JP5516087B2 - Induction motor control method - Google Patents

Induction motor control method Download PDF

Info

Publication number
JP5516087B2
JP5516087B2 JP2010125470A JP2010125470A JP5516087B2 JP 5516087 B2 JP5516087 B2 JP 5516087B2 JP 2010125470 A JP2010125470 A JP 2010125470A JP 2010125470 A JP2010125470 A JP 2010125470A JP 5516087 B2 JP5516087 B2 JP 5516087B2
Authority
JP
Japan
Prior art keywords
value
command value
magnetic flux
induction motor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010125470A
Other languages
Japanese (ja)
Other versions
JP2011254596A (en
Inventor
則夫 後田
良和 市中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010125470A priority Critical patent/JP5516087B2/en
Publication of JP2011254596A publication Critical patent/JP2011254596A/en
Application granted granted Critical
Publication of JP5516087B2 publication Critical patent/JP5516087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Description

この発明は、インバータのベクトル制御により可変速制御される誘導電動機の制御方法に関し、特に誘導電動機で巻上機を駆動する機械装置に適用して好適な誘導電動機の制御方法に関する。   The present invention relates to a method for controlling an induction motor that is controlled at a variable speed by vector control of an inverter, and more particularly to a method for controlling an induction motor that is suitable for application to a mechanical device that drives a hoisting machine with an induction motor.

一般にクレーンなどの巻上機を誘導電動機で駆動する場合、機械ブレーキを解放した際に吊り上げる荷を落とさないようにするために、誘導電動機からのトルクが十分に発生するタイミングで機械ブレーキを解放する必要がある。このような巻上機を駆動する誘導電動機の起動時の動作について図面を参照しながら説明する。   In general, when a hoisting machine such as a crane is driven by an induction motor, the mechanical brake is released at a timing when the torque from the induction motor is sufficiently generated so that the lifted load is not dropped when the mechanical brake is released. There is a need. The operation at the time of starting of the induction motor that drives such a hoisting machine will be described with reference to the drawings.

図3は、第1の従来例を示す回路図であり、この図において、1は商用電源などの交流電源、2は交流電源1の電力を三相電圧指令値に基づく周波数および電圧の交流電力に変換するインバータ、3はインバータ2からの交流電力が給電される誘導電動機、4は誘導電動機3に連結される巻上機などの負荷、5は誘導電動機3の回転速度Nを検出する速度検出器である。   FIG. 3 is a circuit diagram showing a first conventional example. In this figure, 1 is an AC power source such as a commercial power source, 2 is an AC power having a frequency and voltage based on a three-phase voltage command value, and 2 is an AC power source 1 power. 3 is an induction motor to which AC power from the inverter 2 is fed, 4 is a load such as a hoisting machine connected to the induction motor 3, and 5 is a speed detection for detecting the rotational speed N of the induction motor 3. It is a vessel.

11は誘導電動機3の所望の速度設定値N#を設定する速度設定器、12は速度指令値を速度設定器11側と零とに切り替える切替器、13は速度設定器11から入力される速度設定値N#に基づいて予め定められた加速勾配(増加値/単位時間)または減速勾配(減少値/単位時間)で速度設定値N#に達するまで増加または減少する速度指令値N*を出力する速度指令演算回路、14は速度指令演算回路13からの速度指令値N*と速度検出器5で検出した回転速度Nとの偏差ΔNを求める加算演算器、15はPI調節器などから構成され、偏差ΔNを零にするように調節演算を行い、この演算値をトルク指令値τ*として出力する速度調節器、16は速度調節器15側と零とに切り替える切替器,17は磁束指令値φn *を第3磁束指令値φ3 *と第4磁束指令値φ4 *とに切り替える切替器、18は入力されるトルク指令値τ*と磁束指令値φn *との間で除算演算を行い、この商をトルク電流指令値It *として出力する除算演算器、19はトルク電流指令値It *をトルク電流制限値ItL(例えば、定格トルク電流の150%程度)に制限するトルク電流制限器、20は入力される磁束指令値φn *を誘導電動機3の励磁インダクタンスLmで除算演算することにより得られる励磁電流指令値Im *を出力する除算演算器、21はトルク電流指令値It *と励磁電流指令値Im *と誘導電動機3の電機定数とに基づいてベクトル演算を行い、この演算結果としてのインバータ2への三相電圧指令値を生成するベクトル制御回路である。このベクトル制御については周知であるので、ここでは詳細な説明は省略する。 11 is a speed setter for setting a desired speed set value N # of the induction motor 3, 12 is a switch for switching the speed command value between the speed setter 11 side and zero, and 13 is a speed input from the speed setter 11. set value N acceleration gradient is predetermined based on # (increment / unit time) or the deceleration gradient (reduction value / unit time) at a speed setting value N # to reach an increase or decrease output a speed command value N * to up The speed command calculation circuit 14 is an addition calculation unit for obtaining a difference ΔN between the speed command value N * from the speed command calculation circuit 13 and the rotational speed N detected by the speed detector 5, and 15 is constituted by a PI controller and the like. , A speed regulator that performs an adjustment calculation so as to make the deviation ΔN zero, and outputs the calculated value as a torque command value τ * , 16 is a switch for switching between the speed regulator 15 side and zero, and 17 is a magnetic flux command value the φ n * the third magnetic flux command value φ 3 * Fourth flux command value phi 4 * and the switching switch 18 performs a division operation between the torque command value input tau * and the magnetic flux command value phi n *, the quotient torque current command value I t * The division calculator 19 outputs the torque current command value I t * to the torque current limit value I tL (for example, about 150% of the rated torque current), and 20 the input magnetic flux command value. A division calculator 21 outputs an excitation current command value I m * obtained by dividing φ n * by the excitation inductance L m of the induction motor 3, and 21 is a torque current command value I t * and an excitation current command value I m. This is a vector control circuit that performs a vector calculation based on * and the electric constant of the induction motor 3 and generates a three-phase voltage command value to the inverter 2 as a result of the calculation. Since this vector control is well known, detailed description thereof is omitted here.

図4は図3の動作を示す波形図であり、図4を参照して図3の動作を説明する。
速度が零の誘導電動機3の起動時(図4の時刻t0)において、切替器12の接点を零側にするとともに切替器16の接点を零側にすることにより、速度指令演算回路13の出力である速度指令値を零(N*=0)に設定するとともに、速度調節器15の出力であるトルク指令値を零(τ*=0)に設定する一方、切替器17の接点を第4磁束指令値φ4 *側に接続する。除算演算器20では第4磁束指令値φ4 *を誘導電動機3の励磁インダクタンスLmで除算演算して励磁電流指令値Im *(=φ4 */Lm)を算出し、また除算演算器18ではトルク指令値τ*(=0)と第4磁束指令値φ4 *との間で除算演算を行ってトルク電流指令値It *(=0)を算出する。ベクトル制御回路21では算出されたトルク電流指令値It *および励磁電流指令値Im *と電機定数とに基づいてベクトル演算を行い、このベクトル演算結果としての三相電圧指令値によりインバータ2を介した誘導電動機3を予備励磁状態にする。
FIG. 4 is a waveform diagram showing the operation of FIG. 3, and the operation of FIG. 3 will be described with reference to FIG.
When the induction motor 3 with zero speed is started (time t0 in FIG. 4), the output of the speed command calculation circuit 13 is obtained by setting the contact of the switch 12 to the zero side and the contact of the switch 16 to the zero side. Is set to zero (N * = 0) and the torque command value that is the output of the speed regulator 15 is set to zero (τ * = 0), while the contact of the switch 17 is set to the fourth position. Connect to the magnetic flux command value φ 4 * side. The division calculator 20 divides the fourth magnetic flux command value φ 4 * by the excitation inductance L m of the induction motor 3 to calculate the excitation current command value I m * (= φ 4 * / L m ), and the division calculation. The unit 18 performs a division operation between the torque command value τ * (= 0) and the fourth magnetic flux command value φ 4 * to calculate a torque current command value I t * (= 0). The vector control circuit 21 performs a vector calculation based on the calculated torque current command value I t *, the excitation current command value I m *, and the electrical constant, and the inverter 2 is controlled by the three-phase voltage command value as the vector calculation result. The induction motor 3 is put into a pre-excitation state.

この予備励磁状態により誘導電動機3の励磁磁束φが当該電動機の二次時定数Tに基づいて増加し、図4の時刻t1で誘導電動機3の励磁磁束φがほぼ定格磁束値に達すると、切換器12の接点を速度設定器11側に接続するとともに、切換器16の接点を速度調節器15側に接続し、さらに接続切換器17の接点を第3磁束指令値φ3 *側に接続する。これにより速度指令演算回路13の出力である速度指令値N*を図4に示すように予め定められた加速勾配で増加させて誘導電動機3を始動させる。 In this pre-excitation state, the excitation magnetic flux φ of the induction motor 3 increases based on the secondary time constant T of the motor, and the switching is performed when the excitation magnetic flux φ of the induction motor 3 substantially reaches the rated magnetic flux value at time t1 in FIG. The contact of the switch 12 is connected to the speed setter 11 side, the contact of the switch 16 is connected to the speed adjuster 15 side, and the contact of the connection switch 17 is connected to the third magnetic flux command value φ 3 * side. . As a result, the speed command value N * , which is the output of the speed command calculation circuit 13, is increased at a predetermined acceleration gradient as shown in FIG. 4, and the induction motor 3 is started.

以後は、前記加速勾配で増加する速度指令値N*と誘導電動機3の回転速度Nとの偏差ΔNを加算演算器14で算出しつつ、この偏差ΔNが零になる調節演算を速度調節器15で行い、この演算結果であるトルク指令値τ*に基づきトルク電流指令値It *を算出するが、このとき得られた値はインバータ2が出力可能な最大出力電流値Imaxを超えないようにするために、トルク電流指令値It *はトルク電流制限器19によりトルク電流制限値ItL(例えば、定格トルク電流の150%程度)に制限される。この制限されたトルク電流指令値It *および励磁電流指令値Im *(=φ3 */Lm)と誘導電動機3の電機定数とに基づいてベクトル制御回路21でベクトル演算を行い、このベクトル演算結果としての三相電圧指令値によりインバータ2を介した誘導電動機3を加速し、図4の時刻t2で速度設定器11が設定した速度設定値N#に達すると、時刻t2以後、誘導電動機3は定速状態に入る。 Thereafter, while calculating the deviation ΔN between the speed command value N * that increases with the acceleration gradient and the rotational speed N of the induction motor 3 by the addition computing unit 14, an adjustment calculation that makes this deviation ΔN zero is performed by the speed regulator 15. The torque current command value I t * is calculated based on the torque command value τ * that is the calculation result. The value obtained at this time does not exceed the maximum output current value I max that the inverter 2 can output. Therefore, the torque current command value I t * is limited to a torque current limit value I tL (for example, about 150% of the rated torque current) by the torque current limiter 19. Based on the limited torque current command value I t * and the excitation current command value I m * (= φ 3 * / L m ) and the electrical constant of the induction motor 3, the vector control circuit 21 performs a vector operation, When the induction motor 3 through the inverter 2 is accelerated by the three-phase voltage command value as the vector calculation result and reaches the speed set value N # set by the speed setter 11 at time t2 in FIG. 4, the induction is performed after time t2. The electric motor 3 enters a constant speed state.

誘導電動機3を巻上機などの機械装置の駆動源として使用する場合、図4に示した第4磁束指令値φ4 *を、例えば定格磁束指令値(=第3磁束指令値φ3 *)の3倍程度に設定しても、図4に示した時刻t0から時刻t1までの経過時間、すなわち予備励磁時間が、前記誘導電動機の二次時定数Tに起因して数秒になることが多く、特に誘導電動機3の容量が大きいほど二次時定数Tが大きくなる傾向にある。このため、時刻t1迄は、巻上機が荷を落とさないようにするために、機械ブレーキ(図示せず)を投入した状態にし、励磁磁束φがほぼ定格磁束値に達した時刻t1に機械ブレーキを開放しているが、この時刻t0から時刻t1までの期間をより短縮することが要望されている。 When the induction motor 3 is used as a drive source for a mechanical device such as a hoisting machine, the fourth magnetic flux command value φ 4 * shown in FIG. 4 is replaced with, for example, a rated magnetic flux command value (= third magnetic flux command value φ 3 * ). Even if it is set to about 3 times, the elapsed time from time t0 to time t1 shown in FIG. 4, that is, the preliminary excitation time, is often several seconds due to the secondary time constant T of the induction motor. In particular, the secondary time constant T tends to increase as the capacity of the induction motor 3 increases. For this reason, until time t1, in order to prevent the hoist from dropping the load, the machine brake (not shown) is put in a state of being turned on, and at time t1 when the excitation magnetic flux φ reaches almost the rated magnetic flux value. Although the brake is released, it is desired to further shorten the period from time t0 to time t1.

この要望に応えるために、例えば特許文献1に記載された技術が知られている。
図5は特許文献1に記載された第2の従来例を示す回路構成図であり、図3と同一機能を有するものについては同一の符号を付してその説明を省略する。図5において、図3と異なる点は、図3の切換器17に代えて切換器22,23を備えるとともに、磁束演算回路24を備えている点である。図6は図5の動作を示す波形図であり、以下では図6を参照して図5の動作を説明する。
In order to meet this demand, for example, a technique described in Patent Document 1 is known.
FIG. 5 is a circuit configuration diagram showing a second conventional example described in Patent Document 1. Components having the same functions as those in FIG. 3 are denoted by the same reference numerals and description thereof is omitted. 5 is different from FIG. 3 in that it includes switchers 22 and 23 in place of the switcher 17 of FIG. FIG. 6 is a waveform diagram showing the operation of FIG. 5, and the operation of FIG. 5 will be described below with reference to FIG.

速度が零の誘導電動機3の起動時(図6の時刻t0)において、機械ブレーキ(図示せず)を投入した状態で切替器12の接点を零側にするとともに切替器16の接点を零側にすることにより、速度指令演算回路13の出力である速度指令値を零(N*=0)に設定するとともに、速度調節器15の出力であるトルク指令値を零(τ*=0)に設定する。一方、切替器22の接点を先述の第4磁束指令値φ4 *とほぼ同じ値の第1磁束指令値φ1 *側に接続することにより、除算演算器20では第1磁束指令値φ1 *を誘導電動機3の励磁インダクタンスLmで除算演算して励磁電流指令値Im *(=φ1 */Lm)を算出する。また、除算演算器18ではトルク指令値τ*(=0)と第1磁束指令値φ1 *との間で除算演算を行ってトルク電流指令値It *(=0)を算出する。ベクトル制御回路21では算出されたトルク電流指令値It *および励磁電流指令値Im *と電機定数とに基づいてベクトル演算を行い、このベクトル演算結果としての三相電圧指令値によりインバータ2を介した誘導電動機3を予備励磁状態にする。 When the induction motor 3 with zero speed is started (time t0 in FIG. 6), the contact of the switch 12 is set to the zero side and the contact of the switch 16 is set to the zero side with the mechanical brake (not shown) being applied. Thus, the speed command value output from the speed command calculation circuit 13 is set to zero (N * = 0), and the torque command value output from the speed regulator 15 is set to zero (τ * = 0). Set. On the other hand, by connecting the contact of the switching device 22 to the first magnetic flux command value φ 1 * side which is substantially the same as the above-described fourth magnetic flux command value φ 4 * , the division calculator 20 has the first magnetic flux command value φ 1. By dividing * by the excitation inductance L m of the induction motor 3, the excitation current command value I m * (= φ 1 * / L m ) is calculated. The division calculator 18 performs a division operation between the torque command value τ * (= 0) and the first magnetic flux command value φ 1 * to calculate a torque current command value I t * (= 0). The vector control circuit 21 performs a vector calculation based on the calculated torque current command value I t *, the excitation current command value I m *, and the electrical constant, and the inverter 2 is controlled by the three-phase voltage command value as the vector calculation result. The induction motor 3 is put into a pre-excitation state.

ここで、機械ブレーキ(図示せず)の開放後に荷を落とさないようにする最低必要な発生トルクτが誘導電動機3の定格トルクである場合、例えば、トルク電流制限値ItLを定格トルク電流の約150%としたときには、τ=It *×φの関係から誘導電動機3の励磁磁束φが定格磁束値の約67%程度まで確立すれば発生トルクτ(=It *×φ)がほぼ定格値(100%)になり、機械ブレーキ(図示せず)を開放しても荷を落とさないようにすることができる。 Here, when the minimum required generated torque τ that prevents the load from dropping after the mechanical brake (not shown) is released is the rated torque of the induction motor 3, for example, the torque current limit value ItL is set to the rated torque current. when approximately 150% is, τ = I t * × be established excitation magnetic flux of the induction motor 3 from the relation phi phi up about 67% of the rated flux value generated torque τ (= I t * × φ ) is approximately It becomes a rated value (100%), and even if a mechanical brake (not shown) is released, the load can be prevented from dropping.

すなわち、この予備励磁状態により誘導電動機3の励磁磁束φが当該電動機の二次時定数Tに基づいて増加し、インバータ2の最大出力電流値Imaxを超えないようにするために、例えば、トルク電流制限値ItLを定格トルク電流の150%程度としたときには、図6に示した時刻t11で誘導電動機3の励磁磁束φが定格磁束値の約67%程度に達し、実際に出力できる誘導電動機3の発生トルクτ(=It *×φ)がほぼ定格値(100%)の状態になる。 That is, in order to prevent the excitation magnetic flux φ of the induction motor 3 from increasing based on the secondary time constant T of the motor due to this pre-excitation state and not exceeding the maximum output current value I max of the inverter 2, for example, torque When the current limit value ItL is about 150% of the rated torque current, the excitation magnetic flux φ of the induction motor 3 reaches about 67% of the rated magnetic flux value at time t11 shown in FIG. 3 generated torque τ (= I t * × φ) is almost in the rated value (100%) state.

