JP5521288B2 - Biaxially stretched polyamide laminated film - Google Patents

Biaxially stretched polyamide laminated film Download PDF

Info

Publication number
JP5521288B2
JP5521288B2 JP2008183967A JP2008183967A JP5521288B2 JP 5521288 B2 JP5521288 B2 JP 5521288B2 JP 2008183967 A JP2008183967 A JP 2008183967A JP 2008183967 A JP2008183967 A JP 2008183967A JP 5521288 B2 JP5521288 B2 JP 5521288B2
Authority
JP
Japan
Prior art keywords
layer
laminated film
biaxially stretched
film
stretched polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008183967A
Other languages
Japanese (ja)
Other versions
JP2010023242A (en
Inventor
和秀 石井
康弘 冨田
曉弘 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008183967A priority Critical patent/JP5521288B2/en
Publication of JP2010023242A publication Critical patent/JP2010023242A/en
Application granted granted Critical
Publication of JP5521288B2 publication Critical patent/JP5521288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、二軸延伸ポリアミド系積層フィルムに関し、詳しくは、高い酸素バリア性および耐摩耗ピンホール性を有し、更には、耐屈曲ピンホール性を兼ね備えた、食品や医療品など酸素透過による内容物の変質を嫌う包装用途に好適に使用される二軸延伸ポリアミド系積層フィルムに関する。   The present invention relates to a biaxially stretched polyamide-based laminated film, and in particular, has high oxygen barrier properties and wear-resistant pinhole properties, and further has bending pinhole properties, such as food and medical products, by oxygen permeation. The present invention relates to a biaxially stretched polyamide-based laminated film that is suitably used for packaging applications that dislike alteration of contents.

ポリ−ε−カプロラクタム、ポリヘキサメチレンアジパミド等のポリアミド樹脂から成るフィルムは、引張強度、引裂強度、衝撃強度、耐熱性などの機械的特性に優れているが、ガスバリア性が不十分であるため、特に、高度の酸素ガスバリア性が要求される食品、医薬品などの包装用途には単独での使用は不可能である。一方、エチレン−酢酸ビニル共重合体ケン化物(以下「EVOH」)から成るフィルムは、酸素ガスバリア性が極めて優れているものの、柔軟性に乏しく、高価で機械的強度に劣るため、単独で包装用途に使用することは困難である。そこで、ポリアミドフィルム及びEVOHフィルムの上記の欠点を補完し合い、これらの特徴を活かした包装用フィルムとして、ポリアミド系樹脂から成るフィルムにEVOHから成るガスバリア層を積層した積層フィルムが提案されている。   A film made of a polyamide resin such as poly-ε-caprolactam or polyhexamethylene adipamide has excellent mechanical properties such as tensile strength, tear strength, impact strength, and heat resistance, but has insufficient gas barrier properties. Therefore, in particular, it cannot be used alone for packaging applications such as foods and pharmaceuticals that require high oxygen gas barrier properties. On the other hand, a film made of a saponified ethylene-vinyl acetate copolymer (hereinafter “EVOH”) has an excellent oxygen gas barrier property, but is poor in flexibility, expensive and inferior in mechanical strength. It is difficult to use. Therefore, a laminated film in which a gas barrier layer made of EVOH is laminated on a film made of a polyamide resin has been proposed as a packaging film that complements the above-mentioned drawbacks of the polyamide film and the EVOH film and takes advantage of these characteristics.

上記の積層フィルムは、主にシーラントフィルムと貼り合わせて包装用途に使用されるが、特に内容物保護のため高い酸素バリア性が要求される用途に使用される。従って、バリア性確保のため、同時に高い耐ピンホール性が要求される。   The above laminated film is mainly used for packaging applications by being bonded to a sealant film, but is particularly used for applications requiring high oxygen barrier properties for content protection. Therefore, high pinhole resistance is required at the same time to ensure barrier properties.

包装用途のピンホール要因としては、突き刺しによるピンホール、屈曲によるピンホール(以下「柔軟性」と同意)、擦れ(摩耗)によるピンホール(以下「耐摩耗性」と同意)等の様々な要因が考えられる。ここで、柔軟性と耐摩耗性は相反するもので、二軸延伸ポリアミドフィルムに柔軟剤を添加して柔軟性を高くすると屈曲ピンホールは発生し難くなるが、柔らかくなった分だけ擦れによるピンホールが生じ易くなり、摩耗ピンホールが発生し易くなるという欠点がある。   Various pinhole factors for packaging applications, such as pinholes due to piercing, pinholes due to bending (hereinafter agreed to "flexibility"), pinholes due to rubbing (wear) (hereinafter referred to as "abrasion resistance"), etc. Can be considered. Here, flexibility and wear resistance are contradictory. When a softening agent is added to a biaxially stretched polyamide film to increase the flexibility, bent pinholes are less likely to occur. There is a drawback that holes are easily generated and wear pinholes are easily generated.

ポリアミドにガスバリア性に優れるEVOH等を積層した二軸延伸ポリアミドフィルムをピロー包装などの包装袋として使用した場合には、EVOH層が硬いため運搬時の摩擦や屈曲あるいは角の尖った部分との接触によってピンホールが発生し易いという欠点があり、このような包装に使用するには未だ十分とは言えない。   When a biaxially stretched polyamide film in which EVOH and other materials with excellent gas barrier properties are laminated on polyamide is used as a packaging bag for pillow packaging, etc., the EVOH layer is hard, so contact with friction, bending or sharp edges during transportation However, it is still not sufficient for use in such packaging.

EVOH層に柔軟改質剤を添加して改質する方法も考えられるが、EVOHの特徴である酸素バリア性を低下させるばかりでなく、熱安定性の悪いEVOH層に添加物を配合することはEVOHのゲル化を促進させる可能性があり好ましくない。   Although a method of modifying the EVOH layer by adding a softening modifier is also conceivable, not only reducing the oxygen barrier property that is characteristic of EVOH but also adding an additive to the EVOH layer having poor thermal stability is possible. This is not preferable because it may promote the gelation of EVOH.

そこで、耐屈曲ピンホール性を向上させた積層フィルムとして、ポリアミド層/EVOH層/ポリアミド層なる積層構造を有する共押出し共延伸フィルムにシーラント層を設けた積層フィルムが提案されている(例えば特許文献1参照)。しかしながら、この提案においては、柔軟性と耐摩耗性の両立についての特別な工夫はなされていない。   Therefore, as a laminated film with improved bending pinhole resistance, a laminated film in which a sealant layer is provided on a co-extruded co-stretched film having a laminated structure of polyamide layer / EVOH layer / polyamide layer has been proposed (for example, Patent Documents). 1). However, in this proposal, no special contrivance has been made for compatibility between flexibility and wear resistance.

また、EVOHをエチレン系3元共重合体0.5〜5質量%含むポリアミドでサンドした二軸延伸積層フィルムが提案されている(例えば特許文献2参照)。そして、柔軟性付与のためEVOH層にタルクを配合し、ポリアミド層にエチレン系3元共重合体を配合している。しかしながら、これは主に柔軟性の改善のためであり、それに伴って低下する耐摩耗性は改善されていない。   In addition, a biaxially stretched laminated film sandwiched with polyamide containing 0.5 to 5% by mass of EVOH in an ethylene-based terpolymer has been proposed (see, for example, Patent Document 2). And talc is mix | blended with an EVOH layer for a softness | flexibility provision, and the ethylene-type terpolymer is mix | blended with the polyamide layer. However, this is mainly due to the improvement of flexibility, and the wear resistance which decreases with it is not improved.

更に、滑剤含有ポリアミド層、柔軟剤含有ポリアミド層およびガスバリア層を含み、滑剤含有ポリアミド層が最外層であるポリアミド系多層フィルムが提案されている(例えば特許文献3参照)。そして、シーラントとのラミネート面の反対側の最外層には滑剤を添加し、柔軟性改質剤は最外層以外に配している。しかしながら、斯かる態様は、ゲルボフレックス適性の改質効果が低く、改質剤の量を増やす必要があり、そのため、耐摩耗性が低下する方向となり好ましくない。   Furthermore, a polyamide-based multilayer film including a lubricant-containing polyamide layer, a softening agent-containing polyamide layer, and a gas barrier layer, where the lubricant-containing polyamide layer is the outermost layer has been proposed (see, for example, Patent Document 3). Then, a lubricant is added to the outermost layer on the opposite side of the laminate surface with the sealant, and the flexibility modifier is disposed other than the outermost layer. However, such an aspect is not preferable because the effect of modifying the suitability for gelboflex is low and the amount of the modifier needs to be increased, and therefore the wear resistance tends to decrease.

特開平3−211050号公報JP-A-3-211050 特開2004−351874号公報JP 2004-351874 A 特開2006−192592号公報JP 2006-192592 A

前述のように、従来の積層フィルムでは、酸素ガスバリア性と耐摩耗ピンホール性の両特性を満足できることがなく、特に、包装材として使用した場合、他の材料との摩擦などによるピンホールの発生が起こり易く、耐摩耗ピンホール性に劣るという問題がある。   As mentioned above, conventional laminated films do not satisfy both oxygen gas barrier properties and wear-resistant pinhole properties. Especially when used as packaging materials, pinholes are generated due to friction with other materials. Are likely to occur and have poor wear-resistant pinhole properties.

本発明は、上記実情に鑑みなされたものであり、その目的は、高度のガスバリア性を有し、耐摩耗ピンホール性に優れ、食品や医薬品など、酸素透過による内容物の変質を嫌う包装用途に好適に使用できる積層フィルムを提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to have a high gas barrier property, excellent wear-resistant pinhole property, and a packaging application that dislikes alteration of contents due to oxygen permeation, such as food and pharmaceuticals. It is providing the laminated film which can be used conveniently for.

本発明者らは、上記目的を達成すべく鋭意検討を行った結果、最外層となるPA6層に柔軟改質剤を配合し、EVOH層と柔軟改質剤を含まないPA6層とともに共押出しした後に二軸延伸するならば、柔軟性と耐摩耗性を兼ね備えた耐ピンホール性の強いバリアフィルムが得られることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above object, the present inventors have blended a flexible modifier into the outermost PA6 layer and coextruded with the EVOH layer and the PA6 layer not containing the flexible modifier. It was found that a barrier film with high pinhole resistance having both flexibility and wear resistance can be obtained by biaxial stretching later, and the present invention has been achieved.

すなわち、本発明は以下の二軸延伸ポリアミド系積層フィルムを提供するものである。   That is, the present invention provides the following biaxially stretched polyamide-based laminated film.

(1)以下の層(A)〜(C)を含み、層(A)は少なくとも一方の最外層に配され、さらに、層(B)と層(C)とが隣接して配置されている層構成を含み、全体厚みに対する、層(A)の厚み比率は10〜60%、層(B)の厚み比率は5〜40%、層(C)の厚み比率は10〜60%であり、縦・横方向ともに2.0〜5.0倍に延伸した後に熱固定して得られ、95℃×5分の熱水収縮率が縦・横方向ともに0.5〜5.0%であり、温度23℃で相対湿度50%の条件下でのゲルボフレックステスターによる3000サイクル繰返し屈曲後のピンホール数が8個/497cm以下であることを特徴とする二軸延伸ポリアミド系積層フィルム。
層(A):PA6と柔軟改質剤が99:1〜90:10の割合で配合された層
層(B):エチレン−酢酸ビニル共重合体ケン化物層
層(C):柔軟改質剤を添加しないPA6層
(1) The following layers (A) to (C) are included, the layer (A) is disposed on at least one outermost layer, and the layer (B) and the layer (C) are disposed adjacent to each other. Including the layer structure, the thickness ratio of the layer (A) to the total thickness is 10 to 60%, the thickness ratio of the layer (B) is 5 to 40%, and the thickness ratio of the layer (C) is 10 to 60%. Obtained by heat-fixing after stretching 2.0 to 5.0 times in both longitudinal and transverse directions, and hot water shrinkage of 95 ° C x 5 minutes is 0.5 to 5.0% in both longitudinal and transverse directions A biaxially stretched polyamide-based laminated film, wherein the number of pinholes after bending 3000 cycles with a gelboflex tester at a temperature of 23 ° C. and a relative humidity of 50% is 8/497 cm 2 or less.
Layer (A): Layer in which PA6 and softness modifier are blended in a ratio of 99: 1 to 90:10 Layer (B): Saponified ethylene-vinyl acetate copolymer layer (C): Softness modifier PA6 layer with no addition of

(2) 耐摩耗ピンホール性が1.2m以上である(1)に記載の二軸延伸ポリアミド系積層フィルム。 (2) The biaxially stretched polyamide-based laminated film according to (1 ), wherein the wear-resistant pinhole property is 1.2 m or more.

(3)(B)を基準として、最外層の(A)の反対側の隣接層が(C)である(1)又は(2)に記載の二軸延伸ポリアミド系積層フィルム。 (3) The biaxially stretched polyamide-based laminated film according to (1) or (2), wherein the adjacent layer on the opposite side of (A) of the outermost layer is (C) on the basis of (B).

(4)(A)/(B)/(C)の順に積層されている(1)〜(3)の何れかに記載の二軸延伸ポリアミド系積層フィルム。 (4) The biaxially stretched polyamide-based laminated film according to any one of (1) to (3) , which is laminated in the order of ( A) / (B) / (C).

(5)(A)/(B)/(C)/(A)の順に積層されている(1)〜(3)の何れかに記載の二軸延伸ポリアミド系積層フィルム。 (5) The biaxially stretched polyamide-based laminated film according to any one of (1) to (3) , which is laminated in the order of (A) / (B) / (C) / (A).

(6)(A)/(C)/(B)/(C)の順に積層されている(1)〜(3)の何れかに記載の二軸延伸ポリアミド系積層フィルム。 (6) The biaxially stretched polyamide-based laminated film according to any one of (1) to (3) , which is laminated in the order of ( A) / (C) / (B) / (C).

(7)(A)/(C)/(B)/(C)/(A)の順に積層されている(1)〜(3)の何れかに記載の二軸延伸ポリアミド系積層フィルム。 (7) The biaxially stretched polyamide-based laminated film according to any one of (1) to (3) , which is laminated in the order of (A) / (C) / (B) / (C) / (A).

(8)柔軟改質剤がポリテトラメチレングリコールとポリラウリルラクタムを主成分とする重合体である(1)〜(7)の何れかに記載の二軸延伸ポリアミド系積層フィルム。 (8) The biaxially stretched polyamide-based laminated film according to any one of (1) to (7) , wherein the softening modifier is a polymer mainly composed of polytetramethylene glycol and polylauryl lactam.

本発明によれば、高度のガスバリア性を有し、耐摩耗ピンホール性に優れ、食品や医薬品など、酸素透過による内容物の変質を嫌う包装用途に好適に使用できる積層フィルムが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the laminated | multilayer film which has a high gas barrier property, is excellent in abrasion-resistant pinhole property, and can be used conveniently for the packaging use which dislikes the alteration of the content by oxygen permeation, such as a foodstuff and a pharmaceutical.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の二軸延伸ポリアミドフィルムの主要な原料は、PA6、EVOH、柔軟性改質剤である。   The main raw materials of the biaxially stretched polyamide film of the present invention are PA6, EVOH, and a flexibility modifier.

本発明に使用されるEVOH中のエチレン含有率は、特に限定されるものではないが、製膜安定性の観点から、通常23モル%以上、好ましくは27モル%以上であり、ガスバリア性の観点から、通常38モル%以下、好ましくは32モル%以下である。また、EVOHのケン化度は、通常96%以上、好ましくは99モル%以上である。本発明の二軸延伸ポリアミド系積層フィルムにおいて、EVOH中のエチレン含有量およびケン化度を上記範囲に保つことにより、良好な酸素バリア性を維持できると共に、共押出性とフィルムの強度とを良好なものにすることが出来る。   The ethylene content in EVOH used in the present invention is not particularly limited, but is usually 23 mol% or more, preferably 27 mol% or more, from the viewpoint of film formation stability, and from the viewpoint of gas barrier properties. Therefore, it is usually at most 38 mol%, preferably at most 32 mol%. The degree of saponification of EVOH is usually 96% or more, preferably 99 mol% or more. In the biaxially stretched polyamide-based laminated film of the present invention, by maintaining the ethylene content and the saponification degree in EVOH within the above ranges, good oxygen barrier properties can be maintained, and coextrusion properties and film strength are good. Can be made

柔軟改質剤としては、ポリオレフィン類、ポリアミドエラストマー類、ポリエステルエラストマー類などの一種または二種以上が挙げられる。   Examples of the softening modifier include one or more of polyolefins, polyamide elastomers, polyester elastomers, and the like.

