JP5522798B2 - Ballast water purification method - Google Patents

Ballast water purification method Download PDF

Info

Publication number
JP5522798B2
JP5522798B2 JP2011032589A JP2011032589A JP5522798B2 JP 5522798 B2 JP5522798 B2 JP 5522798B2 JP 2011032589 A JP2011032589 A JP 2011032589A JP 2011032589 A JP2011032589 A JP 2011032589A JP 5522798 B2 JP5522798 B2 JP 5522798B2
Authority
JP
Japan
Prior art keywords
electrode
cloth
resin
metal
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011032589A
Other languages
Japanese (ja)
Other versions
JP2012157852A (en
Inventor
和弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011032589A priority Critical patent/JP5522798B2/en
Publication of JP2012157852A publication Critical patent/JP2012157852A/en
Application granted granted Critical
Publication of JP5522798B2 publication Critical patent/JP5522798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Primary Cells (AREA)

Description

IMF(国際海事機構)条約で採択されたバラスト水排出基準は、船舶のバラスト水の浮遊性生物、動物プランクトン、植物プランクトン、細菌(コレラ菌、大腸菌、腸球菌)を減菌し基準以下に排出し、基準を達成、並びに船体に付着する生物群集(浮遊性生物、海藻類、貝類)を滅菌させて付着防止し、海洋環境汚染防止、エネルギーの節約、又CO2の排出量を削減、地球温暖化防止に関する。  The ballast water discharge standard adopted by the IMF (International Maritime Organization) is to reduce the ballast water floating organisms, zooplankton, phytoplankton, and bacteria (cholera, Escherichia coli, enterococci) of the ship to discharge below the standard. And achieve the standard, and sterilize biological communities (floating organisms, seaweeds, shellfish) adhering to the hull to prevent adhesion, prevent marine environmental pollution, save energy, and reduce CO2 emissions. Concerning prevention.

揚荷時、出港する船舶はバラストとしてバラスト水をその出港地で港の海水、水をバラストタンクに積み込み、立ち寄る港で積荷時にバラスト水を船外へ排出するためバラスト水に含まれる生物、微生物が外来種として生態系に悪影響を与え、海洋環境汚染を発生させている。  At the time of unloading, the ships leaving the port load ballast water as ballast at the port of departure, load the seawater of the port into the ballast tank, and discharge the ballast water to the outside of the ship when loading at the port where the ship stops, microorganisms contained in the ballast water Has adversely affected the ecosystem as an alien species, causing pollution of the marine environment.

バラストタンクに貯水された、海水又は水は、当初は塩素系殺菌剤、電源装置で印加、又は熱交換器による加熱により殺菌されているが、これをそのまま放置すると時間がたつに連れて雑菌やカビが繁殖し、船外へ排出するため、海又は河は、海洋環境汚染を生じさせている。  Seawater or water stored in a ballast tank is initially sterilized by applying a chlorinated disinfectant, a power supply, or heating by a heat exchanger, but if left as it is, germs and The sea or river causes pollution of the marine environment as mold grows and discharges out of the ship.

船体などに付着する生物群集により船の安全性、船全体の抵抗が増すため速度が低下するため一定の速度を維持するため多くの燃料を消費、外来海洋生物の移入により海洋環境の汚染を発生させている。  Living organisms adhering to the hull, etc. will increase the safety of the ship, and the speed will decrease because the resistance of the whole ship will increase, so a large amount of fuel will be consumed to maintain a constant speed, and the marine environment will be contaminated by the introduction of exotic marine organisms I am letting.

船舶のバラストタンク内経、気相部の酸素濃度2%以下になるように窒素ガスを供給してバランス内の酸素濃度を低減させることにより該バラストタンク内の防食を行なうとともに、バラストタンク内の微小生物を死滅させてバラスト水による海洋汚染を防止が、特許文献1記載されている。  In the ballast tank of the ship, nitrogen gas is supplied so that the oxygen concentration in the gas phase is 2% or less to reduce the oxygen concentration in the balance, thereby preventing corrosion in the ballast tank, Patent Document 1 describes the prevention of marine pollution caused by ballast water by killing micro-organisms.

公開特許公報 特開2002−234487公報  Japanese Patent Laid-Open No. 2002-234487

船舶のバラスト水の取水、排水通路に電極対を設け1,2ボルト0.7アンペアから6ボルト2アンペア迄の電圧電流を該電極対に加えて電場を発生させ、副生成物を生じることなくバランサ水中の赤潮プランクトン、混入生物に電気ショックを与えて細胞膜を破壊することで瞬時的に死滅させる方法が特許文献2記載されている。  Incorporating electrode pairs in the ship's ballast water intake and drainage passages, applying voltage and current from 1,2 volts 0.7 amperes to 6 volts 2 amperes to the electrode pairs to generate an electric field without generating by-products Patent Document 2 describes a method of instantaneously killing red tide plankton in a balancer water by applying an electric shock to a mixed organism and destroying a cell membrane.

公開特許公報 特開2003−334563公報  Japanese Patent Laid-Open No. 2003-334563

バラスト水の殺菌方法は、船舶のバラスト水に、塩素系殺菌剤や過酸化水素を用いて、バラスト水に含まれている有害藻類のシストを死菌させるためバラスト水の排水による港湾の公害防止がおこなえる方法が特許文献3記載されている。  Ballast water sterilization method uses a chlorine-based disinfectant or hydrogen peroxide in the ship's ballast water to kill harmful algae cysts contained in the ballast water and prevent pollution of the harbor by draining the ballast water Patent Document 3 describes a method that can perform this.

公開特許公報 特開平4−322788公報  Japanese Patent Laid-Open No. 4-322788

しかしながら、特許文献1の技術では、液体窒素製造装置、液体窒素タンク、蒸発機等の大がかりの装置が必要で、又酸素濃度分析管理が必要で、装置等の稼働はエネルギーを必要とする。  However, the technique of Patent Document 1 requires a large-scale apparatus such as a liquid nitrogen production apparatus, a liquid nitrogen tank, and an evaporator, requires oxygen concentration analysis management, and operation of the apparatus requires energy.

更に特許文献2の技術では、複数の電極対、電極対容器、加熱装置と電源装置を必要で、常に電流を流すために電源装置が必要とする。  Furthermore, in the technique of Patent Document 2, a plurality of electrode pairs, an electrode pair container, a heating device, and a power supply device are necessary, and the power supply device is necessary for always flowing current.

更に特許文献3の技術では、バラスト水の殺菌に塩素系殺菌剤や過酸化水素を用いるため有毒のガス発生により水中の残留塩素を無害化する装置が必要で、又化学物質による海洋環境汚染の原因になる。  Furthermore, in the technique of Patent Document 3, a chlorine-based disinfectant and hydrogen peroxide are used for sterilizing ballast water, so a device for detoxifying residual chlorine in water by generating toxic gas is necessary. Cause.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、液体窒素製造装置、給電装置、塩素系殺菌剤や過酸化水素の発生装置を必要とすることなく、除菌作用を発揮できる電極浄化体を提供することを目的とする。  The present invention has been made in view of the problems of the prior art, and exhibits a sterilization effect without requiring a liquid nitrogen production apparatus, a power supply apparatus, a chlorine-based disinfectant or a hydrogen peroxide generator. An object of the present invention is to provide an electrode purifier that can be used.

本発明の電極浄化体は、電気化学ポテンシャル列の異なる起電力レベルを持つ少なくとも2種類の金属を離間して船体の側面に配置し、水蒸気の存在のもとに(空気中)接触、水中(海水、水、湯)に浸漬することにより、電極電位差は電気化学反応を起こす原動力で、抗菌又は抗カビ効果を発揮続け、並び水、水蒸気がある限り発電し続ける発電機機能と燃料電池機能を有することを特徴とする。  In the electrode purifier of the present invention, at least two kinds of metals having different electromotive force levels in the electrochemical potential train are arranged on the side surface of the hull, separated in the presence of water vapor (in the air), in water ( When immersed in seawater, water, hot water), the electrode potential difference is the driving force for the electrochemical reaction, and continues to exert antibacterial or antifungal effects, as well as the generator function and fuel cell function that continue to generate electricity as long as there is water and water vapor. It is characterized by having.

一般的に、銀イオンや銅イオンが抗菌作用を有することが知られている。しかしながら、銀イオンや銅イオンが十分な抗菌作用を発揮する為には、或る程度の濃度が必要である。日本防菌防黴学会誌(Vol.22,No.9(1994))によれば、大腸菌、カビを培養後、発育が阻止された最低濃度のMICは、以下の表の通りである。このように高いイオンを発生させるには、十分な条件が必要になる。  In general, it is known that silver ions and copper ions have an antibacterial action. However, a certain level of concentration is necessary for silver ions and copper ions to exhibit a sufficient antibacterial effect. According to the Journal of the Japanese Society for Antimicrobial Prevention and Control (Vol. 22, No. 9 (1994)), the minimum concentrations of MICs whose growth was inhibited after culturing Escherichia coli and mold are as shown in the following table. In order to generate such high ions, sufficient conditions are required.

これに対し、本発明の電極浄化装置は、電気化学ポテンシャル列の異なる起電力を持つ少なくとも2種類以上の金属電極を船体の側面の鉄、アルミニュウム、樹脂と離間して配置、水蒸気の存在のもとに(空気中)接触、又は海水、水の水中(湯中を含む)に浸漬することにより抗菌又抗カビ効果を発揮することを発見した。電気化学ポテンシャル列(electrochemical series)の異なる種類の金属で起電力レベル持った金属は、陽極的材料(電気化学ポテンシャル列上より正の側)と陰極的材料(電気化学ポテンシャル列下より負の側)の電極電位差をつける組み合わせで、電極電位差は電気化学反応(電気化学的腐食反応)を起こす原動力として、マイナス(陰極)電極からプラス(陰極)電極に向けて絶えず電子が流れる静電気が発生、静電気が発生続け、電場形成、陰極に金属イオン、微生物を電極表面に吸引し、すき間腐食と放電現象の電気的殺菌、電気化学的殺菌で滅菌する。  On the other hand, the electrode purification apparatus of the present invention has at least two or more types of metal electrodes having electromotive forces with different electrochemical potential rows arranged apart from iron, aluminum, and resin on the side of the hull, and the presence of water vapor. It was discovered that the antibacterial and antifungal effects were exhibited by contact with (in the air) or immersion in seawater or water (including hot water). Metals with electromotive force levels in different types of metals in the electrochemical potential series are positive materials (positive side from above the electrochemical potential series) and negative materials (negative side from below the electrochemical potential series). ) Electrode potential difference is a driving force that causes an electrochemical reaction (electrochemical corrosion reaction), and static electricity flows from the negative (cathode) electrode to the positive (cathode) electrode. Is generated, an electric field is formed, metal ions at the cathode, and microorganisms are attracted to the electrode surface, and sterilized by crevice corrosion and electrical sterilization of discharge phenomenon, and electrochemical sterilization.

電気化学ポテンシャル列の異なる種類の金属としては表1に記載されたものがあるが異なる起電力(electromotive force)レベルを持つ金属を水蒸気の存在のもとで接触、又水中に浸漬すると、これらの一方向は陽極、他方は陰極となり(アノード、カソード)、両者間に電位差が生じ、かかる電気化学反応(電気化学的腐食反応)により金属イオン濃度が低くても抗菌又は抗ガヒ効果を発揮するのである。起電力レベルの差が大きいほど抗菌又は抗ガヒ作用が起こす電気化学反応を応用する。  Different types of metals with different electrochemical potential sequences are listed in Table 1, but when metals with different electromotive force levels are contacted or immersed in water in the presence of water vapor, these One direction becomes an anode and the other becomes a cathode (anode, cathode), and a potential difference is generated between the two, and this electrochemical reaction (electrochemical corrosion reaction) exhibits an antibacterial or anti-galling effect even when the metal ion concentration is low. It is. As the difference in electromotive force level increases, an electrochemical reaction caused by antibacterial or anti-gahi action is applied.

前記金属は、マグネシウム、マグルシウム合金、酸化チタン、硫黄、アルミニュウム、アルミニウム/マンガン合金、カドミウムめっき鋼、80錫/20錫めっき鋼、亜鉛めっき鉄/鋼、トタン、亜鉛、亜鉛合金、クロム、鉄、軟鉄または鋼鉄、軟鉄または鋼すず(錫)、真鍮、ジュラルミン、鉛、クロムめっき鋼、軟質半田、ニッケル下地クロムめっき鋼、錫めっき鋼、高クロムステンレス鋼、12%クロムステンレス鋼、銅、銅合金、銀半田、銅合金、ニッケルめっき鋼、銀、ロジウム下地めっき銅、銀/金合金、炭、活性炭、白金、金のうちの異なる種類の金属であることが好ましい。  The metal is magnesium, magnesium alloy, titanium oxide, sulfur, aluminum, aluminum / manganese alloy, cadmium plated steel, 80 tin / 20 tin plated steel, galvanized iron / steel, tin, zinc, zinc alloy, chromium, iron, Soft iron or steel, soft iron or steel tin (tin), brass, duralumin, lead, chrome plated steel, soft solder, nickel base chrome plated steel, tin plated steel, high chromium stainless steel, 12% chromium stainless steel, copper, copper alloy Silver, solder, copper alloy, nickel-plated steel, silver, rhodium-plated copper, silver / gold alloy, charcoal, activated carbon, platinum, and gold are preferred.

3年間かけて前記金属を組み替えて次の実験を実施、異なる種類の金属を組み替え、布、樹脂又は炭クロスの表面に金属を少なくとも2種類以上の異なる金属を離間し平行に固着、又少なくとも2種類以上の異なる金属を離間し金属の間に布、樹脂又は炭クロスを挿入し金属を積層に重ねて、さらに大きい布、樹脂又は炭クロスに固着し、水中に浸漬することにより水電池になり、水がある限り放電、充電を繰り返す発電機能があり、又静電気を発生し続け、電場形成、発電機、燃料電池であることを確認する。  The following experiment was carried out by rearranging the above metals for 3 years, rearranging different types of metals, fixing at least two different types of metals on the surface of cloth, resin or charcoal cloth, and fixing them in parallel. Separate a different kind of metal, insert a cloth, resin or charcoal cloth between the metals, stack the metal on the laminate, adhere to a larger cloth, resin or charcoal cloth, and immerse in water to make a water battery. As long as there is water, it has a power generation function that repeats discharging and charging, and continues to generate static electricity, confirming that it is an electric field formation, generator, and fuel cell.

上記実験で発生する電圧、電流、抵抗値は常に変化し、前記金属が少なくとも2種類以上の異なる金属の電極電位差が少ない場合は発生する電圧、電流が小さく、又電極電位差が大きい場合は大きい電圧、電流値が生じ、同時に静電気が生じることを確認、微生物の発育阻止、滅菌、又発育、増殖の微生物制御に利用する。  The voltage, current, and resistance generated in the above experiment always change. When the metal has a small electrode potential difference between at least two different metals, the generated voltage and current are small, and when the electrode potential difference is large, the voltage is large. It is confirmed that the current value is generated and the static electricity is generated at the same time, and is used for microbial control of microbial growth inhibition, sterilization, and growth and proliferation.

電気化学ポテンシャル列の異なる起電力が低い前記金属の一方の面積は、前記金属の他方の面積より大きいと好ましい。  The area of one of the metals having a low electromotive force with a different electrochemical potential sequence is preferably larger than the other area of the metal.

前記金属の一方は、布、樹脂又は炭クロスの一方の面に配置され、前記金属の他方は、前記布、樹脂又は炭クロスの他方の面に配置されていると好ましい。  One of the metals is preferably disposed on one surface of a cloth, resin or charcoal cloth, and the other of the metals is preferably disposed on the other surface of the cloth, resin or charcoal cloth.

前記金属の少なくとも一方は、前記布、樹脂又は炭クロスの面に格子状、網状又は渦巻き状に形成されると好ましい。  It is preferable that at least one of the metals is formed in a lattice shape, a net shape, or a spiral shape on the surface of the cloth, resin, or charcoal cloth.

布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に取り囲まれるように配置されていると好ましい。  It is preferable that one side of the metal is arranged so as to be surrounded by the other side of the metal on one side of the cloth, resin or charcoal cloth.

