4B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 4C shows aberration diagrams in the infinitely focused state in the end state. As is apparent from these respective aberration diagrams, in the second example, it is understood that various aberrations are satisfactorily corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent optical performance is obtained.

参考例
図5は、参考例に係る変倍光学系ZL3の構成を示す図である。この図5の変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL101と物体側に凸面を向けた正メニスカスレンズL102との接合レンズ、両凸レンズL103、及び、物体側に凸面を向けた正メニスカスレンズL104から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL201、両凹レンズL202と両凸レンズL203との接合レンズ、及び、両凹レンズL204から構成されている。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL301と両凸レンズL302との接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL303から構成されている。第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL401と物体側に凸面を向けた負メニスカスレンズL402との接合レンズ、物体側に凸面を向けた負メニスカスレンズL403と物体側に凸面を向けた正メニスカスレンズL404との接合レンズ、物体側に凹面を向けた正メニスカスレンズL405と両凹レンズL406との接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL407から構成されている。最終レンズ群GLは、物体側から順に、両凸レンズL501、両凸レンズL502、及び、物体側に凹面を向けた負メニスカスレンズL503から構成され、最終レンズ群GLの最も像側に位置する負メニスカスレンズL503は、物体側の面を非球面形状とした非球面レンズである。
[ Reference example ]
FIG. 5 is a diagram showing a configuration of the variable magnification optical system ZL3 according to the reference example . In the variable magnification optical system ZL3 of FIG. 5, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L101 having a convex surface facing the object side and a positive meniscus lens L102 having a convex surface facing the object side. , A biconvex lens L103, and a positive meniscus lens L104 having a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L201 having a convex surface directed toward the object side, a cemented lens of a biconcave lens L202 and a biconvex lens L203, and a biconcave lens L204. The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L301 having a convex surface facing the object side and a biconvex lens L302, and a positive meniscus lens L303 having a convex surface facing the object side. . The fourth lens group G4 includes, in order from the object side, a cemented lens of a positive meniscus lens L401 having a convex surface directed toward the object side and a negative meniscus lens L402 having a convex surface directed toward the object side, and a negative meniscus lens having a convex surface directed toward the object side. A cemented lens of L403 and a positive meniscus lens L404 having a convex surface facing the object side, a cemented lens of a positive meniscus lens L405 having a concave surface facing the object side and a biconcave lens L406, and a negative meniscus lens having a concave surface facing the object side L407. The final lens group GL includes, in order from the object side, a biconvex lens L501, a biconvex lens L502, and a negative meniscus lens L503 having a concave surface facing the object side, and is located at the most image side of the final lens group GL. L503 is an aspheric lens having an aspheric surface on the object side.

また、参考例において、第4レンズ群G4の物体側に凹面を向けた正メニスカスレンズL405と両凹レンズL406との接合レンズを、光軸と略直交方向の成分を持つように移動することにより手ブレによる像ブレ補正(防振)を行う。開口絞りSは、第3レンズ群G3と第4レンズ群G4との間に位置し、広角端から望遠端への変倍時に際して第4レンズ群G4と一体に移動するよう構成されている。 Further, in the reference example , by moving the cemented lens of the positive meniscus lens L405 having a concave surface facing the object side of the fourth lens group G4 and the biconcave lens L406 so as to have a component substantially perpendicular to the optical axis, Performs image blur correction (anti-vibration) due to blur. The aperture stop S is located between the third lens group G3 and the fourth lens group G4, and is configured to move integrally with the fourth lens group G4 at the time of zooming from the wide angle end to the telephoto end.

参考例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。なお、2次の非球面係数A2は0である。また、参考例の表中において、非球面には面番号の左側に*印を付している。 In the reference example , the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at the height y. When S (y) is assumed, the radius of curvature of the reference sphere (paraxial radius of curvature) is r, the conic constant is κ, and the nth-order aspherical coefficient is An, the following equation (a) is obtained. In the following examples, “E-n” represents “× 10-n”. The secondary aspheric coefficient A2 is zero. In the table of reference examples , an aspherical surface is marked with * on the left side of the surface number.

S(y)=(y2/r)/{1+(1−κ×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12 (a)
S (y) = (y 2 / r) / {1+ (1−κ × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 + A12 × y 12 (a)

以下の表7に、この参考例の諸元の値を掲げる。 Table 7 below lists values of specifications of this reference example .