上記のポリオレフィン類は、主鎖中にポリエチレン単位やポリプロピレン単位を50重量%以上含むものであり、無水マレイン酸などでグラフト変性していてもよい。ポリエチレン単位やポリプロピレン単位以外の構成単位としては、酢酸ビニル、この部分けん化物、アクリル酸、メタクリル酸、アクリル酸エステル類、メタクリル酸エステル類、これらの部分金属中和物(アイオノマー類)、ブテン等の1−アルケン類、アルカジエン類、スチレン等が挙げられる。これらの構成単位は複数含まれていても構わない。   The above polyolefins contain 50% by weight or more of polyethylene units or polypropylene units in the main chain, and may be graft-modified with maleic anhydride or the like. Constituent units other than polyethylene units and polypropylene units include vinyl acetate, this partially saponified product, acrylic acid, methacrylic acid, acrylic esters, methacrylic esters, partial metal neutralized products (ionomers), butene, etc. 1-alkenes, alkadienes, styrene and the like. A plurality of these structural units may be included.

また、ポリアミドエラストマー類は、ポリエーテルアミド、ポリエーテルエステルアミド等のポリアミド系ブロック共重合体に属するものであり、アミド成分としては、ナイロン−6、ナイロン−66、ナイロン−12等が例示され、エーテル成分としては、ポリオキシテトラメチレングリコール、ポリオキシエチレングリコール、ポリオキシ−1,2−プロピレングリコール等が例示されるが、PA6との相溶性、押出時の熱安定性、柔軟性改質効果の点から、ポリテトラメチレングリコールとポリラウリルラクタム(ナイロン−12)を主成分とする共重合体が最も好ましい。ここで、主成分とは、当該成分の量が50重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上であることを意味する。また、任意成分として、ドデカンジカルボン酸、アジピン酸、テレフタル酸などのジカルボン酸を少量使用したものであってもよい。   The polyamide elastomers belong to polyamide-based block copolymers such as polyetheramide and polyetheresteramide, and examples of the amide component include nylon-6, nylon-66, nylon-12, and the like. Examples of the ether component include polyoxytetramethylene glycol, polyoxyethylene glycol, polyoxy-1,2-propylene glycol, etc., but compatibility with PA6, thermal stability during extrusion, flexibility modification effect From the viewpoint, a copolymer having polytetramethylene glycol and polylauryl lactam (nylon-12) as main components is most preferable. Here, the main component means that the amount of the component is 50% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more. Further, as an optional component, a small amount of dicarboxylic acid such as dodecanedicarboxylic acid, adipic acid or terephthalic acid may be used.

ポリエステルエラストマー類としては、例えば、ポリブチレンテレフタレートとポリテトラメチレングリコールを組み合わせたポリエーテル・エステルエラストマー、ポリブチレンテレフタレートとポリカプロラクトンを組み合わせたポリエステル・エステルエラストマー等が挙げられる。   Examples of polyester elastomers include polyether ester elastomers combining polybutylene terephthalate and polytetramethylene glycol, and polyester ester elastomers combining polybutylene terephthalate and polycaprolactone.

PA6およびEVOHは、何れも吸湿性が大きく、吸湿したものを使用すると原料を熱溶融し押出す際に水蒸気やオリゴマーが発生しフィルム化を阻害する。そのため、事前に乾燥して水分含有率を0.1重量%以下とするのが好ましい。なお、PA6およびEVOHには、フィルムの性質に影響を与えない範囲において、滑剤、帯電防止剤、酸化防止剤、ブロッキング防止剤、安定剤、染料、顔料、無機質微粒子などの各種添加剤を添加することが出来る。   PA6 and EVOH are both highly hygroscopic, and if they are used, water vapor and oligomers are generated when the raw material is melted and extruded to inhibit film formation. Therefore, it is preferable that the moisture content is 0.1% by weight or less by drying in advance. Various additives such as lubricants, antistatic agents, antioxidants, antiblocking agents, stabilizers, dyes, pigments and inorganic fine particles are added to PA6 and EVOH as long as they do not affect the properties of the film. I can do it.

本発明のポリアミド系積層フィルムは、一方の最外層にPA6と柔軟改質剤が99:1〜90:10の割合で配合された層(A)である必要がある。これは、より柔軟性のある層を最外層とすることにより耐屈曲ピンホール性向上効果が見込めるためである。層(A)に含まれる柔軟改質剤の添加量が1重量%未満の場合は耐屈曲ピンホール性向上効果が見込めず、10重量%を超える場合は、透明性が低下するばかりか、耐摩耗ピンホール性が悪くなる。柔軟改質剤の添加量は、好ましくは1.5〜8重量%、更に好ましくは2〜6重量%である。また、層(A)の厚みは二軸延伸ポリアミド系積層フィルムの全体厚みに対し10〜60%である必要がある。層(A)の厚み比率が10%未満の厚みの場合は、耐屈曲ピンホール性向上の効果が見込めず、60%を超える場合は耐摩耗ピンホールが悪くなる。層(A)の厚み比率は、好ましくは20〜55%、更に好ましくは30〜50%である。   The polyamide-based laminated film of the present invention needs to be a layer (A) in which PA6 and a softness modifier are blended in a ratio of 99: 1 to 90:10 on one outermost layer. This is because a bending-resistant pinhole improvement effect can be expected by making the more flexible layer the outermost layer. When the amount of the softening modifier contained in the layer (A) is less than 1% by weight, the effect of improving the resistance to bending pinholes cannot be expected, and when it exceeds 10% by weight, not only the transparency is lowered, Abrasion pinhole property deteriorates. The addition amount of the softening modifier is preferably 1.5 to 8% by weight, more preferably 2 to 6% by weight. Moreover, the thickness of a layer (A) needs to be 10 to 60% with respect to the whole thickness of a biaxially stretched polyamide-based laminated film. When the thickness ratio of the layer (A) is less than 10%, the effect of improving the bending-resistant pinhole property cannot be expected, and when it exceeds 60%, the wear-resistant pinhole is deteriorated. The thickness ratio of the layer (A) is preferably 20 to 55%, more preferably 30 to 50%.

EVOH層(B)の厚みは、ポリアミド系積層フィルムの全体厚みに対し5〜40%である必要がある。層(B)の厚み比率が5%未満の場合は、酸素バリア性の付与が不十分となるばかりか、強度低下があまりないため本発明による改質が不要となる。また、層(B)の厚み比率が40%を超える場合はポリアミド系積層フィルムとしての衝撃強度などの機械強度が不十分となる。EVOH層(B)の厚み比率は、好ましくは7〜35%、更に好ましくは10〜30%である。   The thickness of the EVOH layer (B) needs to be 5 to 40% with respect to the total thickness of the polyamide-based laminated film. When the thickness ratio of the layer (B) is less than 5%, not only is the oxygen barrier property imparted insufficiently, but there is not much reduction in strength, so that the modification according to the present invention is unnecessary. Moreover, when the thickness ratio of the layer (B) exceeds 40%, the mechanical strength such as impact strength as the polyamide-based laminated film is insufficient. The thickness ratio of the EVOH layer (B) is preferably 7 to 35%, more preferably 10 to 30%.

柔軟改質剤を添加しないPA6層(C)の厚みは、ポリアミド系積層フィルムの全体厚みに対し10〜60%である必要がある。層(C)は耐摩耗ピンホール性が良好であり、この層を配することにより耐屈曲ピンホール性と耐摩耗ピンホール性を兼ね備え且つ強度の優れたポリアミド系積層フィルムの提供が可能となる。層(C)の厚み比率が10%未満の場合は耐摩耗ピンホール性の改善効果が不十分となり、60%を超える場合は柔軟性が劣るようになり耐屈曲ピンホール性が不十分となる。層(C)の厚み比率は、好ましくは15〜55%、更に好ましくは20〜50%である。   The thickness of the PA6 layer (C) to which no softening modifier is added needs to be 10 to 60% with respect to the total thickness of the polyamide-based laminated film. The layer (C) has good wear-resistant pinhole properties, and by providing this layer, it is possible to provide a polyamide-based laminated film having both bending-resistant pinhole properties and wear-resistant pinhole properties and excellent strength. . When the thickness ratio of the layer (C) is less than 10%, the effect of improving the wear-resistant pinhole property is insufficient, and when it exceeds 60%, the flexibility is inferior and the bent pinhole property is insufficient. . The thickness ratio of the layer (C) is preferably 15 to 55%, more preferably 20 to 50%.