布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に並べて配置されていると好ましい。  On one side of the cloth, resin or charcoal cloth, one of the metals is preferably arranged side by side on the other side of the metal.

前記金属を形成した布、樹脂又は炭クロスを積層、又は平行にしていると好ましい。  It is preferable that the cloth, resin or charcoal cloth on which the metal is formed are laminated or parallel.

前記金属を形成した布、樹脂又は炭クロスを筒状に形成していると好ましい。  The cloth, resin or charcoal cloth on which the metal is formed is preferably formed in a cylindrical shape.

尚、上記金属は塗料、シリコン樹脂、樹脂やセラミックなどに両面に形成されていても良い。    The metal may be formed on both surfaces of paint, silicon resin, resin or ceramic.

ここで、「布、樹脂」とは、布、紙、合成繊維、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂等からなる板状体を広く含む概念であり、乾燥状態で絶縁機能を有するものが好ましく、水蒸気の存在のもとに布、紙、不織布、ゴム、樹脂、合成樹脂が接触しているとき、又電解液(水、海水、湯)で布、樹脂、紙、不織布、ゴム、樹脂、合成樹脂の材料が湿った状態で布の端と端の間で電気抵抗を有する材料を利用する。  Here, “cloth, resin” is a concept that widely includes a plate-like body made of cloth, paper, synthetic fiber, non-woven fabric, rubber, silicone resin, resin, synthetic resin, etc., and has an insulating function in a dry state. It is preferable that when cloth, paper, nonwoven fabric, rubber, resin, or synthetic resin is in contact with water vapor, the cloth, resin, paper, nonwoven fabric, rubber, or electrolyte solution (water, seawater, hot water) A material having electrical resistance between the ends of the cloth is used in a state where the material of the resin or the synthetic resin is wet.

「炭クロス」とは、炭の両面を布又は樹脂で挟んだものであり、わし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナチューブを布で両面から挟み固着した炭クロスは水蒸気の存在のもと接触しているとき、又電解液(水、海水、湯)で湿ったときわし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナチューブ材料が湿り、材料の端と端の間で電気抵抗が生じる材料を利用する。  “Charcoal cloth” is a charcoal cloth with both sides of the charcoal sandwiched between cloth and resin. The charcoal is made by sandwiching and fixing sushi (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotube from both sides. When cloth is in contact in the presence of water vapor, or when wet with electrolyte (water, seawater, hot water), Japanese (washi) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotube material Wet materials are used that cause electrical resistance between the edges of the material.

炭の片面を布又は樹脂に固着した炭クロスは、わし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナチューブを布の片面に固着した炭クロスは水蒸気の存在のもと接触しているとき、又電解液で湿ったときは、わし(和紙)炭、竹炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナチューブ材料が湿り、材料の端と端の間で電気抵抗が有する材料を利用する。  Charcoal cloth with one side of charcoal fixed to cloth or resin is charcoal cloth with sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotubes on one side of the cloth. Material that has electric resistance between the edges of the material when it is in contact or when wet with electrolyte solution, wet (Japanese paper) charcoal, bamboo charcoal, activated carbon, fine particle activated carbon, carbon black, carbon nanotube material Is used.

炭、活性炭の利用として、電気化学ポテンシャル列の異なる金属(電極)で、起電力レベルを持つ電極で電極電位差をつけて組み合わせ、電極と電解液をつなげた系の電気化学反応(酸化還元反応、電気化学的腐食反応)で発生する電気エネルギー、電解質の正負両イオンが電圧を加える充電によって、電極表面に吸収され、電極内の正負電荷と対を作り、電気を貯蔵、そして電気二重層が消滅によって電気エネルギーを充電、放電する貯蔵する電気二重キャパシタにわし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナチューブ炭を利用する。  For the use of charcoal and activated carbon, a metal (electrode) with a different electrochemical potential sequence is combined with an electrode having an electromotive force level, and the electrochemical reaction (oxidation reduction reaction, Electrochemical energy generated by the electrochemical corrosion reaction, both positive and negative ions of the electrolyte are absorbed by the electrode surface by charging, paired with positive and negative charges in the electrode, store electricity, and the electric double layer disappears By using the electric double capacitor to charge and discharge the electric energy, we use sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine particle activated carbon, carbon black, carbon nanotube charcoal.

本発明は、生物、又微生物(細菌、カビ、酵母、ウイルス)を滅菌する電気的殺菌、又電気化学的殺菌は電気化学ポテンシャル列の異なる種類の金属(電極)で、起電力レベルを持つ電極を離間し組み合わせ、電極電位差(起電力)をつけて布、又炭クロスに固着、電極と電解液をつなげた系において湿った電極、布、樹脂又炭クロスは接触し、電極内の電子と電解液の界面で電子がやりとりされる電気二重層の電気化学系反応(電気化学的腐食反応、)の反応性は電極電位差により電気化学反応を起こす原動力とすることを特徴とする。  The present invention is an electric sterilization for sterilizing organisms and microorganisms (bacteria, mold, yeast, virus). Electrochemical sterilization is a metal (electrode) of a different kind of electrochemical potential sequence, and an electrode having an electromotive force level. Are separated and combined, and an electrode potential difference (electromotive force) is applied to adhere to the cloth or charcoal cloth. In the system where the electrode and the electrolyte are connected, the wet electrode, cloth, resin or charcoal cloth comes into contact with the electrons in the electrode. The reactivity of the electrochemical system reaction (electrochemical corrosion reaction) of the electric double layer in which electrons are exchanged at the interface of the electrolytic solution is a driving force for causing an electrochemical reaction due to an electrode potential difference.

電極電位差をつけた電極は多数個を離間し組み込み、布、樹脂(布、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂)、又炭クロス(和紙炭、活性炭を布に固着)に固着、電極は水蒸気の存在のもとに接触し、又電解液の存在のもとに接触するとき電極と電極、電極と布、樹脂と電極、又電極と炭クロス間は電気抵抗があり、電極が接触しているとき起こる電食作用、電解腐食作用は一つの金属から他の金属へ電流が流れるために電極間は電気抵抗があり、さらに電極は電導性をおびる布、樹脂又炭クロスに固着することを特徴とする。  A large number of electrodes with an electrode potential difference are separated and assembled, and fixed to cloth, resin (cloth, non-woven fabric, rubber, silicon resin, resin, synthetic resin), or charcoal cloth (Japanese paper charcoal, activated carbon fixed to cloth), electrode Is in contact with the presence of water vapor, and when in contact with the presence of electrolyte, there is electrical resistance between the electrode and electrode, electrode and cloth, resin and electrode, and electrode and charcoal cloth. The electric corrosion action and electrolytic corrosion action that occurs when the current flows from one metal to another metal, so there is an electrical resistance between the electrodes, and the electrodes are also fixed to a conductive cloth, resin or charcoal cloth. It is characterized by that.

金属イオンは微生物の細胞質膜、細胞壁の表面に付着、細胞質の電子伝達系とイオン伝導が影響をうけ腐食における局部電池機構と類似の機構、すき間腐食の反応が進行し滅菌するため、電極と電解液の界面で電気二重層の電気化学系反応で、放電による水の電気分解、電池反応、電気めっきを起こす反応エネルギーは電気エネルギーに変換され、金属イオンの生成を特徴とする。  Metal ions adhere to the surface of microbial cytoplasmic membranes and cell walls, and are affected by the cytoplasmic electron transport system and ion conduction. In the electrochemical reaction of the electric double layer at the interface of the liquid, the reaction energy that causes electrolysis of water by discharge, battery reaction, and electroplating is converted into electric energy, which is characterized by the generation of metal ions.

電気化学反応によるイオン生成は不対電子をもった物質がフリーラジカルになり、他の分子から電子を奪い微生物の膜の脂肪質層は細胞膜破壊を起こし細胞や組織の機能を低下させ死滅させるため、電極と電解液において、電解液は電気化学系反応における電子放出、電子のやりとりで電子を奪われ、酸化還元電位(ORP)がマイナスへ下がる降順(還元)、又上がる昇順(酸化)を繰り返し、酸化、還元、フリーラジカル作用を特徴とする。  Ion production by electrochemical reaction is because the substance with unpaired electrons becomes free radicals, steals electrons from other molecules, and the fat layer of the microbial membrane causes cell membrane destruction and kills cells and tissues by reducing their functions In the electrode and the electrolyte, the electrolyte repeats the descending order (reduction) in which the redox potential (ORP) decreases to negative, and the increasing order (oxidation) in which the redox potential (ORP) decreases to the minus by the electron emission and exchange of electrons in the electrochemical reaction. It is characterized by oxidation, reduction and free radical action.

微生物の細胞膜、細胞の壁は電場形成、静電気発生、放電の電流破壊、電圧破壊、コロナ放電で破壊され滅菌する反応性を起こすため、面積が有る導体性の電極は電極と電極が離間し布、樹脂又炭クロスを平行に挿入して固着、平行キャパシタとし、電解液で接触した導体性の電極と電解液をつなげた系の界面で電子がやりとりする、電気二重層キャパシタは布、樹脂又炭クロスの活性炭電極が、電気エネルギーを貯蔵する蓄電池機能を持ち、電極と溶解液の正負両イオンがそれぞれ負極と正極に物理的に吸着および脱着による充電、放電を繰り返す電池を特徴とする。  Microbial cell membranes and cell walls cause electric field formation, generation of static electricity, discharge current destruction, voltage destruction, corona discharge destruction and sterilization reactivity. A resin or charcoal cloth is inserted and fixed in parallel to form a parallel capacitor.Electrons are exchanged at the interface between the conductive electrode in contact with the electrolyte and the electrolyte. The charcoal cloth activated carbon electrode has a storage battery function of storing electrical energy, and the battery is characterized by a battery in which positive and negative ions of the electrode and the solution are repeatedly charged and discharged by physical adsorption and desorption on the negative electrode and the positive electrode, respectively.

少なくとも2種類の異なる導体性の有る電極板は面積が有り、電極板を離間して配置、離間を設けた電極板の間に布又は炭、活性炭の誘電体を挿入、電極板を平行に配置し大きい布、樹脂又炭クロスに固着、電極が平行板になり金属板の内部に電荷が集中し強い電場が作られ、電極電位差により電気化学反応が発生し電気エネルギーを充電、放電できる電気二重層キャパシタの蓄電機能を持った、平行キャパシタにする。  At least two types of electrode plates with different conductive properties have a large area. The electrode plates are spaced apart, and a cloth, charcoal, or activated carbon dielectric is inserted between the spaced electrode plates, and the electrode plates are placed in parallel. Electric double layer capacitor that can be fixed on cloth, resin or charcoal cloth, electrodes become parallel plates, electric charges are concentrated inside the metal plate and a strong electric field is created, and an electrochemical reaction occurs due to electrode potential difference to charge and discharge electric energy. A parallel capacitor with the power storage function.

電気化学系反応の反応性は陽極的材料の電極(電気化学ポテンシャル列上より正の側)の面積を小さくし、腐食により陽極へ電子供給量を多くする陰極的材料の電極(電気化学ポテンシャル列下より負の側)の面積を大きくし、陽極的材料と陰極的材料(アソード、カソード)を離間し布、樹脂又炭クロスを固着、又間隔を設け、さらに動作電極、基準電極、又補助電極を1から多数個を離間し組み合わせて電極電位差を大きくつけた電極は多数個を離間し組み込むことを特徴とする。  The reactivity of the electrochemical reaction reduces the area of the anode material electrode (on the positive side of the electrochemical potential sequence) and increases the amount of electrons supplied to the anode due to corrosion (electrochemical potential sequence) Increase the area of the negative side from the bottom), separate the anode material and cathode material (asode, cathode), fix the cloth, resin or charcoal cloth, and provide the space, and also the working electrode, reference electrode, and auxiliary An electrode having a large electrode potential difference by separating and combining a large number of electrodes from 1 is characterized in that a large number of electrodes are separated and incorporated.

電極形状は平形、丸形、渦巻き形、線形、格子形、網形、六角形、山形、波形とし、又金属固体、活性炭を微粒子状に加工、さらにカーボンブラック、ナノチューブを利用、静電気の帯電を高め、静電気放電、イオン生成、コロナ放電、フリーラジカル作用の電気化学的反応で滅菌するため、静電気を多く帯電する電極は総表面積を大きくし、又金属固体は微粒子に加工し、さらに電極は積層、又は平行に並べることを特徴とする。  The electrode shape is flat, round, spiral, linear, grid, mesh, hexagon, chevron, corrugated, metal solid and activated carbon are processed into fine particles, and carbon black and nanotubes are used to charge static electricity. Highly electrostatic discharge, ion generation, corona discharge, and sterilization by electrochemical reaction of free radical action. Electrostatically charged electrodes increase total surface area, metal solids are processed into fine particles, and electrodes are laminated. Or arranged in parallel.

生物、微生物の滅菌は酸化チタン、硫黄の細かい紛体、又微粒子を電気化学ポテンシャル列の異なる種類の金属で起電力レベルを持つ電極に付加し滅菌効果が高まる。  Sterilization of living organisms and microorganisms increases the sterilization effect by adding fine particles of titanium oxide, sulfur, or fine particles to electrodes having electromotive force levels made of different types of metals having different electrochemical potential sequences.

