JP5519548B2 - Basalt fiber material - Google Patents

Basalt fiber material Download PDF

Info

Publication number
JP5519548B2
JP5519548B2 JP2011023643A JP2011023643A JP5519548B2 JP 5519548 B2 JP5519548 B2 JP 5519548B2 JP 2011023643 A JP2011023643 A JP 2011023643A JP 2011023643 A JP2011023643 A JP 2011023643A JP 5519548 B2 JP5519548 B2 JP 5519548B2
Authority
JP
Japan
Prior art keywords
basalt
fiber material
glass
oxide
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011023643A
Other languages
Japanese (ja)
Other versions
JP2011140436A (en
Inventor
純生 神谷
勲 田中
一巳 今村
宏格 笹木
敬章 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakagawa Sangyo Co Ltd
Toyota Motor Corp
Original Assignee
Nakagawa Sangyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakagawa Sangyo Co Ltd, Toyota Motor Corp filed Critical Nakagawa Sangyo Co Ltd
Priority to JP2011023643A priority Critical patent/JP5519548B2/en
Publication of JP2011140436A publication Critical patent/JP2011140436A/en
Application granted granted Critical
Publication of JP5519548B2 publication Critical patent/JP5519548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、吸音特性と耐熱性に優れたバサルト繊維に関する。さらに詳しくは、本発明は、自動車用マフラーなどに好適に使用される、吸音特性と耐熱性に優れると共に、安価な耐熱性バサルト繊維に関するものである。   The present invention relates to a basalt fiber having excellent sound absorption characteristics and heat resistance. More specifically, the present invention relates to an inexpensive heat-resistant basalt fiber that is suitably used for an automobile muffler and the like and has excellent sound absorption characteristics and heat resistance.

自動車用マフラーは、排気音を吸収するための部品であり、その吸音材として、現在ガラス繊維が使用されている。しかしながら、最近の自動車エンジンの省エネルギー化および排ガス規制に伴い、エンジン温度が上昇し、その結果排気ガス温度もマフラー部において、800℃以上になる。そのため、マフラーに使用される吸音材の高耐熱性化(850〜900℃に対応)が急務になってきている。   Automobile mufflers are components for absorbing exhaust noise, and glass fiber is currently used as the sound absorbing material. However, with recent energy savings and exhaust gas regulations of automobile engines, the engine temperature rises, and as a result, the exhaust gas temperature also reaches 800 ° C. or higher in the muffler section. For this reason, it has become an urgent task to increase the heat resistance of the sound absorbing material used in the muffler (corresponding to 850 to 900 ° C.).

耐熱性ガラス繊維としては、Eガラスの繊維を酸処理したものが知られている。このものは、組成が、SiO50〜63重量%、Al 12〜16重量%、B 8〜13重量%、CaO+MgO 15〜20重量%、NaO+KO微量である一般的なEガラス繊維を、例えば濃度9〜12重量%の塩酸を用いて、40〜70℃の温度で、約30分〜数時間、浸漬処理することにより、表層部をSiO含有率80重量%以上のシリカ質ガラスにし、耐熱性を付与したものである。 As the heat-resistant glass fiber, an acid-treated fiber of E glass is known. This compound, composition, SiO 2 50 to 63 wt%, Al 2 O 3 12 to 16 wt%, B 2 O 3 8 to 13 wt%, CaO + MgO 15 to 20% by weight, with Na 2 O + K 2 O trace By immersing a general E glass fiber using a hydrochloric acid having a concentration of 9 to 12% by weight at a temperature of 40 to 70 ° C. for about 30 minutes to several hours, the surface layer portion has a SiO 2 content of 80%. It is made of siliceous glass of weight% or more and is given heat resistance.

この酸処理Eガラス繊維は、紡糸温度と液相温度の差が大きくて紡糸が容易であり、かつ安価であるなどの長所を有しているが、排気ガス温度が700℃以上のマフラー部における吸音材用としては、耐熱性が不十分であり、使用しにくいという欠点を有している。このため、該吸音材用として、耐熱性の高いSガラス繊維の使用が考えられるが、このSガラスは非常に高価である。   This acid-treated E glass fiber has the advantages that the difference between the spinning temperature and the liquidus temperature is large and that spinning is easy and inexpensive. However, the exhaust gas temperature is 700 ° C. or higher in the muffler part. As a sound-absorbing material, heat resistance is insufficient and it has a drawback that it is difficult to use. For this reason, although use of S glass fiber with high heat resistance is considered for this sound-absorbing material, this S glass is very expensive.