(表7)
広角端 中間焦点距離 望遠端
f = 56.004 〜 105.009 〜 292.021
F.NO = 2.881 〜 3.401 〜 4.202
2ω = 42.802 〜 22.694 〜 8.259
像高 = 21.600 〜 21.600 〜 21.600
全長 =230.356 〜 245.883 〜 262.517
Bf = 43.915 〜 52.453 〜 77.673

面番号 曲率半径 面間隔 屈折率 アッベ数
1 206.228 2.000 1.817480 31.92
2 86.624 8.143 1.497820 82.56
3 342.767 0.100
4 107.170 9.104 1.497820 82.56
5 -1122.386 0.100
6 75.607 9.555 1.497820 82.56
7 551.908 (d1)
8 319.957 1.800 1.851531 42.83
9 37.975 7.287
10 -76.502 1.200 1.504907 69.32
11 44.714 6.169 1.846660 23.78
12 -488.188 3.276
13 -52.547 1.200 1.607244 64.88
14 439.316 (d2)
15 117.270 1.400 1.848328 24.26
16 59.454 7.984 1.634963 61.58
17 -95.004 0.100
18 142.228 2.663 1.731454 53.70
19 384.676 (d3)
20 0.000 0.100 開口絞りS
21 24.788 9.999 1.497820 82.56
22 1185.129 1.400 1.795613 47.57
23 80.943 0.100
24 32.664 1.400 1.809880 46.20
25 15.545 9.098 1.497820 82.56
26 80.685 2.588
27 -1171.563 4.900 1.815973 26.05
28 -27.372 1.400 1.754998 52.32
29 42.486 3.966
30 -40.476 1.200 1.882997 40.76
31 -97.641 (d4)
32 126.071 4.310 1.487490 70.23
33 -45.723 0.100
34 86.967 4.655 1.487490 70.23
35 -47.401 1.288
*36 -31.406 1.400 1.882997 40.76
37 -81.993 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 105.457
第2レンズ群 8 -30.505
第3レンズ群 15 74.632
第4レンズ群 20 -148.321
最終レンズ群 32 71.259
(Table 7)
Wide angle end Intermediate focal length Telephoto end
f = 56.004 to 105.009 to 292.021
F.NO = 2.881 to 3.401 to 4.202
2ω = 42.802-22.694-8.259
Image height = 21.600 to 21.600 to 21.600
Total length = 230.356 to 245.883 to 262.517
Bf = 43.915 to 52.453 to 77.673

Surface number Curvature radius Surface spacing Refractive index Abbe number
1 206.228 2.000 1.817480 31.92
2 86.624 8.143 1.497820 82.56
3 342.767 0.100
4 107.170 9.104 1.497820 82.56
5 -1122.386 0.100
6 75.607 9.555 1.497820 82.56
7 551.908 (d1)
8 319.957 1.800 1.851531 42.83
9 37.975 7.287
10 -76.502 1.200 1.504907 69.32
11 44.714 6.169 1.846660 23.78
12 -488.188 3.276
13 -52.547 1.200 1.607244 64.88
14 439.316 (d2)
15 117.270 1.400 1.848328 24.26
16 59.454 7.984 1.634963 61.58
17 -95.004 0.100
18 142.228 2.663 1.731454 53.70
19 384.676 (d3)
20 0.000 0.100 Aperture stop S
21 24.788 9.999 1.497820 82.56
22 1185.129 1.400 1.795613 47.57
23 80.943 0.100
24 32.664 1.400 1.809880 46.20
25 15.545 9.098 1.497820 82.56
26 80.685 2.588
27 -1171.563 4.900 1.815973 26.05
28 -27.372 1.400 1.754998 52.32
29 42.486 3.966
30 -40.476 1.200 1.882997 40.76
31 -97.641 (d4)
32 126.071 4.310 1.487490 70.23
33 -45.723 0.100
34 86.967 4.655 1.487490 70.23
35 -47.401 1.288
* 36 -31.406 1.400 1.882997 40.76
37 -81.993 (Bf)

[Lens focal length]
Lens group Start surface Focal length First lens group 1 105.457
Second lens group 8 -30.505
Third lens group 15 74.632
Fourth lens group 20 -148.321
Last lens group 32 71.259

この参考例において、第36面のレンズ面は非球面形状に形成されている。次の表8に、非球面のデータ、すなわち円錐定数κ及び各非球面定数A4〜A12の値を示す。 In this reference example , the thirty-sixth lens surface is formed in an aspherical shape. Table 8 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A12.

(表8)
κ A4 A6 A8 A10 A12
第36面 1.0000 -1.72E-06 2.75E-09 0.00E+00 0.00E+00 0.00E+00
(Table 8)
κ A4 A6 A8 A10 A12
36th surface 1.0000 -1.72E-06 2.75E-09 0.00E + 00 0.00E + 00 0.00E + 00

この参考例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と最終レンズ群GLとの軸上空気間隔d4は変倍に際して変化する。次の表に、この参考例に係る変倍光学系ZL3の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。 In this reference example , the axial air gap d1 between the first lens group G1 and the second lens group G2, the axial air gap d2 between the second lens group G2 and the third lens group G3, and the third lens group G3 and the third lens group G3. The axial air distance d3 between the fourth lens group G4 and the axial air distance d4 between the fourth lens group G4 and the final lens group GL change during zooming. The following table shows variable interval data at each focal length in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system ZL3 according to this reference example .

(表9)
広角端 中間焦点距離 望遠端
d1 2.000 22.429 39.643
d2 55.374 37.557 2.400
d3 10.914 18.914 31.416
d4 8.169 4.546 1.400
(Table 9)
Wide angle end Intermediate focal length Telephoto end
d1 2.000 22.429 39.643
d2 55.374 37.557 2.400
d3 10.914 18.914 31.416
d4 8.169 4.546 1.400

次の表10に、この参考例における条件式対応値を示す。 Table 10 below shows values corresponding to the conditional expressions in this reference example .

(表10)
(1)ft/(−f2)=9.57
(2)fw/f1=0.53
(3)f1/(−f2)=3.46
(4)ft/f3=3.91
(Table 10)
(1) ft / (− f2) = 9.57
(2) fw / f1 = 0.53
(3) f1 / (− f2) = 3.46
(4) ft / f3 = 3.91

この参考例の広角端状態での無限遠合焦状態の収差図を図6(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図6(b)に、望遠端状態での無限遠合焦状態の収差図を図6(c)にそれぞれ示す。これらの各収差図から明らかなように、参考例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた光学性能を有することがわかる。 FIG. 6A shows an aberration diagram in the infinite focus state in the wide-angle end state of this reference example , and FIG. 6B shows an aberration diagram in the infinite focus state in the intermediate focal length state, in the telephoto end state. FIG. 6 (c) shows aberration diagrams in the infinitely focused state at. As can be seen from these respective aberration diagrams, in the reference example , various aberrations are satisfactorily corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent optical performance is obtained.

ZL(ZL1〜ZL3) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群
GL 最終レンズ群
1 デジタル一眼レフカメラ(光学機器)
ZL (ZL1 to ZL3) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group GL Final lens group 1 Digital single lens reflex camera (optical equipment)

Claims (4)

物体側から順に、
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
広角端状態から望遠端状態に変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が減少し、前記第3レンズ群と前記第4レンズ群との間隔が一旦減少した後増大し、
前記第3レンズ群の少なくとも一部は、光軸に沿って移動することにより無限遠から近距離物体までの合焦を行い、
望遠端状態での全系の焦点距離をftとし、広角端状態での全系の焦点距離をfwとし、前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式
8.80 < ft/(−f2) < 12.00
0.40 < fw/f1 < 0.60
2.00 < f1/(−f2) < 4.80
の条件を満足する変倍光学系。
From the object side,
A first lens group having a positive refractive power;
A second lens group having negative refractive power;
A third lens group having positive refractive power;
A fourth lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases. The distance between the third lens group and the fourth lens group decreases once and then increases;
At least a part of the third lens group performs focusing from infinity to a close object by moving along the optical axis,
The focal length of the entire system in the telephoto end state is ft, the focal length of the entire system in the wide-angle end state is fw, the focal length of the first lens group is f1, and the focal length of the second lens group is f2. Then, the following formula 8.80 <ft / (− f2) <12.00
0.40 <fw / f1 <0.60
2.00 <f1 / (− f2) <4.80
Variable magnification optical system that satisfies the above conditions.
広角端状態から望遠端状態に変倍する際に、前記第1レンズ群及び前記第4レンズ群の少なくとも一方が光軸に沿って移動する請求項に記載の変倍光学系。 At the time of zooming from the wide-angle end state to the telephoto end state, the variable magnification optical system of claim 1 wherein at least one of the first lens group and the fourth lens group moves along the optical axis. 前記第3レンズ群の焦点距離をf3としたとき、次式
2.50 < ft/f3 < 4.50
の条件を満足する請求項1または2に記載の変倍光学系。
When the focal length of the third lens group is f3, the following formula 2.50 <ft / f3 <4.50
The zoom optical system according to claim 1 , wherein the zoom lens system satisfies the following condition.
請求項1〜3のいずれか一項に記載の変倍光学系を備えた光学機器。 Optical apparatus including the variable magnification optical system according to any one of claims 1 to 3.
JP2009244218A 2009-10-23 2009-10-23 Variable magnification optical system and optical apparatus provided with the variable magnification optical system Active JP5527516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244218A JP5527516B2 (en) 2009-10-23 2009-10-23 Variable magnification optical system and optical apparatus provided with the variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244218A JP5527516B2 (en) 2009-10-23 2009-10-23 Variable magnification optical system and optical apparatus provided with the variable magnification optical system

Publications (2)

Publication Number Publication Date
JP2011090186A JP2011090186A (en) 2011-05-06
JP5527516B2 true JP5527516B2 (en) 2014-06-18

Family

ID=44108485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244218A Active JP5527516B2 (en) 2009-10-23 2009-10-23 Variable magnification optical system and optical apparatus provided with the variable magnification optical system

Country Status (1)

Country Link
JP (1) JP5527516B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070054B2 (en) * 2012-10-23 2017-02-01 株式会社ニコン Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
CN104797969B (en) * 2012-10-23 2017-08-08 株式会社尼康 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
WO2014069449A1 (en) 2012-10-30 2014-05-08 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
CN104937472A (en) 2013-02-19 2015-09-23 松下知识产权经营株式会社 Zoom lens system, interchangeable lens device, and camera system
JP6536583B2 (en) 2014-08-29 2019-07-03 株式会社ニコン Variable magnification optical system and optical apparatus
US11086110B2 (en) 2015-09-18 2021-08-10 Nikon Corporation Variable magnification optical system, optical apparatus, imaging apparatus and method for manufacturing variable magnification optical system
CN108139575B (en) * 2015-09-18 2020-11-03 株式会社尼康 Variable magnification optical system, optical device, and imaging device
US10816782B2 (en) 2015-09-18 2020-10-27 Nikon Corporation Variable magnification optical system, optical apparatus, imaging apparatus and method for manufacturing variable magnification optical system
WO2017047757A1 (en) * 2015-09-18 2017-03-23 株式会社ニコン Variable power optical system, optical device, imaging device, and method for producing variable power optical system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266414A (en) * 1987-04-24 1988-11-02 Canon Inc Zoom lens of rear focus type
JPH04149402A (en) * 1990-10-12 1992-05-22 Minolta Camera Co Ltd Zoom lens
JP3005037B2 (en) * 1990-11-16 2000-01-31 キヤノン株式会社 Compact high zoom lens
JP3008700B2 (en) * 1992-10-19 2000-02-14 キヤノン株式会社 Zoom lens
JPH0915502A (en) * 1995-07-03 1997-01-17 Nikon Corp Zoom lens provided with vibration-proof function
JPH10111457A (en) * 1996-10-07 1998-04-28 Nikon Corp Zoom lens
JPH11202202A (en) * 1998-01-14 1999-07-30 Minolta Co Ltd Zoom lens
JP3835789B2 (en) * 1999-09-21 2006-10-18 オリンパス株式会社 Zoom lens and camera equipped with the zoom lens

Also Published As

Publication number Publication date
JP2011090186A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5423190B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
US8441739B2 (en) Zoom optical system, optical apparatus and method of manufacturing zoom optical system
JP5360472B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP5510113B2 (en) Photographic lens, optical apparatus equipped with photographic lens, and method of manufacturing photographic lens
JP5527516B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
US8238039B2 (en) Variable power optical system, optical apparatus equipped with the variable power optical system, and method for manufacturing variable power optical system
US8503093B2 (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP5678424B2 (en) Variable magnification optical system, optical apparatus equipped with the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP5527515B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP2010085875A (en) Zoom lens, optical apparatus and manufacturing method
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5540512B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5403315B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP5246228B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5648900B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
CN108369329B (en) Zoom lens and optical apparatus
JP6467804B2 (en) Zoom lens and optical apparatus
JP5885026B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
CN107850762B (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP5471487B2 (en) Photographic lens and optical apparatus provided with the photographic lens
JP5578412B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP5871163B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
JP7052832B2 (en) Zoom lenses and optics
JP2004272154A (en) Zoom lens
JP2017102201A (en) Zoom lens, optical instrument, and zoom lens manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5527516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250