そこで、投入した状態の機械ブレーキ(図示せず)を時刻t11で開放し、切替器12の接点を速度設定器11側に接続するとともに、切替器16の接点を速度調節器15側に接続し、さらに、切替器22の接点を第1磁束指令値φ1 *と第3磁束指令値φ3 *との間に設定した第2磁束指令値φ2 *側に切り替えることで、速度指令演算回路13の出力である速度指令値N*を図6に示すように予め定められた加速勾配で徐々に増加させて、誘導電動機3を始動させる。 Therefore, the applied mechanical brake (not shown) is released at time t11, the contact of the switch 12 is connected to the speed setter 11 side, and the contact of the switch 16 is connected to the speed adjuster 15 side. Further, by switching the contact of the switch 22 to the second magnetic flux command value φ 2 * set between the first magnetic flux command value φ 1 * and the third magnetic flux command value φ 3 * , the speed command calculation circuit As shown in FIG. 6, the speed command value N * , which is the output of No. 13, is gradually increased at a predetermined acceleration gradient, and the induction motor 3 is started.

以後は、前記加速勾配で増加する速度指令値N*と誘導電動機3の回転速度Nとの偏差ΔNを加算演算器14で算出しつつ、この偏差ΔNが零になる調節演算を速度調節器15で行い、この演算結果のトルク指令値τ*に基づいて誘導電動機3のトルク電流制限値ItLに制限されたトルク電流指令値It *および励磁電流指令値Im *(=φ2 */Lm)と誘導電動機3の電機定数とに基づきベクトル制御回路21ではベクトル演算を行い、このベクトル演算結果としての三相電圧指令値によりインバータ2を介した誘導電動機3を加速する。 Thereafter, while calculating the deviation ΔN between the speed command value N * that increases with the acceleration gradient and the rotational speed N of the induction motor 3 by the addition computing unit 14, an adjustment calculation that makes this deviation ΔN zero is performed by the speed regulator 15. in performed, the calculation result of the torque current of the induction motor 3 based on the torque command value tau * limit value I tL torque current command value is limited to I t * and the excitation current command value I m * (= φ 2 * / L m ) and the electrical constant of the induction motor 3, the vector control circuit 21 performs a vector calculation, and the induction motor 3 through the inverter 2 is accelerated by the three-phase voltage command value as the vector calculation result.

このとき、磁束演算回路24では時刻t0から時刻t11までの第1磁束指令値φ1 *と、時刻t11からの第2磁束指令値φ2 *と、誘導電動機3の二次時定数Tとに基づき当該電動機の励磁磁束φを推定演算する。この演算値が、図6に示した時刻t12でほぼ定格磁束値に達し、この間に出力できる誘導電動機3の発生トルクは100%から150%に増大するので、切替器23の接点を第3磁束指令値φ3 *側にし、図6に示した時刻t13で速度設定器11が設定した速度設定値N#に達し、時刻t13以後、誘導電動機3は定速状態に入る。 At this time, the magnetic flux calculation circuit 24 determines the first magnetic flux command value φ 1 * from time t 0 to time t 11, the second magnetic flux command value φ 2 * from time t 11, and the secondary time constant T of the induction motor 3. Based on this, the excitation magnetic flux φ of the motor is estimated and calculated. This calculated value almost reaches the rated magnetic flux value at time t12 shown in FIG. 6, and the generated torque of the induction motor 3 that can be output during this time increases from 100% to 150%. Therefore, the contact of the switch 23 is connected to the third magnetic flux. The speed is set to the command value φ 3 * side, reaches the speed set value N # set by the speed setter 11 at time t13 shown in FIG. 6, and the induction motor 3 enters a constant speed state after time t13.

ここで、第2磁束指令値φ2 *は定格磁束指令値(第3磁束指令値φ3 *)の2倍程度になるように予め設定しているが、誘導電動機3の加速中にインバータ2の最大出力電流値Imaxを超えないようにする必要があるため、インバータ2の最大出力電流値Imaxに余裕がない場合には、トルク電流制限値ItLを優先して第2磁束指令値φ2 *を最大出力可能な値に設定している。 Here, the second magnetic flux command value φ 2 * is set in advance to be about twice the rated magnetic flux command value (third magnetic flux command value φ 3 * ). since it is necessary to not exceed the maximum output current value I max of, if there is no margin in the maximum output current value I max of the inverter 2, a second magnetic flux command value in favor of the torque current limit value I tL φ 2 * is set to a value that allows maximum output.

特開2007−215260号公報JP 2007-215260 A

上記第2の従来例では、誘導電動機3の予備励磁期間の磁束指令値(第1磁束指令値φ1 *)と当該電動機の定格磁束指令値(第3磁束指令値φ3 *)との間に、第2磁束指令値φ2 *で誘導電動機を始動させる区間を設けたことにより、予備励磁期間を短縮することができるため、第1の従来例に比べて予備励磁時間を短縮することが可能であるとともに加速時間を短くすることが可能である。 In the second conventional example, between the magnetic flux command value (first magnetic flux command value φ 1 * ) during the pre-excitation period of the induction motor 3 and the rated magnetic flux command value (third magnetic flux command value φ 3 * ) of the motor. Furthermore, since the pre-excitation period can be shortened by providing a section for starting the induction motor with the second magnetic flux command value φ 2 * , the pre-excitation time can be shortened compared to the first conventional example. It is possible and the acceleration time can be shortened.

しかしながら、第2磁束指令値φ2 *を設定する際には、インバータ2が出力可能な最大出力電流値Imaxを超えないように、トルク電流制限値ItLに基づいてインバータ2が最大出力可能な第2磁束指令値φ2 *を予め計算して求める必要があった。 However, when setting the second magnetic flux command value φ 2 * , the inverter 2 can output the maximum value based on the torque current limit value ItL so that the maximum output current value I max that the inverter 2 can output is not exceeded. The second magnetic flux command value φ 2 * must be calculated in advance.

この発明は、第2磁束指令値φ2 *を予め計算等により求めることなく、誘導電動機に発生する磁束の立ち上がりを早め、十分なトルクを発生して最適な状態で誘導電動機の起動を開始することができる誘導電動機の制御方法を提供することを目的とする。 According to the present invention, the second magnetic flux command value φ 2 * is not calculated in advance, but the rise of the magnetic flux generated in the induction motor is accelerated, and sufficient torque is generated to start the induction motor in an optimum state. An object of the present invention is to provide a method for controlling an induction motor.

上記目的を達成するために、この発明は、誘導電動機への速度指令値と速度検出値との偏差を調節演算して得られるトルク指令値と、前記誘導電動機への磁束指令値とに基づくベクトル演算を行い、このベクトル演算値によりインバータを介した前記誘導電動機を可変速制御する誘導電動機の制御方法において、前記誘導電動機の速度が零のとき、前記速度指令値および前記トルク指令値を零保持し、このトルク指令値と第1磁束指令値とに基づくベクトル演算を行い、このベクトル演算値により前記インバータを介した前記誘導電動機を予備励磁状態にし、この予備励磁状態中に前記誘導電動機の励磁磁束が所定の値に達したときに、前記速度指令値および前記トルク指令値の零保持を解除し、前記インバータの最大出力電流値,トルク電流制限値および前記誘導電動機の定格励磁電流値から演算される第2磁束指令値と前記トルク指令値とに基づくベクトル演算を行い、このベクトル演算値により前記インバータを介した前記誘導電動機を始動させ、この始動中に前記誘導電動機の励磁磁束がほぼ定格磁束値に達した後は、前記速度指令値と速度検出値との偏差を調節演算して得られるトルク指令値と第3磁束指令値とに基づくベクトル演算を行い、このベクトル演算値により前記インバータを介した前記誘導電動機を可変速制御するものとする。   In order to achieve the above object, the present invention provides a vector based on a torque command value obtained by adjusting a deviation between a speed command value for an induction motor and a speed detection value, and a magnetic flux command value for the induction motor. In a control method of an induction motor that performs calculation and performs variable speed control of the induction motor via an inverter based on the vector calculation value, when the speed of the induction motor is zero, the speed command value and the torque command value are held at zero. Then, a vector calculation based on the torque command value and the first magnetic flux command value is performed, and the induction motor via the inverter is set in a pre-excitation state by the vector calculation value, and the induction motor is excited during the pre-excitation state. When the magnetic flux reaches a predetermined value, the zero holding of the speed command value and the torque command value is canceled, and the maximum output current value and torque power of the inverter are released. Performing a vector calculation based on the second magnetic flux command value calculated from the limit value and the rated excitation current value of the induction motor and the torque command value, and starting the induction motor via the inverter by the vector calculation value; After the exciting magnetic flux of the induction motor reaches the rated magnetic flux value during the starting, the torque command value obtained by adjusting the deviation between the speed command value and the speed detection value and the third magnetic flux command value are obtained. Based on this vector calculation value, variable speed control of the induction motor via the inverter is performed.

また、上記において、前記励磁磁束と前記トルク電流制限値とから算出した発生トルクが所定の値に達したときに前記第1磁束指令値から前記第2磁束指令値に切り替えるものとする。   In the above description, when the generated torque calculated from the exciting magnetic flux and the torque current limit value reaches a predetermined value, the first magnetic flux command value is switched to the second magnetic flux command value.

この発明によれば、実際に出力できる誘導電動機の発生トルクを励磁磁束とトルク電流制限値とから算出して、その結果が最低必要なトルクの値となったとき、第1磁束指令値から最大出力電流値,トルク電流制限値および定格励磁電流値から算出した第2磁束指令値に切り替えることにより、適正な発生トルクを得ることができ、最適な状態で誘導電動機の起動を開始することができる。   According to the present invention, when the generated torque of the induction motor that can be actually output is calculated from the excitation magnetic flux and the torque current limit value, and the result is the minimum required torque value, the maximum torque is calculated from the first magnetic flux command value. By switching to the second magnetic flux command value calculated from the output current value, torque current limit value, and rated excitation current value, it is possible to obtain an appropriate generated torque and start the induction motor in an optimal state. .

この発明の実施の形態を示す回路構成図Circuit configuration diagram showing an embodiment of the present invention 図1の動作を説明する動作波形図Operation waveform diagram for explaining the operation of FIG. 第1の従来例を示す回路構成図Circuit configuration diagram showing a first conventional example 図3の動作を説明する動作波形図Operation waveform diagram explaining the operation of FIG. 第2の従来例を示す回路構成図Circuit configuration diagram showing a second conventional example 図5の動作を説明する動作波形図Operation waveform diagram explaining the operation of FIG.

図1はこの発明の実施の形態の示す回路構成図であり、図3,5と同一機能を有するものについては同一の符号を付してその説明を省略する。この実施の形態において、図5の第2の従来例と異なる点は、第2磁束指令演算回路26および磁束指令切替回路27を備えている点である。   FIG. 1 is a circuit diagram showing the embodiment of the present invention. Components having the same functions as those in FIGS. This embodiment is different from the second conventional example of FIG. 5 in that a second magnetic flux command calculation circuit 26 and a magnetic flux command switching circuit 27 are provided.

図1において、第2磁束指令演算回路26は、インバータ定格電流を基準に予め設定されるインバータ2が出力可能な最大出力電流値Imaxと、定格トルク電流の90〜150%程度の任意の値に設定されるトルク電流制限値ItLと、誘導電動機3の電機定数から決まる定格励磁電流値Imrとから次式に基づいて第2磁束指令値φ2 *を算出するものである。 In FIG. 1, the second magnetic flux command calculation circuit 26 has a maximum output current value I max that can be output by the inverter 2 set in advance with reference to the inverter rated current, and an arbitrary value of about 90 to 150% of the rated torque current. Based on the following equation, the second magnetic flux command value φ 2 * is calculated from the torque current limit value ItL set to 1 and the rated excitation current value I mr determined from the electrical constant of the induction motor 3.

Figure 0005516087
Figure 0005516087

また、磁束指令切替回路27は、実際に出力できる誘導電動機3の発生トルクτ(=It *×φ)を磁束演算回路24で推定演算した励磁磁束φとトルク電流制限値ItLとから算出し、この算出した発生トルクτが最低必要なトルクの値(定格トルク付近に予め設定した値)となった時に、切替器22の接点を第2磁束指令演算回路26側に切り替えるものである。 The magnetic flux command switching circuit 27 calculates the generated torque τ (= I t * × φ) of the induction motor 3 that can be actually output from the excitation magnetic flux φ estimated by the magnetic flux calculation circuit 24 and the torque current limit value It tL. When the calculated generated torque τ reaches a minimum required torque value (a value preset in the vicinity of the rated torque), the contact of the switch 22 is switched to the second magnetic flux command calculation circuit 26 side.

図2は図1の動作を示す波形図であり、以下では図2を参照して図1の動作を説明する。
機械ブレーキ(図示せず)が投入され、誘導電動機3の速度が零の状態である誘導電動機3の起動時(図2の時刻t0)に、まず、切替器12の接点を零側にするとともに切替器16の接点を零側にすることにより、速度指令演算回路13の出力である速度指令値を零(N*=0)に設定するとともに、速度調節器15の出力であるトルク指令値を零(τ*=0)に設定する。一方、切替器22の接点を定格磁束値の3倍程度に設定した第1磁束指令値φ1 *側に接続することにより、除算演算器20では第1磁束指令値φ1 *を誘導電動機3の励磁インダクタンスLmで除算演算して励磁電流指令値Im *(=φ1 */Lm)を算出する。また、除算演算器18ではトルク指令値τ*(=0)と第1磁束指令値φ1 *との間で除算演算を行ってトルク電流指令値It *(=0)を算出する。ベクトル制御回路21では算出されたトルク電流指令値It *および励磁電流指令値Im *と電機定数とに基づいてベクトル演算を行い、このベクトル演算結果としての三相電圧指令値によりインバータ2を介した誘導電動機3を予備励磁状態にする。
FIG. 2 is a waveform diagram showing the operation of FIG. 1, and the operation of FIG. 1 will be described below with reference to FIG.
When a mechanical brake (not shown) is turned on and the induction motor 3 is started when the speed of the induction motor 3 is zero (time t0 in FIG. 2), first, the contact of the switch 12 is set to the zero side. By setting the contact of the switch 16 to the zero side, the speed command value that is the output of the speed command calculation circuit 13 is set to zero (N * = 0), and the torque command value that is the output of the speed regulator 15 is set. Set to zero (τ * = 0). On the other hand, by connecting the contact of the switch 22 to the first magnetic flux command value φ 1 * side set to about three times the rated magnetic flux value, the division calculator 20 converts the first magnetic flux command value φ 1 * to the induction motor 3. The excitation current command value I m * (= φ 1 * / L m ) is calculated by dividing by the excitation inductance L m of the current. The division calculator 18 performs a division operation between the torque command value τ * (= 0) and the first magnetic flux command value φ 1 * to calculate a torque current command value I t * (= 0). The vector control circuit 21 performs a vector calculation based on the calculated torque current command value I t *, the excitation current command value I m *, and the electrical constant, and the inverter 2 is controlled by the three-phase voltage command value as the vector calculation result. The induction motor 3 is put into a pre-excitation state.

この予備励磁状態により誘導電動機3の励磁磁束φが当該電動機の二次時定数Tに基づいて増加する。磁束演算回路24では、第1磁束指令値φ1 *と誘導電動機3の二次時定数Tとに基づき当該電動機の励磁磁束φを推定演算する。 Due to this preliminary excitation state, the excitation magnetic flux φ of the induction motor 3 increases based on the secondary time constant T of the motor. The magnetic flux calculation circuit 24 estimates and calculates the excitation magnetic flux φ of the motor based on the first magnetic flux command value φ 1 * and the secondary time constant T of the induction motor 3.

その後、予備励磁状態中に誘導電動機3の励磁磁束φが所定の値に達した時刻t21に、切替器22の接点を第2磁束指令演算回路26側に切り替える。すなわち、磁束指令切替回路27において、実際に出力できる誘導電動機3の発生トルクτ(=It *×φ)を磁束演算回路24で推定演算した励磁磁束φとトルク電流制限値ItLとから算出し、この算出した発生トルクτが予め設定した値(最低必要なトルクの値)となった時刻t21に、切替器22の接点を第2磁束指令演算回路26側に切り替える。 Thereafter, at time t21 when the excitation magnetic flux φ of the induction motor 3 reaches a predetermined value during the preliminary excitation state, the contact of the switch 22 is switched to the second magnetic flux command calculation circuit 26 side. That is, in the magnetic flux command switching circuit 27, the generated torque τ (= I t * × φ) of the induction motor 3 that can be actually output is calculated from the excitation magnetic flux φ estimated by the magnetic flux calculation circuit 24 and the torque current limit value ItL. At time t21 when the calculated generated torque τ becomes a preset value (minimum required torque value), the contact of the switch 22 is switched to the second magnetic flux command calculation circuit 26 side.

一方、第2磁束指令演算回路26では、誘導電動機3の加速中にインバータ2の出力電流が最大出力電流値Imaxを超えないようにするために、最大出力電流値Imax,予め設定されたトルク電流制限値ItLおよび誘導電動機3の定格励磁電流値Imrとから上記数1に基づいて第2磁束指令値φ2 *を決定する。 On the other hand, the second magnetic flux command calculation circuit 26, to the output current of the induction motor 3 inverter 2 during acceleration of does not exceed the maximum output current value I max, the maximum output current value I max, set in advance From the torque current limit value ItL and the rated excitation current value I mr of the induction motor 3, the second magnetic flux command value φ 2 * is determined based on the above formula 1.

また、時刻t21では、機械ブレーキ(図示せず)を開放し、切替器12の接点を速度設定器11側に接続するとともに、切替器16の接点を速度調節器15側に接続することで、速度指令演算回路13の出力である速度指令値N*を図2に示すように予め定められた加速勾配で徐々に増加させて、誘導電動機3を始動させる。 At time t21, the mechanical brake (not shown) is released, the contact of the switch 12 is connected to the speed setter 11 side, and the contact of the switch 16 is connected to the speed adjuster 15 side. The speed command value N * , which is the output of the speed command calculation circuit 13, is gradually increased at a predetermined acceleration gradient as shown in FIG. 2, and the induction motor 3 is started.

以後は、前記加速勾配で増加する速度指令値N*と誘導電動機3の回転速度Nとの偏差ΔNを加算演算器14で算出しつつ、この偏差ΔNが零になる調節演算を速度調節器15で行い、この演算結果のトルク指令値τ*に基づいて誘導電動機3のトルク電流制限値ItLに制限されたトルク電流指令値It *および励磁電流指令値Im *(=φ2 */Lm)と誘導電動機3の電機定数とに基づきベクトル制御回路21ではベクトル演算を行い、このベクトル演算結果としての三相電圧指令値によりインバータ2を介した誘導電動機3を加速する。 Thereafter, while calculating the deviation ΔN between the speed command value N * that increases with the acceleration gradient and the rotational speed N of the induction motor 3 by the addition computing unit 14, an adjustment calculation that makes this deviation ΔN zero is performed by the speed regulator 15. in performed, the calculation result of the torque current of the induction motor 3 based on the torque command value tau * limit value I tL torque current command value is limited to I t * and the excitation current command value I m * (= φ 2 * / L m ) and the electrical constant of the induction motor 3, the vector control circuit 21 performs a vector calculation, and the induction motor 3 through the inverter 2 is accelerated by the three-phase voltage command value as the vector calculation result.

そして、磁束演算回路24では、時刻t21からの第2磁束指令値φ2 *と、誘導電動機3の二次時定数Tとに基づき当該電動機の励磁磁束φを推定演算し、この演算値がほぼ定格磁束値の値(定格磁束値付近に予め設定した値)に達したら切替器23に切替指令を与える。すなわち、励磁磁束φの演算値が時刻t22でほぼ定格磁束値に達し、この間に出力できる誘導電動機3の発生トルクは最低必要なトルクの値から制限値まで増大するので、切替器23の接点を誘導電動機3の定格磁束値である第3磁束指令値φ3 *側にする。その後、図2に示した時刻t23で速度設定器11が設定した速度設定値N#に達し、時刻t23以後、誘導電動機3は定速状態に入る。 Then, the magnetic flux calculation circuit 24 estimates and calculates the excitation magnetic flux φ of the motor based on the second magnetic flux command value φ 2 * from the time t21 and the secondary time constant T of the induction motor 3, and the calculated value is almost equal. When the value of the rated magnetic flux value (a value preset in the vicinity of the rated magnetic flux value) is reached, a switching command is given to the switch 23. That is, the calculated value of the excitation magnetic flux φ almost reaches the rated magnetic flux value at time t22, and the generated torque of the induction motor 3 that can be output during this time increases from the minimum required torque value to the limit value. The third magnetic flux command value φ 3 * side which is the rated magnetic flux value of the induction motor 3 is set. Thereafter, the speed set value N # set by the speed setter 11 is reached at time t23 shown in FIG. 2, and the induction motor 3 enters a constant speed state after time t23.

このように、この発明においては、予備励磁中に、まず、磁束指令切替回路27では、実際に出力できる誘導電動機3の発生トルクτを磁束演算回路24で推定演算した励磁磁束φとトルク電流制限値ItLとから算出して、その結果が最低必要なトルクの値かどうかを判断する。 As described above, in the present invention, during the preliminary excitation, first, the magnetic flux command switching circuit 27 first estimates the generated torque τ of the induction motor 3 that can be output by the magnetic flux calculation circuit 24 and the torque current limit. It is calculated from the value ItL and it is determined whether or not the result is the minimum required torque value.

ここで、機械ブレーキ(図示せず)の開放後に荷を落とさないようにする最低必要な発生トルクτが誘導電動機3の定格トルク(100%)とした場合、例えば、トルク電流制限値ItLを定格トルク電流の約150%としたときには、τ=It *×φの関係から誘導電動機3の励磁磁束φが定格磁束値の約67%程度まで確立すれば定格トルク値(100%)となる。この実施の形態では、最低必要なトルクの値を定格トルク付近に予め設定しておく。 Here, when the minimum required torque τ that prevents the load from dropping after the mechanical brake (not shown) is released is the rated torque (100%) of the induction motor 3, for example, the torque current limit value ItL is When the rated torque current is about 150%, the rated torque value (100%) is obtained if the exciting magnetic flux φ of the induction motor 3 is established to about 67% of the rated magnetic flux value from the relationship of τ = I t * × φ. . In this embodiment, the minimum required torque value is set in advance near the rated torque.

次に、磁束指令切替回路27では、予備励磁状態により誘導電動機3の励磁磁束φが当該電動機の二次時定数Tに基づいて増加し、励磁磁束φとトルク電流制限値ItLとから算出した発生トルクτが予め定めた最低必要なトルクの値となったとき、第2磁束指令演算回路26で最大出力電流値Imax,トルク電流制限値ItLおよび定格励磁電流値Imrに基づいて算出した第2磁束指令値φ2 *に切り替えることにより、誘導電動機3に発生する磁束の立ち上がりを早め、十分なトルクを発生して最適な状態で誘導電動機3の起動を開始することができる。 Next, in the magnetic flux command switching circuit 27, the excitation magnetic flux φ of the induction motor 3 is increased based on the secondary time constant T of the electric motor in the preliminary excitation state, and is calculated from the excitation magnetic flux φ and the torque current limit value ItL . When the generated torque τ reaches a predetermined minimum required torque value, the second magnetic flux command calculation circuit 26 calculates the maximum output current value I max , the torque current limit value ItL, and the rated excitation current value I mr. By switching to the second magnetic flux command value φ 2 * , the rise of the magnetic flux generated in the induction motor 3 can be accelerated, and sufficient torque can be generated to start the induction motor 3 in an optimal state.

なお、上記実施の形態では、励磁磁束φとトルク電流制限値ItLとから算出した発生トルクτが予め定めた最低必要なトルクの値となったときに、第1磁束指令値φ1 *から第2磁束指令値φ2 *に切り替えているが、磁束演算回路24で推定演算した励磁磁束φが予め定めた値となったときに、第1磁束指令値φ1 *から第2磁束指令値φ2 *に切り替えるようにしてもよい。 In the above embodiment, when the generated torque τ calculated from the excitation magnetic flux φ and the torque current limit value ItL becomes a predetermined minimum required torque value, the first magnetic flux command value φ 1 * is used. Although the magnetic flux is switched to the second magnetic flux command value φ 2 * , when the exciting magnetic flux φ estimated by the magnetic flux calculation circuit 24 becomes a predetermined value, the first magnetic flux command value φ 1 * is changed to the second magnetic flux command value. You may make it switch to (phi) 2 * .

1…交流電源、2…インバータ、3…誘導電動機、4…負荷、5…速度検出器、11…速度設定器、12,16,22,23…切替器、13…速度指令演算回路、14…加算演算器、15…速度調節器、18,20…除算演算器、19…トルク電流制限器、21…ベクトル制御回路、24…磁束演算回路、26…第2磁束指令演算回路、27…磁束指令切替回路。   DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Inverter, 3 ... Induction motor, 4 ... Load, 5 ... Speed detector, 11 ... Speed setter, 12, 16, 22, 23 ... Switch, 13 ... Speed command calculating circuit, 14 ... Addition computing unit, 15 ... speed regulator, 18, 20 ... division computing unit, 19 ... torque current limiter, 21 ... vector control circuit, 24 ... magnetic flux computing circuit, 26 ... second magnetic flux command computing circuit, 27 ... magnetic flux command Switching circuit.

Claims (2)

誘導電動機への速度指令値と速度検出値との偏差を調節演算して得られるトルク指令値と、前記誘導電動機への磁束指令値とに基づくベクトル演算を行い、このベクトル演算値によりインバータを介した前記誘導電動機を可変速制御する誘導電動機の制御方法において、
前記誘導電動機の速度が零のとき、前記速度指令値および前記トルク指令値を零保持し、このトルク指令値と第1磁束指令値とに基づくベクトル演算を行い、このベクトル演算値により前記インバータを介した前記誘導電動機を予備励磁状態にし、
この予備励磁状態中に前記誘導電動機の励磁磁束が所定の値に達したときに、前記速度指令値および前記トルク指令値の零保持を解除し、前記インバータの最大出力電流値,トルク電流制限値および前記誘導電動機の定格励磁電流値から演算される第2磁束指令値と前記トルク指令値とに基づくベクトル演算を行い、このベクトル演算値により前記インバータを介した前記誘導電動機を始動させ、
この始動中に前記誘導電動機の励磁磁束がほぼ定格磁束値に達した後は、前記速度指令値と前記速度検出値との偏差を調節演算して得られるトルク指令値と第3磁束指令値とに基づくベクトル演算を行い、このベクトル演算値により前記インバータを介した前記誘導電動機を可変速制御することを特徴とする誘導電動機の制御方法。
Vector calculation is performed based on the torque command value obtained by adjusting and calculating the deviation between the speed command value for the induction motor and the speed detection value, and the magnetic flux command value for the induction motor. In the induction motor control method for variable speed control of the induction motor,
When the speed of the induction motor is zero, the speed command value and the torque command value are held at zero, and a vector calculation is performed based on the torque command value and the first magnetic flux command value, and the inverter is controlled by the vector calculation value. The induction motor via the pre-excitation state,
When the excitation magnetic flux of the induction motor reaches a predetermined value during the pre-excitation state, the zero holding of the speed command value and the torque command value is canceled, and the maximum output current value and torque current limit value of the inverter are released. And performing a vector calculation based on the second magnetic flux command value calculated from the rated excitation current value of the induction motor and the torque command value, and starting the induction motor via the inverter with the vector calculation value,
After the exciting magnetic flux of the induction motor reaches the rated magnetic flux value during the starting, the torque command value and the third magnetic flux command value obtained by adjusting and calculating the deviation between the speed command value and the speed detection value And a variable speed control of the induction motor via the inverter based on the vector calculation value.
請求項1に記載の誘導電動機の制御方法において、
前記励磁磁束と前記トルク電流制限値とから算出した発生トルクが所定の値に達したときに前記第1磁束指令値から前記第2磁束指令値に切り替えることを特徴とする誘導電動機の制御方法。
In the control method of the induction motor according to claim 1,
A control method for an induction motor, wherein when the generated torque calculated from the exciting magnetic flux and the torque current limit value reaches a predetermined value, the first magnetic flux command value is switched to the second magnetic flux command value.
JP2010125470A 2010-06-01 2010-06-01 Induction motor control method Active JP5516087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010125470A JP5516087B2 (en) 2010-06-01 2010-06-01 Induction motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125470A JP5516087B2 (en) 2010-06-01 2010-06-01 Induction motor control method

Publications (2)

Publication Number Publication Date
JP2011254596A JP2011254596A (en) 2011-12-15
JP5516087B2 true JP5516087B2 (en) 2014-06-11

Family

ID=45418035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125470A Active JP5516087B2 (en) 2010-06-01 2010-06-01 Induction motor control method

Country Status (1)

Country Link
JP (1) JP5516087B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021145B2 (en) * 2012-08-22 2016-11-09 東洋電機製造株式会社 Induction machine controller
JP6030978B2 (en) * 2013-03-22 2016-11-24 東芝シュネデール・インバータ株式会社 Inverter device and teaching method for inverter device
JP6088604B1 (en) 2015-08-27 2017-03-01 ファナック株式会社 Electric motor control device having magnetic flux control unit, machine learning device and method thereof
JP6334017B1 (en) * 2017-01-25 2018-05-30 ファナック株式会社 Induction motor control device

Also Published As

Publication number Publication date
JP2011254596A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US7800338B2 (en) Method of decelerating alternating current motor and inverter apparatus
JP5516087B2 (en) Induction motor control method
JP4756478B2 (en) Inverter device and reduction method of AC motor
JP6143984B1 (en) Inverter device
US9825578B2 (en) Control device
JP2013183468A (en) Motor control device and motor control program
EP2897284A1 (en) Motor controller and method for controlling motor
JP6203784B2 (en) Control device for synchronous motor
JP2005027410A (en) Method and device for driving induction motor
JP5226203B2 (en) Power converter
JP5207910B2 (en) Operation control method and operation control apparatus for variable speed generator motor
JP4775012B2 (en) Induction motor control method
JP5408370B1 (en) Motor control device and motor control method
JP6334017B1 (en) Induction motor control device
JP3764433B2 (en) Induction motor rotation speed detection apparatus and method
CN107078679B (en) Power conversion device and control method for power conversion device
JP2019058018A (en) Controller for induction motor
JP4144446B2 (en) Power converter
JP6030978B2 (en) Inverter device and teaching method for inverter device
JP5893891B2 (en) Inverter device and teaching method for inverter device
JP4488409B2 (en) Power converter
JP2013240757A (en) Centrifuge
JP2011101447A (en) Power conversion apparatus
KR101620853B1 (en) Apparatus for induction motor drive control
JP2013005703A (en) Inverter controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250