そこで、下記特許文献1には、排気ガス温度が800℃以上の自動車マフラー部における吸音材などとして好適な耐熱性ガラス繊維として、繊維全体として、実質上重量%で、SiO 56〜58.5%、Al 12〜17%、CaO 16〜27%、MgO 1〜9%、NaO 0〜1%、KO 0〜1%を含み、BおよびFを含まないガラス組成を有し、かつ表層部がSiO含有率90重量%以上のシリカ質ガラスからなる耐熱性ガラス繊維、および上記組成を有するガラス繊維の表面を鉱酸で酸処理した該耐熱性ガラス繊維が開示されている。 Therefore, in Patent Document 1 below, as a heat-resistant glass fiber suitable as a sound absorbing material or the like in an automobile muffler part having an exhaust gas temperature of 800 ° C. or higher, SiO 2 56 to 58.5 is substantially weight% as a whole fiber. contained%, Al 2 O 3 12~17% , CaO 16~27%, MgO 1~9%, Na 2 O 0~1%, K 2 O comprises 0 to 1%, the B 2 O 2 and F 2 has no glass composition and heat-resistant glass surface layer portion was acid-treated with a mineral acid to the surface of the glass fibers with heat-resistant glass fibers comprising SiO 2 content of at least 90% by weight of siliceous glass and the composition A fiber is disclosed.

一方、天然の玄武岩(バサルト)原石を原料としたバサルト長繊維は、従来のガラス長繊維と比較し、きわめて安価である。しかし、約750℃から約900℃の高温で使用するとガラス成分から結晶相が生成し、可撓性の消失、結晶層とガラス層界面での剥離等の問題が発生するという問題があった。   On the other hand, basalt long fibers made of natural basalt (basalt) ore are very inexpensive compared to conventional glass long fibers. However, when used at a high temperature of about 750 ° C. to about 900 ° C., there is a problem that a crystal phase is generated from the glass component and problems such as loss of flexibility and peeling at the interface between the crystal layer and the glass layer occur.

即ち、下記(1)〜(5)のような問題点があった。
(1)SiO、Al、CaOを主成分とする市販のガラス繊維は排気系の高温(〜800℃)ガスに暴露されると吸音特性・耐久性に問題が発生する。
(2)SiO、Si、MgOを主成分とする市販のガラス繊維は排気系の高温(〜830℃)ガスに暴露されると吸音特性・耐久性に問題が発生する。
(3)市販のガラス長繊維は高コストである。
(4)上記(1)〜(3)を解決するため天然原料を用いたバサルト繊維の適用が検討されている。代表例としてAl量はほぼ同程度であるがSiO量の多い原石(高温度用(A))と、SiO量が少ない原石(中温度用(B))の2種のバサルト繊維が組成も安定し、大量に入手可能である。原石(A)を原料としたバサルト繊維は繊維化は可能であるが750℃以上の温度領域で耐熱性に問題があり、原石(B)を用いた場合は繊維の量産時のエネルギー費が上昇する。
(5)以上より、高耐熱性・低コスト・高耐久性を満足する吸音用ガラス繊維や自動車用断熱部品材料が入手できない。
That is, the following problems (1) to (5) existed.
(1) Commercially available glass fibers mainly composed of SiO 2 , Al 2 O 3 , and CaO have problems in sound absorption characteristics and durability when exposed to high temperature (up to 800 ° C.) gas in the exhaust system.
(2) Commercially available glass fibers mainly composed of SiO 2 , Si 2 O 3 , and MgO have problems in sound absorption characteristics and durability when exposed to high temperature (˜830 ° C.) gas in the exhaust system.
(3) Commercially available long glass fibers are expensive.
(4) In order to solve the above (1) to (3), application of basalt fiber using natural raw materials is being studied. As a representative example, two types of basalts, which are roughly the same amount of Al 2 O 3 but a large amount of SiO 2 (high temperature (A)) and a small amount of SiO 2 (medium temperature (B)) The fiber has a stable composition and is available in large quantities. Basalt fiber made from raw stone (A) can be made into fibers, but there is a problem with heat resistance in the temperature range of 750 ° C or higher, and when raw stone (B) is used, the energy cost for mass production of the fiber increases. To do.
(5) From the above, it is not possible to obtain sound-absorbing glass fibers and automotive heat insulating component materials that satisfy high heat resistance, low cost, and high durability.

なお、下記特許文献2には、バサルト繊維を樹脂に添加して自動車用内装材とする発明が開示されている。   The following Patent Document 2 discloses an invention in which basalt fiber is added to a resin to make an automobile interior material.

特開2001−206733号公報JP 2001-206733 A 特開2001−315588号公報JP 2001-315588 A

本発明者らが研究した結果、天然の玄武岩(バサルト)原石を原料としたバサルト長繊維を用いると、上記の問題点・課題が発生する理由は、下記(1)〜(4)にあることが判明した。
(1)完全なガラス相から一部結晶化が進行し、またCa−Si−O系の低融点結晶相の生成によって繊維同士が固着するため見かけの繊維径が単繊維径の数倍になって固化するため可撓性が失われる。
(2)完全なガラス相からすべて結晶相のみとなり、可撓性が失われる。
(3)市販ガラス繊維はガラスの網目形成体(Network Former)と網目修飾体(Network Modfier)となる酸化物原料を所定の組成になるように混合してから高温で溶融させるため、原料費大、混粉工程を要する、原料の溶融温度が高い等の理由から製造コストが高い。
(4)バサルト繊維は天然原料を使用するため製造コストは市販ガラス繊維と比べて低い。しかし原石(中温度用(B))はSiOが少ないため、高温溶融物の粘性が低く、20mμ以下の繊維径を有する長繊維の製造が可能であるが、750℃以上でガラス相が結晶化するため耐熱性に劣る。一方原石(高温度用(A))は〜850℃において結晶化は一部進行するものの、ガラス相も残存するため高耐熱性であるが、高温の粘性が高く、量産時において溶融温度を高くする必要があり、その結果、エネルギー費の増大となる。
As a result of the studies by the present inventors, the reason why the above problems and problems occur when using basalt long fibers made of natural basalt (basalt) rough is as follows (1) to (4). There was found.
(1) Partial crystallization proceeds from a complete glass phase, and the fibers are fixed by the formation of a Ca-Si-O-based low melting point crystal phase, so the apparent fiber diameter is several times the single fiber diameter. As a result, the flexibility is lost.
(2) From the complete glass phase, all becomes only the crystal phase and the flexibility is lost.
(3) Since commercially available glass fibers are melted at a high temperature after mixing the oxide raw material to be a predetermined composition with a glass network former and a network modifier. The manufacturing cost is high for reasons such as requiring a mixed powder process and a high melting temperature of the raw material.
(4) Since basalt fiber uses natural raw materials, the production cost is lower than that of commercially available glass fiber. However, since the raw stone (for medium temperature (B)) has little SiO 2 , the viscosity of the high-temperature melt is low, and it is possible to produce long fibers having a fiber diameter of 20 mμ or less, but the glass phase is crystallized at 750 ° C. or higher. Inferior in heat resistance. On the other hand, although the raw stone (for high temperature (A)) is partially crystallized at ˜850 ° C., it is highly heat resistant because the glass phase remains, but the viscosity at high temperature is high and the melting temperature is high during mass production. As a result, energy costs increase.

そこで、本発明は、玄武岩(バサルト)原石に対し、網目状形成体、ガラス修飾体を形成・維持し、バサルト繊維の結晶化及び固着を抑制すること、及びバサルト繊維の耐熱性を従来の750℃から850〜900℃まで大幅に向上させ、かつ従来品と比べて大幅な低コスト化を達成することを目的とする。   Therefore, the present invention forms and maintains a net-like formed body and a glass modified body on the basalt (basalt) ore, suppresses crystallization and fixation of the basalt fiber, and heat resistance of the basalt fiber is 750. The purpose is to greatly improve the temperature from 850 ° C. to 850 to 900 ° C. and to achieve a significant cost reduction compared to conventional products.

本発明者らは、玄武岩(バサルト)原石に対し、網目状形成体、ガラス修飾体となる酸化物の選定とその添加量の最適化により、結晶化及び固着を抑制できるとともに、耐熱性を大幅に向上させることができることを見出し、本発明に到達した。   The inventors of the present invention have the ability to suppress crystallization and sticking and greatly improve heat resistance by selecting the oxides that will form the network-like body and the glass modifier and optimizing the amount added to the basalt (basalt) ore. As a result, the present invention was reached.

即ち、第1に、本発明は、バサルト繊維材料の発明であり、玄武岩を原料とし、該玄武岩にAl、SiO、CaO、MgOから選択される酸化物の1種以上を添加したことを特徴とする。 That is, first, the present invention is an invention of a basalt fiber material, using basalt as a raw material, and adding one or more oxides selected from Al 2 O 3 , SiO 2 , CaO, and MgO to the basalt. It is characterized by that.

本発明のバサルト繊維材料において、前記酸化物の最適添加量は下記(1)〜(3)の通りである。
(1)前記酸化物の添加が1成分であり、その添加量が、該玄武岩100wt%に対して外添加で1.0〜40wt%、望ましくは10〜30wt%である。
(2)前記酸化物が2成分であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜70wt%、望ましくは10〜60wt%である。
(3)前記酸化物が3成分以上であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜60wt%、望ましくは10〜50wt%である。
In the basalt fiber material of the present invention, the optimum addition amount of the oxide is as follows (1) to (3).
(1) The addition of the oxide is one component, and the addition amount is 1.0 to 40 wt%, preferably 10 to 30 wt%, by external addition with respect to 100 wt% of the basalt.
(2) The oxide is composed of two components, and the total addition amount is 1.0 to 70 wt%, preferably 10 to 60 wt% by external addition with respect to 100 wt% of the basalt.
(3) The oxide is composed of three or more components, and the total addition amount is 1.0 to 60 wt%, preferably 10 to 50 wt%, by external addition with respect to 100 wt% of the basalt.

第2に、本発明は、同様にバサルト繊維材料の発明であり、含有する元素量の異なる2種の玄武岩を原料としたことを特徴とする。本発明において、含有する元素量の異なる2種の玄武岩とは、Si元素量が28.7wt%前後でSiO含量が61.5wt%前後の高温度用玄武岩原石(以下、原石(高温度用)という)、及びSi元素量が26.0wt%前後でAl含量が16.5wt%前後の中温度用玄武岩原石(以下、原石(中温度用)という)のことを意味する。 2ndly, this invention is invention of a basalt fiber material similarly, It was characterized by using as a raw material two types of basalt which differ in the amount of elements to contain. In the present invention, the two types of basalts having different amounts of elements include high temperature basalt rough (hereinafter referred to as rough stone (for high temperature) having a Si element content of about 28.7 wt% and a SiO 2 content of about 61.5 wt%. )), And a medium-temperature basalt rough (hereinafter referred to as a rough (for medium temperature)) having an Si element amount of approximately 26.0 wt% and an Al 2 O 3 content of approximately 16.5 wt%.

第3に、本発明は、同様にバサルト繊維材料の発明であり、含有する元素量の異なる2種の玄武岩を原料とし、該玄武岩にAl、SiO、CaO、MgOから選択される酸化物の1種以上を添加したことを特徴とする。 Thirdly, the present invention is also an invention of a basalt fiber material, using two types of basalts having different element amounts as raw materials, and the basalt is selected from Al 2 O 3 , SiO 2 , CaO, and MgO. One or more kinds of oxides are added.

第1の発明のバサルト繊維材料と同様に、前記酸化物の最適添加量は下記(1)〜(3)の通りである。
(1)前記酸化物の添加が1成分であり、その添加量が、該玄武岩100wt%に対して外添加で1.0〜40wt%、望ましくは10〜30wt%である。
(2)前記酸化物が2成分であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜70wt%、望ましくは10〜60wt%である。
(3)前記酸化物が3成分以上であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1.0〜60wt%、望ましくは10〜50wt%である。
Similar to the basalt fiber material of the first invention, the optimum addition amount of the oxide is as follows (1) to (3).
(1) The addition of the oxide is one component, and the addition amount is 1.0 to 40 wt%, preferably 10 to 30 wt%, by external addition with respect to 100 wt% of the basalt.
(2) The oxide is composed of two components, and the total addition amount is 1.0 to 70 wt%, preferably 10 to 60 wt% by external addition with respect to 100 wt% of the basalt.
(3) The oxide is composed of three or more components, and the total addition amount is 1.0 to 60 wt%, preferably 10 to 50 wt%, by external addition with respect to 100 wt% of the basalt.

第4に、本発明は、上記のバサルト繊維材料からなる耐熱性吸音材料である。   Fourthly, the present invention is a heat-resistant sound-absorbing material made of the above basalt fiber material.

第5に、本発明は、上記のバサルト繊維材料を耐熱性吸音材料として備えたマフラーである。   Fifth, the present invention is a muffler provided with the basalt fiber material as a heat-resistant sound absorbing material.

本発明では、玄武岩(バサルト)原石に対し、網目状形成体、ガラス修飾体となる酸化物の選定とその添加量の最適化、及び含有する元素量の異なる2種の玄武岩であるAl量はほぼ同程度であるがSiO量の多い原石(高温度用(A))と、SiO量が少ない原石(中温度用(B))の2種の原石を原料とすることにより、バサルト繊維の結晶化及び固着を抑制できるとともに、耐熱性を大幅に向上させることができた。 In the present invention, for the basalt (basalt) ore, Al 2 O which is two types of basalts with different network elements, selection of oxides to be glass-modified bodies, optimization of their addition amounts, and different amounts of contained elements By using two kinds of raw stones as raw materials, the raw stone with a high amount of SiO 2 (for high temperature (A)) and the raw stone with a low amount of SiO 2 (for medium temperature (B)), the three amounts are almost the same. In addition, the crystallization and fixation of the basalt fiber could be suppressed, and the heat resistance could be greatly improved.

本発明のバサルト繊維の原料である玄武岩(バサルト原石)は、火成岩の1種であり、主な構成鉱物としては、(1)斜長石:Na(AlSi)−Ca(AlSiO)、(2)輝石:(Ca,Mg,Fe2+,Fe3+,Al,Ti)[(Si,Al)]、(3)カンラン石:(Fe,Mg)SiOである。ウクライナ産のものが安価で良質である。 Basalt (basalt ore), which is a raw material of the basalt fiber of the present invention, is one type of igneous rock, and (1) plagioclase: Na (AlSi 3 O 8 ) -Ca (Al 2 SiO 8 ) as main constituent minerals. ), (2) pyroxene: (Ca, Mg, Fe 2+ , Fe 3+ , Al, Ti) 2 [(Si, Al) 2 O 6 ], (3) olivine: (Fe, Mg) 2 SiO 4 . Ukrainian products are cheap and of good quality.

高温度用玄武岩原石(原石(高温度用))、中温度用玄武岩原石(原石(中温度用))及び原石(高温度用)85%/原石(中温度用)15%からなるガラスの、ICP(高周波プラズマ発光分析装置;島津製作所ICPV−8100)分析による元素比(wt%)、及び酸化物換算の組成比(wt%)の例は下記表1及び表2のようである。   A basalt gemstone for high temperature (raw stone (for high temperature)), a basalt gemstone for medium temperature (raw stone (for medium temperature)) and 85% of rough (for high temperature) / 15% of rough (for medium temperature), Examples of element ratio (wt%) and oxide-converted composition ratio (wt%) by ICP (high frequency plasma emission analyzer; Shimadzu ICPV-8100) analysis are as shown in Tables 1 and 2 below.

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

以下、本発明の実施例を示す。
[実施例1]
乳鉢中で粉砕した玄武岩(原石(中温度用))と各種酸化物をボールミルにより12時間混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
Examples of the present invention will be described below.
[Example 1]
The basalt (raw stone (for medium temperature)) crushed in a mortar and various oxides were mixed for 12 hours by a ball mill, then heated in an alumina crucible lined with platinum foil at 1430 ° C for 4 hours, and gradually cooled to vitrification. A sample was prepared.

次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。   Next, after heat-treating these samples at 800 ° C., 850 ° C., and 900 ° C. for 50 to 200 hours, the presence or absence of a crystal phase and a glass phase was verified by an X-ray powder diffraction method.

結果を、表3〜表8に示す。表中、
A:ガラス相のみ、
B:ガラス相多く、結晶相少ない、
C:ガラス相少なく、結晶相多い、
D:結晶相のみ、
を表す。A>B>C>Dの順で耐熱性に優れ、A及びBが耐熱性において実用性を有することを示す。
The results are shown in Tables 3 to 8. In the table,
A: Only glass phase
B: Many glass phases, few crystal phases,
C: Less glass phase, more crystal phase,
D: Crystal phase only
Represents. It is excellent in heat resistance in the order of A>B>C> D, and shows that A and B have practicality in heat resistance.

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

表3〜表8の結果より、以下のことが分かった。
(1)TiOの添加ではガラス化せず、また熱処理後の結晶化の抑制はできない。
(2)NaO(実験ではNaCOを添加)を添加しても熱処理後の結晶化の抑制はできない。
(3)SiOの添加では結晶相は確認されるが、添加量が増加すると結晶相の生成を抑制できる。
(4)Alの添加では添加量の増加に伴い結晶化の抑制効果は大きくなるが、過剰になるとガラス化が困難である。
(5)CaOの添加では800℃の熱処理では結晶化の抑制はできるが、850℃以上では、結晶化の進行が早い。
(6)MgOを添加しても結晶化の抑制はできず、更に添加量が過剰であるとガラス化も困難となる。
From the results of Tables 3 to 8, the following was found.
(1) Addition of TiO 2 does not cause vitrification, and crystallization after heat treatment cannot be suppressed.
(2) Even if Na 2 O (addition of Na 2 CO 3 in the experiment) is added, crystallization after the heat treatment cannot be suppressed.
(3) Although the crystal phase is confirmed by the addition of SiO 2 , the formation of the crystal phase can be suppressed when the addition amount increases.
(4) When Al 2 O 3 is added, the effect of suppressing crystallization increases with an increase in the amount added, but vitrification is difficult when it is excessive.
(5) With the addition of CaO, crystallization can be suppressed by heat treatment at 800 ° C., but the crystallization proceeds quickly at 850 ° C. or higher.
(6) Even if MgO is added, crystallization cannot be suppressed, and if the added amount is excessive, vitrification becomes difficult.

[実施例2]
クラッシャーにより解砕した玄武岩(原石(中温度用))と各種酸化物をメノウ乳鉢により混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
[Example 2]
The basalt (crude stone (for medium temperature)) crushed by a crusher and various oxides were mixed in an agate mortar, then heated in an alumina crucible lined with platinum foil at 1430 ° C. for 4 hours, and gradually cooled to vitrify. A sample was prepared.

次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。   Next, after heat-treating these samples at 800 ° C., 850 ° C., and 900 ° C. for 50 to 200 hours, the presence or absence of a crystal phase and a glass phase was verified by an X-ray powder diffraction method.

結果を、表9〜表11に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。   The results are shown in Tables 9 to 11. In the table, the results of A to D are the same as above, indicating that A and B are excellent in heat resistance and practical.

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

Figure 0005519548
Figure 0005519548

表9〜表11の結果より、以下のことが分かった。
(1)SiO/Al系を添加すると800℃×200時間の熱処理では完全に結晶化を抑制でき、さらに850℃×200時間、900℃×200時間の熱処理でもガラス相が多量に残存し、結晶相の生成を抑制できる。
(2)SiO/CaO系を添加すると800℃×200時間の熱処理では完全に結晶化を抑制できたが、850℃×200時間、900℃×200時間の熱処理では結晶化の抑制はできない。
(3)SiO/MgO系を添加すると800℃×200時間の熱処理では結晶化を抑制できる傾向にあるが、850℃×200時間、900℃×200時間の熱処理では結晶化の抑制はできない。
(4)Al/MgO系を添加してもガラス化せず、結晶化の抑制はできない。
(5)Al/CaO系を添加してもガラス化せず、結晶化の抑制はできない。
From the results of Tables 9 to 11, the following was found.
(1) When SiO 2 / Al 2 O 3 system is added, crystallization can be completely suppressed by heat treatment at 800 ° C. × 200 hours, and a large amount of glass phase can be obtained even by heat treatment at 850 ° C. × 200 hours and 900 ° C. × 200 hours. It remains, and the formation of the crystal phase can be suppressed.
(2) When SiO 2 / CaO system is added, crystallization can be completely suppressed by heat treatment at 800 ° C. × 200 hours, but crystallization cannot be suppressed by heat treatment at 850 ° C. × 200 hours and 900 ° C. × 200 hours.
(3) When the SiO 2 / MgO system is added, crystallization tends to be suppressed by heat treatment at 800 ° C. × 200 hours, but crystallization cannot be suppressed by heat treatment at 850 ° C. × 200 hours or 900 ° C. × 200 hours.
(4) Even if the Al 2 O 3 / MgO system is added, it is not vitrified and crystallization cannot be suppressed.
(5) Even if Al 2 O 3 / CaO system is added, it does not vitrify, and crystallization cannot be suppressed.

これより、バサルト原石の熱処理後の結晶化抑制、すなわち耐熱性向上の効果を示す2成分酸化物系は、
SiO:20wt%/A1:20wt%>SiO/CaO系>SiO/MgO系>Al:20wt%/MgO系>Al:20wt%/CaO系の順であり、特にSiO:20wt%/A1:20wt%を添加するとバサルト繊維の耐熱性は現状の約750℃から850〜900℃レベルまで大く向上することが明らかとなった。
From this, the two-component oxide system showing the effect of suppressing crystallization after heat treatment of the basalt raw stone, that is, improving the heat resistance,
SiO 2 : 20 wt% / A1 2 O 3 : 20 wt%> SiO 2 / CaO system> SiO 2 / MgO system> Al 2 O 3 : 20 wt% / MgO system> Al 2 O 3 : 20 wt% / CaO system In particular, when SiO 2 : 20 wt% / A1 2 O 3 : 20 wt% was added, it became clear that the heat resistance of the basalt fiber was greatly improved from the current level of about 750 ° C. to 850 to 900 ° C.

[実施例3]
クラッシャーにより解砕した玄武岩(原石(中温度用))とSiO、Al、MgOの3種の酸化物をメノウ乳鉢により混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
[Example 3]
The basalt (crude stone (for medium temperature)) crushed by a crusher and three kinds of oxides of SiO 2 , Al 2 O 3 , and MgO were mixed in an agate mortar, and then mixed at 1430 ° C. in an alumina crucible lined with platinum foil. A sample that had been vitrified by heating for an hour and then slowly cooling was prepared.

次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。   Next, after heat-treating these samples at 800 ° C., 850 ° C., and 900 ° C. for 50 to 200 hours, the presence or absence of a crystal phase and a glass phase was verified by an X-ray powder diffraction method.

結果を、表12に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。   The results are shown in Table 12. In the table, the results of A to D are the same as above, indicating that A and B are excellent in heat resistance and practical.

Figure 0005519548
Figure 0005519548

表12の結果より、SiO/Al/MgOの3種の酸化物を添加した全ての組成において、800℃の熱処理では結晶化の抑制効果が認められたが、850℃以上の熱処理では結晶化の抑制効果が認められなかった。 From the results of Table 12, in all compositions to which three kinds of oxides of SiO 2 / Al 2 O 3 / MgO were added, the crystallization suppression effect was recognized by the heat treatment at 800 ° C., but the heat treatment at 850 ° C. or higher. However, no crystallization suppression effect was observed.

[実施例4]
乳鉢中で粉砕した玄武岩(原石(中温度用))と玄武岩(原石(高温度用))をボールミルにより12時間混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
[Example 4]
After mixing basalt (rough (for medium temperature)) and basalt (rough (for high temperature)) crushed in a mortar for 12 hours with a ball mill, heat in an alumina crucible lined with platinum foil for 4 hours at 1430 ° C. A sample vitrified by cooling was prepared.

次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。   Next, after heat-treating these samples at 800 ° C., 850 ° C., and 900 ° C. for 50 to 200 hours, the presence or absence of a crystal phase and a glass phase was verified by an X-ray powder diffraction method.

結果を、表13に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。   The results are shown in Table 13. In the table, the results of A to D are the same as above, indicating that A and B are excellent in heat resistance and practical.

Figure 0005519548
Figure 0005519548

表13の結果より、含有する元素量の異なる2種の玄武岩であるSiO含量が61.5wt%前後の高温度用玄武岩原石(原石(高温度用))、とAl含量が16.5wt%前後の中温度用玄武岩原石(原石(中温度用))を原料とすることにより、800℃×200時間、850℃×200時間、900℃×200時間の熱処理でもガラス相が多量に残存し、結晶相の生成を抑制できることが分かった。 From the results shown in Table 13, high-temperature basalt rough (rough (for high temperature)) having an SiO 2 content of around 61.5 wt%, which is two types of basalts with different elemental amounts, and an Al 2 O 3 content of 16 By using basalt rough for medium temperature (rough (for medium temperature)) as raw material at around 5 wt%, a large amount of glass phase can be obtained even at heat treatment of 800 ° C × 200 hours, 850 ° C × 200 hours, 900 ° C × 200 hours It was found that it remained and the formation of the crystal phase could be suppressed.

[実施例5]
クラッシャーにより解砕した玄武岩(原石(高温度用))と酸化物としてAlをメノウ乳鉢により混合後、白金箔を内張りしたアルミナ坩堝中で1430℃で4時間加熱し、徐冷することによりガラス化した試料を作製した。
[Example 5]
After mixing basalt (raw ore (for high temperature)) crushed by a crusher and Al 2 O 3 as an oxide with an agate mortar, heat in an alumina crucible lined with platinum foil at 1430 ° C for 4 hours and gradually cool. A vitrified sample was prepared.

次に、それら試料を800℃、850℃、900℃で50〜200時間熱処理した後、X線粉末回析法により結晶相とガラス相の有無を検証した。   Next, after heat-treating these samples at 800 ° C., 850 ° C., and 900 ° C. for 50 to 200 hours, the presence or absence of a crystal phase and a glass phase was verified by an X-ray powder diffraction method.

結果を、表14に示す。表中、A〜Dの結果は上記と同じであり、A及びBが耐熱性に優れ実用性を有することを示す。   The results are shown in Table 14. In the table, the results of A to D are the same as above, indicating that A and B are excellent in heat resistance and practical.

Figure 0005519548
Figure 0005519548

表14の結果より、玄武岩(原石(高温度用))においても酸化物の添加により、800℃×200時間、850℃×200時間、900℃×200時間の熱処理でもガラス相が多量に残存し、結晶相の生成を抑制できる添加量が存在することが分かった。 From the results shown in Table 14, a large amount of glass phase remains even in heat treatment at 800 ° C. × 200 hours, 850 ° C. × 200 hours, and 900 ° C. × 200 hours due to the addition of oxides in basalt (raw stone (for high temperature)). It was found that there was an addition amount that could suppress the formation of the crystal phase.

本発明により、バサルト繊維の結晶化及び固着を抑制できるとともに、耐熱性を大幅に向上させることができた。その結果、マフラー等に最適な耐熱性吸音材料を安価に提供することが出来る。   According to the present invention, crystallization and fixation of basalt fiber can be suppressed, and heat resistance can be greatly improved. As a result, it is possible to provide a heat-resistant sound-absorbing material optimal for mufflers and the like at a low cost.

Claims (7)

含有する元素量の異なる2種の玄武岩を原料とし、該2種の玄武岩が、750℃以上でガラス相が結晶化する中温度用玄武岩原石と、850℃においてガラス相が残存している高温度用玄武岩原石であることを特徴とするバサルト繊維材料。 Two types of basalts with different amounts of elements are used as raw materials. The two types of basalts are medium temperature basalt ore where the glass phase crystallizes at 750 ° C or higher, and the high temperature at which the glass phase remains at 850 ° C. Basalt fiber material, characterized in that it is a rough basalt . 含有する元素量の異なる2種の玄武岩を原料とし、該2種の玄武岩が、750℃以上でガラス相が結晶化する中温度用玄武岩原石と、850℃においてガラス相が残存している高温度用玄武岩原石であり、該玄武岩にAl、SiO、CaO、MgOから選択される酸化物の1種以上を添加したことを特徴とするバサルト繊維材料。 Two types of basalts with different amounts of elements are used as raw materials. The two types of basalts are medium temperature basalt ore where the glass phase crystallizes at 750 ° C or higher, and the high temperature at which the glass phase remains at 850 ° C. a use basalt raw stone, basalt fiber material characterized by the addition of one or more oxides selected in the basalt Al 2 O 3, SiO 2, CaO, from MgO. 前記酸化物の添加が1成分であり、その添加量が、該玄武岩100wt%に対して外添加で1〜40wt%であることを特徴とする請求項2に記載のバサルト繊維材料。   The basalt fiber material according to claim 2, wherein the addition of the oxide is one component, and the addition amount is 1 to 40 wt% by external addition with respect to 100 wt% of the basalt. 前記酸化物が2成分であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1〜70wt%であることを特徴とする請求項2に記載のバサルト繊維材料。   The basalt fiber material according to claim 2, wherein the oxide is composed of two components, and the total amount of the oxide is 1 to 70 wt% by external addition with respect to 100 wt% of the basalt. 前記酸化物が3成分以上であり、その添加量の合計が、該玄武岩100wt%に対して外添加で1〜60wt%であることを特徴とする請求項2に記載のバサルト繊維材料。   The basalt fiber material according to claim 2, wherein the oxide has three or more components, and the total amount of the oxide added is 1 to 60 wt% by external addition with respect to 100 wt% of the basalt. 請求項1乃至5のいずれかに記載のバサルト繊維材料からなる耐熱性吸音材料。   A heat-resistant sound-absorbing material comprising the basalt fiber material according to any one of claims 1 to 5. 請求項1乃至5のいずれかに記載のバサルト繊維材料を耐熱性吸音材料として備えたマフラー。   A muffler comprising the basalt fiber material according to claim 1 as a heat-resistant sound-absorbing material.
JP2011023643A 2011-02-07 2011-02-07 Basalt fiber material Expired - Fee Related JP5519548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023643A JP5519548B2 (en) 2011-02-07 2011-02-07 Basalt fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023643A JP5519548B2 (en) 2011-02-07 2011-02-07 Basalt fiber material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005165959A Division JP5024847B2 (en) 2005-06-06 2005-06-06 Basalt fiber material

Publications (2)

Publication Number Publication Date
JP2011140436A JP2011140436A (en) 2011-07-21
JP5519548B2 true JP5519548B2 (en) 2014-06-11

Family

ID=44456577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023643A Expired - Fee Related JP5519548B2 (en) 2011-02-07 2011-02-07 Basalt fiber material

Country Status (1)

Country Link
JP (1) JP5519548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232545B1 (en) * 2016-11-10 2017-11-22 環境触媒科学株式会社 Organic waste decomposition accelerator and microbial material containing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2509716A1 (en) * 1981-07-20 1983-01-21 Saint Gobain Isover Glass fibres, esp. discontinuous glass fibres - with specific chemical compsn., used to make thermally insulating prods. which can be employed at high temps.
GB9314230D0 (en) * 1993-07-09 1993-08-18 Pilkington Plc Compositions for high temperature fiberisation
JP3584966B2 (en) * 2000-01-21 2004-11-04 日東紡績株式会社 Heat resistant glass fiber and method for producing the same

Also Published As

Publication number Publication date
JP2011140436A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5024847B2 (en) Basalt fiber material
JP4624190B2 (en) Basalt fiber manufacturing method
JP5420683B2 (en) New glass fiber composition
JP5295775B2 (en) Glass composition
JP5667578B2 (en) High performance glass fiber composition and fiber molded with the same
EP2558425B1 (en) Mineral wool from recyclable materials
EG25710A (en) Glaze compositions
JP2001206733A (en) Heat resistance glass fiber and its manufacturing method
JP2009155150A (en) High electric resistance high zirconia cast refractory
JP5010138B2 (en) Sub muffler
CN101638293B (en) High-performance glass frit block for producing glass microfiber and preparation method thereof
CN102753496A (en) Composition used to produce igneous rock crystal glass material, igneous rock crystal glass material and production method thereof
JP4630190B2 (en) High zirconia refractories
JP5519548B2 (en) Basalt fiber material
Fomichev et al. Evaluation and modification of the initial composition of gabbro-basalt rocks for mineral-fiber fabrication and stone casting
CN103058636B (en) 800 degree of wollastonite refractory fibres
CN114836250A (en) Fluxing agent, preparation method and application thereof, and method for changing ash fusion characteristics of coal
KR20190035806A (en) Canoite Glass - Ceramic
CN1244934C (en) Insulation material for heating wire, method for making same and use thereof
Chen et al. The Juancheng chondrite—A new meteorite falling recently in China

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R151 Written notification of patent or utility model registration

Ref document number: 5519548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees