JP5514747B2 - Electric lead manufacturing method - Google Patents

Electric lead manufacturing method Download PDF

Info

Publication number
JP5514747B2
JP5514747B2 JP2011002071A JP2011002071A JP5514747B2 JP 5514747 B2 JP5514747 B2 JP 5514747B2 JP 2011002071 A JP2011002071 A JP 2011002071A JP 2011002071 A JP2011002071 A JP 2011002071A JP 5514747 B2 JP5514747 B2 JP 5514747B2
Authority
JP
Japan
Prior art keywords
lead
electrolytic
anode
mass
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011002071A
Other languages
Japanese (ja)
Other versions
JP2012144757A (en
Inventor
英俊 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011002071A priority Critical patent/JP5514747B2/en
Publication of JP2012144757A publication Critical patent/JP2012144757A/en
Application granted granted Critical
Publication of JP5514747B2 publication Critical patent/JP5514747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電気鉛の製造方法に関する。具体的には、本発明は、非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び、産業廃棄物を溶融処理する乾式炉より発生する乾式煙灰等に含まれている鉛を回収する方法に関する。   The present invention relates to a method for producing electrical lead. Specifically, the present invention recovers lead contained in non-ferrous smelting, melting furnaces for recycled materials such as bases and electronic parts, and dry smoke ash generated from dry furnaces for melting industrial waste. Regarding the method.

従来、非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び産業廃棄物を溶融処理する乾式炉より非鉄製錬の乾式煙灰中に含まれている鉛を回収するため、煙灰を硫酸浸出し、硫酸鉛にした後、電気炉で溶融還元を行っている。この溶融還元により分離したメタルはソーダ処理された後、アノード鋳造され、珪フッ素酸浴等を用いて電解精製される。この電解精製により、電気鉛が回収される。   Conventionally, smoke ash was leached with sulfuric acid to recover lead contained in non-ferrous smelting dry ash from non-ferrous smelting, melting furnaces for recycling raw materials such as foundations and electronic parts, and dry furnaces for melting industrial waste. Then, after making lead sulfate, smelting reduction is performed in an electric furnace. The metal separated by this smelting reduction is subjected to soda treatment, then anode casting, and electrolytic purification using a silicofluoric acid bath or the like. Electrical lead is recovered by this electrolytic purification.

このような電気鉛の回収方法として、例えば、特許文献1には、ビスマス品位5〜30mass%の高不純物アノードにアンチモン品位が1〜3mass%になるように調整した後、電解処理することで鉛電解殿物を生成させて、高純度の鉛を回収する方法が開示されている。   As a method for recovering such electric lead, for example, Patent Document 1 discloses that a high impurity anode having a bismuth grade of 5 to 30 mass% is adjusted to have an antimony grade of 1 to 3 mass%, and then subjected to electrolytic treatment. A method for producing electrolytic deposits and recovering high purity lead is disclosed.

特開2010-222628号公報JP 2010-222628 A

しかしながら、特許文献1では、電解処理後に生成する鉛電解殿物を効率的に回収することで、電気鉛を効率的に製造する方法については検討されていない。   However, Patent Document 1 does not discuss a method for efficiently producing electrical lead by efficiently recovering a lead electrolytic product generated after electrolytic treatment.

そこで、本発明は、電気鉛を効率的に製造する方法を提供することを課題とする。   Then, this invention makes it a subject to provide the method of manufacturing an electrical lead efficiently.

本発明者は、上記課題を解決するために鋭意検討した結果、ビスマスとアンチモンとを所定の濃度で含む鉛アノードを用いて電解浴で電解処理を行って生成した鉛電解殿物を乾燥させた後、アノードから除去することで、電解処理後に生成する鉛電解殿物を効率的に回収することができることを見出した。   As a result of intensive studies to solve the above problems, the present inventor dried a lead electrolytic product produced by electrolytic treatment in an electrolytic bath using a lead anode containing bismuth and antimony at a predetermined concentration. Later, it was found that the lead electrolytic product produced after the electrolytic treatment can be efficiently recovered by removing it from the anode.

以上の知見を基礎として完成した本発明は一側面において、ビスマス濃度が5〜30mass%の鉛原料に対してアンチモン濃度が1〜3mass%となるように調整してアノードを作製する工程と、アノードを用いて電解浴で電解処理を行うことでアノードに鉛電解殿物を付着させる工程と、アノードを電解浴から取り出して、付着した鉛電解殿物を乾燥する工程と、乾燥した鉛電解殿物をアノードから除去する工程とを備えた電解鉛の製造方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a step of preparing an anode by adjusting the antimony concentration to be 1 to 3 mass% with respect to a lead material having a bismuth concentration of 5 to 30 mass%, A step of depositing a lead electrolytic deposit on the anode by performing an electrolytic treatment in an electrolytic bath using the step, a step of removing the anode from the electrolytic bath and drying the deposited lead electrolytic deposit, and a dried lead electrolytic deposit A method for producing electrolytic lead, comprising: removing from the anode.

本発明の電気鉛の製造方法は一実施形態において、乾燥した鉛電解殿物を、衝撃を与えることでアノードから除去する。   In one embodiment of the method for producing electrical lead of the present invention, the dried lead electrolytic product is removed from the anode by applying an impact.

本発明の電気鉛の製造方法は別の一実施形態において、鉛電解殿物の乾燥を、水蒸気を用いて行う。   In another embodiment of the method for producing electric lead of the present invention, the lead electrolytic product is dried using water vapor.

本発明の電気鉛の製造方法は更に別の一実施形態において、前記鉛電解殿物の乾燥を、水分含有率5〜10mass%となるまで行う。   In still another embodiment of the method for producing electric lead of the present invention, the lead electrolytic product is dried until the water content becomes 5 to 10 mass%.

本発明によれば、電気鉛を効率的に製造する方法を提供することができる。より具体的には、
(1)高ビスマス品位の鉛アノードから効率よく、更に設備投資することなく、ビスマス品位が極めて低い高純度の鉛を回収することができる。
(2)鉛電解精製後のアノードに付着した鉛電解殿物を効率的に回収することができる。
(3)鉛電解液及び鉛電解殿物の抜出し作業を省略することができる。
(4)鉛電解液と鉛電解殿物とに固液分離する設備を省略することができる。
According to the present invention, a method for efficiently producing electrical lead can be provided. More specifically,
(1) It is possible to efficiently recover high-purity lead having a very low bismuth quality without further capital investment from a high bismuth quality lead anode.
(2) It is possible to efficiently recover the lead electrolytic deposit attached to the anode after the lead electrolytic purification.
(3) The extraction work of the lead electrolyte and lead electrolyte can be omitted.
(4) Equipment for solid-liquid separation into lead electrolyte and lead electrolyte can be omitted.

本発明の一態様である鉛アノード中のアンチモン品位と電着鉛中のBi品位との関係図である。It is a relationship figure of the antimony grade in the lead anode which is one mode of the present invention, and the Bi grade in electrodeposited lead. 本発明の一態様である鉛の電解精製における電解浴を示す。1 shows an electrolytic bath in the electrolytic purification of lead which is one embodiment of the present invention. 本発明の一態様である鉛アノードの水蒸気による乾燥状態を示す。The dry state by the water vapor | steam of the lead anode which is 1 aspect of this invention is shown. 本発明の一態様である水蒸気による乾燥後の鉛アノードを示す。The lead anode after drying with water vapor which is one mode of the present invention is shown. 本発明の一態様である鉛電解殿物の剥離状況を示す。The peeling state of the lead electrolysis deposit which is one mode of the present invention is shown. 本発明の一態様である鉛電解殿物を剥離した後の鉛アノードを示す。The lead anode after peeling the lead electrolysis deposit which is one mode of the present invention is shown. 本発明の一態様である剥離後の鉛電解殿物を示す。The lead electrolysis thing after peeling which is one mode of the present invention is shown.

以下に、本発明に係る電気鉛の製造方法の実施形態を説明する。   Below, embodiment of the manufacturing method of the electrical lead which concerns on this invention is described.

まず、鉛原料として、鉛:70〜90mass%、錫:0〜0.04mass%、ビスマス:5〜30mass%を含有する鉛含有化合物を準備する。この鉛原料は、例えば、非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び、産業廃棄物を溶融処理する乾式炉より非鉄製錬の乾式煙灰を硫酸浸出後、硫酸鉛を炭酸ナトリウムにより炭酸鉛にした後、電気炉で溶融還元を行い、分離したメタルをソーダ処理することで得られる。本発明では、このようにビスマスを高品位で含む鉛含有化合物を用いて高不純物アノードを作製し、このアノードから高純度の電気鉛を回収することを目的としている。   First, a lead-containing compound containing lead: 70 to 90 mass%, tin: 0 to 0.04 mass%, and bismuth: 5 to 30 mass% is prepared as a lead raw material. This lead raw material is, for example, non-ferrous smelting, melting furnace for recycling raw materials such as bases and electronic parts, and non-ferrous smelting dry ash from sulfuric acid from the dry furnace for melting industrial waste, and then leaching lead sulfate to sodium carbonate After being converted to lead carbonate by smelting, it is obtained by performing smelting reduction in an electric furnace and treating the separated metal with soda. An object of the present invention is to produce a high-impurity anode using a lead-containing compound containing bismuth in high quality as described above, and recover high-purity electric lead from the anode.

続いて、鉛含有化合物にアンチモンを添加する。ここで、アンチモンの添加量は、図1に示す鉛アノード中のアンチモン品位と電着鉛中のビスマス品位との関係図を参照することにより適切な量を選択する。図1は、アノード中のビスマス品位が21mass%のときの、アノード中のアンチモン品位と電着鉛中のビスマスとの関係を示している。このように、図1に従い、鉛含有化合物にアンチモンを添加して、アノード中のアンチモン品位が1〜3mass%となるように調整することで、電解精製によって低ビスマス品位の電着鉛を回収することができる。アノード中のアンチモン品位が3mass%超であると、電解精製の際にアノードに付着する鉛電解殿物が硬く且つ厚くなるため、アノード電位が上昇し、不純物が溶出するおそれがある。アノード中のアンチモン品位が1mass%未満であると、鉛電解殿物が電解浴内で落下し、取り扱いが困難となる。   Subsequently, antimony is added to the lead-containing compound. Here, the addition amount of antimony is selected by referring to the relationship diagram between the antimony quality in the lead anode and the bismuth quality in the electrodeposited lead shown in FIG. FIG. 1 shows the relationship between antimony grade in the anode and bismuth in electrodeposited lead when the bismuth grade in the anode is 21 mass%. In this way, according to FIG. 1, by adding antimony to the lead-containing compound and adjusting the antimony quality in the anode to be 1 to 3 mass%, low bismuth quality electrodeposited lead is recovered by electrolytic purification. be able to. If the antimony grade in the anode is more than 3 mass%, the lead electrolytic deposit attached to the anode during the electrolytic purification is hard and thick, so that the anode potential rises and impurities may be eluted. If the antimony quality in the anode is less than 1 mass%, the lead electrolytic product falls in the electrolytic bath, making it difficult to handle.

次に、鉛含有化合物を鋳造して鉛アノードを作製する。鉛アノードの大きさは、カソードより小さくすることでエッジ効果を防ぐことができ(エッジ部への電流集中を緩和することができ)、平滑で良好な電着鉛を回収することができる。カソードは特に限定されず、例えばステンレス等の公知の材料を用いることができる。   Next, a lead-containing compound is cast to produce a lead anode. The edge effect can be prevented by making the size of the lead anode smaller than that of the cathode (current concentration at the edge portion can be reduced), and smooth and good electrodeposited lead can be recovered. A cathode is not specifically limited, For example, well-known materials, such as stainless steel, can be used.

続いて、図2に示すように、鉛アノードを用いて電解精製を行う。このとき用いる電解浴中の電解液は、例えば、スルファミン酸:20〜100g/L、鉛:20〜100g/Lであるのが好ましい。さらに、平滑剤として、ノイゲン BN−1390、又は、ノイゲン BN−2560を1〜700mg/L含むことが好ましい。また、電解精製の電流密度は100A/m2以下とすることで、平滑で良好な電着鉛を回収することができる。また、電解浴へのアノード及びカソードの装入後、電解浴内に電解液を補充し、電解液の電解浴内滞留時間が1h程度になるように給液することで、電解浴内の濃度分布を均等にするのが好ましい。また、電解液の温度は、例えば、20〜30℃とする。 Subsequently, as shown in FIG. 2, electrolytic purification is performed using a lead anode. The electrolytic solution in the electrolytic bath used at this time is preferably, for example, sulfamic acid: 20 to 100 g / L, lead: 20 to 100 g / L. Furthermore, it is preferable that 1-700 mg / L of Neugen BN-1390 or Neugen BN-2560 is included as a smoothing agent. Further, when the current density of electrolytic purification is 100 A / m 2 or less, smooth and good electrodeposited lead can be recovered. In addition, after the anode and cathode are inserted into the electrolytic bath, the electrolytic solution is replenished in the electrolytic bath, and the electrolytic solution is supplied so that the residence time of the electrolytic solution in the electrolytic bath is about 1 h. It is preferable to make the distribution uniform. Moreover, the temperature of electrolyte solution shall be 20-30 degreeC, for example.

上述の電解精製により、鉛アノードに鉛電解殿物が生成し、付着する。このとき生成した鉛電解殿物は、例えば、ビスマスが55〜65mass%、アンチモンが2〜6mass%、鉛が10〜15mass%、水分含有率が15〜25mass%となっている。   As a result of the above-described electrolytic purification, lead electrolytic deposits are generated and adhered to the lead anode. The lead electrolytic product produced at this time is, for example, 55 to 65 mass% for bismuth, 2 to 6 mass% for antimony, 10 to 15 mass% for lead, and 15 to 25 mass% for moisture content.

続いて、図3に示すように、鉛アノードを電解浴から取り出して、付着した鉛電解殿物を乾燥する。乾燥は、ヒータによる加熱、排ガスなどによる間接加熱、水蒸気による加熱等で行うことができるが、工場内で行う場合は水蒸気が豊富であり、コストの点で有利となり、且つ、取り扱いが簡易なため水蒸気を用いて乾燥するのが好ましい。また、水蒸気を用いると、鉛電解殿物に適度な水分を含ませたまま乾燥させることが容易となる。加熱温度は、水蒸気であれば、110〜130℃のものを使用することができる。加熱温度は、それほど高温である必要はない。また、水蒸気加熱においては、予備の電解浴に、鉛電解殿物が付着した鉛アノードを設け、上部をシート等で覆うことで蒸気が逃げないようにし、4〜8時間の乾燥を行う。   Subsequently, as shown in FIG. 3, the lead anode is taken out from the electrolytic bath, and the attached lead electrolytic product is dried. Drying can be carried out by heating with a heater, indirect heating with exhaust gas, etc., heating with steam, etc. However, when it is performed in a factory, it is rich in steam, which is advantageous in terms of cost and easy to handle. It is preferable to dry using water vapor. Further, when water vapor is used, it is easy to dry the lead electrolytic product while containing appropriate moisture. A heating temperature of 110 to 130 ° C. can be used if it is water vapor. The heating temperature does not have to be so high. In addition, in steam heating, a lead anode to which a lead electrolytic deposit is attached is provided in a spare electrolytic bath, and the upper part is covered with a sheet or the like so that steam does not escape, and drying is performed for 4 to 8 hours.

上述の乾燥工程では、鉛アノードに付着した鉛電解殿物は、適度な水分を含有しているのが好ましい。完全に乾燥させてしまうと、鉛アノードに鉛電解殿物が強固に固着して除去することが困難となるためである。具体的には、鉛電解殿物の乾燥は、水分含有率5〜10mass%となるまで行うのが好ましい。水分含有率が5mass%未満であると、鉛アノードへの鉛電解殿物の付着が強固となり除去することが困難となる。水分含有率が10mass%超であると、乾燥が不十分であり鉛アノードへ十分固着しないため、鉛電解殿物を鉛アノードから効果的に除去することが困難となる。図4に、水蒸気による乾燥後の鉛アノードを示す。   In the above-described drying step, the lead electrolytic product attached to the lead anode preferably contains appropriate moisture. This is because, when completely dried, it is difficult to remove the lead electrolytic deposit firmly on the lead anode. Specifically, it is preferable to dry the lead electrolytic product until the water content becomes 5 to 10 mass%. When the moisture content is less than 5 mass%, the adhesion of the lead electrolytic product to the lead anode becomes strong and it is difficult to remove. If the moisture content exceeds 10 mass%, drying is insufficient and the lead anode is not sufficiently fixed to the lead anode, so that it is difficult to effectively remove the lead electrolyte from the lead anode. FIG. 4 shows the lead anode after drying with water vapor.

次に、乾燥した鉛電解殿物が付着した鉛アノードを予備の電解浴から取り出し、吊り下げて固定した状態で衝撃を与える。この衝撃により、鉛アノードに付着した鉛電解殿物が容易に剥がれて落下する。鉛アノードへの衝撃は、特に限定されないが、例えば、図5に示すように、手動によりハンマー等で叩くことで加えてもよい。また、機械等を用いて自動で所定の強さの衝撃を加えてもよい。このように、鉛電解殿物を鉛アノードに付着させたままで衝撃を加えることで、容易に鉛電解殿物を剥がして回収することができるため、従来の鉛電解殿物の一連の処理をまとめて効率よく且つ容易に行うことが可能となる。また、高ビスマス品位の鉛アノードから効率よく、更に設備投資することなく、ビスマス品位が極めて低い高純度の鉛を回収することができる。さらに、鉛電解液及び鉛電解殿物の抜出し作業や鉛電解液と鉛電解殿物とに固液分離する設備を省略することができる。図6に、鉛電解殿物を剥離した後の鉛アノードを示す。図7に、剥離後の鉛電解殿物を示す。   Next, the lead anode to which the dried lead electrolytic deposit is attached is taken out from the spare electrolytic bath, and is subjected to an impact in a state where it is suspended and fixed. Due to this impact, the lead electrolytic deposit attached to the lead anode is easily peeled off and dropped. The impact on the lead anode is not particularly limited. For example, as shown in FIG. 5, the impact may be applied manually by hitting with a hammer or the like. Further, an impact having a predetermined strength may be automatically applied using a machine or the like. In this way, by applying an impact while the lead electrolysis deposit is attached to the lead anode, the lead electrolysis deposit can be easily peeled off and collected. Efficient and easy. Further, high purity lead having a very low bismuth quality can be recovered from a high bismuth quality lead anode efficiently and without further capital investment. Furthermore, it is possible to omit the work of extracting the lead electrolyte and the lead electrolyte and the facility for solid-liquid separation into the lead electrolyte and the lead electrolyte. FIG. 6 shows the lead anode after the lead electrolytic deposit is peeled off. FIG. 7 shows the lead electrolytic product after peeling.

鉛アノードからの鉛電解殿物の除去は、上述のような衝撃を与えて剥がすことで行うものに限らず、公知の削取手段を用いて鉛アノードから削り取ってもよい。この場合でも、鉛電解殿物を鉛アノードから容易に除去することができる。   The removal of the lead electrolytic deposit from the lead anode is not limited to the removal by applying the impact as described above, and the lead electrolytic deposit may be scraped off from the lead anode by using a known scraping means. Even in this case, the lead electrolytic deposit can be easily removed from the lead anode.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

まず、鉛原料として、鉛:80mass%、錫:0.04mass%、ビスマス:20mass%を含有する鉛含有化合物を準備した。
続いて、鉛含有化合物にアンチモンを添加して、アンチモン品位が2mass%となるように調整した後、鉛含有化合物を鋳造して鉛アノード(耳下〜下部:850mm)を作製した。
次に、作製した鉛アノードと、別に準備したステンレス製のカソードとを交互に電解浴へ装入した。ここで、カソードの大きさは、アノードの縦および幅の長さに対して、20〜30mm大きくした。電解浴の電解液は、鉛:80g/L、スルファミン酸:20g/Lに調整した溶液に平滑剤としてノイゲン BN−1390を500mg/Lとなるように調整した。電解浴のサイズは、長さ:3700mm×幅:790mm×深さ:1150〜1265mmとした。
電解浴へのアノード及びカソードの装入後、電解浴内に電解液を補充し、電解液の電解浴内滞留時間が1h程度になるように給液することで、電解浴内の濃度分布を均等にした。
続いて、電解液の温度を20〜30℃に調整した後、電流密度を100A/m2として電気分解を行った。これにより、鉛アノードに鉛電解殿物が生成し、電解浴内に落下することなく鉛アノード付着した。
次に、鉛電解殿物が付着した鉛アノードを電解浴から回収し、予備の電解浴へ移した。
続いて、鉛アノードを設けた予備の電解浴の上部をシートで覆い、電解浴の浴底部から175mmの高さに設置した直径25mmの配管から、電解浴内に水蒸気を0.3MPaで6時間吹き込んで、電解浴内の温度を80℃まで上昇させて維持した。これにより、鉛アノードに付着した鉛電解殿物を乾燥させた。鉛電解殿物は、乾燥前は水分含有率が19.3mass%であったが、乾燥後は9.1mass%まで低下した。
次に、乾燥した鉛電解殿物が付着した鉛アノードを予備の電解浴から取り出し、吊り下げて固定した状態で、ハンマーにより数回叩いて衝撃を与えた。この衝撃により、鉛アノードに付着した鉛電解殿物が容易に剥がれて落下した。このようにして、鉛電解殿物を極めて容易に回収することができた。
First, a lead-containing compound containing lead: 80 mass%, tin: 0.04 mass%, and bismuth: 20 mass% was prepared as a lead raw material.
Subsequently, after adding antimony to the lead-containing compound and adjusting the antimony quality to 2 mass%, the lead-containing compound was cast to produce a lead anode (under the ears to the lower part: 850 mm).
Next, the prepared lead anode and a separately prepared stainless steel cathode were alternately charged into the electrolytic bath. Here, the size of the cathode was 20 to 30 mm larger than the length and width of the anode. The electrolytic solution of the electrolytic bath was adjusted to 500 mg / L of Neugen BN-1390 as a smoothing agent in a solution adjusted to lead: 80 g / L and sulfamic acid: 20 g / L. The size of the electrolytic bath was length: 3700 mm × width: 790 mm × depth: 1150 to 1265 mm.
After the anode and cathode are inserted into the electrolytic bath, the electrolytic solution is replenished in the electrolytic bath, and the concentration distribution in the electrolytic bath is adjusted by supplying the electrolytic solution so that the residence time in the electrolytic bath is about 1 h. Evenly.
Subsequently, after adjusting the temperature of the electrolytic solution to 20 to 30 ° C., electrolysis was performed with a current density of 100 A / m 2 . As a result, a lead electrolytic product was formed on the lead anode and adhered to the lead anode without falling into the electrolytic bath.
Next, the lead anode with the lead electrolytic deposit adhered was recovered from the electrolytic bath and transferred to a spare electrolytic bath.
Subsequently, the upper part of the preliminary electrolytic bath provided with the lead anode is covered with a sheet, and water vapor is supplied into the electrolytic bath at 0.3 MPa for 6 hours from a pipe having a diameter of 25 mm installed at a height of 175 mm from the bottom of the electrolytic bath. The temperature inside the electrolytic bath was raised to 80 ° C. and maintained by blowing. As a result, the lead electrolytic product attached to the lead anode was dried. The lead electrolytic product had a water content of 19.3 mass% before drying, but decreased to 9.1 mass% after drying.
Next, the lead anode to which the dried lead electrolytic product was adhered was taken out from the spare electrolytic bath, suspended and fixed, and hit with a hammer several times to give an impact. Due to this impact, the lead electrolytic deposit attached to the lead anode was easily peeled off and dropped. In this way, the lead electrolytic product could be recovered very easily.

Claims (4)

ビスマス濃度が5〜30mass%の鉛原料に対してアンチモン濃度が1〜3mass%となるように調整してアノードを作製する工程と、
前記アノードを用いて電解浴で電解処理を行うことで前記アノードに鉛電解殿物を付着させる工程と、
前記アノードを電解浴から取り出して、付着した前記鉛電解殿物を乾燥する工程と、
前記乾燥した鉛電解殿物を前記アノードから除去する工程と、
を備えた電解鉛の製造方法。
Adjusting the antimony concentration to 1 to 3 mass% with respect to a lead raw material having a bismuth concentration of 5 to 30 mass%, and producing an anode;
Attaching a lead electrolytic deposit to the anode by performing an electrolytic treatment in an electrolytic bath using the anode;
Removing the anode from the electrolytic bath and drying the deposited lead electrolyte;
Removing the dried lead electrolyte from the anode;
The manufacturing method of the electrolytic lead provided with.
前記乾燥した鉛電解殿物を、衝撃を与えることで前記アノードから除去する請求項1に記載の電解鉛の製造方法。   The method for producing electrolytic lead according to claim 1, wherein the dried lead electrolytic product is removed from the anode by applying an impact. 前記鉛電解殿物の乾燥を、水蒸気を用いて行う請求項1又は2に記載の電解鉛の製造方法。   The method for producing electrolytic lead according to claim 1 or 2, wherein the lead electrolytic product is dried using water vapor. 前記鉛電解殿物の乾燥を、水分含有率5〜10mass%となるまで行う請求項1〜3のいずれかに記載の電解鉛の製造方法。   The method for producing electrolytic lead according to any one of claims 1 to 3, wherein the lead electrolytic product is dried until the moisture content becomes 5 to 10 mass%.
JP2011002071A 2011-01-07 2011-01-07 Electric lead manufacturing method Active JP5514747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002071A JP5514747B2 (en) 2011-01-07 2011-01-07 Electric lead manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002071A JP5514747B2 (en) 2011-01-07 2011-01-07 Electric lead manufacturing method

Publications (2)

Publication Number Publication Date
JP2012144757A JP2012144757A (en) 2012-08-02
JP5514747B2 true JP5514747B2 (en) 2014-06-04

Family

ID=46788622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002071A Active JP5514747B2 (en) 2011-01-07 2011-01-07 Electric lead manufacturing method

Country Status (1)

Country Link
JP (1) JP5514747B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115120A (en) * 1974-02-22 1975-09-09
JPH0565685A (en) * 1991-09-06 1993-03-19 Toho Aen Kk Device for removing slime on anode
JP2005187833A (en) * 2003-12-24 2005-07-14 Dowa Mining Co Ltd Electrolytic refining method for metal
JP5280904B2 (en) * 2009-03-23 2013-09-04 Jx日鉱日石金属株式会社 Electrolysis method of lead (5)

Also Published As

Publication number Publication date
JP2012144757A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
CN101336496B (en) Recycling method and apparatus for precious material recycling from lithium secondary battery
JP5398369B2 (en) Rare metal production method and system
KR102427533B1 (en) How to Dispose of Lithium Ion Waste Batteries
CN111373062B (en) Method for treating waste lithium ion battery
CN101906643B (en) High lead bismuth silver alloy electrolysis deleading process
JP4470689B2 (en) Indium recovery method using tin smelting
CN104947146A (en) Method for electrolyzing and recycling valuable metal from high-bismuth lead bullion
CN111349961B (en) Method for cleaning waste titanium anode plate for foil forming machine and removing and recycling precious metal
JP5280904B2 (en) Electrolysis method of lead (5)
JP5514747B2 (en) Electric lead manufacturing method
JP5163988B2 (en) Electrolysis method of lead
JP5702272B2 (en) Treatment method of bismuth electrolytic deposits
CN106555060A (en) It is a kind of to adopt the method dechlorinated from zinc solution except surface autoxidation copper ashes after cadmium
JP2010222625A (en) Electrolytic method (2) for lead
JP2009242845A (en) Electrolytic process of lead
KR101448341B1 (en) Manufacturing method for electrolytic lead
JP4979752B2 (en) Electrolysis method of lead (6)
JP5281062B2 (en) Electrolysis method of lead
JP2010222626A (en) Electrolytic process of lead
CN102427149A (en) Method for recovering lead from storage battery
CN105018967B (en) Closing down magnesium electrolysis bath electric pole short circuit fault handling method
JP2008019475A (en) Method for removing chlorine in electrodeposited copper
JPS63157821A (en) Recovering of valuable metal from solder and/or tin plated metal
CN103361490B (en) The manufacture method that electricity is plumbous
JP6453743B2 (en) Method for electrolytic purification of lead using sulfamic acid bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250