本発明のポリアミド系積層フィルムでは、一般に強度に優れた二軸延伸ポリアミドフィルムに酸素バリア性付与層としてEVOH層を積層することによって低下する耐屈曲ピンホール性を改善するため、柔軟改質剤を添加したPA6層(A)を配する。そして、柔軟改質剤の添加により低下した耐摩耗ピンホール性の改善のため、柔軟改質剤を添加しないPA6層(C)を配する。それで、上記の各々の効果を最大限に活用するための好ましい積層順の一例は次の表1に示す通りである。   In the polyamide-based laminated film of the present invention, in order to improve the bending pinhole property which is lowered by laminating an EVOH layer as an oxygen barrier property-imparting layer on a biaxially stretched polyamide film generally excellent in strength, a softness modifier is added. Arrange the added PA6 layer (A). And PA6 layer (C) which does not add a softening modifier is arranged for the improvement of the abrasion-resistant pinhole property which fell by addition of the softening modifier. Thus, an example of a preferable stacking order for making the best use of each of the above effects is as shown in Table 1 below.

Figure 0005521288
Figure 0005521288

上記の構成のように、最外層に層(A)を配することにより、柔軟性改質効果が最も発揮され、耐屈曲ピンホール性の改善効果が高くなる。耐摩耗ピンホール性の付与のために配される層(C)は内側に配し、特に、層(B)のEVOHと隣接させることにより、耐摩耗ピンホール性の改善効果が大きく発揮される。   By arranging the layer (A) as the outermost layer as in the above configuration, the flexibility modifying effect is most exhibited and the effect of improving the bending pinhole resistance is enhanced. The layer (C) arranged for imparting wear-resistant pinhole properties is arranged on the inner side, and in particular, by adjoining the EVOH of the layer (B), the effect of improving the wear-resistant pinhole properties is exerted greatly. .

上記の層構成のフィルムは、一般にポリエチレン等のポリオレフィン系のシーラントフィルムと積層されて使用される。この場合、上記の層構成中の一番右側の層側にコロナ処理などの表面処理を施してラミネートする。つまり一番左の層(A)側がラミネートフィルムの表側となる。   The film having the above layer structure is generally used by being laminated with a polyolefin-based sealant film such as polyethylene. In this case, the rightmost layer side in the layer structure is subjected to surface treatment such as corona treatment and laminated. That is, the leftmost layer (A) side is the front side of the laminate film.

ここで、ラミネートフィルムで食品などを包装する場合、シーラントフィルム側をヒートシールすることにより袋状とするが、その際、シール強度が重要な品質となる。シールを破壊させる場合、ラミネート面での剥離やラミネートフィルム自体の母材切れの他に、二軸延伸ポリアミド系積層フィルム内で層間剥離する場合がある。一般にはPA6とEVOHを共押出した場合、EVOH層(B)のラミネート面側の層間強度が一番問題となる可能性が高い。柔軟改質剤を含まないPA6層(C)とEVOH層(B)は層間強度が強固となり好適であるが、柔軟改質剤を添加したPA6層(A)はEVOH層(B)との層間強度が低下する方向となる。従って、EVOH層(B)のラミネート側には柔軟改質剤を含まないPA6層(C)を配することが層間強度的にも良好となる。斯かる観点から、上記の層構成が推奨される。   Here, when foods and the like are packaged with a laminate film, the sealant film side is heat-sealed to form a bag shape. At that time, the sealing strength is an important quality. When the seal is broken, delamination may occur in the biaxially stretched polyamide-based laminated film, in addition to peeling on the laminated surface and cutting of the base material of the laminated film itself. In general, when PA6 and EVOH are coextruded, the interlayer strength on the laminate surface side of the EVOH layer (B) is likely to be the most problematic. The PA6 layer (C) and the EVOH layer (B) not containing the softening modifier are preferable because the interlayer strength is strong and the PA6 layer (A) to which the softening modifier is added is the layer between the EVOH layer (B). The strength decreases. Therefore, the PA6 layer (C) that does not contain a softening modifier is disposed on the laminate side of the EVOH layer (B), and the interlayer strength is also good. From this point of view, the above layer configuration is recommended.

ここで、耐屈曲ピンホール性、耐摩耗ピンホール性、層間強度的に最も好ましい層構成は、(A)/(C)/(B)/(C)/(A)の構成である。両外層に柔軟改質剤を添加したPA6層(A)が配されるため耐屈曲ピンホール性の改質効果が非常に高い。また、EVOH層(B)の両側に隣接して柔軟改質剤を含まないPA6層(C)を配しているため、耐摩耗ピンホール性の改善効果が高く、層間強度も強い。   Here, the most preferable layer structure in terms of bending pinhole resistance, wear pinhole resistance and interlayer strength is the structure of (A) / (C) / (B) / (C) / (A). Since PA6 layer (A) to which a softening modifier is added is disposed on both outer layers, the bending pinhole resistance modification effect is very high. Moreover, since PA6 layer (C) which does not contain a softening modifier is arrange | positioned adjacent to both sides of EVOH layer (B), the improvement effect of wear-resistant pinhole property is high, and interlayer strength is also strong.

本発明の二軸延伸ポリアミド系積層フィルムは、従来公知の一般的方法により製造することが出来る。   The biaxially stretched polyamide-based laminated film of the present invention can be produced by a conventionally known general method.

先ず、原料として、PA6、EVOH、柔軟改質剤などを使用し、通常、共押出法により、実質的に無定型で配向していない積層フィルム(以下「積層未延伸フィルム」という)を製造するのがよい。この積層未延伸フィルムの製造は、例えば、2〜5台の押出機により上記の原料を溶融し、フラットダイ又は環状ダイから押出した後、急冷することによりフラット状または環状の積層未延伸フィルムとする共押出法を採用するのがよい。   First, PA6, EVOH, a softness modifier, etc. are used as raw materials, and a laminated film that is substantially amorphous and not oriented (hereinafter referred to as “laminated unstretched film”) is usually produced by a coextrusion method. It is good. The production of this laminated unstretched film is, for example, by melting the above raw materials with 2 to 5 extruders, extruding from a flat die or an annular die, and then rapidly cooling to form a flat or annular laminated unstretched film and It is better to adopt the co-extrusion method.

次に、上記の積層未延伸フィルムを、フィルムの流れ方向(縦方向)及びこれと直角な方向(横方向)において、少なくとも一方向に通常2.0〜5.0倍、好ましくは縦横二軸方向に各々2.5〜4.5倍、更に好ましくは2.5〜4.0倍の範囲で延伸する。縦方向および横方向の二軸延伸方向の延伸倍率が各々2.0倍より小さい場合は、延伸の効果が少なく、フィルムの強度が劣り、また、二軸延伸方向の延伸倍率が各々5.0倍より大きい場合は、延伸時に積層フィルムが裂けたり破断したりし易い。そのため、延伸倍率の上限は上記の範囲内とするのがよい。   Next, the above-mentioned laminated unstretched film is usually 2.0 to 5.0 times in at least one direction in the film flow direction (longitudinal direction) and the direction perpendicular thereto (lateral direction), preferably biaxially Each is stretched in the range of 2.5 to 4.5 times, more preferably 2.5 to 4.0 times in the direction. When the stretching ratios in the biaxial stretching direction in the machine direction and the transverse direction are each less than 2.0 times, the stretching effect is small, the strength of the film is inferior, and the stretching ratios in the biaxial stretching direction are each 5.0. When it is larger than double, the laminated film is easily torn or broken during stretching. Therefore, the upper limit of the draw ratio is preferably within the above range.

二軸延伸の方法は、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸など、本発明の趣旨を超えない限り従来公知の延伸方法を採用できる。   As the biaxial stretching method, conventionally known stretching methods such as tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular simultaneous biaxial stretching can be adopted as long as the gist of the present invention is not exceeded.

例えば、テンター式逐次二軸延伸方法の場合には、積層未延伸フィルムを、50〜110℃の温度範囲に加熱し、ロール式縦延伸機によって縦方向に2.0〜5.0倍に延伸し、続いて、テンター式横延伸機によって60〜140℃の温度範囲内で横方向に2.0〜5.0倍に延伸する。   For example, in the case of the tenter-type sequential biaxial stretching method, the laminated unstretched film is heated to a temperature range of 50 to 110 ° C. and stretched 2.0 to 5.0 times in the longitudinal direction by a roll type longitudinal stretching machine. Subsequently, the film is stretched 2.0 to 5.0 times in the transverse direction within a temperature range of 60 to 140 ° C. by a tenter type transverse stretching machine.

また、テンター式同時二軸延伸やチューブラー式同時二軸延伸方法の場合は、例えば、60〜130℃の温度範囲において、縦横同時に各軸方向に2.0〜5.0倍に延伸することにより製造することが出来る。   In the case of the tenter simultaneous biaxial stretching or the tubular simultaneous biaxial stretching method, for example, in the temperature range of 60 to 130 ° C., the film is stretched 2.0 to 5.0 times in each axial direction at the same time in the vertical and horizontal directions. Can be manufactured.

延伸された積層二軸延伸フィルムは引き続き熱固定(熱処理)する。これにより常温における寸法安定性を付与することが出来る。この場合の熱処理温度は、110℃を下限として各ポリアミドの融点より2℃低い温度を上限とする範囲を選択するのがよい。これにより、常温寸法安定性のよい、任意の熱収縮率を持った延伸フィルムを得ることが出来る。熱処理操作により、充分に熱固定された積層二軸延伸フィルムは、常法により冷却し巻き取ることが出来る。   The stretched laminated biaxially stretched film is subsequently heat-set (heat treated). Thereby, dimensional stability at room temperature can be imparted. The heat treatment temperature in this case is preferably selected within a range where the lower limit is 110 ° C. and the upper limit is 2 ° C. lower than the melting point of each polyamide. Thereby, the stretched film with favorable thermal shrinkage rate with favorable room temperature dimensional stability can be obtained. The laminated biaxially stretched film that has been sufficiently heat-set by the heat treatment operation can be cooled and wound by a conventional method.

熱処理によって得られる本発明の二軸延伸ポリアミド系積層フィルムは、95℃×5分の熱水収縮率が縦・横方向ともに0.5〜5.0%でなければならない。熱水収縮率が0.5%未満の場合は、熱処理温度が高すぎる可能性があり、二軸延伸ポリアミド系積層フィルムの機械強度が低下する。また、熱水収縮率が5.0%を超える場合は、熱処理温度が不十分であり、印刷、ラミネート、製袋加工などの後加工で施される熱で収縮を起こし、印刷見当ズレ、ラミネートシワ、製袋品の歪みの原因となる。熱水収縮率は、好ましくは0.8〜4.5%、更に好ましくは1.0〜4.0%である。   The biaxially stretched polyamide-based laminated film of the present invention obtained by heat treatment must have a hot water shrinkage of 0.5 to 5.0% in both the vertical and horizontal directions at 95 ° C. for 5 minutes. When the hot water shrinkage is less than 0.5%, the heat treatment temperature may be too high, and the mechanical strength of the biaxially stretched polyamide-based laminated film is lowered. If the hot water shrinkage rate exceeds 5.0%, the heat treatment temperature is insufficient, causing shrinkage due to heat applied in post-processing such as printing, laminating, bag making, etc. It causes wrinkles and distortion of bag products. The hot water shrinkage is preferably 0.8 to 4.5%, more preferably 1.0 to 4.0%.

本発明の二軸延伸ポリアミド系積層フィルムは、温度23℃で相対湿度50%の条件下でのゲルボフレックステスターによる3000サイクル繰返し屈曲後のピンホール数が8個/497cm(=77inch)以下である。また、耐摩耗ピンホール性が1.2m以上であることが好ましい。屈曲ピンホール数は、更に好ましくは6個以下、特に好ましくは4個以下である。また、耐摩耗ピンホール性は、更に好ましくは1.4m以上、特に好ましくは1.6m以上である。 The biaxially stretched polyamide-based laminated film of the present invention has a pinhole count of 8/497 cm 2 (= 77 inch 2 ) after 3000 cycles of bending with a gelboflex tester at a temperature of 23 ° C. and a relative humidity of 50%. Ru der below. Moreover, it is preferable that abrasion-resistant pinhole property is 1.2 m or more. The number of bent pinholes is more preferably 6 or less, and particularly preferably 4 or less. Further, the wear-resistant pinhole property is more preferably 1.4 m or more, and particularly preferably 1.6 m or more.

本発明の二軸延伸ポリアミド系積層フィルムの全体の厚さは通常10〜40μmである。全体の厚さが10μm未満の場合は、酸素ガスバリア性と耐屈曲ピンホール性のバランスに乏しく、また、耐摩耗性も不充分となり、包装用途には不適当である。また、40μmを超える場合は、フィルムが硬くなり、更に、シーラント層を張り合わせる場合にはフィルム全体が非常に厚くなり、軟包装用途には不適当である。   The total thickness of the biaxially stretched polyamide-based laminated film of the present invention is usually 10 to 40 μm. When the total thickness is less than 10 μm, the balance between oxygen gas barrier properties and bending pinhole resistance is poor, and the wear resistance is insufficient, which is inappropriate for packaging applications. On the other hand, when the thickness exceeds 40 μm, the film becomes hard, and when the sealant layer is laminated, the entire film becomes very thick, which is unsuitable for flexible packaging applications.

また、本発明の二軸延伸ポリアミド系積層フィルムは、シーラント層を貼り合わせ、更に加工に供することが出来る。そして、このフィルムに対し、塩化ビニリデン系樹脂、ポリビニルアルコール系樹脂、エチレンー酢酸ビニル共重合体鹸化物系樹脂などのコーティング層を設けることにより、ガスバリア性を一層向上させた、耐屈曲ピンホール性の優れたフィルムが得られる。また、ドライラミネート法、ウェットラミネート法、押出しラミネート法などにより、各種の単層または積層フィルムに対して積層することにより、耐屈曲ピンホール性の優れた積層体となる。   Moreover, the biaxially stretched polyamide-based laminated film of the present invention can be subjected to further processing by bonding a sealant layer. And by providing a coating layer of vinylidene chloride resin, polyvinyl alcohol resin, ethylene-vinyl acetate copolymer saponified resin, etc. on this film, the gas barrier property is further improved, and the bending pinhole resistance is improved. An excellent film is obtained. Further, by laminating on various single layers or laminated films by a dry laminating method, a wet laminating method, an extrusion laminating method or the like, a laminated body having excellent bending pinhole resistance is obtained.

以下、実施例により本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の諸例においてフィルムの評価は次の方法によって行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example. In the following examples, the film was evaluated by the following method.

(1)熱水収縮率:
フィルムの両端部および中央の三点から、MDに120mm×TDに120mmに切り出し、このサンプルのMDおよびTDに約100mmの基準線を三本引く。このサンプルを23℃で50%RH雰囲気下に24時間放置して基準線を測長する。測長した熱処理前の長さをFとする。このサンプルを95℃に保持した熱水中に浸し、5分間加熱した後に取り出す。更に、23℃で50%RH雰囲気下に30分放置した後、前記の基準線を測長し、熱処理後の長さをGとする。以下の式を使用して各々の熱水収縮率を算出し、MD、TDの三本の平均値(平均値の少数第二位を四捨五入)を夫々MDとTDの熱水収縮率とする。
(1) Hot water shrinkage:
From the two ends of the film and at the center, cut into 120 mm in MD × 120 mm in TD, and draw three reference lines of about 100 mm in MD and TD of this sample. This sample is allowed to stand in a 50% RH atmosphere at 23 ° C. for 24 hours, and the reference line is measured. The measured length before heat treatment is F. This sample is immersed in hot water maintained at 95 ° C., heated for 5 minutes, and then taken out. Further, after being left in a 50% RH atmosphere at 23 ° C. for 30 minutes, the above-mentioned reference line is measured, and the length after the heat treatment is defined as G. The following formulas are used to calculate the respective hot water shrinkage rates, and the average value of the three MD and TD values (rounded to the first decimal place) is taken as the hot water shrinkage rate of MD and TD, respectively.

Figure 0005521288
Figure 0005521288

(2)耐屈曲ピンホール性(ピンホール数/497cm(=77inch)):
20.3cm×27.9cmの大きさに切断したフィルムを、23℃で50%RH雰囲気下に24時間以上放置してコンディショニングし、ゲルボフレックステスター(理学工業社製「No.901型」(MIL−B−131Cの規格に準拠))を使用し、次のように屈曲テストを繰り返し、ピンホール数を計測する。
(2) Bending resistance to pinholes (number of pinholes / 497 cm 2 (= 77 inch 2 )):
A film cut to a size of 20.3 cm × 27.9 cm was conditioned at 23 ° C. in a 50% RH atmosphere for 24 hours or longer, and gelboflex tester (“No.901 type” manufactured by Rigaku Corporation) ( Compliant with the standard of MIL-B-131C)), and the bending test is repeated as follows to measure the number of pinholes.

上記の長方形テストフィルムを長さ20.3cmの円筒状にし、当該巻架した円筒状フィルムの一端を上記のテスターの円盤状固定ヘッドの外周に、他端を上記のテスター円盤状可動ヘッドの外周に夫々固定する。上記可動ヘッドを、上記の固定ヘッドの方向に、平行に対向した両ヘッド(固定ヘッドと可動ヘッドとは17.8cm隔てて対向している)の軸に沿って8.9cm接近させる間に440゜回転させる。続いて、回転させることなしに6.4cm直進させ、その後、これらの動作を逆に行わせ、上記可動ヘッドを最初の位置に戻すまでの行程を1サイクルとする屈曲テストを行う。1分当り40サイクルの速度で連続して3000サイクル行う。その後に、テストしたフィルムの固定ヘッド、可動ヘッドの外周に固定した部分を除いた17.8cm×27.9cm(7inch×11inch=77inch2=496cm)内の部分に生じたピンホール数を、ピンホールテスター(サンコー電子研究所製「TRD型」)により1KVの電圧を印加して計測する。 The rectangular test film is formed into a cylindrical shape having a length of 20.3 cm, and one end of the wound cylindrical film is placed on the outer periphery of the disk-shaped fixed head of the tester, and the other end is placed on the outer periphery of the tester disk-shaped movable head. Respectively. While the movable head is made to approach 8.9 cm along the axis of both heads facing in parallel to the direction of the fixed head (the fixed head and the movable head are opposed to each other with a distance of 17.8 cm) 440. Rotate. Subsequently, a straightening test is performed in which the straight line travels 6.4 cm without rotating, and then reverses these operations, and the stroke until the movable head is returned to the initial position is one cycle. 3000 cycles are performed continuously at a rate of 40 cycles per minute. Thereafter, the number of pinholes generated in the portion within 17.8 cm × 27.9 cm (7 inches × 11 inches = 77 inches 2 = 496 cm 2 ) excluding the fixed head of the tested film and the portion fixed to the outer periphery of the movable head, Measurement is performed by applying a voltage of 1 KV with a hall tester (“TRD type” manufactured by Sanko Electronics Laboratory).

(3)耐摩耗ピンホール性(m):
1辺10cm角の正方形に切ったフィルムを23℃で50%RH雰囲気下に24時間コンディショニングする。この10cm角のフィルムを辺に平行に4つ折りし、得られた角部を下側に2mm出るよう治具に固定する。この角部に2gの荷重が掛かるよう調整して、A4コピー用上質紙に直角に当て、上質紙を前後にストローク100mmで往復させる。1往復で0.2mの摩耗距離として、1m、2m、3m・・・の各距離を20枚ずつの試験片を使って摩耗試験を行う。そして、試験辺の角にピンホールが開いたものを確認する。
(3) Wear resistance pinhole property (m):
A film cut into a square of 10 cm square is conditioned at 23 ° C. in a 50% RH atmosphere for 24 hours. This 10 cm square film is folded into four parallel to the side, and the obtained corner is fixed to a jig so as to protrude 2 mm downward. The corner is adjusted so that a load of 2 g is applied, and is applied to the A4 copy quality paper at right angles, and the quality paper is reciprocated back and forth at a stroke of 100 mm. A wear test is performed using 20 test pieces for each distance of 1 m, 2 m, 3 m,. Then, check that the pinhole is open at the corner of the test side.

確認は赤いインクを角に垂らし、フィルムの逆側にインクが抜けるかどうかで判断する。各距離におけるピンホールが開いた試験片の数nを計測し、各距離におけるピンホール率(n/20)×100%を横軸摩耗距離としてグラフにプロットし、近似直線がピンホール率50%を通る距離(m)を摩耗ピンホール距離とし、この摩耗ピンホール距離から各フィルムの耐摩耗ピンホール性を評価する。すなわち、摩耗ピンホール距離が長いほど、摩擦などによる耐摩耗ピンホール性が高いことになる。   Confirmation is based on whether red ink is dropped on the corner and ink is removed on the opposite side of the film. The number n of the test pieces having pinholes at each distance was measured, and the pinhole ratio (n / 20) × 100% at each distance was plotted on the graph as the abscissa wear distance. The approximate straight line was the pinhole ratio 50%. The distance (m) passing through is the wear pinhole distance, and the wear resistance pinhole property of each film is evaluated from this wear pinhole distance. That is, the longer the wear pinhole distance, the higher the wear resistance pinhole property due to friction or the like.

実施例1:
層(A)の原料としてPA6(三菱エンジニアリングプラスチックス(株)製「ノバミッド1022」)とポリアミドエラストマー(柔軟改質剤:アルケマ社製「PEBAX4033」)とを97:3の割合(重量)で混合した樹脂組成物、層(B)の原料としてEVOH〔日本合成化学工業(株)製「ソアノールDC3203」、エチレン含有率32モル%〕、層(C)の原料としてPA6(三菱エンジニアリングプラスチックス(株)製「ノバミッド1022」)を使用した。そして、φ65mm押出機3台を使用し、別々に原料溶融させ、更に、層(A)のPA6と柔軟改質剤を混合した樹脂組成物および層(C)のPA6については、夫々分配ブロックで略半々に分割し、共押出Tダイ内で積層させ、5層構造の積層フィルムとして押出し、(A)/(C)/(B)/(C)/(A)構成で各層厚みが夫々35μm/20μm/40μm/20μm/35μmから成る溶融状フィルムを得、引き続き、30℃の冷却ロール上で急冷し、厚み150μmの未延伸積層フィルムとした。
Example 1:
PA6 ("Novamid 1022" manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and polyamide elastomer (softening modifier: "PEBAX4033" manufactured by Arkema Co., Ltd.) as a raw material for layer (A) were mixed at a ratio (weight) of 97: 3. EVOH as a raw material for the layer (B), “Soarnol DC3203 manufactured by Nippon Synthetic Chemical Industry Co., Ltd., ethylene content 32 mol%”, and PA6 (Mitsubishi Engineering Plastics Co., Ltd.) as the raw material for the layer (C) ) “Novamid 1022”). Then, using three φ65 mm extruders, the raw materials were melted separately, and the resin composition in which the layer (A) PA6 and the softness modifier were mixed and the layer (C) PA6 were respectively distributed in blocks. Divided almost in half, laminated in a co-extrusion T-die, extruded as a laminated film with a five-layer structure, and each layer thickness was 35 μm in the (A) / (C) / (B) / (C) / (A) configuration. A melted film comprising / 20 μm / 40 μm / 20 μm / 35 μm was obtained, and then rapidly cooled on a cooling roll at 30 ° C. to obtain an unstretched laminated film having a thickness of 150 μm.

次いで、この未延伸積層フィルムを50℃に加熱昇温した後、この温度条件でロール式縦延伸機により縦方向に3倍延伸し、更に、120℃に加熱昇温した後、テンター式横延伸機により横方向に3.3倍延伸した。引き続き、得られた二軸延伸フィルムを215℃の条件で6秒間熱処理することにより、総厚み15μmの延伸積層フィルムを得た。   Next, the unstretched laminated film is heated to 50 ° C., then stretched three times in the longitudinal direction by a roll-type longitudinal stretching machine at this temperature condition, further heated to 120 ° C., and then tenter-type lateral stretching. The film was stretched by 3.3 times in the transverse direction. Subsequently, the obtained biaxially stretched film was heat-treated at 215 ° C. for 6 seconds to obtain a stretched laminated film having a total thickness of 15 μm.

得られた延伸積層フィルムについて前記方法により、熱水収縮率、耐屈曲ピンホール性および耐摩耗ピンホール性を測定した。その結果を表2に示す。   With respect to the obtained stretched laminated film, the hot water shrinkage rate, the bending pinhole property and the wear pinhole property were measured by the above methods. The results are shown in Table 2.

実施例2:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=95:5とし、5層の厚み比率を22.5μm/30μ/45μm/30μ/22.5μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Example 2:
Example 1 except that the blending ratio of the layer (A) is PA6: polyamide elastomer = 95: 5 and the thickness ratio of the five layers is 22.5 μm / 30 μ / 45 μm / 30 μ / 22.5 μm in Example 1. By the same method, a stretched laminated film was obtained, and physical properties were measured. The results are shown in Table 2.

実施例3:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=97:3とし、厚み比率を37.5μm/30μ/15μm/30μ/37.5μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Example 3:
In Example 1, the same method as in Example 1 except that the blending ratio of the layer (A) was PA6: polyamide elastomer = 97: 3 and the thickness ratio was 37.5 μm / 30 μ / 15 μm / 30 μ / 37.5 μm. Thus, a stretched laminated film was obtained, and physical properties were measured. The results are shown in Table 2.

実施例4:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=90:10とし、厚み比率を22.5μm/37.5μ/30μm/37.5μ/22.5μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Example 4:
In Example 1, except that the blending ratio of layer (A) was PA6: polyamide elastomer = 90: 10, and the thickness ratio was 22.5 μm / 37.5 μ / 30 μm / 37.5 μ / 22.5 μm. By the same method as 1, a stretched laminated film was obtained and measured for physical properties. The results are shown in Table 2.

実施例5:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=97:3とし、厚み比率を37.5μm/15μ/45μm/15μ/37.5μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Example 5:
In Example 1, the same method as in Example 1 except that the blending ratio of layer (A) was PA6: polyamide elastomer = 97: 3 and the thickness ratio was 37.5 μm / 15 μ / 45 μm / 15 μ / 37.5 μm. Thus, a stretched laminated film was obtained, and physical properties were measured. The results are shown in Table 2.

実施例6:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=95:5とし、層(B)と(C)には実施例と同一の原料を使用し、φ65mm押出機3台を使用して別々に溶融させ、共押出Tダイ内で積層させて3層構造の積層フィルムとして押出し、(A)/(B)/(C)構成の各層厚みを夫々55μm/40μm/55μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Example 6:
In Example 1, the blending ratio of the layer (A) is PA6: polyamide elastomer = 95: 5, the same raw materials as in the example are used for the layers (B) and (C), and three φ65 mm extruders are used. And melted separately, laminated in a coextrusion T-die and extruded as a laminated film with a three-layer structure, except that the thickness of each layer of (A) / (B) / (C) configuration was 55 μm / 40 μm / 55 μm, respectively Obtained the stretched laminated film by the same method as in Example 1, and measured the physical properties. The results are shown in Table 2.

実施例7:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=97:3とし、層(B)と(C)には実施例と同一の原料を使用し、φ65mm押出機3台を使用して別々に溶融させ、更に、層(A)のPA6と柔軟改質剤を混合した樹脂組成物については分配ブロックでほぼ半々に分割し、共押出Tダイ内で積層させて4層構造の積層フィルムとして押出し、(A)/(B)/(C)/(A)構成の各層厚みを夫々35μm/40μm/40μm/35μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Example 7:
In Example 1, the blending ratio of the layer (A) is PA6: polyamide elastomer = 97: 3, the same raw materials as in the example are used for the layers (B) and (C), and three φ65 mm extruders are used. In addition, the resin composition in which PA6 of layer (A) and the softening modifier are mixed is divided into approximately half in a distribution block and laminated in a coextrusion T-die to form a four-layer structure. Extruded as a laminated film, the stretched laminated film was formed in the same manner as in Example 1 except that the thicknesses of the layers (A) / (B) / (C) / (A) were 35 μm / 40 μm / 40 μm / 35 μm, respectively. Obtained and measured physical properties. The results are shown in Table 2.

実施例8:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=92:8とし、層(B)と(C)には実施例1と同一の原料を使用し、φ65mm押出機3台を使用して別々に溶融させ、更に、層(C)のPA6については分配ブロックでほぼ半々に分割し、共押出Tダイ内で積層させて3層構造の積層フィルムとして押出し、(A)/(C)/(B)/(C)構成の各層厚みを夫々45μm/37.5μm/30μm/37.5μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Example 8:
In Example 1, the blending ratio of the layer (A) is PA6: polyamide elastomer = 92: 8, the same raw materials as in Example 1 are used for the layers (B) and (C), and three φ65 mm extruders are used. In addition, the PA6 of the layer (C) is divided almost in half by a distribution block, laminated in a coextrusion T-die and extruded as a laminated film having a three-layer structure, and (A) / ( A stretched laminated film was obtained in the same manner as in Example 1 except that the thickness of each layer of the C) / (B) / (C) configuration was 45 μm / 37.5 μm / 30 μm / 37.5 μm, and the physical properties were measured. It was. The results are shown in Table 2.

比較例1:
実施例1において、層(A)にPA6(三菱エンジニアリングプラスチックス(株)製、ノバミッド1022)を使用した以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Comparative Example 1:
In Example 1, a stretched laminated film was obtained in the same manner as in Example 1 except that PA6 (Mitsubishi Engineering Plastics Co., Ltd., Novamid 1022) was used for the layer (A), and physical properties were measured. The results are shown in Table 2.

比較例2:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=95:5とし、層(B)には実施例1と同一原料を使用し、φ65mm押出機2台を使用して別々に溶融させ、更に、層(A)のPA6と柔軟改質剤を混合した樹脂組成物については分配ブロックでほぼ半々に分割し、共押出Tダイ内で積層させて3層構造の積層フィルムとして押出し、(A)/(B)/(A)構成の各層厚みを夫々55μm/40μm/55μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Comparative Example 2:
In Example 1, the blending ratio of the layer (A) is PA6: polyamide elastomer = 95: 5, the same raw material as in Example 1 is used for the layer (B), and two φ65 mm extruders are used separately. The resin composition obtained by melting and mixing the PA6 of layer (A) and the softening modifier is divided almost in half by a distribution block, laminated in a coextrusion T-die, and extruded as a laminated film having a three-layer structure. , (A) / (B) / (A) A stretched laminated film was obtained in the same manner as in Example 1 except that the thicknesses of the respective layers were set to 55 μm / 40 μm / 55 μm, and physical properties were measured. The results are shown in Table 2.

比較例3:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=97:3とし、厚み比率を30μm/15μ/60μm/15μ/30μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Comparative Example 3:
In Example 1, the layer (A) blending ratio was PA6: polyamide elastomer = 97: 3, and the thickness ratio was 30 μm / 15 μ / 60 μm / 15 μ / 30 μm. A film was obtained and measured for physical properties. The results are shown in Table 2.

比較例4:
実施例1において、層(A)の配合比率をPA6:ポリアミドエラストマー=85:15とした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Comparative Example 4:
A stretched laminated film was obtained in the same manner as in Example 1 except that the blending ratio of the layer (A) was PA6: polyamide elastomer = 85: 15, and the physical properties were measured. The results are shown in Table 2.

比較例5:
実施例1において、熱処理温度を223℃で6秒間とした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Comparative Example 5:
In Example 1, a stretched laminated film was obtained and measured for physical properties by the same method as in Example 1 except that the heat treatment temperature was 223 ° C. for 6 seconds. The results are shown in Table 2.

比較例6:
実施例1において、熱処理温度を200℃で6秒間とした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Comparative Example 6:
In Example 1, a stretched laminated film was obtained by the same method as in Example 1 except that the heat treatment temperature was 200 ° C. for 6 seconds, and physical properties were measured. The results are shown in Table 2.

比較例7:
実施例1において、層(A)と層(C)を入れ替え、(C)/(A)/(B)/(A)/(C)構成で各層厚みが夫々20μm/35μm/40μm/35μm/20μmとした以外は、実施例1と同じ方法により、延伸積層フィルムを得、物性測定を行った。その結果を表2に示す。
Comparative Example 7:
In Example 1, the layer (A) and the layer (C) are interchanged, and each layer has a thickness of 20 μm / 35 μm / 40 μm / 35 μm / in the (C) / (A) / (B) / (A) / (C) configuration. A stretched laminated film was obtained in the same manner as in Example 1 except that the thickness was 20 μm, and physical properties were measured. The results are shown in Table 2.

Figure 0005521288
Figure 0005521288

Claims (8)

以下の層(A)〜(C)を含み、層(A)は少なくとも一方の最外層に配され、さらに、層(B)と層(C)とが隣接して配置されている層構成を含み、全体厚みに対する、層(A)の厚み比率は10〜60%、層(B)の厚み比率は5〜40%、層(C)の厚み比率は10〜60%であり、縦・横方向ともに2.0〜5.0倍に延伸した後に熱固定して得られ、95℃×5分の熱水収縮率が縦・横方向ともに0.5〜5.0%であり、温度23℃で相対湿度50%の条件下でのゲルボフレックステスターによる3000サイクル繰返し屈曲後のピンホール数が8個/497cm以下であることを特徴とする二軸延伸ポリアミド系積層フィルム。
層(A):PA6と柔軟改質剤が99:1〜90:10の割合で配合された層
層(B):エチレン−酢酸ビニル共重合体ケン化物層
層(C):柔軟改質剤を添加しないPA6層
A layer structure including the following layers (A) to (C), wherein the layer (A) is disposed on at least one outermost layer, and the layer (B) and the layer (C) are disposed adjacent to each other. The thickness ratio of the layer (A) to the total thickness is 10 to 60%, the thickness ratio of the layer (B) is 5 to 40%, and the thickness ratio of the layer (C) is 10 to 60%. It was obtained by stretching 2.0 to 5.0 times in both directions and then heat-setting, and the hot water shrinkage rate at 95 ° C. for 5 minutes was 0.5 to 5.0% in both the longitudinal and transverse directions, and the temperature was 23 A biaxially stretched polyamide-based laminated film having a pinhole count of 8/497 cm 2 or less after 3000 cycles of repeated bending by a gelboflex tester at 50 ° C. and a relative humidity of 50%.
Layer (A): Layer in which PA6 and softness modifier are blended in a ratio of 99: 1 to 90:10 Layer (B): Saponified ethylene-vinyl acetate copolymer layer (C): Softness modifier PA6 layer with no addition of
耐摩耗ピンホール性が1.2m以上である請求項1に記載の二軸延伸ポリアミド系積層フィルム。 The biaxially stretched polyamide-based laminated film according to claim 1, wherein the wear-resistant pinhole property is 1.2 m or more. (B)を基準として、最外層の(A)の反対側の隣接層が(C)である請求項1又は2に記載の二軸延伸ポリアミド系積層フィルム。 The biaxially stretched polyamide-based laminated film according to claim 1 or 2 , wherein the adjacent layer on the opposite side of (A) of the outermost layer is (C) on the basis of (B). (A)/(B)/(C)の順に積層されている請求項1〜の何れかに記載の二軸延伸ポリアミド系積層フィルム。 The biaxially stretched polyamide-based laminated film according to any one of claims 1 to 3 , which is laminated in the order of (A) / (B) / (C). (A)/(B)/(C)/(A)の順に積層されている請求項1〜の何れかに記載の二軸延伸ポリアミド系積層フィルム。 The biaxially stretched polyamide-based laminated film according to any one of claims 1 to 3 , which is laminated in the order of (A) / (B) / (C) / (A). (A)/(C)/(B)/(C)の順に積層されている請求項1〜の何れかに記載の二軸延伸ポリアミド系積層フィルム。 The biaxially stretched polyamide-based laminated film according to any one of claims 1 to 3 , which is laminated in the order of (A) / (C) / (B) / (C). (A)/(C)/(B)/(C)/(A)の順に積層されている請求項1〜の何れかに記載の二軸延伸ポリアミド系積層フィルム。 The biaxially stretched polyamide-based laminated film according to any one of claims 1 to 3 , which is laminated in the order of (A) / (C) / (B) / (C) / (A). 柔軟改質剤がポリテトラメチレングリコールとポリラウリルラクタムを主成分とする重合体である請求項1〜の何れかに記載の二軸延伸ポリアミド系積層フィルム。 The biaxially stretched polyamide-based laminated film according to any one of claims 1 to 7 , wherein the softening modifier is a polymer mainly composed of polytetramethylene glycol and polylauryl lactam.
JP2008183967A 2008-07-15 2008-07-15 Biaxially stretched polyamide laminated film Active JP5521288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183967A JP5521288B2 (en) 2008-07-15 2008-07-15 Biaxially stretched polyamide laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183967A JP5521288B2 (en) 2008-07-15 2008-07-15 Biaxially stretched polyamide laminated film

Publications (2)

Publication Number Publication Date
JP2010023242A JP2010023242A (en) 2010-02-04
JP5521288B2 true JP5521288B2 (en) 2014-06-11

Family

ID=41729549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183967A Active JP5521288B2 (en) 2008-07-15 2008-07-15 Biaxially stretched polyamide laminated film

Country Status (1)

Country Link
JP (1) JP5521288B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161647A (en) * 2010-02-04 2011-08-25 Gunze Ltd Food packaging film
JP6531371B2 (en) * 2013-11-27 2019-06-19 キョーラク株式会社 Peeling container
CN108674772B (en) 2013-11-27 2021-06-04 京洛株式会社 Laminated peeling container
JP6573487B2 (en) * 2015-06-04 2019-09-11 グンゼ株式会社 Polyamide film
US20220135752A1 (en) * 2019-02-18 2022-05-05 Toyobo Co., Ltd. Biaxially stretched polyamide film and laminate film
WO2021199461A1 (en) * 2020-03-31 2021-10-07 東洋紡株式会社 Biaxially oriented polyamide film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212367A (en) * 2004-01-30 2005-08-11 Mitsubishi Plastics Ind Ltd Retort-resistant biaxially oriented laminated film
JP2005212391A (en) * 2004-01-30 2005-08-11 Mitsubishi Plastics Ind Ltd Biaxially oriented laminated film
JP2006037070A (en) * 2004-06-23 2006-02-09 Ube Ind Ltd Polyamide resin composition and its molded article
JP4614772B2 (en) * 2005-01-11 2011-01-19 グンゼ株式会社 Polyamide multilayer film
JP5166688B2 (en) * 2005-10-06 2013-03-21 三菱樹脂株式会社 Linear-cut polyamide heat-shrinkable film and method for producing the same
JP4817858B2 (en) * 2006-01-31 2011-11-16 三菱樹脂株式会社 Lid material
JP4817857B2 (en) * 2006-01-31 2011-11-16 三菱樹脂株式会社 Polyamide resin laminated film
JP4769602B2 (en) * 2006-03-15 2011-09-07 三菱樹脂株式会社 Lid material
JP5008889B2 (en) * 2006-04-14 2012-08-22 三菱樹脂株式会社 Gas barrier stretched film and gas barrier package using the film

Also Published As

Publication number Publication date
JP2010023242A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4644548B2 (en) Polyamide resin laminated film
JP5521288B2 (en) Biaxially stretched polyamide laminated film
JP7114837B2 (en) Laminate film
JP4861673B2 (en) Linear-cut polyamide-based heat-shrinkable laminated film and method for producing the same
JP2005212389A (en) Polyamide laminated film
JP7463966B2 (en) Laminated oriented polyamide film
JP4817857B2 (en) Polyamide resin laminated film
WO2021065257A1 (en) Multilayered stretched polyamide film
JP5383563B2 (en) Polyamide multilayer film
JPH0459353A (en) Laminate wrapping film
JP4861672B2 (en) Straight-cut polyamide laminated film and method for producing the same
JP5166688B2 (en) Linear-cut polyamide heat-shrinkable film and method for producing the same
JP7322458B2 (en) Easy adhesion polyamide film
JP6191302B2 (en) Polyamide-based resin laminated film and package using the film
EP3804980A1 (en) Heat shrinkable multilayer film
JP5183022B2 (en) Straight-cut polyamide film and method for producing the same
JP2005212391A (en) Biaxially oriented laminated film
JP5041859B2 (en) Linear-cut polyamide-based heat-shrinkable laminated film and method for producing the same
JP5041858B2 (en) Straight-cut polyamide laminated film and method for producing the same
JP6851918B2 (en) Polyamide-based multilayer film
JP2005212367A (en) Retort-resistant biaxially oriented laminated film
JPH06293119A (en) Polyamide laminated biaxially oriented film
JP5383562B2 (en) Polyamide multilayer film
JP5946376B2 (en) Polyamide resin laminated film
JP2008049489A (en) Polyamide stretched film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350