比較例における一般細菌数と入浴の経日変化を示すグラフである。 亜鉛(トタン板)、銅、銀の間に炭クロスを挿入し大きい炭クロスに固着した3積層電極の亜鉛電極の斜視画像である。 150倍に拡大した亜鉛電極の組織画像である。 150倍に拡大した亜鉛電極の組織画像である。 実施例における一般細菌数と入浴の経日変化を示すグラフである。 実施例における黴、酵母数と入浴の経日変化を示すグラフである。 大腸菌群の培養実験で浄化体が増殖阻止より死滅を示す図である。 大腸菌群の培養実験で発育、増殖を示す図である。 銀、亜鉛(トタン)、銅の間に炭クロスを挿入、大きい炭クロスに固着した3積層電極の銀電極を示す図である。 試験液のORPの経時変化を示すグラフである。 試験液のORPの経時変化を示すグラフである。 実験で、浴槽3の側面の淵、底に電極浄化体a18を固着した断面図、浴槽3の淵に布、樹脂又は炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5(銀材)を離間し表面に固着、電極形状は格子状、網状で、ワィヤ状、又は線材を使用、裏面に電極B6(銅材)を離間し、平行に固着、浴槽3の水面に浮遊する垢、微生物、細菌、カビ2は電極電位差で電気化学反応が起り電気的殺菌、電気化学的殺菌で滅菌する電極浄化体a18を示す図である。 実験で、布、樹脂又は炭クロス4の表面に、電気化学ポテンシャル列の異なる種類の金属電極A5(銀材)を離間し固着、電極形状は格子状、網状でワィヤ状、線材使用、裏面に電極B6(銅材)を離間して平行に固着、浴槽3の水面に、浮遊する垢、微生物、細菌、カビ2は電極電位差で電気化学反応を起す原動力で、電気的殺菌、又電気化学的殺菌で滅菌する電極浄化体a18を示す図である。 船舶のバラスト水12の生物、微生物2と船体13に付着する生物群集2を滅菌させるための、バラストタンクのシステム構成図、対策として電気化学ポテンシャル列の異なる金属の電極浄化体b19は金属電極5、金属電極6、金属電極7、金属電極8、金属電極9等を離間し、電極間に布、樹脂又は炭クロス4を挿入し固着、船体13に固着、電極形状は格子状、又網状で、電極浄化体b19はバラスト水12に浸漬すると、電極電位差で電気化学反応を起こし、バラスト水12に含まれる、生物、微生物2を滅菌、更に船体13の側面と底に電極浄化体c20、電極浄化体d21、電極浄化体e22、電極浄化体f23、又電極浄化体g24等を離間し固着、電極浄化体は海水、水1に浸漬すると電気化学反応が起こり、バラスト水12の生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、同時に海洋、河に接しする船体13は、付着する生物群集を電気的殺菌、電気化学的殺菌で滅菌、揚荷時はシーチェスト(海水吸入口)14よりポンプ17で海水をくみ上げ、海水フィルタ−16を通り電極浄化体b19の中で電気化学反応の放電により滅菌、さらにバラストタンク11に固着した電極浄化体c20、電極浄化体d21、電極浄化体e22、電極浄化体f23又電極浄化体g24等は海水、水に浸漬すると常時、静電気発生、電場形成、放電により生物、微生物を常に滅菌、同時に船体に付着する生物群集を常に滅菌、積荷時は滅菌したバラスト水12を電極浄化体b19に通しさらに滅菌し、ポンプ17でバラスト放出し15、船外吐出する。 電気化学ポテンシャル列の異なる電極は金属電極A5、金属電極B6、金属電極C7、金属電極D8、金属電極E9、金属電極A5等を離間し、積層し平行に並べ、さらに離間した間に、布、樹脂又炭クロス4を挿入して固着、電極浄化体b19は電極形状が格子状、又網状で電気二重層キャパシタを形成、海水、水1に浸漬すると電気化学反応を起こり、電極と布、樹脂又炭クロス4の間で電気二重層のキャパシタを形成、蓄電、放電し、滅菌する電極浄化体b19を示す図である。 布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5、金属電極B6、金属電極C7、金属電極D8又金属電極E9等を布、樹脂又炭クロス4に固着、電極形状は平行、格子状、網状で、電極を積層、又平行にし、電気二重層キャパシタを形成、電極浄化体c20を示す図であり、海水、水1に浸漬すると、表側の電極と裏側の電極との電極電位差で電気化学反応を起こし、電極と布、樹脂又炭クロス4の間で電気二重層キャパシタを形成、蓄電、放電で生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、又電池に利用する電極浄化体c20を示す図である。 板状の布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の板状金属電極A5、金属電極B6、金属電極C7、金属電極D8又金属電極E9等を離間し、平行、積層に配置して、布、樹脂又は炭クロス4に固着、電極と布、樹脂又は炭クロス4の間で、電気二重層キャパシタを形成、陽極における腐食作用による電子を供給するのは陰極材料であるため、陰極材料の面積を多く配置、電極を横形に配置、海水、水に浸漬すると電極電位差で電気化学反応を起こし、生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、又電池に利用する電極浄化体d21を示す図である。 板状の布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5、金属電極B6、金属電極C7、金属電極D8又金属電極E9等を離間し固着、電気二重層キャパシタを形成、電極は格子状、又網状、陽極における腐食作用による、電子を供給する陰極材料であるため、陰極面積を多くして配置、電極を海水、水1に浸漬すると電極電位差で電気化学反応を起こし、生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、又電池に利用する電極浄化体e22を示す図である。 板状の布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の板状の金属電極A5、金属電極B6、金属電極C7、又金属電極8、金属電極9等を離間し横に並べて、平行に配置し固着、電極は海水、水1に浸漬すると電極電位差で電気化学反応を起こし生物、微生物2を滅菌、又電気エネルギーを蓄電する電池として利用する電極浄化体f23を示す図である。 板状の布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の板状の金属電極A5、金属電極B6、金属電極C7、金属電極D8、金属電極E9等を離間し縦に並べて、配置し固着、海水、水1に浸漬すると電極電位差で電気化学反応を起こし、生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、又電池として利用する電極浄化体g24を示す図である。 布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5、金属電極B6、又金属電極C7、金属電極8の電極を筒状に離間し固着、電極の間にスペーサーの布、樹脂又炭クロス4を挿入、離間した電極は平行キャパシタ、電気二重層キャパシタを形成、電気エネルギーを蓄積、海水、水1に浸漬すると電極電位差で電気化学反応を起こし、生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、又電池として利用する電極浄化体h25を示す図である。 布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5、電極B6、又電極C7、電極D8を筒状にし、離間し平行に配置し固着、電極の間にスペーサーの布、樹脂又炭クロス4を挿入、離間した電極は平行キャパシタとし、電気二重層キャパシタを形成、電気エネルギーを蓄積、海水、水1に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電する電池、又生物、微生物2を滅菌する電極浄化体h25、の右側面を示す図である。 布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5、金属電極B6、又金属電極C7、金属電極D8をコイル形にし、離間し平行に固着、平行キャパシタとし、電気二重層キャパシタを形成、電極間にスペーサーとして布、樹脂又炭クロス4を挿入、電極はコイル形の平行キャパシタとし電気エネルギーを蓄電、海水、水1に浸漬すると、電極電位差で電気化学反応を起こし生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、又静電気を蓄電する電池に利用する電極浄化体i26を示す図である。 布、樹脂又炭クロス4の表面に面積を持った電気化学ポテンシャル列の異なる種類の金属電極A5、金属電極B6、又金属電極C7、金属電極D8はコイル状で、離間し平行に固着、離間した電極間にスペーサーの布、樹脂又炭クロス4を挿入し固着、電極板を平行キャパシタとし電気エネルギーを蓄電、海水、水1に浸漬すると電極電位差で電気化学反応を起こし生物、微生物を滅菌、又電気エネルギーを蓄電にする電池に利用する電極浄化体i26の右側面を示す図である。 布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B32を固着、さらに微粒子電極の両面を塗料10で覆い、又は微粒子電極A31、微粒子電極B32、又微粒子電極C33、微粒子電極D34、微粒子電極E35等を、積層又は平行に並べて船体13を塗装、微粒子電極j27を平行キャパシタとし電気二重層キャパシタを形成、これにより金属イオンの流れを良くし、電気二重キャパシタを形成、船体13が海水、水1に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電し電池として利用、又生物、微生物を電気的殺菌、電気化学的殺菌で滅菌に利用する微粒子電極浄化体j27を示す図である。 布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B32を、積層又は平行に固着、上面を塗料10で覆い、更に微粒子電極C33を固着し表面を塗装で覆い、微粒子電極A31、微粒子電極B32、微粒子電極C33を、積層又は平行に並べ、微粒子電極を平行キャパシタとし、電気二重層キャパシタを形成、金属イオンの流れを良くし、船体13は微粒子電極浄化体k28を含んだ塗料10で塗装、海水、水1に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電し電池として利用、又生物、微生物を電気的殺菌、電気化学的殺菌で滅菌、又電気エネルギーを蓄電にする電池に利用する微粒子電極浄化体k28を示す図である。 布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B32、微粒子電極C33、微粒子電極D34等の間を塗料10で塗装し固着、微粒子電極A31、微粒子電極B32、微粒子電極C33、微粒子電極D34を、積層又は平行に並べ、微粒子電極を平行キャパシタとし電気二重層キャパシタを形成、金属イオンの流れを良くし、船体13は微粒子電極浄化体L29を含んだ塗料10で塗装、海水、水1に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電し電池として利用、又生物、微生物2を電気的殺菌、電気化学的殺菌で滅菌、又電気エネルギーを蓄電にする電池に利用する微粒子電極浄化体L29を示す図である。 微粒子電極のA31、微粒子電極B32、微粒子電極C33の間を、積層又は平行に塗料10で塗装、上面と下面を布、樹脂又炭クロス4、又塗料10で覆い、電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B32、微粒子電極C33を離間し、積層又は平行に塗料10で塗装により、電極を平行キャパシタとし、電気二重層キャパシタを形成、船体13が浸漬すると電極電位差で電気化学反応を起こし、電気エネルギーを中心に集めて蓄電する電池として利用、又生物、微生物を電気的殺菌、電気化学的殺菌で滅菌する微粒子電極浄化体m30を示す図である。 本発明者が行った実験結果の電極浄化体の放電現象を撮影した写真である。 亜鉛(トタン板)、銅板、銀板(T10004)の3積層電極の形状の電極浄化体を示す図である。 亜鉛材、ステンレス、アルミニウム、銀板(T10005)の4積層電極の形状を示す図である。 水の電気分解図である。(綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版)1992年11月10日、P303、 It is a graph which shows the number of general bacteria in a comparative example, and the daily change of bathing. It is a perspective image of the zinc electrode of the three laminated electrodes which inserted the charcoal cloth between zinc (tongue board), copper, and silver, and was fixed to the big charcoal cloth. It is a structure | tissue image of the zinc electrode expanded 150 times. It is a structure | tissue image of the zinc electrode expanded 150 times. It is a graph which shows the number of general bacteria in an Example, and the daily change of bathing. It is a graph which shows the secular change in the koji, yeast number, and bathing in an Example. It is a figure which shows that a purification | cleaning body is killed rather than growth inhibition in the culture experiment of coliform bacteria. It is a figure which shows growth and proliferation by the culture | cultivation experiment of coliform bacteria. It is a figure which shows the silver electrode of the 3 laminated electrode which inserted the charcoal cloth between silver, zinc (totone), and copper, and was fixed to the big charcoal cloth. It is a graph which shows the time-dependent change of ORP of a test liquid. It is a graph which shows the time-dependent change of ORP of a test liquid. In the experiment, a cross-sectional view in which the electrode purifier a18 is fixed to the side wall of the bathtub 3, the bottom, the cloth, the resin, or the charcoal cloth 4 on the surface of the bathtub 3, and different types of metal electrodes A5 (silver) The electrode shape is grid, net, wire, or wire, electrode B6 (copper material) is separated on the back, fixed in parallel, and floats on the water surface of bathtub 3 Microorganisms, bacteria, and mold 2 are diagrams showing an electrode purification body a18 that undergoes an electrochemical reaction due to an electrode potential difference and is sterilized by electrical sterilization and electrochemical sterilization. In the experiment, metal electrodes A5 (silver materials) of different types with different electrochemical potential rows were spaced apart and fixed to the surface of cloth, resin or charcoal cloth 4, and the electrode shape was grid-like, mesh-like, wire-like, using wire, on the back Electrode B6 (copper material) is spaced apart and fixed in parallel. Floating dirt, microorganisms, bacteria, and mold 2 on the water surface of bathtub 3 are the driving forces that cause an electrochemical reaction due to the electrode potential difference. It is a figure which shows the electrode purification body a18 sterilized by sterilization. A system configuration diagram of a ballast tank for sterilizing organisms 2 of the ballast water 12 of the ship, organisms 2 attached to the microorganisms 2 and the hull 13, and a metal electrode purifier b19 having a different electrochemical potential row as a countermeasure. , Metal electrode 6, metal electrode 7, metal electrode 8, metal electrode 9 etc. are separated, cloth, resin or charcoal cloth 4 is inserted and fixed between the electrodes, and fixed to hull 13, electrode shape is grid or net When the electrode purifying body b19 is immersed in the ballast water 12, an electrochemical reaction is caused by the electrode potential difference to sterilize organisms and microorganisms 2 contained in the ballast water 12, and further, the electrode purifying body c20 and electrodes on the side and bottom of the hull 13 When the purifying body d21, the electrode purifying body e22, the electrode purifying body f23, the electrode purifying body g24, etc. are separated and fixed, and the electrode purifying body is immersed in seawater or water 1, an electrochemical reaction occurs, and the ballast water 1 Sterilization of microorganisms 2 and microorganisms 2 by electrical sterilization and electrochemical sterilization, and at the same time, the hull 13 in contact with the ocean and river is sterilized by electrical sterilization and electrochemical sterilization of adhering organisms. (Seawater intake port) 14 pumps up seawater with a pump 17, passes through a seawater filter-16, is sterilized by discharge of an electrochemical reaction in an electrode purifier b19, and is further fixed to the ballast tank 11; d21, electrode purifier e22, electrode purifier f23, electrode purifier g24, etc. always sterilize organisms and microorganisms by the generation of static electricity, electric field formation, and discharge when immersed in seawater and water. At the time of sterilization and loading, the sterilized ballast water 12 is further sterilized through the electrode purifier b19, discharged by the pump 17, and discharged outside the ship. Electrodes with different electrochemical potential columns are metal electrode A5, metal electrode B6, metal electrode C7, metal electrode D8, metal electrode E9, metal electrode A5, etc., separated and arranged in parallel. The resin or charcoal cloth 4 is inserted and fixed, and the electrode purifier b19 has a grid shape or a net shape to form an electric double layer capacitor. When immersed in seawater or water 1, an electrochemical reaction occurs, and the electrode and cloth, resin Moreover, it is a figure which shows the electrode purification body b19 which forms the capacitor | condenser of an electric double layer between the charcoal cloths 4, stores, discharges, and sterilizes. A metal electrode A5, a metal electrode B6, a metal electrode C7, a metal electrode D8, a metal electrode E9, etc. of different types having different electrochemical potential rows are fixed to the cloth, resin or charcoal cloth 4 on the surface of the cloth, resin or charcoal cloth 4 The shape is parallel, grid-like, or net-like, and the electrodes are stacked or paralleled to form an electric double layer capacitor, showing the electrode purifier c20. When immersed in seawater or water 1, the front side electrode and the back side electrode Electrochemical reaction is caused by the electrode potential difference between the electrode and the cloth, resin or charcoal cloth 4 to form an electric double layer capacitor, organisms are stored by storage and discharge, microorganisms 2 are sterilized electrically, and sterilized by electrochemical sterilization. Moreover, it is a figure which shows the electrode purification body c20 utilized for a battery. Plate metal cloth A5, metal electrode B6, metal electrode C7, metal electrode D8, metal electrode E9, etc. having different electrochemical potential columns are separated from each other on the surface of a plate-like cloth, resin or charcoal cloth 4, and are parallel and laminated. It is placed on the fabric, fixed to the cloth, resin or charcoal cloth 4, and an electric double layer capacitor is formed between the electrode and the cloth, resin or charcoal cloth 4, and it is the cathode material that supplies electrons due to the corrosive action at the anode. Therefore, a large area of the cathode material is arranged, the electrodes are arranged horizontally, and when immersed in seawater or water, an electrochemical reaction occurs due to the electrode potential difference, and the organism and microorganisms 2 are sterilized by electrical sterilization and electrochemical sterilization. It is a figure which shows the electrode purification body d21 utilized. An electric double layer capacitor having a metal cloth A5, a metal electrode B6, a metal electrode C7, a metal electrode D8, a metal electrode E9, etc. of different types having different electrochemical potential rows is fixed on the surface of a plate-like cloth, resin or charcoal cloth 4 The electrode is a grid material, mesh, or cathode material that supplies electrons due to the corrosive action of the anode, so the cathode area is increased, and when the electrode is immersed in seawater or water 1, an electrochemical reaction occurs due to the electrode potential difference. It is a figure which shows the electrode purification body e22 which raise | generates and sterilizes the organism and the microorganisms 2 by electrical sterilization and electrochemical sterilization, and is utilized for a battery. A plate-shaped cloth, resin or charcoal cloth 4 has a plate-like metal electrode A5, a metal electrode B6, a metal electrode C7, or a metal electrode 8, a metal electrode 9 or the like having different electrochemical potential columns spaced apart and placed horizontally. When the electrode is immersed in seawater or water 1, the electrode undergoes an electrochemical reaction when it is immersed in seawater or water 1. The electrode purifier f23 is used as a battery for sterilizing organisms and microorganisms 2 or for storing electrical energy. is there. On the surface of the plate-like cloth, resin or charcoal cloth 4, plate-like metal electrode A5, metal electrode B6, metal electrode C7, metal electrode D8, metal electrode E9, etc. of different types having different electrochemical potential rows are arranged vertically apart. The electrode purifier g24 that is placed and fixed, immersed in seawater, water 1 causes an electrochemical reaction due to an electrode potential difference, sterilizes organisms and microorganisms 2 by electrical sterilization, electrochemical sterilization, and is used as a battery. is there. The metal electrode A5, metal electrode B6, metal electrode C7, and metal electrode 8 of different types having different electrochemical potential rows are fixed to the surface of the cloth, resin or charcoal cloth 4 in a cylindrical shape, and a spacer is interposed between the electrodes. Cloth, resin or charcoal cloth 4 is inserted and the separated electrodes form parallel capacitors and electric double layer capacitors. Electric energy is accumulated. When immersed in seawater or water 1, an electrochemical reaction occurs due to the electrode potential difference, and organisms and microorganisms 2 are It is a figure which shows the electrode purifier h25 sterilized by electrical sterilization and electrochemical sterilization, and used as a battery. Metal electrodes A5, B6, C7, and D8 of different types of electrochemical potential rows are formed on the surface of cloth, resin or charcoal cloth 4 in a cylindrical shape, spaced apart in parallel and fixed, and spacers are interposed between the electrodes. Cloth, resin or charcoal cloth 4 is inserted and separated, the electrode is a parallel capacitor, and an electric double layer capacitor is formed, electric energy is accumulated, and when immersed in seawater or water 1, an electrochemical reaction is caused by the electrode potential difference and electric energy is stored. It is a figure which shows the right side surface of the electrode purification body h25 which sterilizes a battery, organism, and microorganisms 2. FIG. Metal electrode A5, metal electrode B6, metal electrode C7, and metal electrode D8 of different kinds of electrochemical potential rows on the surface of cloth, resin or charcoal cloth 4 are coiled, spaced apart and fixed in parallel, to form a parallel capacitor, A double layer capacitor is formed, cloth, resin or charcoal cloth 4 is inserted as a spacer between the electrodes, and the electrode is a coil-shaped parallel capacitor. When electrical energy is stored in seawater, water 1, water, an electrochemical reaction occurs due to the electrode potential difference. It is a figure which shows the electrode purification body i26 utilized for the battery which sterilizes living organisms and microorganisms 2 by electrical sterilization and electrochemical sterilization, and also stores static electricity. Metal electrode A5, metal electrode B6, metal electrode C7, and metal electrode D8 of different types of electrochemical potential columns having an area on the surface of cloth, resin or charcoal cloth 4 are coiled, separated and fixed in parallel, separated Spacer cloth, resin or charcoal cloth 4 is inserted and fixed between the electrodes, and the electrode plate is used as a parallel capacitor to store electrical energy. When immersed in seawater or water 1, an electrochemical reaction occurs due to the electrode potential difference, and organisms and microorganisms are sterilized. Moreover, it is a figure which shows the right side surface of the electrode purification body i26 utilized for the battery which makes an electrical energy electrical storage. The fine particle electrode A31 and the fine particle electrode B32 having different electrochemical potential columns are fixed to the surface of the cloth, resin or charcoal cloth 4, and both surfaces of the fine particle electrode are covered with the paint 10, or the fine particle electrode A31, the fine particle electrode B32, or the fine particle The electrode C33, the fine particle electrode D34, the fine particle electrode E35, etc. are laminated or arranged in parallel, and the hull 13 is painted, and the fine particle electrode j27 is used as a parallel capacitor to form an electric double layer capacitor, thereby improving the flow of metal ions. When the capacitor is formed and the hull 13 is immersed in seawater or water 1, an electrochemical reaction is caused by the electrode potential difference, electric energy is stored and used as a battery, and organisms and microorganisms are used for sterilization by electrical sterilization and electrochemical sterilization. It is a figure which shows the electrode purification body j27. A fine particle electrode A31 and a fine particle electrode B32 of different kinds of electrochemical potential columns are laminated or fixed in parallel on the surface of the cloth, resin or charcoal cloth 4, and the upper surface is covered with the paint 10, and further the fine particle electrode C33 is fixed and the surface is coated. The particle electrode A31, the particle electrode B32, and the particle electrode C33 are laminated or arranged in parallel, the particle electrode is a parallel capacitor, an electric double layer capacitor is formed, the flow of metal ions is improved, and the hull 13 purifies the particle electrode Painted with paint 10 containing body k28, immersed in seawater, water 1 causes an electrochemical reaction due to electrode potential difference, stores electrical energy and uses it as a battery, and sterilizes organisms and microorganisms by electrical sterilization and electrochemical sterilization. It is also a diagram showing a particulate electrode purification body k28 used in a battery that stores electrical energy. The surface of the cloth, resin or charcoal cloth 4 is coated with the paint 10 between the fine particle electrode A31, the fine particle electrode B32, the fine particle electrode C33, the fine particle electrode D34, etc. having different electrochemical potential columns, and fixed. B32, the fine particle electrode C33, and the fine particle electrode D34 are laminated or arranged in parallel, the fine particle electrode is used as a parallel capacitor to form an electric double layer capacitor, the flow of metal ions is improved, and the hull 13 is a paint containing the fine particle electrode purifier L29. When painted in 10 and immersed in seawater or water 1, an electrochemical reaction occurs due to the potential difference of the electrode, and electric energy is stored and used as a battery. Biological organisms and microorganisms 2 are sterilized by electrical sterilization and sterilization by electrochemical sterilization. It is a figure which shows the fine particle electrode purification body L29 utilized for the battery to make. Particulate electrodes A31, particulate electrode B32, particulate electrode C33 are laminated or coated in parallel with paint 10, and the upper and lower surfaces are covered with cloth, resin or charcoal cloth 4, or paint 10, and different types of electrochemical potential columns The fine particle electrode A31, the fine particle electrode B32, and the fine particle electrode C33 are separated from each other, and are laminated or coated in parallel with the paint 10 so that the electrodes are parallel capacitors, and an electric double layer capacitor is formed. It is a figure which shows microparticle electrode purification body m30 which raise | generates and uses as a battery which collects electrical energy mainly and stores it, and also sterilizes living organisms and microorganisms by electrical sterilization and electrochemical sterilization. It is the photograph which image | photographed the discharge phenomenon of the electrode purification body of the experimental result which this inventor performed. It is a figure which shows the electrode purification body of the shape of the three laminated electrodes of zinc (tongue board), a copper plate, and a silver plate (T10004). It is a figure which shows the shape of 4 laminated electrodes of a zinc material, stainless steel, aluminum, and a silver plate (T10005). It is an electrolysis figure of water. (Supervised by Kunihiko Watanabe and Shoji Kubota, “New Water Science and Utilization Technology”, published by Scien Forum, Inc.) November 10, 1992, P303,

3年間かけて前記金属を組み替えて次の実験を実施、異なる種類の金属を組み替え布、樹脂又は炭クロスの表面に金属を少なくとも2種類以上の異なる金属を離間し平行に固着、又少なくとも2種類以上の異なる金属を離間し金属の間に布又は炭クロスを挿入し金属を積層に重ねて大きい布又は炭クロスに固着し、水中に浸漬すことにより水電池になり水がある限り放電、充電を繰り返し発電機能があり、又静電気を発生し続けている燃料電池であることを確認する。  The following experiment was carried out after recombination of the above metals for 3 years. At least two kinds of different metals were fixed on the surface of the cloth, resin or charcoal cloth, and at least two kinds of metals were fixed in parallel. Separate the above different metals, insert cloth or charcoal cloth between the metals, stack the metal on the laminate and fix it on a large cloth or charcoal cloth, soak in water to become a water battery, discharge and charge as long as there is water Confirm that the fuel cell has a power generation function and continues to generate static electricity.

実験で風呂の汚染状況を調べると、新しい湯は微生物で汚染されていないが、しかし入浴後、一般細菌は18333〜31188CFU/mL個を検出し、入浴するたびに湯は汚染され、残り湯は足し湯機能を利用し加熱するたびに微生物が増殖する。適温20〜45℃に達し、微生物は繁殖し、湯が汚染される。表3及び図1に示すように、時間経過に従い細菌が増え水の汚染が進行する。  When the contamination of the bath was examined in the experiment, new hot water was not contaminated with microorganisms, but after bathing, general bacteria detected 18333-31188 CFU / mL, and hot water was contaminated every time the bath was taken. Microorganisms grow each time they are heated using the additional hot water function. The optimum temperature reaches 20-45 ° C., the microorganisms propagate and the hot water is contaminated. As shown in Table 3 and FIG. 1, bacteria increase with the passage of time and water contamination proceeds.

以上の実験結果の根拠を、以下の表4−1〜13に示す。表4−1〜6は、件名:検体中のカビ菌類の存在確認と同定(有限会社ケアティス、代表取締役坂田和彦)の検査報告書である。表4−7〜13は、件名:検体中微生物検査(有限会社ケアティス、代表取締役坂田和彦)の検査報告書である。
The basis of the above experimental results is shown in Tables 4-1 to 13 below. Tables 4-1 to 6 are inspection reports of the subject: presence confirmation and identification of mold fungi in the specimen (Caretis Co., Ltd., representative director Kazuhiko Sakata). Tables 4-7 to 13 are test reports on subject: microbiological test in specimen (Caretis Co., Ltd., representative director Kazuhiko Sakata).

本発明者は、実験で電圧、電流、抵抗を確認するため電気化学ポテンシャル列の異なる種類の金属、トタン材、銅材、銀材、(T−7101)の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と溶解液(風呂の残り湯50ml)をプラスチック容器入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えその後又減少する「充電、放電」を水が有る限り長期に渡り繰り返す水電池になり、測定値は表5に示す通りであり、電極形状は図2に示す通りである。  The present inventor inserted charcoal cloth between the electrodes of different kinds of metals, tin materials, copper materials, silver materials, and (T-7101) in the electrochemical potential sequence in order to confirm the voltage, current, and resistance through experiments. The laminate was fixed on a large charcoal cloth, and three laminated electrodes and a solution (50 ml of hot water remaining in the bath) were placed in a plastic container, and the voltage, current, and resistance were measured for three days. A voltage, current, and resistance value are generated between different electrodes, and the voltage and current gradually increase and then decrease again. As long as water is present, the water battery is repeated over a long period. The measured values are shown in Table 5. The electrode shape is as shown in FIG.

更に、トタン板、銅板、銀板の電極間に布を挿入し3積層電極とし(T−7102)3日間を測定すると水電池になり放電、充電を繰り返し続けて測定値は表6に示す取りである。  Furthermore, a cloth is inserted between the electrodes of the tin plate, the copper plate, and the silver plate to form a three-layer electrode (T-7102). When measured for 3 days, it becomes a water battery and the discharge and charge are continuously repeated. It is.

以上の実験結果の詳細を表7に示す。表7は、新潟県工業技術総合研究所発行の試験成績書(第21−0353号、(1)電流、電圧、抵抗の測定)である。
The details of the above experimental results are shown in Table 7. Table 7 is a test report (No. 21-0353, (1) Measurement of current, voltage and resistance) issued by Niigata Prefectural Industrial Technology Research Institute.

供試した電解液を分析するとC、O、Si、Ca、Fe、Cu、Znが検出された。トタン板の亜鉛は糸状に溶出、酸化で黒く変色、水の電気分解の電気化学反応が起きる(表7,表8参照)。  Analysis of the electrolyte solution tested revealed C, O, Si, Ca, Fe, Cu, and Zn. The zinc on the tin plate elutes in the form of threads, turns black when oxidized, and undergoes an electrochemical reaction of water electrolysis (see Tables 7 and 8).

表9−1〜2は、新潟県工業技術総合研究所発行の試験成績書(第21−0367号、(1)X線マイクロアナライザ分析(定性分析))である。表9−3は、新潟県工業技術総合研究所発行の試験成績書(第21−0367号の2、(1)定量分析)である。Tables 9-1 and 2-2 are test results issued by Niigata Industrial Technology Research Institute (No. 21-0367, (1) X-ray microanalyzer analysis (qualitative analysis)). Table 9-3 is a test report issued by Niigata Prefectural Industrial Technology Research Institute (No. 21-0367-2, (1) Quantitative Analysis).

以上の亜鉛電極(トタン板)の表面は電気化学反応(酸化還元反応)で亜鉛が糸状に、100μm×11mm溶出している。(図3、4参照)、  On the surface of the above zinc electrode (tin plate), zinc is eluted in a thread form in an amount of 100 μm × 11 mm by an electrochemical reaction (redox reaction). (See FIGS. 3 and 4),

上述の金属イオン測定実験で、電極T−7102である、六角亜鉛板(トタン板)、銅板、銀板を離間し布を挿入し3積層電極を大きい布に固着し、電極と電解液50ml(風呂の残り湯)をプラスチック容器に入れ10日経過のイオンを測定した。亜鉛イオンは3.99ppm、銅イオンは0.11ppmに大幅に増え、銀イオンは微量に増を確認し、電気化学反応が起こった(表10参照)。  In the above-mentioned metal ion measurement experiment, the hexagonal zinc plate (tin plate), the copper plate, and the silver plate, which are the electrodes T-7102, were separated, the cloth was inserted, and the three laminated electrodes were fixed to the large cloth, and the electrode and the electrolyte 50 ml ( The remaining hot water of the bath was placed in a plastic container, and the ions after 10 days were measured. Zinc ions were greatly increased to 3.99 ppm, copper ions were significantly increased to 0.11 ppm, and silver ions were confirmed to increase slightly, and an electrochemical reaction occurred (see Table 10).

更に、炭クロスの表側に銀線、裏側に銅線を固着し(以下、浄化体という)、浴槽に浸漬して風呂を沸かし、その後浄化体を撤去して風呂を利用、6ケ月経過後の残り湯の金属イオンを測定し、測定値を比較した結果を表10に示す。  Furthermore, a silver wire is fixed to the front side of the charcoal cloth, and a copper wire is fixed to the back side (hereinafter referred to as “purified body”). The bath is immersed in a bathtub to boil, and then the purified body is removed and the bath is used. Table 10 shows the results of measuring the metal ions of the remaining hot water and comparing the measured values.

上記電極、亜鉛材(トタン板)、銅材、銀材の3積層電極と電解液(風呂の残り湯)をプラスチック容器に50ml入れ静電気容量を測ると電位は−1kv、乾燥状態で電極単体では−0.5kvの高静電気を帯電する(12時間経過測定)。測定器はスタティックロケーター、型式:Z−201、ホーザン株式会社製で測定する。  50ml of the above electrode, zinc material (tin plate), copper material, silver material and 50ml of electrolyte (residual hot water in a bath) are placed in a plastic container and the electrostatic capacity is measured. Charge high static electricity of -0.5 kv (measurement over 12 hours). The measuring device is a static locator, model: Z-201, manufactured by Hozan Co., Ltd.

実験で浴槽の淵と底に電極A5(銀材)、電極B6(銅材)を組み込んだ浄化体を固着し、水を交換せず7日間の入浴に供し、毎日浴槽の水を抽出し細菌と黴とを検出した。風呂釜を清掃した垢の残りかすが釜より剥離し浴槽内は微生物で汚染され、浴槽の中央を浮遊するが一般細菌、黴、酵母は湯の対流で淵の浄化体に付着し、微生物の増殖を防ぎ、滅菌効果あることがわかった(表11,図5、6参照)。  In the experiment, a purification body incorporating electrode A5 (silver material) and electrode B6 (copper material) was fixed to the tub and bottom of the bath, and the bath was exchanged for 7 days without exchanging water. And cocoon were detected. The remaining residue of the cleaning pot is detached from the pot and contaminated with microorganisms in the bathtub, and floating in the center of the bathtub, but general bacteria, koji, and yeast adhere to the purifier of the koji by hot water convection, and the growth of microorganisms It was found that there was a sterilization effect (see Table 11, FIGS. 5 and 6).

電極の亜鉛材(トタン板)1枚を炭クロスに固着した1層電極と銀、亜鉛(トタン板)、銅を離間し炭クロスを挿入した3積層電極を大きい炭クロスに固着、各電極を電解液に入れ、金属イオンの発生量を比較すると金属イオンは3積層電極の方は1層電極より多く溶出、電食作用、腐食作用は異なる起電力レベルの電極電位差が大きい3積層電極は金属イオンが強く電気化学反応の反応性を加速する。  A single-layer electrode in which one zinc material (tin plate) is fixed to a charcoal cloth and a three-layer electrode in which silver, zinc (copper plate) and copper are separated and a charcoal cloth is inserted are fixed to a large charcoal cloth, and each electrode is Compared with the amount of metal ions generated in the electrolyte solution, metal ions are eluted more in the three-layer electrode than in the one-layer electrode, and the electrode potential difference at different electromotive force levels is different for the three-layer electrode. Ions are strong and accelerate the reactivity of electrochemical reactions.

金属電極の固体を細かい粉体、微粒子に分割加工すると総表面積は飛躍的に大きくなり、静電気は表面に多く帯電、又金属イオンを多く発生する。  When the metal electrode solid is divided and processed into fine powders and fine particles, the total surface area increases dramatically, and a large amount of static electricity is charged on the surface and many metal ions are generated.

更に、実験でアルミニウム線1.0mmと銀線0.3mmを炭クロスの上に離間し配置、培養液(100ml)を入れて浄化体を製作し、一般細菌(大腸菌)を入れ観察すると電気化学反応により細菌は銀側に引寄せられ、さらに単1形電池、1.5Vを接続、電流が流れ電気化学反応(酸化還元作用)で大腸菌は通電12時間後に滅菌し微生物の滅菌時間が短縮、滅菌効果が向上する。  Furthermore, in the experiment, an aluminum wire 1.0 mm and a silver wire 0.3 mm are placed apart from each other on a charcoal cloth, a culture solution (100 ml) is put in to produce a purified body, and general bacteria (E. coli) are put in and observed. Bacteria are attracted to the silver side by the reaction, and a single battery, 1.5V is connected, current flows and an electrochemical reaction (redox action) sterilizes E. coli 12 hours after energization, shortening the sterilization time of microorganisms, The sterilization effect is improved.

更に実験で浴槽の淵と浴槽の底に上記電極浄化装置を固着し、浴槽の水の汚れ、微生物の増殖を防ぎ減菌対策ができ、残り湯の利用期間は1日間から5日間に延び、水資源節約、二酸化炭素を削減出来ることがわかった。  Furthermore, in the experiment, the above-mentioned electrode purification device was fixed to the bathtub tub and the bottom of the bathtub to prevent sterilization measures by preventing the contamination of the water in the bathtub and the growth of microorganisms. The remaining hot water usage period was extended from 1 day to 5 days, It was found that water resources can be saved and carbon dioxide can be reduced.

溶解液は布、又炭クロスにすぐに浸透しない、しかし布、炭クロスに電極A(銀材)と電極D(アルミニウム材)を固着、起電力の差が大きいと静電気の電流が流れる静電気作用、イオン作用で溶解液は短時間で浸透する。  The solution does not penetrate the cloth or charcoal cloth immediately, but the electrode A (silver material) and the electrode D (aluminum material) are fixed to the cloth or charcoal cloth. The solution permeates in a short time by ionic action.

更に実験で銀材、亜鉛材、銅材(T−8001)と銀材、アルミニウム、銅材(T−8003)の電極は抗菌効果が優れることを確認した。  Furthermore, it was confirmed by experiments that the silver, zinc, copper (T-8001) and silver, aluminum, copper (T-8003) electrodes have excellent antibacterial effects.

大腸菌の滅菌実験は電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属、銀材、亜鉛材(トタン板)、銅材(T−8001)を離間し炭クロスを挿入した3積層電極は大きい炭クロスに固着、培養液100ml入れ、大腸菌を培養、35℃に保温、24時間で大腸菌の検体を1,000個/mlに倍希釈、生物汚染測定を3M社製ペトリフィルム、チッソ株式会社製サニ太くんで確認した。細菌の死滅を確認でき、大腸菌群のコロニーが青色〜うす緑色に変色せず、菌は検出せず完全に抗菌効果を検証できた。供試後の大腸菌群の死滅を図7に示す。  The sterilization experiment of E. coli is made of three kinds of metals with different electrochemical potential sequences. Three layers of metal, silver material, zinc material (tin plate), copper material (T-8001) with electromotive force level and charcoal cloth inserted. The electrode is fixed to a large charcoal cloth, 100 ml of culture solution is added, E. coli is cultured, incubated at 35 ° C., the E. coli specimen is doubled to 1,000 cells / ml in 24 hours, and biological contamination is measured by 3M Petri film, Chisso It was confirmed by Sani-ta-kun made by Co., Ltd. Bacterial death could be confirmed, colonies of coliform bacteria did not change from blue to light green, no bacteria were detected, and the antibacterial effect could be completely verified. The death of the coliform group after the test is shown in FIG.

コントロールとして金属浄化装置を除去したイオン水100ml培養液に大腸菌を入れ培養、35℃に保温、24時間培養、大腸菌は検体を1,000個/mlに倍希釈、微生物汚染測定をチッソ株式会社製サニ太くんで確認した。細菌は死滅せず、大腸菌群のコロニーが青色〜緑色に発色し菌の検出を確認した。供試後の大腸菌群の発育、増殖を図8に示す。  As a control, Escherichia coli was placed in a 100 ml culture solution of ionic water from which the metal purifier was removed, incubated at 35 ° C. and cultured for 24 hours, and the Escherichia coli was diluted 1000 times / ml for specimens. Sani thickened and confirmed. The bacteria did not die, and colonies of the coliform group developed from blue to green, confirming the detection of the bacteria. The growth and proliferation of the coliform group after the test is shown in FIG.

大腸菌の滅菌実験として電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属電極は銀材、アルミニウム材、銅材(T−8003)を離間し炭クロスを挿入した3積層電極(図9参照)は大きい炭クロスに固着し、培養液100ml入れ大腸菌を培養、35℃に保温、72時間点で大腸菌は生物汚染測定のペトリフィルム、チッソ株式会社製サニ太くんで確認した。細菌は死滅し、大腸菌群のコロニーが青色〜うす緑色に変色せず、抗菌効果は優れていることがわかった。供試後の大腸菌群の死滅する図7に示す。  As a sterilization experiment for Escherichia coli, the metal electrodes with different electromotive potential lines have three electromotive force levels, and three stacked electrodes with silver, aluminum, and copper (T-8003) spaced apart and charcoal cloth inserted (Fig. 9) was fixed to a large charcoal cloth, and 100 ml of the culture solution was put in, and E. coli was cultured, and kept at 35 ° C., and at 72 hours, the E. coli was confirmed with Petri film for biofouling measurement, Sani thick from Chisso Corporation. The bacteria were killed and the colonies of the coliform group did not turn from blue to light green, indicating that the antibacterial effect was excellent. FIG. 7 shows the death of the coliform group after the test.

大腸菌の滅菌実験として電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属電極は銀材、亜鉛材(トタン板)、銅材(T−8001)と銀材、アルミニウム材、銅材(T−8003)の離間に炭クロスを挿入、3積層電極を大きい炭クロスに配置、培養液100ml入れた試験液とコントロール(イオン水390mV)の酸化還元電位は3、6、24、72時間経過を測定、72時間後、試験液T−8001は275mV、T−8003は283mVで酸化還元電位がマイナスに下り降順の還元、上がる昇順の酸化を繰り返すことがわかった(図10参照)。電極と試験液の間に不対電子が発生しフリーラジカルになると考えられる。表12に実験結果を示す。  As a sterilization experiment of Escherichia coli, the metal electrodes with different electromotive potential sequences have electromotive force levels of silver, zinc (tongue), copper (T-8001) and silver, aluminum, copper Insert the charcoal cloth into the space of (T-8003), place the three laminated electrodes on the large charcoal cloth, and the redox potential of the test solution containing 100 ml of the culture solution and the control (ion water 390 mV) is 3, 6, 24, 72 hours After 72 hours from the measurement, it was found that the test solution T-8001 was 275 mV, the T-8003 was 283 mV, and the redox potential was negative and the reduction in descending order and the ascending order of oxidation were repeated (see FIG. 10). It is thought that unpaired electrons are generated between the electrode and the test solution and become free radicals. Table 12 shows the experimental results.

実験を開始して72時間後の試験液の金属イオンの発生を調べるためパックテストを行った。株式会社共立理化学研究所製で測定、T−8001で亜鉛イオンが5mg/L(ppm)、銅イオン0.5mg/L(ppm)、T−8003で銅イオン1.0mg/L(ppm),アルミニウムイオン0.5mgAl/L(ppm)、銀イオン≒0近い微量の発生を確認した。電気化学反応(酸化還元反応)が起り、表10と同じ傾向の金属イオンが生成する。  A pack test was conducted to examine the generation of metal ions in the test solution 72 hours after the start of the experiment. Measured by Kyoritsu Riken Co., Ltd., zinc ion 5 mg / L (ppm) at T-8001, copper ion 0.5 mg / L (ppm), copper ion 1.0 mg / L (ppm) at T-8003, It was confirmed that trace amounts of aluminum ions 0.5 mg Al / L (ppm) and silver ions ≈ 0 were generated. An electrochemical reaction (redox reaction) occurs, and metal ions having the same tendency as in Table 10 are generated.

電極に銀材、アルミニウム材、銅材の離間に炭クロスを挿入、3積層電極を炭クロスに固着、電解液(イオン水)に入れると24〜72時間経過後、アルミニウムイオンが0.5mgAl/L(ppm)溶出る(表13参照)  Inserting a charcoal cloth between the silver material, aluminum material and copper material on the electrode, fixing the three-layered electrode to the charcoal cloth, and putting it in the electrolyte (ionic water), after 24 to 72 hours, the aluminum ion is 0.5 mg Al / L (ppm) elute (see Table 13)

防カビ評価実験のコントロールは炭クロス(わし炭)、銀材、亜鉛材(トタン板)と銅材を離間し炭クロスを挿入した3積層電極を大きい炭クロスに固着、銀材、アルミニウム材と銅材の離間に炭クロスを挿入した3層電極を大きい炭クロスに固着、銀材−炭クロス、銅−炭クロス、亜鉛材(トタン板)−炭クロス、アルミニウム材−炭クロスの7組の評価試験片を作成、供試カビはクロコウジカビ、アカカビの2種類を使用した。(表15参照)  The control of the anti-fungal evaluation experiment was to fix a three-layered electrode with a charcoal cloth (wax charcoal), silver material, zinc material (tin metal plate) and copper material apart and inserted a charcoal cloth to a large charcoal cloth, Three-layer electrode with charcoal cloth inserted between copper materials is fixed to a large charcoal cloth, and seven sets of silver material-charcoal cloth, copper-charcoal cloth, zinc material (tonned plate) -charcoal cloth, aluminum material-charcoal cloth An evaluation test piece was prepared, and two types of mold were used: black mold and red mold. (See Table 15)

防カビの実験は防カビの評価として防カビーA、防カビーB(防カビーBα、防カビーBβ)、防カビーCの3評価行う(表15参照)。実験結果は表16の通りである。  The anti-fungal experiment involves three evaluations of anti-mold A, anti-bibee B (anti-bibee Bα, anti-bibee Bβ), and anti-mold C (see Table 15). The experimental results are shown in Table 16.

抗カビを評価すると、防カビーBβの方法でカビ生育抑制作用を表16で確認する。  When antifungal is evaluated, the fungus growth inhibitory action is confirmed in Table 16 by the antifungal Bβ method.

防カビーC評価における酸化還元電位(ORP)値は下がる降順の還元、又上がる昇順の酸化を繰り返す、変移は図11の通りで、カビに対し試験片毎の傾向は確認できない。  The oxidation-reduction potential (ORP) value in the anti-fungal C evaluation repeats reduction in descending order and oxidation in ascending order. The transition is as shown in FIG.

電気化学ポテンシャル列の異なる種類の金属で起電力レベルを持つ3積層電極は抗菌、抗カビ効果を確認出来た(表16、17参照)。  Three laminated electrodes with electromotive force levels of different kinds of metals in the electrochemical potential row were confirmed to have antibacterial and antifungal effects (see Tables 16 and 17).

無機系抗菌剤とりわけ銀および銅を抗菌効果の主体とするものが多方面で使用され、又銅イオンおよび銀イオンの抗菌性が証明されている。(例えば、高山正彦、他著、「防菌防黴」日本防菌防黴学会誌、平成6年9月10日発行、1994VOL.22、NO.9、P.13)しかしながら、単独の金属イオンでは濃度が高くないと十分な抗菌作用を発揮できない。  Inorganic antibacterial agents, particularly those containing silver and copper as the main antibacterial effect, are used in various fields, and the antibacterial properties of copper ions and silver ions have been proven. (For example, Masahiko Takayama, et al., “Anti-bacterial and anti-bacterial”, Journal of the Japanese Anti-bacterial and Anti-bacterial Society, published on September 10, 1994, 1994 VOL. 22, NO. 9, P. 13) However, a single metal ion However, sufficient antibacterial action cannot be exhibited unless the concentration is high.

防カビーAの培養実験はJISZ2911に準じた方法により寒天培地でカビ胞子懸濁液をスプレーするが、寒天の固まった状態のコロイドのゲルは試験片から発生する静電気放電、コロナ放電、金属イオン、フリーラジカル作用がゲルの電気泳動、ブラウン運動作用で抗カビ効果を弱める。  The antifungal A culture experiment was carried out by spraying a mold spore suspension on an agar medium according to a method according to JISZ2911, but the colloidal gel in the agar solidified state was electrostatic discharge generated from the test piece, corona discharge, metal ion, Free radical action weakens the antifungal effect by gel electrophoresis and Brownian motion action.

以上の実験の詳細を表18に示す。  The details of the above experiment are shown in Table 18.

本発明者が行った実験で、撮影場所は全暗にしてカメラを設置、亜鉛板、銅板、銀板の3積層電極間に炭クロスを挿入、3積層電極を少し大きい炭クロスに固着、3積層電極はガラス容器(7l)に水道水(3.5l)を入れ透明の○30×50mm台に設置、電極を浸漬させると電場形成、静電気、電圧、電流が発生し、電圧、電流を電気二重層キャパシタに電気エネルギーを貯蔵、許容電圧を超えると放電する発光現象を写真に撮影図29、電極の形状は図30に示す通りである。カメラはキャノンEOS1、レンズはキャノンマクロ100mm、F2.8、バルブ(長時間露出)機能付き、フィルムはFUJIFILM ナチュラル1600、現像時点の感度は3200。以上の写真撮影の結果を図29に示す。
この実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10001)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と電解液(純水50ml)をプラスチック容器に入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えてその後又減少する「充電、放電」を純水が有る限り長期に渡り繰り返す亜鉛電池になり、測定値は表19に示す通りであり、電極形状は図2に示す通りである。
更に、亜鉛板、銀板、銅板の電極間に布を挿入し3積層電極とし(T−10002)3日間を測定すると亜鉛電池になり放電、充電を繰り返し続けて測定値は表20に示す通りである。
表21−1〜3は、新潟県工業技術総合研究所発行の試験成績書(試験成績書第22−0016号、(1)電流、電圧、抵抗の測定、(2)遠赤外線放射量の測定)である。更に実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10003)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、遠赤外線を測定、測定波長は1.3μm〜14.5μm、有効波長が3.0μm〜14.5μmであり遠赤外線を亜鉛板から放射を確認、測定値は表21−1〜3に示す通りであり、電極形状は図2に示す通りである。以上の実験結果の詳細を表21−1〜3に示す。
In an experiment conducted by the present inventor, a camera was installed with the shooting place completely dark, a charcoal cloth was inserted between three laminated electrodes of a zinc plate, a copper plate, and a silver plate, and the three laminated electrodes were fixed to a slightly larger charcoal cloth. Laminated electrodes are placed in a glass container (7 l) with tap water (3.5 l) and placed on a transparent circle of 30 x 50 mm. When the electrodes are immersed, electric field formation, static electricity, voltage and current are generated, and the voltage and current are FIG. 29 is a photo of the light emission phenomenon where electric energy is stored in the double layer capacitor and discharge occurs when the allowable voltage is exceeded, and the shape of the electrode is as shown in FIG. The camera is Canon EOS1, the lens is Canon Macro 100mm, F2.8, with bulb (long exposure) function, the film is FUJIFILM Natural 1600, and the sensitivity at the time of development is 3200. The results of the above photography are shown in FIG.
In this experiment, a charcoal cloth is inserted between the electrodes of different types of metals, zinc materials, silver materials, copper materials, and (T-10011) electrodes having different electrochemical potential sequences, and is fixed to a large charcoal cloth in three layers. The laminated electrode and the electrolytic solution (pure water 50 ml) were placed in a plastic container, and the voltage, current, and resistance were measured for 3 days. Voltage, current, and resistance values are generated between different electrodes, and the voltage and current gradually increase and then decrease again. “Charge, discharge” becomes a zinc battery that repeats over a long period as long as pure water is present. The electrode shape is as shown in FIG.
Furthermore, a cloth is inserted between the electrodes of the zinc plate, silver plate, and copper plate to form a three-layer electrode (T-1202). When measured for 3 days, a zinc battery is formed, and discharging and charging are repeated, and the measured values are as shown in Table 20. It is.
Tables 21-1 to 3-3 show test results issued by Niigata Prefectural Industrial Technology Research Institute (Test Result No. 22-0016, (1) Measurement of current, voltage, resistance, and (2) Measurement of far-infrared radiation. ). Furthermore, in the experiment, a charcoal cloth was inserted between the electrodes of different kinds of metals, zinc materials, silver materials, copper materials, and (T-10003) of electrochemical potential trains, and three layers were stacked and fixed to a large charcoal cloth. Infrared was measured, the measurement wavelength was 1.3 μm to 14.5 μm, the effective wavelength was 3.0 μm to 14.5 μm, and the far infrared rays were confirmed to be emitted from the zinc plate. The measured values are as shown in Table 21-1 to 3 The electrode shape is as shown in FIG. The details of the above experimental results are shown in Tables 21-1 to 21-3 .

実験で亜鉛板、ステンレス、アルミニウム板、銀板を4積層にし、その間に布又炭クロスを挿入、少し大きい布又炭クロスに固着した4積層電極は水蒸気が存在する状態(空気中)で電場形成、静電気、電圧、電流を発生、外部からの電気化学的腐食反応促進として太陽光を電極表面に当てると温度上昇し、電気化学反応が促進、又電解溶液、高温条件の温水、海水、低温条件の氷の浮かぶ海水に浸漬、又凍結条件の氷の中に電極を閉じ込めると電気化学的反応(電気化学的腐食反応)が更に活発になり、電場形成し、静電気、電圧、電流値を大きく生じ、電極形状は図31に示す通りである。以上の実験結果の詳細を表22に示す。
In the experiment, zinc plates, stainless steel, aluminum plates, and silver plates were made into 4 layers, and a cloth or charcoal cloth was inserted between them, and the 4 layers electrode fixed to a slightly larger cloth or charcoal cloth had an electric field in the presence of water vapor (in the air). Formation, generation of static electricity, voltage, current, and the application of sunlight to the electrode surface as acceleration of electrochemical corrosion reaction from the outside, the temperature rises and the electrochemical reaction is accelerated, and the electrolytic solution, hot water under high temperature conditions , seawater, low temperature When immersed in seawater with floating ice conditions or confined in frozen ice conditions, the electrochemical reaction (electrochemical corrosion reaction) becomes more active, forming an electric field, and increasing the static electricity, voltage, and current values. The electrode shape is as shown in FIG. The details of the above experimental results are shown in Table 22.

実験で、起電力の異なる金属電極を2組以上組み合わせた浄化体を電解溶液に浸漬すると電極電位差を原動力として電気化学反応(電気化学的腐食)が起こし、発生電圧、電流を布又炭クロスの電気二重層キャパシタに蓄積、水の電気分解を起こす電圧1.4V付近に達し放電で水の電気分解を起こし、陰極の金属表面に水素ガスの泡が発生、陽極の金属表面に酸素ガスが発生により酸化することを確認す。  In the experiment, when a purifier consisting of two or more sets of metal electrodes with different electromotive forces is immersed in an electrolytic solution, an electrochemical reaction (electrochemical corrosion) occurs using the electrode potential difference as the driving force, and the generated voltage and current are changed between the cloth and charcoal cloth. Accumulated in the electric double layer capacitor, the voltage causing electrolysis of water reaches a voltage of around 1.4V, causing electrolysis of water by discharge, generating hydrogen gas bubbles on the metal surface of the cathode, and oxygen gas generating on the metal surface of the anode Confirm that it oxidizes.

実験で、起電力の異なる金属電極の銀線とアルミニウム線を離間し炭クロスに固着、電解溶液に浸漬すると電位差で電気化学反応が起こり、静電気が発生、電場形成、電解溶液中に分散の大腸菌群は陰極の銀線に集菌、更に単一電池(1.5V)で銀線とアルミニウム線に印加すると銀線電極の表面に集菌し12時間経過する大腸菌群が集積死滅し検査で殺菌が検出されない。  In the experiment, the silver wire and the aluminum wire of the metal electrodes with different electromotive forces were separated and fixed to the charcoal cloth, and when immersed in the electrolytic solution, an electrochemical reaction occurred due to a potential difference, static electricity was generated, electric field formation, and E. coli dispersed in the electrolytic solution The group collects bacteria on the silver wire of the cathode, and when applied to the silver wire and aluminum wire with a single battery (1.5V), the bacteria collect on the surface of the silver wire electrode and the E. coli group that has passed for 12 hours accumulates and dies and is sterilized by inspection. Is not detected.

電極上で培養したHeLa細胞について、−0.2V〜+1.2V定電位を印加したときの細胞の形態および増殖に及ぼす電気効果を示す。細胞膜表面はマイナスに帯電しているため−0.2Vから+0.4Vで細胞は電位に応じて、本来の紡錘形から球状へと形態変化が観察されるものの死に至ることはない。+0.7Vでは徐々に死滅し、+1.2Vではすべての細胞が1時間以内で死滅する。
(非特許文献)財団法人電気化学会著、「電気化学便覧」丸善株式会社出版、2000年6月30日発行、細胞制御技術、P339
The electrical effect which acts on the morphology and proliferation of a cell when applying a -0.2V- + 1.2V constant potential about the HeLa cell cultured on the electrode is shown. Since the surface of the cell membrane is negatively charged, cells are observed to change in shape from an original spindle shape to a spherical shape depending on the potential at −0.2 V to +0.4 V, but do not die. At + 0.7V, gradually die and at + 1.2V all cells die within 1 hour.
(Non-Patent Document) The Electrochemical Society of Japan, “Electrochemical Handbook” published by Maruzen Co., Ltd., published on June 30, 2000, Cell Control Technology, P339

「電解圧以下の電圧でつくられる水の電気分解」水の分子は電場が加わっていない時でもHO→ H + OH で表せる平衡状態にあり、水は電場がかかっていない時でも、各イオンの反対符号の電極面に向かって移動し、電極間に電流が流れる。この場合の電気分解は図31のDより左の部分に当たり(電解圧以下の電圧)、負極面での水素ガスの発生はあっても、正極面における酸素ガスの発生はない。水素イオンHと水酸イオンOHは各々水分子と水和結合して、H(ヒドロニウムイオン)とH (ヒドロキシルイオン)になる。これらのイオンの水の中での移動は隣の水分子にHまたはOHだけを受け渡し、結果としてイオンが移動する、いわゆる「ホッピング・モデル」による。Hイオンの移動速度に比べて2倍程度早いのと、Hイオンの放電電位が低く、電極面で容易に放電してHになりガスとなって水から失われ、一方のOHイオンのほうは電極面での放電電位が大きいため電荷をもったイオンのまま水流の中に拡散される。
水の電気分解
O → ← H + OH
水 水素イオン 水酸イオン
+ HO → H[水素イオンの一部はHガス(水素ガス)になる]
水素イオン 水 ヒドロニウムイオン
OH + HO → H
水酸イオン 水 ヒドロキシルイオン
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P304
“Electrolysis of water produced at a voltage lower than the electrolysis pressure” Even when no electric field is applied, water molecules are in an equilibrium state represented by H 2 O → H + + OH , and even when no electric field is applied to water , Each ion moves toward the opposite electrode surface, and a current flows between the electrodes. The electrolysis in this case corresponds to the left portion of D in FIG. 31 (voltage below the electrolysis pressure), and even if hydrogen gas is generated on the negative electrode surface, oxygen gas is not generated on the positive electrode surface. Hydrogen ions H + and hydroxide ions OH are hydrated with water molecules, respectively, to become H 3 O + (hydronium ions) and H 3 O 2 (hydroxyl ions). The movement of these ions in water is due to the so-called “hopping model”, in which only H + or OH is passed to the adjacent water molecules, resulting in the movement of the ions. And the fast about twice as compared with the moving speed of the H + ions, low discharge potential of H + ions, become gases will readily discharge electrode surface in H 2 lost from the water, one of OH - Since ions have a higher discharge potential on the electrode surface, they are diffused into the water stream as charged ions.
Water electrolysis H 2 O → ← H + + OH
Water Hydrogen ion Hydroxide ion H + + H 2 O → H 3 O + [Part of the hydrogen ion becomes H 2 gas (hydrogen gas)]
Hydrogen ion Water Hydronium ion OH + H 2 O → H 3 O 2 +
Hydroxyl ion Water Hydroxyl ion (Non-patent literature) Kunihiko Watabuchi, supervised by Shoji Kubota, “New water science and utilization technology”, published by Scien Forum Co., Ltd., November 10, 1992, P304

「水の電気分解と活性酸素(フリーラジカル)」、電解圧以上で電気分解された水の場合、カソード(陰極)からの水素の発生とともにアノード(陽極)から酸素が発生する。電極面から発生する酸素は空気中の酸素のように安定で活性の穏やかなものだけでなく、発生機の酸素と呼ばれる原子の酸素(O)や最近、活性酸素と呼ばれ医学および生化学において大きな問題になっている極めて活性の強い分子状の酸素、および酸素化合物がつくられる。この活性酸素は、金属類を烈しく腐食し、生体細胞の組織を攻撃・破壊して人間の老化や多くの病気の原因になることが明らかになっている。
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P307
In the case of “electrolysis of water and active oxygen (free radicals)” or water electrolyzed at an electrolytic pressure or higher, oxygen is generated from the anode (anode) together with the generation of hydrogen from the cathode (cathode). Oxygen generated from the electrode surface is not only stable and mildly active like oxygen in the air, but also atomic oxygen (O) called generator oxygen, and recently called active oxygen in medicine and biochemistry Extremely active molecular oxygen and oxygen compounds, which are a major problem, are produced. This active oxygen has been shown to corrode metals and attack and destroy biological cell tissues, causing human aging and many diseases.
(Non-patent literature) Kunihiko Watanabe, supervised by Shoji Kubota, “New Water Science and Utilization Technology”, published by Scien Forum, Inc., November 10, 1992, P307

腐食とは、金属が化学的あるいは電気化学的反応により劣化損傷する現象で、金属イオンを溶出するとともに表面になんらかの反応被膜(腐食生成物)を形成する反応である。人体中でも腐食は起こり、金属材料の毒性や破壊の原因となる。
2007年9月28日、P53
Corrosion is a phenomenon in which a metal is deteriorated and damaged by a chemical or electrochemical reaction, and is a reaction that elutes metal ions and forms a reaction film (corrosion product) on the surface. Corrosion also occurs in the human body, causing toxicity and destruction of the metal material.
September 28, 2007, P53

すき間腐食は、図33のように物資移動が妨げられる過程で、溶液側が局部的に酸性高塩化物濃度になる場合に起きる。このとき、不動態皮膜は不安定になり電気化学的に溶解する。ボーンプレートとスクリュートとの固定部の近傍、ボーンプレートと骨のすき間などで、皮膜の破壊と再生が繰り返されると、局部的にH濃度が高くなり、すき間腐食が起こりうる。また、細胞が付着した金属表面もすき間腐食のサイトとなりうる。
2007年9月28日、P120
Crevice corrosion occurs in the process where material movement is hindered as shown in FIG. 33 and the solution side is locally in an acidic high chloride concentration. At this time, the passive film becomes unstable and dissolves electrochemically. When the destruction and regeneration of the coating are repeated in the vicinity of the fixed portion between the bone plate and the screw plate, or between the bone plate and the bone, the H + concentration locally increases and crevice corrosion can occur. In addition, the metal surface to which the cells adhere can also be a site of crevice corrosion.
September 28, 2007, P120

細胞膜は細胞内外の液と比較して抵抗が、1,000倍以上も高く(10Ω・cm−1)、コンデンサとしてみなすことができる。細胞を溶液に入れ、平行電極間におき、細胞膜の力学的耐性の臨界値を超えるようなパルス電位を印加すると、放電の際に膜の一部が可逆的に破壊され、細胞に瞬時に穴が開くことから、エレクトロボレーションや細胞融合、殺菌などへ利用されている。
(非特許文献)財団法人電気化学会著、「電気化学便覧」丸善株式会社出版、2000年6月30日発行、電極による生物制御、P337
The cell membrane has a resistance that is 1,000 times higher than that of the solution inside and outside the cell (10 9 Ω · cm −1 ), and can be regarded as a capacitor. When a cell is placed in a solution, placed between parallel electrodes, and a pulse potential that exceeds the critical value of the mechanical resistance of the cell membrane is applied, a part of the membrane is reversibly destroyed during discharge, and the cell is instantaneously perforated. Since it opens, it is used for electroboration, cell fusion and sterilization.
(Non-Patent Document) The Electrochemical Society of Japan, “Electrochemical Handbook” published by Maruzen Co., Ltd., published on June 30, 2000, Biological control by electrodes, P337

実験で、起電力の異なる金属電極の銀線とアルミニウム線を離間し炭クロスに固着、電解溶液に浸漬すると電位差で電気化学反応が起こり、静電気が発生、電場形成、電解溶液中に分散の大腸菌群は陰極の銀線に集菌、更に単一電池(1.5V)で銀線とアルミニウム線に印加すると銀線電極の表面に集菌し12時間経過する大腸菌群が集積死滅し検査で殺菌が検出されない。  In the experiment, the silver wire and the aluminum wire of the metal electrodes with different electromotive forces were separated and fixed to the charcoal cloth, and when immersed in the electrolytic solution, an electrochemical reaction occurred due to a potential difference, static electricity was generated, electric field formation, and E. coli dispersed in the electrolytic solution The group collects bacteria on the silver wire of the cathode, and when applied to the silver wire and aluminum wire with a single battery (1.5V), the bacteria collect on the surface of the silver wire electrode and the E. coli group that has passed for 12 hours accumulates and dies and is sterilized by inspection. Is not detected.

電極上で培養したHeLa細胞について、−0.2V〜+1.2V定電位を印加したときの細胞の形態および増殖に及ぼす電気効果を示す。細胞膜表面はマイナスに帯電しているため−0.2Vから+0.4Vで細胞は電位に応じて、本来の紡錘形から球状へと形態変化が観察されるものの死に至ることはない。+0.7Vでは徐々に死滅し、+1.2Vではすべての細胞が1時間以内で死滅する。
(非特許文献)財団法人電気化学会著、「電気化学便覧」丸善株式会社出版、2000年6月30日発行、細胞制御技術、P339
The electrical effect which acts on the morphology and proliferation of a cell when applying a -0.2V- + 1.2V constant potential about the HeLa cell cultured on the electrode is shown. Since the surface of the cell membrane is negatively charged, cells are observed to change in shape from an original spindle shape to a spherical shape depending on the potential at −0.2 V to +0.4 V, but do not die. At + 0.7V, gradually die and at + 1.2V all cells die within 1 hour.
(Non-Patent Document) The Electrochemical Society of Japan, “Electrochemical Handbook” published by Maruzen Co., Ltd., published on June 30, 2000, Cell Control Technology, P339

以下、本発明の電極浄化体の好適な状態を、図面を参照して説明する。図12は浴槽3の淵に、筒状もしくは板状の布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5(銀材)を表面に離間し固着し、且つ裏面に電極B6(銅材)を固着した電極浄化体aを取り付けている。  Hereinafter, the suitable state of the electrode purification body of this invention is demonstrated with reference to drawings. FIG. 12 shows that a metal electrode A5 (silver material) of a different type of electrochemical potential row is fixed to the surface of the bathtub 3 on the surface of a cylindrical or plate-like cloth, resin or charcoal cloth 4 while being spaced apart and fixed to the surface. The electrode purification body a which fixed the electrode B6 (copper material) to is attached.

又、浴槽3の側面、底に網状、板状の布、樹脂又は炭クロス4の表面に電気化学ポテンシャル列の異なる種類の金属電極A5(銀材)を表面に離間し固着し、且つ裏面に電極B6(銅材)を固着した電極浄化体aを取り付けている。  In addition, a metal electrode A5 (silver material) of a different type of electrochemical potential row is fixed to the surface of the bathtub 3 on the side and bottom of the net, plate-like cloth, resin or charcoal cloth 4 and spaced on the surface. The electrode purification body a which fixed electrode B6 (copper material) is attached.

本実施の形態の電極浄化体によれば、電極電位差で電気化学反応(電気化学的腐食反応)を起こし浴槽3の中央、淵、底の近傍の湯に対して防菌、防カビの効果を発揮できる。尚、バライト水、海水、水、湯、貯水槽、プール、クーリングタワー、水道管内の水、給水用配管、給湯用配管、原子力発電の冷却海水の吸入管、等に電極浄化体を設置しても良い。  According to the electrode purification body of the present embodiment, an electrochemical reaction (electrochemical corrosion reaction) is caused by an electrode potential difference, and the antibacterial and antifungal effects are achieved against the hot water near the center, tub, and bottom of the bathtub 3. Can demonstrate. Even if an electrode purifier is installed in barite water, seawater, water, hot water, water storage tanks, pools, cooling towers, water in water pipes, water supply pipes, hot water supply pipes, cooling water intake pipes for nuclear power generation, etc. good.

海水の流れで電極浄化体の電極電位差で電気化学反応を起こし、電圧、電流が発生、放電により電圧破壊、電流破壊で生物群集、オニヒトデの防除に応用する。  Electrochemical reaction is caused by the electrode potential difference of the electrode purifier in the flow of seawater, voltage and current are generated, voltage discharge is caused by discharge, and it is applied to the control of biological communities and giant starfish by current destruction.

図13は、浴槽3の側面、底に固着する電極浄化体aに固着する電極浄化体a18の斜視図である。電気化学ポテンシャル列の異なる種類の金属電極A(銀材)、金属電極B(銅材)は、ワイヤ状であり、布、樹脂又は炭クロス4の面において直線的に配置されている。  FIG. 13 is a perspective view of an electrode purification body a18 that is fixed to the electrode purification body a that is fixed to the side and bottom of the bathtub 3. The metal electrodes A (silver material) and the metal electrode B (copper material) of different types of electrochemical potential rows are in a wire shape and are linearly arranged on the surface of the cloth, resin or charcoal cloth 4.

図14は、船舶13のバラスタンク11にバラスト水12の生物、微生物2の滅菌と船体13に付着する生物群集を滅菌するために、船体13に電極浄化体を固着したシステム断面図であり、電極浄化体b19の構成は電気化学ポテンシャル列の異なる種類の金属電極A5、金属電極B6、金属電極C7、金属電極D8、金属電極E9の網目状を離間し、離間の間に布、樹脂又は炭クロス4を挿入して固着、揚荷のバラスト水注入時は海水、水1をシーチェスト14よりポンプ17で汲み上げると海水フィルタ−16通し、海水、水1が電極浄化体b19を通過、電極電位差で電気化学反応が起こり滅菌、さらにバラストタンク11にバラスト水12が蓄えられ、電極浄化体c20、電極浄化体d21、電極浄化体e22、電極浄化体f23、電極浄化体g24等は船体の側面、底に固着、電気二重層キャパシタを形成、電極は海水、水1に浸漬すると、電極電位差で電気化学反応が起こり常に滅菌作用あり、さらに積荷時、バラスト水の排出時はポンプ17で汲み上げ、海水、水は電極浄化体b19を通り、電極浄化体b19の電極電位差で電気化学反応が起こり、滅菌作用が生じ、海、河へ吐出、生物、微生物の海洋汚染を防ぎ、同時に船体13に付着する生物群集を電気化学反応で滅菌する。  FIG. 14 is a system cross-sectional view in which an electrode purifier is fixed to the hull 13 in order to sterilize the organisms of the ballast water 12 and the microorganisms 2 and the biological communities attached to the hull 13 in the ballast tank 11 of the ship 13. The structure of the purifying body b19 is that the metal electrodes A5, metal electrode B6, metal electrode C7, metal electrode D8, and metal electrode E9 of different types having different electrochemical potential rows are separated from each other, and cloth, resin, or charcoal cloth is separated between the separations. 4 is inserted and fixed, and when injecting ballast water for unloading, when seawater and water 1 are pumped from the sea chest 14 by the pump 17, the seawater filter 16 is passed through, and the seawater and water 1 pass through the electrode purifier b19. Electrochemical reaction occurs and sterilization is performed, and further, ballast water 12 is stored in the ballast tank 11, and the electrode purification body c20, the electrode purification body d21, the electrode purification body e22, and the electrode purification body f23. The electrode purifying body g24 and the like are fixed to the side and bottom of the hull to form an electric double layer capacitor. When the electrode is immersed in seawater or water 1, an electrochemical reaction occurs due to the electrode potential difference, and there is always a sterilization effect. The water is pumped up by the pump 17, and the seawater and water pass through the electrode purifier b19, and an electrochemical reaction occurs due to the electrode potential difference of the electrode purifier b19, resulting in sterilization, discharge to the sea, rivers, organisms, and microbial oceans Contamination is prevented and, at the same time, the biological community attached to the hull 13 is sterilized by an electrochemical reaction.

図15は、電気化学ポテンシャル列の異なる種類の金属電極A5、金属電極B6、金属電極C7、金属電極D8、金属電極E9を離間し、電極の間に布、樹脂、炭クロス4を挿入して固着、電気二重層キャパシタを形成、電極の形状は網状、格子状、電極浄化体b19であり、海水、水1に浸漬すると電極電位差により電気化学反応が起こり電場形成、静電発生、放電現象が起こり生物、微生物を滅菌する。  FIG. 15 shows metal electrode A5, metal electrode B6, metal electrode C7, metal electrode D8, and metal electrode E9 of different types having different electrochemical potential rows, and cloth, resin, and charcoal cloth 4 are inserted between the electrodes. Adhesion, formation of electric double layer capacitor, electrode shape is net-like, lattice-like, electrode purifier b19, and when immersed in seawater or water 1, an electrochemical reaction occurs due to electrode potential difference, and electric field formation, electrostatic generation, and discharge phenomenon occur. Sterilizes living organisms and microorganisms.

図16は、板状の布、樹脂、炭クロス4の表面に金属電極A5、金属電極B6、金属電極C7、金属電極D8、又金属電極E9等を離間して配置、離間した間に板状の布、樹脂、炭クロス4を挿入し固着、電極は平行に配置、電気二重層キャパシタを形成、電極浄化体c20であり、電極電位差で電気化学反応が起こり、滅菌作用が生じ、海水、水1に浸漬すると電極電位差により電気化学反応が起こり電場形成、静電発生、放電現象が起こり生物、微生物を滅菌する。  FIG. 16 shows a plate-like cloth, resin, and charcoal cloth 4 with a metal electrode A5, a metal electrode B6, a metal electrode C7, a metal electrode D8, a metal electrode E9, and the like arranged apart from each other. The cloth, resin, and charcoal cloth 4 are inserted and fixed, the electrodes are arranged in parallel, the electric double layer capacitor is formed, and the electrode purifier c20, an electrochemical reaction occurs due to the electrode potential difference, sterilization occurs, seawater, water When immersed in 1, an electrochemical reaction occurs due to an electrode potential difference, and an electric field formation, electrostatic generation, and discharge phenomenon occur, and organisms and microorganisms are sterilized.

図17は、板状の布、樹脂、炭クロス4の表面に板状の金属電極A5、金属電極B6、金属電極C7、金属電極D8、又金属電極E9等を離間して配置、離間した間に板状の布、樹脂又炭クロス4を挿入し固着、電極は平行に配置、電気二重層キャパシタを形成、電極浄化体d21であり、電極電位差で電気化学反応が起こり、滅菌作用が生じ、海水、水1に浸漬すると電極電位差により電気化学反応が起こり電場形成、静電発生、放電現象が起こり生物、微生物2を滅菌する。  FIG. 17 shows a state in which a plate-like metal electrode A5, a metal electrode B6, a metal electrode C7, a metal electrode D8, a metal electrode E9, etc. are spaced apart from each other on the surface of a plate-like cloth, resin, and charcoal cloth 4. A plate-like cloth, resin or charcoal cloth 4 is inserted and fixed, electrodes are arranged in parallel, an electric double layer capacitor is formed, an electrode purifier d21, an electrochemical reaction occurs due to an electrode potential difference, and a sterilization effect occurs. When immersed in seawater or water 1, an electrochemical reaction occurs due to an electrode potential difference, and electric field formation, electrostatic generation, and discharge phenomenon occur, and the organism and microorganism 2 are sterilized.

図18は、板状の布、樹脂、炭クロス4の表面に金属電極A5、金属電極B6、金属電極C7、金属電極D8、又金属電極E9等の網状、又は格子状を離間して配置、離間した間に板状の布、樹脂又炭クロス4を挿入し固着、電極は平行に配置、電気二重層キャパシタを形成、電極浄化体e22であり、電極電位差で電気化学反応が起こり、滅菌作用が生じ、海水、水1に浸漬すると電極電位差により電気化学反応が起こり電場形成、静電発生、放電現象が起こり生物、微生物を滅菌する。  FIG. 18 shows a plate-like cloth, resin, charcoal cloth 4 on the surface of the metal electrode A5, metal electrode B6, metal electrode C7, metal electrode D8, or metal electrode E9, or the like, or spaced apart from each other. A plate-like cloth, resin or charcoal cloth 4 is inserted and fixed while being spaced apart, electrodes are arranged in parallel, an electric double layer capacitor is formed, and an electrode purifier e22, which undergoes an electrochemical reaction due to an electrode potential difference, and is sterilizing When it is immersed in seawater or water 1, an electrochemical reaction occurs due to an electrode potential difference, and an electric field formation, electrostatic generation, and discharge phenomenon occur, and organisms and microorganisms are sterilized.

図19は、板状の布、樹脂又炭クロス4の表面に固着される金属電極A5、金属電極B6、金属電極C7、金属電極D8、又金属電極E9等の変形例を示し、ここでは帯状の電極を横に並べて固着し、平行キャパシタを構成することができる電極浄化体f23である。  FIG. 19 shows a modification of the metal electrode A5, the metal electrode B6, the metal electrode C7, the metal electrode D8, the metal electrode E9, etc., which are fixed to the surface of the plate-like cloth, resin or charcoal cloth 4, and in this case, a belt-like shape This is an electrode purification body f23 that can be arranged side by side and fixed to form a parallel capacitor.

図20は、板状の布、樹脂又炭クロス4の表面に固着される金属電極A5、金属電極B6、金属電極C7、金属電極D8、又金属電極E9等の変形例を示し、ここでは帯状の電極を縦に並べて固着し、平行キャパシタを構成することができる電極浄化体g24である。  FIG. 20 shows a modification of the metal electrode A5, the metal electrode B6, the metal electrode C7, the metal electrode D8, the metal electrode E9, etc., which are fixed to the surface of the plate-like cloth, resin or charcoal cloth 4, and in this case, a belt-like shape This is an electrode purifier g24 that can be arranged in parallel and fixed to form a parallel capacitor.

図21は、円筒状の電極を同軸に重ねて配置した円筒型3層電極の浄化体である変形例の断面を示し、図22は、同変形例を軸線方向から見た図である。複数の円筒14間にスペーサーとして布又炭クロス4を挿入、円筒状の電極A5、電極B6、又電極C7、電極D8を離間し平行に並べ、平行キャパシタを構成することができる電極浄化体h25である。  FIG. 21 shows a cross section of a modified example that is a purification body of a cylindrical three-layer electrode in which cylindrical electrodes are coaxially stacked, and FIG. 22 is a view of the modified example viewed from the axial direction. A cloth or charcoal cloth 4 is inserted as a spacer between a plurality of cylinders 14, and cylindrical electrodes A5, B6, C7 and D8 are spaced apart and arranged in parallel to form an electrode purifier h25 that can constitute a parallel capacitor. It is.

図23は、コイル型の電極を同軸に重ねてコイル型3積層電極の浄化体である変形例の断面を示し、図24は、同変形例を軸線方向から見た図である。複数のコイル状間にスペーサーとして布、樹脂又炭クロス4を挿入、コイル状の電極A5、電極B6、又電極C7、電極D8を離間し平行に並べ、平行キャパシタを構成することができる電極浄化体i26である。  FIG. 23 shows a cross section of a modified example that is a purifier of a coiled three-layered electrode in which coiled electrodes are coaxially stacked, and FIG. 24 is a view of the modified example viewed from the axial direction. Electrode purification capable of forming a parallel capacitor by inserting cloth, resin or charcoal cloth 4 as a spacer between a plurality of coil shapes, and arranging coiled electrodes A5, B6, C7 and D8 spaced apart in parallel. It is the body i26.

図25は、布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B32を固着、さらに微粒子電極の両面を塗料10で覆う、微粒子電極A31、微粒子電極B32、微粒子電極C33、微粒子電極D34微粒子電極E35は、重ねて積層にし塗装、平行キャパシタを構成、電気二重層キャパシタを形成、これにより金属イオンの流れを良くし、船体13は微粒子電極を含んだ塗料10で塗装、船体13が海水、水1に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電し電池として利用、又生物、微生物、生物群集2を電気的殺菌、電気化学的殺菌で滅菌に利用する微粒子電極浄化体j27を示す図である。  In FIG. 25, the fine particle electrode A31 and the fine particle electrode B32 having different electrochemical potential columns are fixed to the surface of the cloth, resin or charcoal cloth 4, and the fine particle electrode A31 and the fine particle electrode B32 are covered with the paint 10 on both surfaces. The fine particle electrode C33, the fine particle electrode D34, and the fine particle electrode E35 are laminated and painted, forming a parallel capacitor, forming an electric double layer capacitor, thereby improving the flow of metal ions, and the hull 13 is a paint containing a fine particle electrode. When painted in 10 and the hull 13 is immersed in seawater or water 1, an electrochemical reaction occurs due to the electrode potential difference, and the electrical energy is stored and used as a battery, and the organism, microorganisms, and community 2 are sterilized by electrical sterilization and electrochemical sterilization. It is a figure which shows the fine particle electrode purification body j27 utilized for.

図26は、布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種の微粒子電極A31、微粒子電極B32を固着、上面を塗料10で覆い、さらに微粒子電極C33を固着し表面を塗料で覆う、微粒子電極A31、微粒子電極B32、微粒子電極C33を平行に並べ、重ねて積層にし塗装、微粒子電極の平行キャパシタとし電気二重層キャパシタを形成、金属イオンの流れを良くし、船体13は微粒子電極を含んだ塗料10で塗装、海水、水1に浸漬すると、電極電位差で電気化学反応を起こし電気エネルギーを蓄電し電池として利用、又生物、微生物、生物群集2を電気的殺菌、電気化学的殺菌で滅菌、又電気エネルギーを蓄電にする電池に利用する微粒子電極浄化体k28を示す図である。  In FIG. 26, the fine particle electrode A31 and the fine particle electrode B32 having different electrochemical potential columns are fixed to the surface of the cloth, resin or charcoal cloth 4, the upper surface is covered with the paint 10, and the fine particle electrode C33 is fixed and the surface is coated with the paint. The fine particle electrode A31, the fine particle electrode B32, and the fine particle electrode C33 that are covered are arranged in parallel, stacked and painted, and an electric double layer capacitor is formed as a parallel capacitor of the fine particle electrode, and the flow of metal ions is improved. When coated with paint 10 containing water, immersed in seawater or water 1, it causes an electrochemical reaction due to the electrode potential difference, stores electrical energy and uses it as a battery, and sterilizes organisms, microorganisms, and communities 2 and sterilizes them. It is a figure which shows the fine particle electrode purification body k28 utilized for the battery which sterilizes and uses electrical energy as an electrical storage.

図27は布、樹脂又炭クロス4の表面に電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B32、微粒子電極C33、微粒子電極D34の間を塗料10で塗装し固着、微粒子電極A31、微粒子電極B32、微粒子電極C33、微粒子電極D34を平行に並べ、重ねて積層にし塗装、微粒子電極を平行キャパシタとし電気二重層キャパシタを形成、金属イオンの流れを良くし、船体13は微粒子電極を含んだ塗料10で塗装、海水、水1に浸漬すると電極電位差で電気化学反応を起こし電気エネルギーを蓄電し電池として利用、又生物、微生物、生物群集を電気的殺菌、電気化学的殺菌で滅菌、又電気エネルギーを蓄電にする電池に利用する微粒子電極浄化体L29を示す図である。  FIG. 27 shows the surface of the cloth, resin, or charcoal cloth 4 coated with the paint 10 between the fine particle electrode A31, the fine particle electrode B32, the fine particle electrode C33, and the fine particle electrode D34 having different electrochemical potential columns. The fine particle electrode B32, the fine particle electrode C33, and the fine particle electrode D34 are arranged in parallel, stacked and painted, and the fine particle electrode is used as a parallel capacitor to form an electric double layer capacitor, improving the flow of metal ions, and the hull 13 includes the fine particle electrode. Painted with paint 10 and immersed in seawater or water 1 causes an electrochemical reaction due to the electrode potential difference, stores electrical energy and uses it as a battery, and sterilizes organisms, microorganisms, and communities by electrical sterilization and electrochemical sterilization. It is a figure which shows the fine particle electrode purification body L29 utilized for the battery which makes an electrical energy electrical storage.

図28は、微粒子電極A31、微粒子電極B32、微粒子電C33の間を塗料10で塗装、両面を布、樹脂又炭クロス4、又塗料10で覆い、電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B32、微粒子電極C33を重ねて積層にし塗装し離間させて、平行キャパシタとし電気二重層キャパシタを形成、船体13が浸漬すると電極電位差で電気化学反応を起こし、電気エネルギーを蓄電し電池として利用、生物、微生物、生物群集等を電気的殺菌、電気化学的殺菌で滅菌する微粒子電極浄化体m30を示す図である。  In FIG. 28, between the fine particle electrode A31, the fine particle electrode B32, and the fine particle electricity C33 are coated with the paint 10, and both surfaces are covered with cloth, resin or charcoal cloth 4, or the paint 10, and the different kinds of fine particle electrodes A31 having different electrochemical potential rows. Then, the fine particle electrode B32 and the fine particle electrode C33 are stacked, coated, and separated to form a parallel capacitor to form an electric double layer capacitor. When the hull 13 is immersed, an electrochemical reaction occurs due to an electrode potential difference, and electric energy is stored as a battery. It is a figure which shows the microparticles | fine-particles electrode purification body m30 which sterilizes utilization, a living organism, microorganisms, a biological community etc. by electrical sterilization and electrochemical sterilization.

図29は、本発明者が行った3積層電極を水に浸漬して、実験結果の電極浄化体の放電現象を撮影した写真である。  FIG. 29 is a photograph of the discharge phenomenon of the electrode purifier as a result of the experiment by immersing the three-layered electrode performed by the present inventors in water.

図30は、亜鉛(トタン板)、銅板、銀板(T10004)の3積層電極の形状を示す図である。  FIG. 30 is a diagram showing the shape of a three-layered electrode of zinc (tin plate), copper plate, and silver plate (T10004).

図31亜鉛材、ステンレス、アルミニウム、銀板(T10005)の4積層電極の形状を示す図である。  31 is a diagram showing the shape of four laminated electrodes of zinc material, stainless steel, aluminum, silver plate (T10005).

図32水の電気分解図である。(綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版)1992年11月10日、P303  FIG. 32 is an electrolysis diagram of water. (Supervised by Kunihiko Watanabe and Shoji Kubota, “New Water Science and Utilization Technology”, published by Scien Forum, Inc.) November 10, 1992, P303

ル」、コロナ社)、2007年9月28日、P120 Le, Corona), September 28, 2007, P120

1 海水、水、湯
2 垢、生物群集、生物、微生物、細菌、カビ
3 浴槽
4 布、樹脂、炭クロス
5 金属電極A(金、白金、ロジウム下地めっき銅、銀/金合金、銀、炭、活性炭)
6 金属電極B(ニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、12%クロムステンレス鋼)
7 金属電極C(ニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュラルミン、真鍮、錫)
8 金属電極D(鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めッき鋼、亜鉛メッキ鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム/マンガン合金、アルミニウム)
9 金属電極E(酸化チタン、硫黄、マグネシウム、マグネシウム合金)
10 塗料(塗料、シリコン樹脂)
11 バラストタンク
12 バラスト水
13 船体
14 シーチェスト
15 バラスト放出
16 海水フィルタ−
17 ポンプ
18 電極浄化体a
19 電極浄化体b
20 電極浄化体c
21 電極浄化体d
22 電極浄化体e
23 電極浄化体f
24 電極浄化体g
25 電極浄化体h
26 電極浄化体i
27 微粒子電極浄化体j
28 微粒子電極浄化体k
29 微粒子電極浄化体L
30 微粒子電極浄化体m
31 微粒子電極A(金、白金、ロジウム下地めっき銅、銀/金合金、銀、炭、活性炭)
32 微粒子電極B(ニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、12%クロムステンレス鋼)
33 微粒子電極C(ニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュラルミン、真鍮、錫)
34 微粒子電極D(鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めッき鋼、亜鉛メッキ鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム/マンガン合金、アルミニウム)
35 微粒子電極E(酸化チタン、硫黄、マグネシウム、マグネシウム合金)
DESCRIPTION OF SYMBOLS 1 Seawater, water, hot water 2 dirt, organism community, organism, microbe, bacteria, mold 3 bathtub 4 cloth, resin, charcoal cloth 5 metal electrode A (gold, platinum, rhodium base plating copper, silver / gold alloy, silver, charcoal Activated carbon)
6 Metal electrode B (nickel plated steel, silver solder, copper alloy, copper, high chromium stainless steel, 12% chromium stainless steel)
7 Metal electrode C (nickel base chrome-plated steel, chrome-plated steel, soft solder, lead, duralumin, brass, tin)
8 Metal electrode D (Iron, soft iron or steel, chromium, zinc, zinc alloy, 80 tin / 20 tin plated steel, galvanized iron / steel (totan), cadmium plated steel, aluminum / manganese alloy, aluminum)
9 Metal electrode E (titanium oxide, sulfur, magnesium, magnesium alloy)
10 Paint (paint, silicone resin)
11 Ballast tank 12 Ballast water 13 Hull 14 Sea chest 15 Ballast discharge 16 Seawater filter
17 Pump 18 Electrode purification body a
19 Electrode purification body b
20 Electrode purifier c
21 Electrode purification body d
22 Electrode purifier e
23 Electrode purification body f
24 Electrode Purifier g
25 Electrode purifier h
26 Electrode Purifier i
27 Fine Particle Electrode Purifier j
28 Fine Particle Electrode Purifier k
29 Fine Particle Electrode Purifier L
30 Fine particle electrode purifier m
31 Fine-particle electrode A (gold, platinum, rhodium-plated copper, silver / gold alloy, silver, charcoal, activated carbon)
32 Fine particle electrode B (nickel plated steel, silver solder, copper alloy, copper, high chromium stainless steel, 12% chromium stainless steel)
33 Fine particle electrode C (nickel-undercoated chrome-plated steel, chrome-plated steel, soft solder, lead, duralumin, brass, tin)
34 Fine particle electrode D (iron, soft iron or steel, chrome, zinc, zinc alloy, 80 tin / 20 tinned steel, galvanized iron / steel (totan), cadmium plated steel, aluminum / manganese alloy, aluminum)
35 Fine particle electrode E (titanium oxide, sulfur, magnesium, magnesium alloy)

Claims (7)

バラスト水に含まれる微生物を除去するためのバラスト水浄化方法において、
亜鉛、銅、銀をそれぞれ矩形網目状にして離間し、その矩形状の対向する2辺に沿って配置した布、樹脂又は炭クロスをこの金属間に介在させた第2の電極浄化体(b19)は、ポンプでくみ上げフィルターで濾過した海水、水を通過させ、且つバラストタンク内のバラスト水が第2の電極浄化体(b19)を介して外部に排水される際に、電圧を印加することなくバラスト水中の微生物を死滅させると共に吸引し、
又、亜鉛、銅、銀を離間して布、樹脂又は炭クロスを介在させた第1の電極浄化体(c20,d21,e22,f23,g24)がバラストタンク内に注水することで浸漬され、電圧を印加することなくバラスト水中の微生物を死滅させると共に吸引するようになっていることを特徴とするバラスト水浄化方法。
In the ballast water purification method for removing microorganisms contained in the ballast water,
A second electrode purification body (b19) in which zinc, copper, and silver are spaced apart in a rectangular mesh, and cloth, resin, or charcoal cloth disposed along two opposing sides of the rectangular shape is interposed between the metals. ) is seawater was filtered through a draw on up off Iruta pump, water is passed through, and when the ballast water in the ballast tank is drained to the outside through the second electrode purifier (b19), the voltage Kill and aspirate microorganisms in the ballast water without applying,
In addition, the first electrode purifier (c20, d21, e22, f23, g24) interspersed with cloth, resin, or charcoal cloth with zinc, copper, and silver spaced apart is immersed in the ballast tank, A method for purifying ballast water, wherein microorganisms in the ballast water are killed and sucked without applying a voltage .
隣り合う前記金属の一方は、布、樹脂又は炭クロスの一方の面に配置され、前記金属の他方は、前記布又は炭クロスの他方の面に配置されていることを特徴とする請求項に記載のバラスト水浄化方法。 One of the metal adjacent cloth, is disposed on one surface of the resin or charcoal cloth, the other of said metals, claim 1, characterized in that it is arranged on the other surface of the fabric or carbon cloth The method for purifying ballast water according to 1. 前記金属の少なくとも一つは、前記布、樹脂又は炭クロスの面に格子状、網状又は渦巻き状に形成されることを特徴とする請求項1又は2に記載のバラスト水浄化方法。 The ballast water purification method according to claim 1 or 2 , wherein at least one of the metals is formed in a lattice shape, a net shape, or a spiral shape on the surface of the cloth, resin, or charcoal cloth. 布、樹脂又は炭クロスの一方の面において、隣り合う前記金属の一方が、前記金属の他方に取り囲まれるように配置されていることを特徴とする請求項1〜のいずれかに記載のバラスト水浄化方法。 The ballast according to any one of claims 1 to 3 , wherein one of the adjacent metals is arranged so as to be surrounded by the other of the metals on one surface of a cloth, a resin or a charcoal cloth. Water purification method. 布、樹脂又は炭クロスの一方の面において、隣り合う前記金属の一方が、前記金属の他方に並べて配置されていることを特徴とする請求項1〜のいずれかに記載のバラスト水浄化方法。 Fabric, on one surface of the resin or charcoal cloth, one of the metal adjacent, ballast water purification method according to any one of claims 1 to 4, characterized in that it is arranged on the other of the metal . 前記布、樹脂又は炭クロスを設けた前記金属を積層、又は平行にしたことを特徴とする請求項1〜のいずれかに記載のバラスト水浄化方法。 Wherein the fabric, ballast water purification method according to any one of claims 1 to 5, characterized in that the said metal having a resin or charcoal cloth laminated or parallel. 前記布、樹脂又は炭クロスを設けた前記金属を筒状に形成したことを特徴とする請求項1〜のいずれかに記載のバラスト水浄化方法。 Wherein the fabric, ballast water purification method according to any one of claims 1 to 6, characterized in that the formation of the metal in which a resin or charcoal cloth into a tubular shape.
JP2011032589A 2011-01-31 2011-01-31 Ballast water purification method Expired - Fee Related JP5522798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032589A JP5522798B2 (en) 2011-01-31 2011-01-31 Ballast water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032589A JP5522798B2 (en) 2011-01-31 2011-01-31 Ballast water purification method

Publications (2)

Publication Number Publication Date
JP2012157852A JP2012157852A (en) 2012-08-23
JP5522798B2 true JP5522798B2 (en) 2014-06-18

Family

ID=46838844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032589A Expired - Fee Related JP5522798B2 (en) 2011-01-31 2011-01-31 Ballast water purification method

Country Status (1)

Country Link
JP (1) JP5522798B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622294B2 (en) * 2012-12-26 2014-11-12 和弘 林 Mass transfer process between electrodes in electrolyte is accelerated by voltage application
JP6127768B2 (en) * 2013-06-21 2017-05-17 株式会社島津製作所 Electrode device for liquid potential measurement
CN103359813B (en) * 2013-08-09 2014-12-17 中国矿业大学(北京) Water sterilizing system
CN104909436B (en) * 2015-06-10 2017-07-07 苏州大学 A kind of electrolysis-type sterilization and disinfection device, preparation method and application
KR101581646B1 (en) * 2015-09-23 2015-12-30 (주)이오렉스 Devices For Treating Water With Harmful Substance Free
CN107866225A (en) * 2016-09-28 2018-04-03 中国石油化工股份有限公司 A kind of FeCl2The preparation method and application of Cu/ carbon cloth electrolytic catalysts
CN106564984B (en) * 2016-10-19 2019-06-25 天津中智科技发展有限公司 A kind of reductive water generation restores the preparation method of piece with quantum
CN116359119B (en) * 2023-03-27 2023-10-13 浙江大学 Pipeline corrosion prevention test system based on thermoelectric chemical battery waste heat utilization and control method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071198A (en) * 1996-08-29 1998-03-17 Tokyo Film Kako Kk Ion antimicrobial tape
JP3072838U (en) * 2000-04-27 2000-11-02 寛 池田 Bathtub water reformer
JP2002079253A (en) * 2000-09-07 2002-03-19 Kido Toshihiro Water cleaning method and water cleaning instrument
JP2003071452A (en) * 2001-09-01 2003-03-11 Matsumoto Seisakusho:Kk Sterilizing liquid making apparatus
JP2003181454A (en) * 2001-12-15 2003-07-02 Matsumoto Seisakusho:Kk Sterilization method of bath water and sterilization device thereof
JP2005205343A (en) * 2004-01-23 2005-08-04 Nippon Savcor Kk Method for electrolytic antistaining treatment of liuquid
JP2007023222A (en) * 2005-07-20 2007-02-01 Oshima Shipbuilding Co Ltd Coating composition and method for forming disinfecting film using the composition and used for seawater
WO2007049139A2 (en) * 2005-10-28 2007-05-03 Resource Ballast Technologies (Proprietary) Limited Method and apparatus for water treatment to eliminate aquatic organisms by an abrupt pressure reduction
TW200733906A (en) * 2006-01-20 2007-09-16 Hitachi Chemical Co Ltd Foot-use sheet and inner bottom of footwear using the same
JP2008082604A (en) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd Water level detector
WO2008093812A1 (en) * 2007-02-01 2008-08-07 Mitsui Engineering & Shipbuilding Co., Ltd. Supply apparatus for ballast-treated water, and ballast-treated water supply ship
JP5145796B2 (en) * 2007-07-03 2013-02-20 パナソニック株式会社 Disinfection filter and manufacturing method thereof
JP2009045588A (en) * 2007-08-22 2009-03-05 Tokatsu Jushi Kogyo Kk Water purification cartridge
JP2009106829A (en) * 2007-10-29 2009-05-21 Nisshinbo Ind Inc Water storage method and discharge method
JP3154457U (en) * 2008-08-29 2009-10-22 洋二 早川 Spray device using water environment battery
WO2010023712A1 (en) * 2008-08-29 2010-03-04 Hayakawa Youji Water sterilizing apparatus

Also Published As

Publication number Publication date
JP2012157852A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5522798B2 (en) Ballast water purification method
KR101220891B1 (en) A porous 3-dimensional bipolar electrode, an electrolyzer having the porous 3-dimensional bipolar electrode, and water treatment method using the electrolyzer having the porous 3-dimensional bipolar electrode
CN203683288U (en) Water purification device for improving performance of conventional water purifier
KR101812008B1 (en) An electrolyzer having a porous 3-dimensional mono-polar electrodes, and water treatment method using the electrolyzer having the porous 3-dimensional mono-polar electrodes
TWI327558B (en) A total solution for water treatments
US20170233269A1 (en) Water treatment device
EP2301894A1 (en) Sterilization method and sterilization device
US8454837B2 (en) Systems and methods for generation of low zeta potential mineral crystals to enhance quality of liquid solutions
Zhou et al. Locally enhanced electric field treatment (LEEFT) for water disinfection
RU2340564C2 (en) Electrolytic cell for contaminated water purification
TR201506030A1 (en) A water purification system
JP5557804B2 (en) Electrode body
JP2000140849A (en) Electrochemical water treating device and method
EP2508482A1 (en) Apparatus and method for electrolytic production of reducing water
KR101028360B1 (en) Ballast water treatment device with electric disinfection grid using virtual electrodes
JP5483464B2 (en) Power generation electrode body
JP2011078958A5 (en)
US20060175255A1 (en) Systems and methods for generation of low zeta potential mineral crystals and hydrated electrons to enhance the quality of liquid solutions
JP5622294B2 (en) Mass transfer process between electrodes in electrolyte is accelerated by voltage application
Harfst Non-Chemical Water Treatment.
JPH1087381A (en) Treatment of porous carbonaceous electrode, carbonaceous fixed bed type three-dimensional electrode electrolytic cell and treatment of water
JP2004290949A (en) Sterilizing liquid preparation apparatus and small-sized simple water purifier with the same
JPH0416280A (en) Electrochemical treatment of water containing microorganism
JP2007014276A (en) Apparatus and method for controlling breeding environment for aquatic organism
US20210300797A1 (en) Systems and Methods for Disinfecting Fluids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5522798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees