JP5512698B2 - Display panel, liquid crystal display device, and driving method - Google Patents

Display panel, liquid crystal display device, and driving method Download PDF

Info

Publication number
JP5512698B2
JP5512698B2 JP2011545113A JP2011545113A JP5512698B2 JP 5512698 B2 JP5512698 B2 JP 5512698B2 JP 2011545113 A JP2011545113 A JP 2011545113A JP 2011545113 A JP2011545113 A JP 2011545113A JP 5512698 B2 JP5512698 B2 JP 5512698B2
Authority
JP
Japan
Prior art keywords
voltage level
potential
signal
bus line
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011545113A
Other languages
Japanese (ja)
Other versions
JPWO2011070836A1 (en
Inventor
朝日 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011545113A priority Critical patent/JP5512698B2/en
Publication of JPWO2011070836A1 publication Critical patent/JPWO2011070836A1/en
Application granted granted Critical
Publication of JP5512698B2 publication Critical patent/JP5512698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133397Constructional arrangements; Manufacturing methods for suppressing after-image or image-sticking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors

Description

本発明は、液晶を用いて画像を表示する表示パネルに関する。また、そのような表示パネルを備えた液晶表示装置に関する。   The present invention relates to a display panel that displays an image using liquid crystal. The present invention also relates to a liquid crystal display device including such a display panel.

従来、画像を表示するための画像表示装置は、CRT(陰極線管)などのインパルス型の画像表示装置と、液晶表示装置などのホールド型の画像表示装置に大別される。   2. Description of the Related Art Conventionally, an image display device for displaying an image is roughly classified into an impulse-type image display device such as a CRT (cathode ray tube) and a hold-type image display device such as a liquid crystal display device.

インパルス型の画像表示装置においては、画像が表示される点灯期間と、画像が表示されない消灯期間が交互に繰り返されるのに対し、ホールド型の画像表示装置においては、通常、消灯期間が設けられていない。   In an impulse-type image display device, a lighting period in which an image is displayed and a light-out period in which no image is displayed are alternately repeated, whereas in a hold-type image display device, a light-out period is usually provided. Absent.

そのため、ホールド型の画像表示装置は、インパルス型の画像表示装置に比べて、動画ボケが発生し易いという性質がある。   For this reason, the hold-type image display device has a property that moving-image blur is likely to occur compared to the impulse-type image display device.

その理由としては、ホールド型の表示装置においては、あるフレームが表示されてから次のフレームが表示されるまで、物体がその位置に留まって表示されるが、観察者の視線は、物体が留まって表示されている期間であってもその物体を追尾しようと画面上を移動するため、動く物体の輪郭がぼけているように認識されてしまうことが挙げられる。   The reason is that in a hold-type display device, an object stays at that position until a next frame is displayed after a frame is displayed, but the observer's line of sight remains Even during the displayed period, the object moves on the screen in order to track the object, so that the outline of the moving object is recognized as blurred.

特許文献1には、1フレーム期間を2つのサブフレームに分割し、前半サブフレームと後半サブフレームとに対し、それぞれ、階調レベルの異なった画像信号を供給する画像表示装置が開示されている。特許文献1に記載された技術によれば、前半サブフレームにおける画像の輝度と、後半サブフレームにおける画像の輝度とを異ならせることによって、上記の動画ボケの現象を抑制することができる。   Patent Document 1 discloses an image display apparatus that divides one frame period into two subframes and supplies image signals having different gradation levels to the first half subframe and the second half subframe, respectively. . According to the technique described in Patent Document 1, the above-mentioned moving image blurring phenomenon can be suppressed by making the luminance of the image in the first half subframe different from the luminance of the image in the second half subframe.

日本国公開特許公報「特開2005−173573(2005年6月30日公開)」Japanese Patent Publication “JP 2005-173573 (published on June 30, 2005)”

しかしながら、特許文献1に記載された技術は、入力画像信号を一旦記憶しておくためのフレームメモリを必要とするため、製造コストが増大するという問題を有している。また、フレームの表示ごとに上記フレームメモリにアクセスする必要があるため、消費電力が増大するという問題を有している。   However, the technique described in Patent Document 1 has a problem that the manufacturing cost increases because a frame memory for temporarily storing the input image signal is required. Further, since it is necessary to access the frame memory every time a frame is displayed, there is a problem that power consumption increases.

本発明は上記の問題に鑑みてなされたものであり、その目的は、製造コスト、および、消費電力の増大を抑止しつつ、上記の動画ボケの現象を抑制することのできる表示パネルを実現することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to realize a display panel capable of suppressing the above-mentioned motion blur phenomenon while suppressing an increase in manufacturing cost and power consumption. There is.

上記の問題を解決するために、本発明に係る表示パネルは、複数のゲートバスラインと、複数のソースバスラインと、複数の補助容量バスラインと、前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、前記トランジスタのドレインに接続された画素電極と、一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、液晶を介して前記画素電極に対向する対向電極と、前記対向電極に接続された対向電極用配線と、前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、を備えた表示パネルであって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する補助容量ドライバを備えており、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長い、ことを特徴としている。   In order to solve the above problems, a display panel according to the present invention includes a plurality of gate bus lines, a plurality of source bus lines, a plurality of auxiliary capacitance bus lines, and an arbitrary gate among the plurality of gate bus lines. A transistor having a gate connected to a bus line; a source connected to an arbitrary source bus line of the plurality of source bus lines; a pixel electrode connected to a drain of the transistor; A capacitor connected in parallel to the electrode to the drain of the transistor and the other end connected to an arbitrary auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines, and connected to one end of each of the plurality of source bus lines A source driver for supplying a source signal to the arbitrary source bus line, and the plurality of gate bus lines. A gate driver for sequentially supplying a conduction signal for conducting the transistor to the arbitrary gate bus line, a counter electrode facing the pixel electrode via liquid crystal, and the counter A display panel comprising: a counter electrode wiring connected to an electrode; and a counter electrode driver for supplying a common potential to the counter electrode wiring, wherein the gate driver is connected to the arbitrary gate bus line. In one scanning period from when the continuity signal is supplied to when the next continuity signal is supplied, at least the first voltage level and the arbitrary auxiliary capacitance bus line are synchronized with the continuity signal. An auxiliary capacitance driver for supplying a rectangular voltage signal having a second voltage level different from the first voltage level, and is provided during the one scanning period. Te period the rectangular voltage signal is said first voltage level, and, the second period is a voltage level, respectively, longer than the response time of the liquid crystal is characterized in that.

液晶表示装置のようなホールド型の表示装置においては、あるフレームが表示されてから次のフレームが表示されるまで、物体がその位置に留まって表示されるが、観察者の視線は、物体が留まって表示されている期間であってもその物体を追尾しようと画面上を移動するため、当該動く物体の輪郭がぼけているように認識されてしまうという動画ボケの現象が発生する。   In a hold-type display device such as a liquid crystal display device, an object stays at that position until a next frame is displayed after a frame is displayed. Even during a period in which the object is displayed, the moving object moves on the screen to track the object, so that a moving image blur phenomenon occurs in which the outline of the moving object is recognized as blurred.

本発明に係る表示パネルは、上記のように、複数のゲートバスラインと、複数のソースバスラインと、複数の補助容量バスラインと、前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、前記トランジスタのドレインに接続された画素電極と、一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、液晶層を介して前記画素電極に対向する対向電極と、前記対向電極に接続された対向電極用配線と、前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、を備えた表示パネルであって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する補助容量ドライバを備えているため、上記任意のゲートバスラインに上記導通信号が供給されてから次の上記導通信号が供給されるまでの1走査期間において、上記任意のゲートバスラインに上記トランジスタを介して接続された上記画素電極に対し、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルを印加することができる。   As described above, the display panel according to the present invention is connected to a plurality of gate bus lines, a plurality of source bus lines, a plurality of auxiliary capacitance bus lines, and an arbitrary gate bus line among the plurality of gate bus lines. And a pixel electrode connected to a drain of the transistor, one end of which is in parallel with the pixel electrode. A capacitor connected to the drain of the transistor and having the other end connected to an arbitrary auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines and one end of each of the plurality of source bus lines; A source driver for supplying a source signal to a source bus line of each of the plurality of gate bus lines; A gate driver connected to the end and sequentially supplying a conduction signal for conducting the transistor to the arbitrary gate bus line; a counter electrode facing the pixel electrode through a liquid crystal layer; and a counter electrode A display panel comprising: a connected counter electrode wiring; and a counter electrode driver that supplies a common potential to the counter electrode wiring, wherein the gate driver is connected to the arbitrary gate bus line. In one scanning period from when the conduction signal is supplied to when the next conduction signal is supplied, the first voltage level and the first voltage are synchronized with the conduction signal for the arbitrary auxiliary capacitance bus line. Since the storage capacitor driver for supplying a rectangular voltage signal having a second voltage level different from the voltage level is provided, the conduction to the arbitrary gate bus line is provided. In one scanning period from when the signal is supplied to when the next conduction signal is supplied, the first voltage level and the pixel voltage connected to the arbitrary gate bus line via the transistor are A second voltage level different from the first voltage level can be applied.

また、本発明に係る表示パネルにおいては、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長い。ここで、前記液晶の応答時間とは、前記液晶に電界が印加されてから液晶の配向が変化するまでに要する時間のことであり、一般的に1ms以上を要する。   In the display panel according to the present invention, in the one scanning period, the period in which the rectangular voltage signal is at the first voltage level and the period in which the voltage signal is at the second voltage level are respectively Longer than response time of liquid crystal. Here, the response time of the liquid crystal is a time required for the alignment of the liquid crystal to change after an electric field is applied to the liquid crystal, and generally requires 1 ms or more.

したがって、上記の構成によれば、上記1走査期間において、上記画素電極が形成された画素領域における画像の輝度を2値に変化させることができる。   Therefore, according to the above configuration, the luminance of the image in the pixel region in which the pixel electrode is formed can be changed to binary in the one scanning period.

これによって、上記動画ボケの現象を抑制することができるという効果を奏する。   This produces an effect that the phenomenon of moving image blur can be suppressed.

また、本発明に係る表示パネルが備えている上記補助容量ドライバは、前記導通信号に同期して、上記第1の電圧レベルおよび上記第2の電圧レベルからなる矩形状の電圧信号を供給することができる。したがって、上記矩形状の電圧信号の電圧レベルは、上記導通信号供給されてから一定の時間が経過した後に変化する。   The auxiliary capacitor driver provided in the display panel according to the present invention supplies a rectangular voltage signal composed of the first voltage level and the second voltage level in synchronization with the conduction signal. Can do. Therefore, the voltage level of the rectangular voltage signal changes after a certain time has elapsed since the conduction signal was supplied.

したがって、前記導通信号に同期せずに上記電圧信号を供給する場合と異なり、画面上の全ての画素領域の各々において、映像データが更新されてから、一定の時間が経過した後に明暗の切り替えを行うことができる。   Therefore, unlike the case where the voltage signal is supplied without being synchronized with the conduction signal, the light / dark switching is performed after a certain time has elapsed since the video data was updated in each of all the pixel regions on the screen. It can be carried out.

また、本発明に係る上記の表示パネルにおいては、画像信号を一旦記憶しておくためのフレームメモリを用いることなく、上記動画ボケを抑制することができる。したがって、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、製造コストを削減することができるという効果を奏する。また、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、消費電力を削減することができるという効果を奏する。   In the display panel according to the present invention, the moving image blur can be suppressed without using a frame memory for temporarily storing an image signal. Therefore, the manufacturing cost can be reduced as compared with the conventional configuration using the frame memory for temporarily storing the image signal. In addition, there is an effect that power consumption can be reduced as compared with a conventional configuration using a frame memory for temporarily storing image signals.

また、本発明に係る駆動方法は、複数のゲートバスラインと、複数のソースバスラインと、複数の補助容量バスラインと、前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、前記トランジスタのドレインに接続された画素電極と、一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、液晶を介して前記画素電極に対向する対向電極と、前記対向電極に接続された対向電極用配線と、前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、を備えた表示パネルを駆動する駆動方法であって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する電圧信号供給工程を含んでおり、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長い、ことを特徴としている。   The driving method according to the present invention includes a plurality of gate bus lines, a plurality of source bus lines, a plurality of auxiliary capacitance bus lines, and a gate connected to an arbitrary gate bus line among the plurality of gate bus lines. A transistor connected to an arbitrary source bus line of the plurality of source bus lines, a pixel electrode connected to the drain of the transistor, and one end of the transistor in parallel with the pixel electrode A capacitor connected to the drain and the other end connected to any one of the plurality of auxiliary capacitance bus lines and to one end of each of the plurality of source bus lines, and the arbitrary source bus A source driver that supplies a source signal to the line and connected to one end of each of the plurality of gate bus lines A gate driver that sequentially supplies a conduction signal for conducting the transistor to the arbitrary gate bus line, a counter electrode facing the pixel electrode via liquid crystal, and a counter connected to the counter electrode A driving method for driving a display panel including an electrode wiring and a counter electrode driver that supplies a common potential to the counter electrode wiring, wherein the gate driver is connected to the arbitrary gate bus line. In one scanning period from when the conduction signal is supplied to when the next conduction signal is supplied, at least the first voltage level and the first voltage level are synchronized with the conduction signal for the arbitrary auxiliary capacitance bus line. Including a voltage signal supply step of supplying a rectangular voltage signal having a second voltage level different from the voltage level of one, and in the one scanning period, Period serial rectangular voltage signal is said first voltage level, and, the second period is a voltage level, respectively, longer than the response time of the liquid crystal is characterized in that.

上記の方法によれば、本発明に係る上記表示パネルと同様の効果を奏する。   According to said method, there exists an effect similar to the said display panel which concerns on this invention.

以上のように、本発明に係る表示パネルは、複数のゲートバスラインと、複数のソースバスラインと、複数の補助容量バスラインと、前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、前記トランジスタのドレインに接続された画素電極と、一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、液晶を介して前記画素電極に対向する対向電極と、前記対向電極に接続された対向電極用配線と、前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、を備えた表示パネルであって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する補助容量ドライバを備えている。また、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長い。   As described above, the display panel according to the present invention is connected to a plurality of gate bus lines, a plurality of source bus lines, a plurality of auxiliary capacitance bus lines, and an arbitrary gate bus line among the plurality of gate bus lines. And a pixel electrode connected to a drain of the transistor, one end of which is in parallel with the pixel electrode. A capacitor connected to the drain of the transistor and having the other end connected to an arbitrary auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines and one end of each of the plurality of source bus lines; A source driver for supplying a source signal to a source bus line of each of the plurality of gate bus lines; A gate driver connected to the end and sequentially supplying a conduction signal for conducting the transistor to the arbitrary gate bus line; a counter electrode facing the pixel electrode through a liquid crystal; and a connection to the counter electrode And a counter electrode driver that supplies a common potential to the counter electrode wiring, wherein the gate driver is connected to the arbitrary gate bus line. In one scanning period from when the signal is supplied to when the next conduction signal is supplied, at least the first voltage level and the first voltage are synchronized with the conduction signal for the arbitrary auxiliary capacitance bus line. A storage capacitor driver is provided for supplying a rectangular voltage signal having a second voltage level different from the voltage level. Further, in the one scanning period, a period in which the rectangular voltage signal is at the first voltage level and a period in which the rectangular voltage signal is at the second voltage level are longer than the response time of the liquid crystal.

したがって、本発明に係る上記の表示パネルにおいては、画像信号を一旦記憶しておくためのフレームメモリを用いることなく、上記動画ボケを抑制することができる。したがって、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、製造コストを削減することができる。また、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、消費電力を削減することができる。   Therefore, in the display panel according to the present invention, the moving image blur can be suppressed without using a frame memory for temporarily storing an image signal. Therefore, the manufacturing cost can be reduced as compared with the conventional configuration using the frame memory for temporarily storing the image signal. Further, power consumption can be reduced as compared with a conventional configuration using a frame memory for temporarily storing image signals.

本発明の第1の実施形態に係る表示パネルの構成を示すブロック図である。It is a block diagram which shows the structure of the display panel which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る表示パネルの画素領域の構成を示す回路図である。FIG. 3 is a circuit diagram showing a configuration of a pixel region of the display panel according to the first embodiment of the present invention. 本発明の第1の実施形態に係る表示パネルの第1の動作例を説明するためのものであって、(a)は、高階調に対応するソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。BRIEF DESCRIPTION OF THE DRAWINGS It is for demonstrating the 1st example of operation | movement of the display panel which concerns on the 1st Embodiment of this invention, (a) is a timing chart which shows the waveform of the source signal corresponding to a high gradation, ( b) is a timing chart showing the waveform of the gate signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing chart showing the waveform of the auxiliary capacitance signal. It is. 本発明の第1の実施形態に係る表示パネルの第1の動作例を説明するためのものであって、(a)は、低階調に対応するソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。BRIEF DESCRIPTION OF THE DRAWINGS It is for demonstrating the 1st operation example of the display panel which concerns on the 1st Embodiment of this invention, Comprising: (a) is a timing chart which shows the waveform of the source signal corresponding to a low gradation, (B) is a timing chart showing the waveform of the gate signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing showing the waveform of the auxiliary capacitance signal. It is a chart. 本発明の第1の実施形態に係る表示パネルの第2の動作例を説明するためのものであって、(a)は、高階調に対応するソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。FIG. 7 is a timing chart showing a waveform of a source signal corresponding to high gradation, for explaining a second operation example of the display panel according to the first embodiment of the present invention; b) is a timing chart showing the waveform of the gate signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing chart showing the waveform of the auxiliary capacitance signal. It is. 本発明の第1の実施形態に係る表示パネルの第2の動作例を説明するためのものであって、(a)は、低階調に対応するソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。FIG. 2 is a timing chart showing a waveform of a source signal corresponding to a low gradation, for explaining a second operation example of the display panel according to the first embodiment of the present invention; (B) is a timing chart showing the waveform of the gate signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing showing the waveform of the auxiliary capacitance signal. It is a chart. 本発明の第1の実施形態に係る表示パネルの第3の動作例を説明するためのものであって、(a)は、高階調に対応するソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。FIG. 9 is a timing chart showing a waveform of a source signal corresponding to a high gradation, for explaining a third operation example of the display panel according to the first embodiment of the present invention; b) is a timing chart showing the waveform of the gate signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing chart showing the waveform of the auxiliary capacitance signal. It is. 本発明の第1の実施形態に係る表示パネルの第3の動作例を説明するためのものであって、(a)は、低階調に対応するソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。FIG. 9 is a timing chart showing a waveform of a source signal corresponding to a low gradation, for explaining a third operation example of the display panel according to the first embodiment of the present invention; (B) is a timing chart showing the waveform of the gate signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing showing the waveform of the auxiliary capacitance signal. It is a chart. 本発明の第1の実施形態に係る表示パネルの第4の動作例を説明するためのものであって、(a)は、ソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。FIG. 4 is a diagram for explaining a fourth operation example of the display panel according to the first embodiment of the present invention, in which (a) is a timing chart showing a waveform of a source signal, and (b) is a gate. 2 is a timing chart showing the waveform of a signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing chart showing the waveform of the auxiliary capacitance signal. 本発明の第1の実施形態に係る表示パネルの第5の動作例を説明するためのものであって、(a)は、ソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。FIG. 6 is a diagram for explaining a fifth operation example of the display panel according to the first embodiment of the present invention, in which (a) is a timing chart showing a waveform of a source signal, and (b) is a gate. 2 is a timing chart showing the waveform of a signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing chart showing the waveform of the auxiliary capacitance signal. 本発明の第1の実施形態に係る表示パネルの第6の動作例を説明するためのものであって、(a)は、ソース信号の波形を示すタイミングチャートであり、(b)は、ゲート信号の波形を示すタイミングチャートであり、(c)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(d)は、補助容量信号の波形を示すタイミングチャートである。FIG. 9 is a diagram for explaining a sixth operation example of the display panel according to the first embodiment of the present invention, in which (a) is a timing chart showing a waveform of a source signal, and (b) is a gate. 2 is a timing chart showing the waveform of a signal, (c) is a timing chart showing the common potential and the potential of the pixel electrode, and (d) is a timing chart showing the waveform of the auxiliary capacitance signal. 本発明の第1の実施形態に係る表示パネルの動作例を説明するためのものであって、(a)は、ゲート信号の波形を示すタイミングチャートであり、(b)は、補助容量信号の波形の一例を示すタイミングチャートであり、(c)は、補助容量信号の波形の他の例を示すタイミングチャートである。FIG. 2 is a diagram for explaining an operation example of the display panel according to the first embodiment of the present invention, where (a) is a timing chart showing a waveform of a gate signal, and (b) is an auxiliary capacitance signal. It is a timing chart which shows an example of a waveform, (c) is a timing chart which shows the other example of the waveform of an auxiliary capacity signal. 本発明の第1の実施形態に係る表示パネルの第7の動作例を説明するためのものであって、(a)は、ゲート信号の波形を示すタイミングチャートであり、(b)は、補助容量信号の波形を示すタイミングチャートである。FIG. 9 is a diagram for explaining a seventh operation example of the display panel according to the first embodiment of the present invention, wherein (a) is a timing chart showing a waveform of a gate signal, and (b) is an auxiliary diagram. It is a timing chart which shows the waveform of a capacity signal. 本発明の第1の実施形態に係る表示パネルの動作例を説明するためのものであって、(a)は、ゲート信号の波形を示すタイミングチャートであり、(b)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(c)は、あるデューティ比を有する補助容量信号の波形を示すタイミングチャートである。FIG. 2 is a diagram for explaining an operation example of the display panel according to the first embodiment of the present invention, wherein (a) is a timing chart showing a waveform of a gate signal, (b) is a common potential, and FIG. 4 is a timing chart showing the potential of the pixel electrode, and FIG. 4C is a timing chart showing the waveform of the auxiliary capacitance signal having a certain duty ratio. 本発明の第1の実施形態に係る表示パネルの動作例を説明するためのものであって、(a)は、ゲート信号の波形を示すタイミングチャートであり、(b)は、共通電位、および、画素電極の電位を示すタイミングチャートであり、(c)は、他のデューティ比を有する補助容量信号の波形を示すタイミングチャートである。FIG. 2 is a diagram for explaining an operation example of the display panel according to the first embodiment of the present invention, wherein (a) is a timing chart showing a waveform of a gate signal, (b) is a common potential, and FIG. 4 is a timing chart showing the potential of the pixel electrode, and FIG. 4C is a timing chart showing waveforms of auxiliary capacitance signals having other duty ratios. 本発明の第1の実施形態に係る表示パネルの効果を説明するためのものであって、デューティ比と輝度との関係を表すグラフである。It is a graph for demonstrating the effect of the display panel which concerns on the 1st Embodiment of this invention, Comprising: The relationship between a duty ratio and a brightness | luminance is represented. 本発明の第1の実施形態に係る表示パネルの効果を説明するためのものであって、デューティ比と視認性との関係を表すグラフである。It is for demonstrating the effect of the display panel which concerns on the 1st Embodiment of this invention, Comprising: It is a graph showing the relationship between a duty ratio and visibility. 本発明の第1の実施形態に係る表示パネルの動作例を説明するためのものであって、(a)は、ゲート信号の波形を示すタイミングチャートであり、(b)は、共通電位、および、画素電極の電位の一例を示すタイミングチャートであり、(c)は、補助容量信号の波形の一例を示すタイミングチャートであり、(d)は、共通電位、および、画素電極の電位の他の例を示すタイミングチャートであり、(e)は、補助容量信号の波形の他の例を示すタイミングチャートである。FIG. 2 is a diagram for explaining an operation example of the display panel according to the first embodiment of the present invention, wherein (a) is a timing chart showing a waveform of a gate signal, (b) is a common potential, and FIG. 4C is a timing chart showing an example of the potential of the pixel electrode, FIG. 4C is a timing chart showing an example of the waveform of the auxiliary capacitance signal, and FIG. It is a timing chart which shows an example, (e) is a timing chart which shows the other example of the waveform of an auxiliary capacity signal. 本発明の第1に実施形態に係る表示パネルにおける補助容量ドライバの構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of an auxiliary capacitance driver in the display panel according to the first embodiment of the present invention. 本発明の第2の実施形態に係る表示パネルの構成を示すブロック図である。It is a block diagram which shows the structure of the display panel which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る表示パネルの動作例を説明するためのものであって、(a)は、ゲート信号の波形を示すタイミングチャートであり、(b)は、補助容量信号の波形を示すタイミングチャートである。FIG. 7 is an explanatory diagram illustrating an operation example of a display panel according to a second embodiment of the present invention, in which (a) is a timing chart showing a waveform of a gate signal, and (b) is an auxiliary capacitance signal. It is a timing chart which shows a waveform. 本発明の第3の実施形態に係る表示パネルの構成を示すブロック図である。It is a block diagram which shows the structure of the display panel which concerns on the 3rd Embodiment of this invention. 第3の実施形態に係る表示パネルにおける表示部の構成を示す回路図である。It is a circuit diagram which shows the structure of the display part in the display panel which concerns on 3rd Embodiment. 本発明の第4の実施形態に係る表示パネルにおける表示部の構成を示す回路図である。It is a circuit diagram which shows the structure of the display part in the display panel which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る表示パネルの動作例を示す図であって、表示パネルの表示部に印加される極性を示す図である。It is a figure which shows the operation example of the display panel which concerns on the 4th Embodiment of this invention, Comprising: It is a figure which shows the polarity applied to the display part of a display panel.

〔実施形態1〕
本発明の第1の実施形態に係る表示パネルの構成について、図1および図2を参照して説明する。図1は、本実施形態に係る表示パネル1の構成を示すブロック図である。表示パネル1は、アクティブマトリックス型の液晶表示パネルである。
Embodiment 1
The configuration of the display panel according to the first embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a block diagram showing a configuration of a display panel 1 according to the present embodiment. The display panel 1 is an active matrix type liquid crystal display panel.

図1に示すように、表示パネル1は、制御部11、ソースドライバ12、ゲートドライバ13、補助容量ドライバ14、対向電極ドライバ15、および、表示部16を備えている。   As shown in FIG. 1, the display panel 1 includes a control unit 11, a source driver 12, a gate driver 13, an auxiliary capacitance driver 14, a counter electrode driver 15, and a display unit 16.

制御部11は、ソースドライバ12を制御する制御信号#11a、ゲートドライバ13を制御する制御信号#11b、補助容量ドライバ14を制御する制御信号#11c、および、対向電極ドライバ15を制御する制御信号#11dを出力する。   The control unit 11 includes a control signal # 11a for controlling the source driver 12, a control signal # 11b for controlling the gate driver 13, a control signal # 11c for controlling the auxiliary capacitor driver 14, and a control signal for controlling the counter electrode driver 15. # 11d is output.

表示部16には、N本のゲートバスラインGL1〜GLNとM本のソースバスラインSL1〜SLMとが互いに交差するように格子状に形成されている。また、表示部16には、N本のゲートバスラインGL1〜GLNにほぼ平行に、N本の補助容量バスラインCSL1〜CSLNが形成されている。また、表示部16には、対向電極用配線COMLが形成されている。図1に示すように、以下では、n番目のゲートバスラインをゲートバスラインGLn、m番目のソースバスラインをソースバスラインSLm、n番目の補助容量バスラインを補助容量バスラインCSLnと表すことにする。   In the display unit 16, N gate bus lines GL1 to GLN and M source bus lines SL1 to SLM are formed in a lattice shape so as to intersect each other. In the display unit 16, N auxiliary capacitance bus lines CSL1 to CSLN are formed substantially parallel to the N gate bus lines GL1 to GLN. Further, the display unit 16 is provided with a counter electrode wiring COML. As shown in FIG. 1, hereinafter, the nth gate bus line is represented as a gate bus line GLn, the mth source bus line is represented as a source bus line SLm, and the nth auxiliary capacitance bus line is represented as an auxiliary capacitance bus line CSLn. To.

また、図1に示すように、表示部16は、ゲートバスラインGLn(1≦n≦N)と、ソースバスラインSLm(1≦m≦M)とによって画定される画素領域Pn,mを備えている。   As shown in FIG. 1, the display unit 16 includes a pixel region Pn, m defined by a gate bus line GLn (1 ≦ n ≦ N) and a source bus line SLm (1 ≦ m ≦ M). ing.

図1に示すように、ソースドライバ12には、M本のソースバスラインSL1〜SLMの末端が接続されている。ソースドライバ12は、M本のソースバスラインSL1〜SLMに対し、それぞれ、ソース信号#SL1〜#SLMを供給する。   As shown in FIG. 1, the source driver 12 is connected to the ends of M source bus lines SL1 to SLM. The source driver 12 supplies source signals # SL1 to #SLM to the M source bus lines SL1 to SLM, respectively.

また、ゲートドライバ13には、N本のゲートバスラインGL1〜GLNの末端が接続されている。ゲートドライバ13は、N本のゲートバスラインGL1〜GLNに対し、それぞれ、ゲート信号#GL1〜#GLNを供給する。   The gate driver 13 is connected to the ends of N gate bus lines GL1 to GLN. The gate driver 13 supplies gate signals # GL1 to #GLN to the N gate bus lines GL1 to GLN, respectively.

また、補助容量ドライバ14には、N本の補助容量バスラインCSL1〜CSLNの末端が接続されている。補助容量ドライバ14は、N本の補助容量バスラインCSL1〜CSLNに対して、それぞれ、補助容量信号#CSL1〜#CSLNを供給する。   The auxiliary capacity driver 14 is connected to the terminals of N auxiliary capacity bus lines CSL1 to CSLN. The auxiliary capacitance driver 14 supplies auxiliary capacitance signals # CSL1 to #CSLN to the N auxiliary capacitance bus lines CSL1 to CSLN, respectively.

また、対向電極ドライバ15には、対向電極用配線COMLの末端が接続されている。対向電極ドライバ15は、対向電極用配線COMLに対して、共通電位VCOMを供給する。   The counter electrode driver 15 is connected to the end of the counter electrode wiring COML. The counter electrode driver 15 supplies a common potential VCOM to the counter electrode wiring COML.

図2は、画素領域Pn,mにおける表示パネル1の構成を示す回路図である。図2に示すように、表示パネル1は、画素領域Pn,mにおいて、ゲートがゲートバスラインGLnに接続され、ソースがソースバスラインSLmに接続されたトランジスタMn,mを備えている。トランジスタMn,mは、例えば、薄膜トランジスタ(TFT:Thin Film Transistor)であるが、本発明は、具体的なトランジスタの種類によって限定されるものではない。また、本実施形態では、トランジスタMn,mとして、ゲートに印加される電位がハイレベルであるとき導通状態となり、ゲートに印加される電位がローレベルであるとき遮断状態となるようなトランジスタを例にとり説明を行うが本発明はこれに限定されるものではなくゲートに印加される電位がローレベルであるとき導通状態となり、ゲートに印加される電位がハイレベルであるとき遮断状態となるようなトランジスタであっても本発明に適用することができる。   FIG. 2 is a circuit diagram showing a configuration of the display panel 1 in the pixel region Pn, m. As shown in FIG. 2, the display panel 1 includes a transistor Mn, m having a gate connected to the gate bus line GLn and a source connected to the source bus line SLm in the pixel region Pn, m. The transistor Mn, m is, for example, a thin film transistor (TFT), but the present invention is not limited to a specific type of transistor. In this embodiment, the transistor Mn, m is an example of a transistor that is in a conductive state when the potential applied to the gate is at a high level and is in a cutoff state when the potential applied to the gate is at a low level. However, the present invention is not limited to this. When the potential applied to the gate is low level, the conductive state is established, and when the potential applied to the gate is high level, the conductive state is established. Even a transistor can be applied to the present invention.

また、図2に示すように、トランジスタMn,mのドレインには、画素電極PEn,mが接続されている。また、表示パネル1は、画素領域Pn,mにおいて、画素電極PEn,mに対向して対向電極ECOMを備えており、対向電極ECOMは、対向電極用配線COMLに接続されている。また、表示パネル1は、画素電極PEn,mと対向電極ECOMとの間に、液晶LCを備えており、画素電極PEn,mと対向電極ECOMとの間には、画素容量CLCが形成されている。   Further, as shown in FIG. 2, the pixel electrode PEn, m is connected to the drain of the transistor Mn, m. Further, the display panel 1 includes a counter electrode ECOM facing the pixel electrode PEn, m in the pixel region Pn, m, and the counter electrode ECOM is connected to the counter electrode wiring COML. Further, the display panel 1 includes a liquid crystal LC between the pixel electrode PEn, m and the counter electrode ECOM, and a pixel capacitor CLC is formed between the pixel electrode PEn, m and the counter electrode ECOM. Yes.

画素電極PEn,mと対向電極ECOMとの間には、画素電極PEn,mに蓄積された電荷に応じた電場が誘起され、当該電場の大きさに応じて、液晶LCの配向が決定される。換言すれば、画素電極PEn,mと対向電極ECOMとの間の電位差の絶対値に応じて、液晶LCの配向が決定される。また、液晶LCの透過率は、当該配向に応じて決まる。本実施形態においては、上記電位差の絶対値が大きくなるにつれて液晶LCの透過率が大きくなるノーマリーブラックの場合を例にとり説明を行うが、本発明はこれに限定されるものではなく、上記電位差の絶対値が大きくなるにつれて液晶LCの透過率が小さくなるノーマリーホワイトの場合であっても適用することができる。また、液晶LCの透過率がより大きくなると、当該液晶LCを備える画素領域Pn,mの輝度はより大きくなる。   An electric field is induced between the pixel electrode PEn, m and the counter electrode ECOM according to the electric charge accumulated in the pixel electrode PEn, m, and the orientation of the liquid crystal LC is determined according to the magnitude of the electric field. . In other words, the orientation of the liquid crystal LC is determined according to the absolute value of the potential difference between the pixel electrode PEn, m and the counter electrode ECOM. Further, the transmittance of the liquid crystal LC is determined according to the alignment. In the present embodiment, the case of normally black in which the transmittance of the liquid crystal LC increases as the absolute value of the potential difference increases will be described as an example, but the present invention is not limited to this, and the potential difference is not limited to this. The present invention can be applied even in the case of normally white in which the transmittance of the liquid crystal LC becomes smaller as the absolute value of becomes larger. Further, when the transmittance of the liquid crystal LC is further increased, the luminance of the pixel region Pn, m including the liquid crystal LC is further increased.

また、トランジスタMn,mのドレインには、画素電極PEn,mと並列に、第1の補助容量電極CE1n,mが接続されている。また、画素領域Pn,mは、第1の補助容量電極CE1n,mに対向して、補助容量バスラインCSLnに接続された第2の補助容量電極CE2n,mを備えており、第1の補助容量電極CE1n,mと第2の補助容量電極CE2n,mとの間には、画素容量CLCと並列に、補助容量CCSが形成されている。換言すれは、第1の補助容量電極CE1n,m、および、第2の補助容量電極CE2n,mは、補助容量CCSを有するキャパシタCn,mを構成している。   The drain of the transistor Mn, m is connected with the first auxiliary capacitance electrode CE1n, m in parallel with the pixel electrode PEn, m. The pixel region Pn, m includes a second auxiliary capacitance electrode CE2n, m connected to the auxiliary capacitance bus line CSLn so as to face the first auxiliary capacitance electrode CE1n, m. An auxiliary capacitance CCS is formed in parallel with the pixel capacitance CLC between the capacitance electrode CE1n, m and the second auxiliary capacitance electrode CE2n, m. In other words, the first auxiliary capacitance electrode CE1n, m and the second auxiliary capacitance electrode CE2n, m constitute a capacitor Cn, m having an auxiliary capacitance CCS.

(表示パネル1の動作例1)
以下では、図3の(a)〜(d)、および、図4の(a)〜(d)を参照して、本実施形態に係る表示パネル1の動作の第1の例について説明する。
(Operation example 1 of display panel 1)
Below, with reference to (a)-(d) of FIG. 3, and (a)-(d) of FIG. 4, the 1st example of operation | movement of the display panel 1 which concerns on this embodiment is demonstrated.

まず、図3の(a)〜(d)を参照して、ソースドライバ12が、ソースバスラインSLmに対して、高階調に対応するソース信号#SLmを供給する場合について説明する。   First, the case where the source driver 12 supplies the source signal #SLm corresponding to the high gradation to the source bus line SLm will be described with reference to FIGS.

図3の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートである。   FIG. 3A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm.

図3の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートである。   FIG. 3B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn.

図3の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 3C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図3の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。図3の(d)に示すように、補助容量信号#CSLnは、連続する2つの垂直走査期間Tvを1周期として、電位VCS1、および、電位VCS2を交互にとる信号である。より具体的には、図3の(d)に示すように、補助容量信号#CSLnは、1垂直走査期間Tvにおける期間T1において電位VCS1をとり、期間T2において電位VCS2をとる。また、補助容量信号#CSLnは、それに引き続く垂直走査期間Tvにおける期間T3において電位VCS2をとり、期間T4において電位VCS1をとる。なお、図3の(d)に示すように、電位VCS1、および、電位VCS2の具体的な値は、VCS1<VCS2を満たすものとする。   FIG. 3D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn. As shown in FIG. 3D, the auxiliary capacitance signal #CSLn is a signal that alternately takes the potential VCS1 and the potential VCS2 with two consecutive vertical scanning periods Tv as one cycle. More specifically, as shown in FIG. 3D, the storage capacitor signal #CSLn takes the potential VCS1 in the period T1 in one vertical scanning period Tv and takes the potential VCS2 in the period T2. Further, the auxiliary capacitance signal #CSLn takes the potential VCS2 in the subsequent period T3 in the vertical scanning period Tv and takes the potential VCS1 in the period T4. As shown in FIG. 3D, specific values of the potential VCS1 and the potential VCS2 satisfy VCS1 <VCS2.

図3の(c)および(d)に示すように、補助容量信号#CSLnが、最も低い電位(電位VCS1)であるときであって、ゲート信号#GLnがハイレベルであるときに、液晶LCへの印加電圧は正極性へと変化し、補助容量信号#CSLnが、最も高い電位(電位VCS2)であるときであって、ゲート信号#GLnがハイレベルであるときに、液晶LCへの印加電圧は負極性へと変化する。   As shown in FIGS. 3C and 3D, when the auxiliary capacitance signal #CSLn is at the lowest potential (potential VCS1) and the gate signal #GLn is at the high level, the liquid crystal LC Applied to the liquid crystal LC when the auxiliary capacitance signal #CSLn is at the highest potential (potential VCS2) and the gate signal #GLn is at a high level. The voltage changes to negative polarity.

ここで、液晶LCへの印加電圧とは、画素電極PEn,mに印加される電位VPEn,mと対向電極ECOMに印加される電位VCOMとの電位差のことである(以下同様)。   Here, the voltage applied to the liquid crystal LC is a potential difference between the potential VPEn, m applied to the pixel electrode PEn, m and the potential VCOM applied to the counter electrode ECOM (the same applies hereinafter).

また、本実施形態においては、画素電極PEn,mに印加される電位VPEn,mの極性と、画素電極PEn,t(t≠m、1≦t≦M)に印加される電位VPEn,tの極性とが同じ極性である場合について説明を行う。   In this embodiment, the polarity of the potential VPEn, m applied to the pixel electrode PEn, m and the potential VPEn, t applied to the pixel electrode PEn, t (t ≠ m, 1 ≦ t ≦ M) A case where the polarity is the same polarity will be described.

なお、1垂直走査期間Tvは、当該期間の開始時点の境界時刻を含むが、当該期間の終了時点の境界時刻を含まないものとして定義されているものとする。すなわち、図3の(d)においては、1垂直走査期間Tvは、t2≦t<t5を満たす時刻tの集合、または、t5≦t<t8を満たす時刻tの集合として定義されているものとする(以下同様)。   Note that one vertical scanning period Tv is defined as including the boundary time at the start of the period but not including the boundary time at the end of the period. That is, in FIG. 3D, one vertical scanning period Tv is defined as a set of time t satisfying t2 ≦ t <t5 or a set of time t satisfying t5 ≦ t <t8. (Same below).

以下では、表示パネル1の画素領域Pn,mの各部の動作について、説明する。   Hereinafter, the operation of each part of the pixel region Pn, m of the display panel 1 will be described.

まず、図3の(b)に示すように、時刻t1において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になる。トランジスタMn,mが導通状態になると、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。図3の(c)に示すように、時刻t1から時刻t2までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V1から電位V2(V2は正)まで立ち上がる。   First, as shown in FIG. 3B, at time t1, the gate signal #GLn rises from a low level to a high level, and falls to a low level after a predetermined period. During the period when the gate signal #GLn is at the high level, the transistor Mn, m becomes conductive. When the transistor Mn, m becomes conductive, the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. As shown in FIG. 3C, in the period from time t1 to time t2, the potential VPEn, m applied to the pixel electrode PEn, m rises from the potential V1 to the potential V2 (V2 is positive).

続いて、時刻t3において、補助容量信号#CSLnが、電位VCS1から電位VCS2まで立ち上がる。このとき、ゲート信号#GLnはローレベルであるので、トランジスタMn,mは、遮断状態である。したがって、画素電極PEn,mに蓄積された電荷と第1の補助容量電極CE1n,mに蓄積された電荷との和は不変である。一方で、補助容量信号#CSLnの値が変化すると、画素電極PEn,mおよび第1の補助容量電極CE1n,mの各々に蓄積された電荷は、変化する。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V2から電位V3へと変化する。ここで、電位V3の具体的な値は、
V3=(VCS2−VCS1)×CCS/ΣC+V2
によって定まる。また、ΣCは、トランジスタMn,mのドレインに互いに並列に接続された容量の総和であり、本実施形態においては、具体的に、ΣC=CLC+CCSである。なお、上述のように、VCS1<VCS2であるので、電位V3は、電位V2よりも大きい。
Subsequently, at time t3, the auxiliary capacitance signal #CSLn rises from the potential VCS1 to the potential VCS2. At this time, since the gate signal #GLn is at a low level, the transistor Mn, m is in a cut-off state. Therefore, the sum of the charge accumulated in the pixel electrode PEn, m and the charge accumulated in the first auxiliary capacitance electrode CE1n, m is unchanged. On the other hand, when the value of the auxiliary capacitance signal #CSLn changes, the charges accumulated in the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m change. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V2 to the potential V3. Here, the specific value of the potential V3 is
V3 = (VCS2−VCS1) × CCS / ΣC + V2
It depends on. Also, ΣC is the sum of the capacitances connected in parallel to the drains of the transistors Mn, m. In this embodiment, specifically, ΣC = CLC + CCS. As described above, since VCS1 <VCS2, the potential V3 is higher than the potential V2.

また、図3の(c)に示すように、電位V3と共通電位VCOMとの電位差は、電位V2と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t3から時刻t4までの期間における液晶LCの透過率は、時刻t2から時刻t3までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t3から時刻t4までの期間における画素領域Pn,mの輝度は、時刻t2から時刻t3までの期間における画素領域Pn,mの輝度よりも大きい。   Further, as shown in FIG. 3C, the potential difference between the potential V3 and the common potential VCOM is larger than the potential difference between the potential V2 and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from time t3 to time t4 is larger than the transmittance of the liquid crystal LC in the period from time t2 to time t3. That is, the luminance of the pixel region Pn, m in the period from time t3 to time t4 is larger than the luminance of the pixel region Pn, m in the period from time t2 to time t3.

続いて、時刻t4において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になり、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。   Subsequently, at time t4, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. During a period in which the gate signal #GLn is at a high level, the transistor Mn, m is in a conductive state, and the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m.

図3の(c)に示すように、時刻t4から時刻t5までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V3から電位V4(V4は負)まで立ち下がる。   As shown in FIG. 3C, in the period from time t4 to time t5, the potential VPEn, m applied to the pixel electrode PEn, m falls from the potential V3 to the potential V4 (V4 is negative).

続いて、時刻t6において、補助容量信号#CSLnが、電位VCS2から電位VCS1まで立ち下がる。このとき、ゲート信号#GLnはローレベルであるので、トランジスタMn,mは、遮断状態である。したがって、画素電極PEn,mに蓄積された電荷と第1の補助容量電極CE1n,mに蓄積された電荷との和は不変である。一方で、補助容量信号#CSLnの値が変化すると、画素電極PEn,mおよび第1の補助容量電極CE1n,mの各々に蓄積された電荷は、変化する。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V4から電位V1へと変化する。ここで、電位V1の具体的な値は、
V1=(VCS1−VCS2)×CCS/ΣC+V4
によって定まる。また、上述のように、VCS1<VCS2であるので、電位V1は、電位V4よりも小さい。
Subsequently, at time t6, the auxiliary capacitance signal #CSLn falls from the potential VCS2 to the potential VCS1. At this time, since the gate signal #GLn is at a low level, the transistor Mn, m is in a cut-off state. Therefore, the sum of the charge accumulated in the pixel electrode PEn, m and the charge accumulated in the first auxiliary capacitance electrode CE1n, m is unchanged. On the other hand, when the value of the auxiliary capacitance signal #CSLn changes, the charges accumulated in the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m change. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V4 to the potential V1. Here, the specific value of the potential V1 is
V1 = (VCS1−VCS2) × CCS / ΣC + V4
It depends on. Further, as described above, since VCS1 <VCS2, the potential V1 is smaller than the potential V4.

また、図3の(c)に示すように、電位V1と共通電位VCOMとの電位差は、電位V4と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t6から時刻t7までの期間における液晶LCの透過率は、時刻t5から時刻t6までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t6から時刻t7までの期間における画素領域Pn,mの輝度は、時刻t5から時刻t6までの期間における画素領域Pn,mの輝度よりも大きい。   Further, as shown in FIG. 3C, the potential difference between the potential V1 and the common potential VCOM is larger than the potential difference between the potential V4 and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t6 to the time t7 is larger than the transmittance of the liquid crystal LC in the period from the time t5 to the time t6. That is, the luminance of the pixel region Pn, m in the period from time t6 to time t7 is larger than the luminance of the pixel region Pn, m in the period from time t5 to time t6.

時刻t7以降の動作は、上述した時刻t1以降の動作と同様である。   The operation after time t7 is the same as the operation after time t1 described above.

なお、上記の説明においては、ΣC=CLC+CCSとしたが、本発明はこれによって限定されるものではない。例えば、トランジスタMn,mのドレインと、ゲートバスラインGLnとの間に、容量(寄生容量)Cgdが存在し、トランジスタMn,mのドレインと、ソースバスラインSLmとの間に、容量(寄生容量)Csdが存在するような場合には、ΣC=CLC+CCS+Cgd+Csdとなる。また、上記の容量に加えて、液晶容量CLCに並列に更に容量Cextが存在するような場合には、ΣC=CLC+CCS+Cgd+Csd+Cextとなる。ΣCについての上記の定義は、以下の説明においても同様である。   In the above description, ΣC = CLC + CCS is used, but the present invention is not limited thereto. For example, a capacitance (parasitic capacitance) Cgd exists between the drain of the transistor Mn, m and the gate bus line GLn, and a capacitance (parasitic capacitance) exists between the drain of the transistor Mn, m and the source bus line SLm. ) When Csd exists, ΣC = CLC + CCS + Cgd + Csd. Further, in addition to the above-described capacitance, when a capacitance Cext further exists in parallel with the liquid crystal capacitance CLC, ΣC = CLC + CCS + Cgd + Csd + Cext. The above definition of ΣC is the same in the following description.

また、実際上は、図3の(b)に示すゲート信号#GLnがハイレベルである期間は、1垂直走査期間Tvに比べて十分に短い。   In practice, the period in which the gate signal #GLn shown in FIG. 3B is at a high level is sufficiently shorter than the one vertical scanning period Tv.

以上のように、本実施形態に係る表示パネル1は、複数のゲートバスラインゲートバスラインGL1〜GLNと、複数のソースバスラインSL1〜SLMと、複数の補助容量バスラインCSL1〜CSLNと、前記複数のゲートバスラインのうち任意のゲートバスラインGLnに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインSLmに接続されたソースとを備えたトランジスタMn,mと、前記トランジスタのドレインに接続された画素電極PEn,mと、一端(第1の補助容量電極CE1n,m)が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端(第2の補助容量電極CE2n,m)が前記複数の補助容量バスラインのうち任意の補助容量バスラインCSLnに接続されたキャパシタCn,mと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバ12と、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバ13と、液晶層(液晶LC)を介して前記画素電極に対向する対向電極ECOMと、前記対向電極に接続された対向電極用配線COMLと、前記対向電極用配線に対して共通電位VCOMを供給する対向電極ドライバ15と、を備えた表示パネルであって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号(ゲート信号#GLnのハイレベル区間)を供給してから次の前記導通信号を供給するまでの1走査期間(1垂直走査期間Tv)において、前記任意の補助容量バスラインCSLnに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベル(すなわち少なくとも電位VCS1および電位VCS2)からなる矩形状の電圧信号(補助容量信号#CSLn)を供給する補助容量ドライバ14を備えている。また、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間、すなわち、期間T1、および期間T2は、それぞれ、前記液晶の応答時間よりも長い。   As described above, the display panel 1 according to the present embodiment includes the plurality of gate bus lines, the gate bus lines GL1 to GLN, the plurality of source bus lines SL1 to SLM, the plurality of auxiliary capacitance bus lines CSL1 to CSLN, A transistor Mn, m comprising a gate connected to an arbitrary gate bus line GLn among a plurality of gate bus lines and a source connected to an arbitrary source bus line SLm among the plurality of source bus lines; The pixel electrode PEn, m connected to the drain of the transistor and one end (first auxiliary capacitance electrode CE1n, m) are connected to the drain of the transistor in parallel with the pixel electrode and the other end (second auxiliary capacitance) A capacitor Cn, m having an electrode CE2n, m) connected to an arbitrary auxiliary capacitance bus line CSLn among the plurality of auxiliary capacitance bus lines, and the plurality of sources A source driver 12 for supplying a source signal to the arbitrary source bus line and connected to one end of each of the plurality of gate bus lines, and a conduction signal for conducting the transistor. A gate driver 13 that sequentially supplies the arbitrary gate bus lines, a counter electrode ECOM that faces the pixel electrode via a liquid crystal layer (liquid crystal LC), and a counter electrode wiring connected to the counter electrode A display panel comprising COML and a common electrode driver 15 for supplying a common potential VCOM to the common electrode wiring, wherein the gate driver transmits the conduction signal (gate to the arbitrary gate bus line). One scanning period (one vertical scanning period) from the supply of the signal #GLn to the supply of the next conduction signal v) For the arbitrary auxiliary capacitance bus line CSLn, at least a first voltage level and a second voltage level different from the first voltage level (that is, at least the potential VCS1 and the potential) in synchronization with the conduction signal. The auxiliary capacitance driver 14 is provided for supplying a rectangular voltage signal (auxiliary capacitance signal #CSLn) composed of VCS2). In the one scanning period, the period in which the rectangular voltage signal is at the first voltage level and the period in which the rectangular voltage signal is at the second voltage level, that is, the period T1 and the period T2, are respectively Longer than response time of liquid crystal.

したがって、表示パネル1は、前記1走査期間において、上記任意のゲートバスラインに上記トランジスタを介して接続された上記画素電極に対し、2値の電圧レベルを印加することができる。すなわち、表示パネル1は、上記1走査期間において、上記画素電極PEn,mが形成された画素領域Pn,mにおける画像の輝度を2値に変化させることができる。   Therefore, the display panel 1 can apply a binary voltage level to the pixel electrode connected to the arbitrary gate bus line via the transistor in the one scanning period. That is, the display panel 1 can change the luminance of the image in the pixel region Pn, m in which the pixel electrode PEn, m is formed to binary in the one scanning period.

これによって、上述した動画ボケの現象を抑制することができる。   As a result, the phenomenon of moving image blur described above can be suppressed.

また、本発明に係る表示パネル1が備えている上記補助容量ドライバ14は、前記導通信号に同期して、前記矩形状の電圧信号(補助容量信号#CSLn)を供給することができる。したがって、前記導通信号に同期せずに電圧信号を供給する場合と異なり、画面のどの場所においても、明るい輝度での表示期間と暗い輝度での表示期間の割合をほぼ等しくすることができるので、動画ボケの抑制を効果的に行うことができる。   Further, the auxiliary capacitance driver 14 provided in the display panel 1 according to the present invention can supply the rectangular voltage signal (auxiliary capacitance signal #CSLn) in synchronization with the conduction signal. Therefore, unlike the case where the voltage signal is supplied without being synchronized with the conduction signal, the ratio of the display period in the bright luminance and the display period in the dark luminance can be made almost equal at any place on the screen. It is possible to effectively suppress moving image blur.

また、本発明に係る上記の表示パネル1においては、画像信号を一旦記憶しておくためのフレームメモリを用いることなく、上記動画ボケを抑制することができる。したがって、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、製造コストを削減することができる。また、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、消費電力を削減することができる。   Further, in the display panel 1 according to the present invention, the moving image blur can be suppressed without using a frame memory for temporarily storing an image signal. Therefore, the manufacturing cost can be reduced as compared with the conventional configuration using the frame memory for temporarily storing the image signal. Further, power consumption can be reduced as compared with a conventional configuration using a frame memory for temporarily storing image signals.

また、本動作例においては、前記矩形状の電圧信号(補助容量信号#CSLn)は、前記1走査期間の少なくとも10パーセントの連続した期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の値の電圧レベル(すなわち電位VCS1または電位VCS2のうち一方の電圧レベル)をとっている。   Further, in this operation example, the rectangular voltage signal (auxiliary capacitance signal #CSLn) is the first voltage level or the second voltage level in the continuous period of at least 10 percent of the one scanning period. The voltage level of one value (that is, the voltage level of one of the potential VCS1 and the potential VCS2) is taken.

したがって、上記動画ボケの現象を効果的に抑制することができる。   Therefore, the moving image blur phenomenon can be effectively suppressed.

また、本動作例においては、前記矩形状の電圧信号(補助容量信号#CSLn)は、前記1走査期間(1垂直走査期間Tv)の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の電圧レベル(電位VCS1)をとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち他の一方の電圧レベル(電位VCS2)をとっている。   In this operation example, the rectangular voltage signal (auxiliary capacitance signal #CSLn) has a period of approximately 10% of the one scanning period from the start of the one scanning period (one vertical scanning period Tv). Until one period of the first voltage level or the second voltage level (potential VCS1) is reached and approximately 90% of the one scanning period has elapsed, and then the one scanning period. In the period until the operation ends, the other voltage level (potential VCS2) of the first voltage level or the second voltage level is taken.

一般に明るい輝度と暗い輝度を切り替えて表示する場合、明るい輝度での表示の比率が90%以上の場合は動画ボケの改善を感じず、90〜10%の間で比率が小さくなるほど動画ボケの改善を感じ、10%程度でほぼ動画ボケが満足に改善されたと感じる。   Generally, when switching between bright luminance and dark luminance, when the ratio of display with bright luminance is 90% or more, improvement in moving image blur is not felt, and as the ratio decreases between 90 and 10%, moving image blur improves. I feel that the motion blur has been improved almost satisfactorily at around 10%.

したがって、上記の構成によれば、上記動画ボケの現象を効果的に抑制することができる。   Therefore, according to the above configuration, the moving image blur phenomenon can be effectively suppressed.

次に、図4の(a)〜(d)を参照して、ソースドライバ12が、ソースバスラインSLmに対して、低階調に対応するソース信号#SLmを供給する場合について説明する。なお、上記の説明と重複する部分については、説明を省略する。   Next, the case where the source driver 12 supplies the source signal #SLm corresponding to the low gradation to the source bus line SLm will be described with reference to FIGS. In addition, description is abbreviate | omitted about the part which overlaps with said description.

図4の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートである。以下では、図4の(a)に示すように、導通信号#GLnがハイレベルのときであって、補助容量バスライン#CSLnが低レベルであるときのソース信号#SLmの電位が、同条件での図3の(a)に示された波形の電位よりも低い場合、若しくは、導通信号#GLnがハイレベルのときであって、補助容量バスライン#CSLnが高レベルであるときのソース信号#SLmの電位が、同条件での図3の(a)に示された波形の電位より高い場合について説明する。   FIG. 4A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm. In the following, as shown in FIG. 4A, the potential of the source signal #SLm when the conduction signal #GLn is high and the auxiliary capacitance bus line #CSLn is low is 3 is lower than the potential of the waveform shown in FIG. 3A, or when the conduction signal #GLn is at a high level and the auxiliary capacitance bus line #CSLn is at a high level. A case where the potential of #SLm is higher than the potential of the waveform shown in FIG.

図4の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートであり、図3の(b)と同様の波形である。   FIG. 4B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn, which is the same waveform as FIG. 3B.

図4の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 4C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図4の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートであり、図3の(d)と同様の波形である。   FIG. 4D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn, which is the same waveform as that of FIG.

まず、図4の(b)に示すように、時刻t1において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。図4の(a)に示すように、時刻t1から時刻t2までの期間において、ソース信号#SLmの共通電位VCOMに対する相対的な電位が、画素電極PEn,mの電位とほぼ等しいような場合には、画素電極PEn,mの電位VPEn,mは、電位V01のままほとんど変化しない。   First, as shown in FIG. 4B, at time t1, the gate signal #GLn rises from a low level to a high level, and falls to a low level after a certain period. As shown in FIG. 4A, when the relative potential of the source signal #SLm with respect to the common potential VCOM is substantially equal to the potential of the pixel electrode PEn, m in the period from time t1 to time t2. The potential VPEn, m of the pixel electrode PEn, m remains almost unchanged at the potential V01.

続いて、時刻t3において、補助容量信号#CSLnが、電位VCS1から電位VCS2まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V01から電位V02へと変化する。ここで、電位V02の具体的な値は、
V02=(VCS2−VCS1)×CCS/ΣC+V01
によって定まる。上述のように、VCS1<VCS2であるので、電位V02は、電位V01よりも大きい。
Subsequently, at time t3, the auxiliary capacitance signal #CSLn rises from the potential VCS1 to the potential VCS2. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V01 to the potential V02. Here, the specific value of the potential V02 is
V02 = (VCS2−VCS1) × CCS / ΣC + V01
It depends on. As described above, since VCS1 <VCS2, the potential V02 is higher than the potential V01.

続いて、時刻t4において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。図4の(a)に示すように、時刻t4から時刻t5までの期間において、ソース信号#SLmの共通電位VCOMに対する相対的な電位が、画素電極PEn,mの電位VPEn,mとほぼ等しいような場合には、画素電極PEn,mの電位VPEn,mは、電位V02のままほとんど変化しない。   Subsequently, at time t4, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. As shown in FIG. 4A, the relative potential of the source signal #SLm with respect to the common potential VCOM is substantially equal to the potential VPEn, m of the pixel electrode PEn, m during the period from time t4 to time t5. In this case, the potential VPEn, m of the pixel electrode PEn, m remains almost unchanged at the potential V02.

続いて、時刻t6において、補助容量信号#CSLnが、電位VCS2から電位VCS1まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、例えば、電位V02から電位V01へと変化する。   Subsequently, at time t6, the auxiliary capacitance signal #CSLn falls from the potential VCS2 to the potential VCS1. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from, for example, the potential V02 to the potential V01.

時刻t7以降の動作は、上述した時刻t1以降の動作と同様である。   The operation after time t7 is the same as the operation after time t1 described above.

図4の(c)に示すように、画素電極PEn,mの電位VPEn,mと、共通電位VCOMとの電位差の絶対値は、全期間において常にほぼ一定に保たれている。すなわち、低階調に対応するソース信号#SLmを供給する場合には、図4の(d)のように補助容量信号#CSLnの値を変化させる場合であっても、画素領域Pn,mが備える液晶LCの透過率をほぼ一定に保つことができる。   As shown in FIG. 4C, the absolute value of the potential difference between the potential VPEn, m of the pixel electrode PEn, m and the common potential VCOM is always kept substantially constant throughout the entire period. That is, when the source signal #SLm corresponding to the low gradation is supplied, even if the value of the auxiliary capacitance signal #CSLn is changed as shown in FIG. The transmittance of the liquid crystal LC provided can be kept substantially constant.

以上のように、本動作例においては、前記1走査期間(1垂直走査期間Tv)において、前記矩形状の電圧信号(補助容量信号#CSLn)が前記第1の電圧レベルであるときの前記液晶への印加電圧の極性と、前記矩形状の電圧信号が前記第2の電圧レベルであるときの前記液晶への印加電圧の極性とは、互いに異なった極性である。すなわち、補助容量信号#CSLnが電位VCS1であるときの画素電極PEn,mの電位V01と対向電極の電位VCOMとの差で表される液晶への印加電圧と、補助容量信号#CSLnが電位VCS2であるときの画素電極PEn,mの電位V02と対向電極の電位VCOMの差で表される液晶への印加電圧とは、互いに反対極性である。   As described above, in this operation example, in the one scanning period (one vertical scanning period Tv), the liquid crystal when the rectangular voltage signal (auxiliary capacitance signal #CSLn) is at the first voltage level. The polarity of the voltage applied to the liquid crystal and the polarity of the voltage applied to the liquid crystal when the rectangular voltage signal is at the second voltage level are different from each other. That is, the voltage applied to the liquid crystal expressed by the difference between the potential V01 of the pixel electrode PEn, m and the potential VCOM of the counter electrode when the auxiliary capacitance signal #CSLn is the potential VCS1, and the auxiliary capacitance signal #CSLn is the potential VCS2. The voltage applied to the liquid crystal expressed by the difference between the potential V02 of the pixel electrode PEn, m and the potential VCOM of the counter electrode is opposite to each other.

上記の構成によれば、前記矩形状の電圧信号が前記第1の電圧レベルであるときであっても、前記矩形状の電圧信号が前記第2の電圧レベルであるときであっても、前記液晶への印加電圧の絶対値を十分に小さくすることができる。   According to the above configuration, even when the rectangular voltage signal is at the first voltage level, even when the rectangular voltage signal is at the second voltage level, The absolute value of the voltage applied to the liquid crystal can be made sufficiently small.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号が前記第1の電圧レベルであるときであっても、前記矩形状の電圧信号が前記第2の電圧レベルであるときであっても、十分に低輝度な黒表示を行うことができる。   Therefore, according to the above configuration, when the rectangular voltage signal is at the first voltage level in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller. Even when the rectangular voltage signal is at the second voltage level, black display with sufficiently low luminance can be performed.

また、本動作例においては、前記第1の電圧レベルと、前記第2の電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、ことが好ましい。すなわち、電位VCS1と電位VCS2との電位差の絶対値は、液晶の閾値電圧の2倍以下であることが好ましい。   In this operation example, it is preferable that the absolute value of the potential difference between the first voltage level and the second voltage level is not more than twice the threshold voltage of the liquid crystal. That is, the absolute value of the potential difference between the potential VCS1 and the potential VCS2 is preferably not more than twice the threshold voltage of the liquid crystal.

一般に、液晶の配向は、当該液晶に閾値電圧以下の電圧が印加されても、影響を受けない。換言すれば、前記閾値電圧とは、液晶の配向が影響を受け始める電圧のことである(以下同様)。前記閾値電圧は、例えば、上記液晶の透過率が飽和する飽和電圧の100分の1の電圧であると定義することができる。   In general, the orientation of the liquid crystal is not affected even when a voltage lower than the threshold voltage is applied to the liquid crystal. In other words, the threshold voltage is a voltage at which the alignment of the liquid crystal starts to be affected (the same applies hereinafter). The threshold voltage can be defined as, for example, a voltage that is 1 / 100th of the saturation voltage at which the transmittance of the liquid crystal is saturated.

補助容量信号#CSLnの電位が電位VCS1である場合における画素電極PEn,mの電位と対向電極の電位VCOMとの差で表される液晶への印加電圧と、補助容量信号#CSLnの電位が電位VCS2である場合における画素電極PEn,mの電位と対向電極の電位VCOMとの差で表される液晶への印加電圧との電圧差をΔVLCと表すことにすると、ΔVLCは、
ΔVLC=(VCS2−VCS1)×CCS/ΣC
を満たす。ここで、CCS/ΣC<1であるので、ΔVLC<(VCS2−VCS1)が導かれる。
When the potential of the auxiliary capacitance signal #CSLn is the potential VCS1, the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode PEn, m and the potential VCOM of the counter electrode, and the potential of the auxiliary capacitance signal #CSLn are the potential. If the voltage difference between the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode PEn, m and the potential VCOM of the counter electrode in the case of VCS2 is expressed as ΔVLC, ΔVLC is
ΔVLC = (VCS2−VCS1) × CCS / ΣC
Meet. Here, since CCS / ΣC <1, ΔVLC <(VCS2−VCS1) is derived.

また、画素電極PEn,mの電位と対向電極の電位VCOMとの差で表される液晶への印加電圧をVLCと現すことにすると、補助容量信号#CSLnの電位が電位VCS1である場合に、
VLC=−ΔVLC/2
となるように設定し、補助容量信号#CSLnの電位が電位VCS2である場合に、
VLC=ΔVLC/2
と設定することが望ましい。ここで、ΔVLC/2が前記閾値電圧VLCth以下、すなわち、
ΔVLC/2≦VLCth
であれば、補助容量信号#CSLnの電位が電位VCS1であっても、電位VCS2であっても、黒表示を行うことができる。しがたがって、
VCS2−VCS1≦2×VLCth
であれば、補助容量信号#CSLnの電位が電位VCS1であっても、電位VCS2であっても、黒表示を行うことができる。
Further, when the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode PEn, m and the potential VCOM of the counter electrode is expressed as VLC, when the potential of the auxiliary capacitance signal #CSLn is the potential VCS1,
VLC = −ΔVLC / 2
When the potential of the auxiliary capacitance signal #CSLn is the potential VCS2,
VLC = ΔVLC / 2
It is desirable to set Here, ΔVLC / 2 is equal to or lower than the threshold voltage VLCth, that is,
ΔVLC / 2 ≦ VLCth
If so, black display can be performed regardless of whether the potential of the auxiliary capacitance signal #CSLn is the potential VCS1 or the potential VCS2. Therefore,
VCS2-VCS1 ≦ 2 × VLCth
If so, black display can be performed regardless of whether the potential of the auxiliary capacitance signal #CSLn is the potential VCS1 or the potential VCS2.

以上のように、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベルであっても、前記第2の電圧レベルであっても、黒表示を行うことができる。   As described above, according to the above configuration, in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, the voltage level of the rectangular voltage signal is the first level. Black display can be performed regardless of the voltage level or the second voltage level.

なお、後述する動作例に対しても、上記の導出方法をほぼ同様に当てはめることができる。   It should be noted that the above derivation method can be applied to the operation example described later in substantially the same manner.

(表示パネル1の動作例2)
以下では、図5の(a)〜(d)、および、図6の(a)〜(d)を参照して、本実施形態に係る表示パネル1の動作の第2の例について説明する。
(Operation example 2 of display panel 1)
Below, with reference to (a)-(d) of FIG. 5, and (a)-(d) of FIG. 6, the 2nd example of operation | movement of the display panel 1 which concerns on this embodiment is demonstrated.

まず、図5の(a)〜(d)を参照して、ソースドライバ12が、ソースバスラインSLmに対して、高階調に対応するソース信号#SLmを供給する場合について説明する。   First, the case where the source driver 12 supplies the source signal #SLm corresponding to the high gradation to the source bus line SLm will be described with reference to FIGS.

図5の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートであり、図3の(a)に示すソース信号#SLmの波形と同様の波形である。   FIG. 5A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm, and has the same waveform as the waveform of the source signal #SLm shown in FIG. is there.

図5の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートである。図5の(b)に示すように、本動作例におけるゲート信号#GLnの波形は、図3の(b)に示すゲート信号#GLnの波形と同様であるとして説明を行う。   FIG. 5B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn. As shown in FIG. 5B, the description will be made assuming that the waveform of the gate signal #GLn in this operation example is the same as the waveform of the gate signal #GLn shown in FIG.

図5の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 5C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図5の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。図5の(d)に示すように、本動作例における補助容量信号#CSLnは、連続する2つの垂直走査期間Tv’を1周期として、電位VCS1’、電位VCS2’、および、電位VCS3’をとる信号である。より具体的には、図5の(d)に示すように、補助容量信号#CSLnは、1垂直走査期間Tv’における期間T1’において電位VCS2’をとり、期間T2’において電位VCS3’をとる。また、補助容量信号#CSLnは、それに引き続く垂直走査期間Tv’における期間T3’において電位VCS2’をとり、期間T4’において電位VCS1’をとる。なお、図5の(d)に示すように、電位VCS1’、電位VCS2’、および、電位VCS2’の具体的な値は、VCS1’<VCS2’<VCS3’を満たすものとする。   FIG. 5D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn. As shown in FIG. 5 (d), the auxiliary capacitance signal #CSLn in this operation example has the potential VCS1 ′, the potential VCS2 ′, and the potential VCS3 ′ with two consecutive vertical scanning periods Tv ′ as one cycle. It is a signal to take. More specifically, as shown in FIG. 5D, the auxiliary capacitance signal #CSLn takes the potential VCS2 ′ in the period T1 ′ in one vertical scanning period Tv ′ and takes the potential VCS3 ′ in the period T2 ′. . The auxiliary capacitance signal #CSLn takes the potential VCS2 'in the subsequent period T3' in the vertical scanning period Tv 'and takes the potential VCS1' in the period T4 '. As shown in FIG. 5D, specific values of the potential VCS1 ', the potential VCS2', and the potential VCS2 'satisfy VCS1' <VCS2 '<VCS3'.

図5の(c)および(d)に示すように、補助容量信号#CSLnが、最も低い電位(電位VCS1’)であるときであって、ゲート信号#GLnがハイレベルであるときに、液晶LCへの印加電圧は正極性へと変化し、補助容量信号#CSLnが、最も高い電位(電位VCS3’)であるときであって、ゲート信号#GLnがハイレベルであるときに、液晶LCへの印加電圧は負極性へと変化する。   As shown in FIGS. 5C and 5D, when the auxiliary capacitance signal #CSLn is at the lowest potential (potential VCS1 ′) and the gate signal #GLn is at the high level, the liquid crystal The voltage applied to the LC changes to positive polarity, and when the auxiliary capacitance signal #CSLn is at the highest potential (potential VCS3 ′) and the gate signal #GLn is at the high level, the liquid crystal LC is applied. The applied voltage changes to negative polarity.

以下では、本動作例における表示パネル1の画素領域Pn,mの各部の動作について、説明する。   Hereinafter, the operation of each part of the pixel region Pn, m of the display panel 1 in this operation example will be described.

まず、図5の(b)に示すように、時刻t1’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になる。トランジスタMn,mが導通状態になると、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。図5の(c)に示すように、時刻t1’から時刻t2’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V1’から電位V2’(V2’は正)まで立ち上がる。   First, as shown in FIG. 5B, at time t1 ', the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period of time. During the period when the gate signal #GLn is at the high level, the transistor Mn, m becomes conductive. When the transistor Mn, m becomes conductive, the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. As shown in FIG. 5C, the potential VPEn, m applied to the pixel electrode PEn, m from the potential V1 ′ to the potential V2 ′ (V2 ′ is positive) during the period from the time t1 ′ to the time t2 ′. ) Stand up.

また、時刻t2’において、補助容量信号#CSLnが、電位VCS1’から電位VCS2’まで立ち上がる。このとき、ゲート信号#GLnはローレベルであるので、トランジスタMn,mは、遮断状態である。したがって、画素電極PEn,mに蓄積された電荷と第1の補助容量電極CE1n,mに蓄積された電荷との和は不変である。一方で、補助容量信号#CSLnの値が変化すると、画素電極PEn,mおよび第1の補助容量電極CE1n,mの各々に蓄積された電荷は、変化する。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V2’から電位V3’へと変化する。ここで、電位V3’の具体的な値は、
V3’=(VCS2’−VCS1’)×CCS/ΣC+V2’
によって定まる。なお、上述のように、VCS1’<VCS2’であるので、電位V3’は、電位V2’よりも大きい。
At time t2 ′, the auxiliary capacitance signal #CSLn rises from the potential VCS1 ′ to the potential VCS2 ′. At this time, since the gate signal #GLn is at a low level, the transistor Mn, m is in a cut-off state. Therefore, the sum of the charge accumulated in the pixel electrode PEn, m and the charge accumulated in the first auxiliary capacitance electrode CE1n, m is unchanged. On the other hand, when the value of the auxiliary capacitance signal #CSLn changes, the charges accumulated in the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m change. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V2 ′ to the potential V3 ′. Here, the specific value of the potential V3 ′ is
V3 ′ = (VCS2′−VCS1 ′) × CCS / ΣC + V2 ′
It depends on. As described above, since VCS1 ′ <VCS2 ′, the potential V3 ′ is larger than the potential V2 ′.

続いて、時刻t3’において、補助容量信号#CSLnが、電位VCS2’から電位VCS3’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V3’から電位V4’へと変化する。ここで、電位V4’の具体的な値は、
V4’=(VCS3’−VCS2’)×CCS/ΣC+V3’
によって定まる。なお、上述のように、VCS2’<VCS3’であるので、電位V4’は、電位V3’よりも大きい。
Subsequently, at time t3 ′, the auxiliary capacitance signal #CSLn rises from the potential VCS2 ′ to the potential VCS3 ′. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V3 ′ to the potential V4 ′. Here, the specific value of the potential V4 ′ is
V4 ′ = (VCS3′−VCS2 ′) × CCS / ΣC + V3 ′
It depends on. As described above, since VCS2 ′ <VCS3 ′, the potential V4 ′ is larger than the potential V3 ′.

また、図5の(c)に示すように、電位V4’と共通電位VCOMとの電位差は、電位V3’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t3’から時刻t4’までの期間における液晶LCの透過率は、時刻t2’から時刻t3’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t3’から時刻t4’までの期間における画素領域Pn,mの輝度は、時刻t2’から時刻t3’までの期間における画素領域Pn,mの輝度よりも大きい。   Further, as shown in FIG. 5C, the potential difference between the potential V4 'and the common potential VCOM is larger than the potential difference between the potential V3' and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t3 'to the time t4' is larger than the transmittance of the liquid crystal LC in the period from the time t2 'to the time t3'. That is, the luminance of the pixel region Pn, m in the period from time t3 'to time t4' is larger than the luminance of the pixel region Pn, m in the period from time t2 'to time t3'.

続いて、時刻t4’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になり、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。   Subsequently, at time t4 ', the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. During a period in which the gate signal #GLn is at a high level, the transistor Mn, m is in a conductive state, and the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m.

図5の(c)に示すように、時刻t4’から時刻t5’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V4’から電位V5’(V5’は負)まで立ち下がる。   As shown in FIG. 5C, the potential VPEn, m applied to the pixel electrode PEn, m from the potential V4 ′ to the potential V5 ′ (V5 ′ is negative) during the period from the time t4 ′ to the time t5 ′. ).

また、時刻t5’において、補助容量信号#CSLnが、電位VCS3’から電位VCS2’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V5’から電位V6’へと変化する。ここで、電位V6’の具体的な値は、
V6’=(VCS2’−VCS3’)×CCS/ΣC+V5’
によって定まる。なお、上述のように、VCS2’<VCS3’であるので、電位V6’は、電位V5’よりも小さい。
At time t5 ′, the auxiliary capacitance signal #CSLn falls from the potential VCS3 ′ to the potential VCS2 ′. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V5 ′ to the potential V6 ′. Here, the specific value of the potential V6 ′ is
V6 ′ = (VCS2′−VCS3 ′) × CCS / ΣC + V5 ′
It depends on. As described above, since VCS2 ′ <VCS3 ′, the potential V6 ′ is smaller than the potential V5 ′.

続いて、時刻t6’において、補助容量信号#CSLnが、電位VCS2’から電位VCS1’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V6’から電位V1’へと変化する。ここで、電位V1’の具体的な値は、
V1’=(VCS1’−VCS2’)×CCS/ΣC+V6’
によって定まる。なお、上述のように、VCS1’<VCS2’であるので、電位V1’は、電位V6’よりも小さい。
Subsequently, at time t6 ′, the auxiliary capacitance signal #CSLn falls from the potential VCS2 ′ to the potential VCS1 ′. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V6 ′ to the potential V1 ′. Here, the specific value of the potential V1 ′ is
V1 ′ = (VCS1′−VCS2 ′) × CCS / ΣC + V6 ′
It depends on. As described above, since VCS1 ′ <VCS2 ′, the potential V1 ′ is smaller than the potential V6 ′.

また、図5の(c)に示すように、電位V1’と共通電位VCOMとの電位差は、電位V6’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t6’から時刻t7’までの期間における液晶LCの透過率は、時刻t5’から時刻t6’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t6’から時刻t7’までの期間における画素領域Pn,mの輝度は、時刻t5’から時刻t6’までの期間における画素領域Pn,mの輝度よりも大きい。   Further, as shown in FIG. 5C, the potential difference between the potential V1 'and the common potential VCOM is larger than the potential difference between the potential V6' and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t6 'to the time t7' is larger than the transmittance of the liquid crystal LC in the period from the time t5 'to the time t6'. That is, the luminance of the pixel region Pn, m in the period from time t6 'to time t7' is larger than the luminance of the pixel region Pn, m in the period from time t5 'to time t6'.

時刻t7’以降の動作は、上述した時刻t1’以降の動作と同様である。   The operation after time t7 'is the same as the operation after time t1' described above.

なお、上記の動作例においては、時刻t2’において、補助容量信号#CSLnが、電位VCS1’から電位VCS2’まで立ち上がり、時刻t5’において、補助容量信号#CSLnが、電位VCS3’から電位VCS2’まで立ち下がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t2’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS1’から電位VCS2’まで立ち上がり、時刻t5’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS3’から電位VCS2’まで立ち下がる。   In the above operation example, the auxiliary capacitance signal #CSLn rises from the potential VCS1 ′ to the potential VCS2 ′ at time t2 ′, and the auxiliary capacitance signal #CSLn changes from the potential VCS3 ′ to the potential VCS2 ′ at time t5 ′. However, more generally, the auxiliary capacitance signal #CSLn is generated from the potential VCS1 ′ during a period of several horizontal periods (multiple times of the horizontal period Th) from the time t2 ′. The potential rises to the potential VCS2 ′, and falls from the potential VCS3 ′ to the potential VCS2 ′ from the time t5 ′ to the passage of several horizontal periods (a period that is a multiple of the horizontal period Th).

また、本動作例においては、前記補助容量ドライバ14は、前記1走査期間(1垂直走査期間Tv’)において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号(補助容量信号#CSLn)を供給する。   Further, in this operation example, the auxiliary capacitance driver 14 synchronizes with the conduction signal with respect to the arbitrary auxiliary capacitance bus line in the one scanning period (one vertical scanning period Tv ′). A rectangular voltage signal (auxiliary capacitance signal #CSLn) having a second voltage level, a third voltage level different from any of the first voltage level and the second voltage level. Supply.

すなわち、本動作例においては、前記補助容量ドライバ14は、1垂直走査期間(1垂直走査期間Tv’)において、電位VCS1’、電位VCS2’、および、電位VCS3’からなる矩形状の電圧信号(補助容量信号#CSLn)を供給する。   In other words, in this operation example, the auxiliary capacitor driver 14 has a rectangular voltage signal (the potential VCS1 ′, the potential VCS2 ′, and the potential VCS3 ′) in one vertical scanning period (one vertical scanning period Tv ′). Auxiliary capacitance signal #CSLn) is supplied.

したがって、本動作例においては、上記1走査期間において、上記任意の補助容量バスラインに印加される電圧レベルは、3値に変化する。換言すれば、上記1走査期間において、補助容量バスラインに印加される電圧レベルは、2回遷移する。上記1走査期間における上記電圧レベルの第1回目の遷移によって、上記電圧レベルの第1回目の遷移後において上記液晶に印加される電圧を、上記電圧レベルの第1回目の遷移後における表示に好適なものとし、上記電圧レベルの第2回目の遷移によって、高輝度と低輝度との切り替えを行うことができる。   Therefore, in this operation example, in the one scanning period, the voltage level applied to the arbitrary auxiliary capacitance bus line changes to three values. In other words, the voltage level applied to the storage capacitor bus line transitions twice in the one scanning period. The voltage applied to the liquid crystal after the first transition of the voltage level by the first transition of the voltage level in the one scanning period is suitable for display after the first transition of the voltage level. It is possible to switch between high luminance and low luminance by the second transition of the voltage level.

すなわち、本動作例によれば、動画ボケの現象を効果的に抑制しつつ、より高輝度な表示が可能となる。   That is, according to this operation example, it is possible to display with higher brightness while effectively suppressing the phenomenon of moving image blur.

また、本動作例においては、前記ゲートドライバ13が前記任意のゲートバスラインGLnに対して前記導通信号(ゲート信号#GLnのハイレベル区間)を供給したときに、前記任意の補助容量バスラインCSLnに対して前記電圧レベルのうち、最も低い電圧レベルが供給されている場合には、前記補助容量ドライバ14は、前記任意の補助容量バスラインCSLnに対して、前記1走査期間(1垂直走査期間Tv’)において、前記電圧レベルが昇順である前記矩形状の電圧信号#CSLnを供給する。   In this operation example, when the gate driver 13 supplies the conduction signal (the high level period of the gate signal #GLn) to the arbitrary gate bus line GLn, the arbitrary auxiliary capacitance bus line CSLn. In contrast, when the lowest voltage level among the voltage levels is supplied, the auxiliary capacitance driver 14 applies the one scanning period (one vertical scanning period) to the arbitrary auxiliary capacitance bus line CSLn. At Tv ′), the rectangular voltage signal #CSLn whose voltage level is in ascending order is supplied.

すなわち、上述のように、時刻t1’から時刻t2’までの期間において、補助容量バスラインCSLnに対し、電圧レベルVCS1’、VCS2’、VCS3’のうち、最も低い電圧レベルVCS1’が供給されている場合には、補助容量ドライバ14は、補助容量バスラインCSLnに対し、時刻t2’から時刻t5’までの1走査期間(1垂直走査期間Tv’)において、時刻t2’から時刻t3’までの期間T1’において電圧レベルVCS2’をとり、時刻t3’から時刻t5’までの期間T2’において電圧レベルVCS3’(VCS2’<VCS3’)をとる補助容量信号#CSLnを供給する。   That is, as described above, during the period from time t1 ′ to time t2 ′, the lowest voltage level VCS1 ′ among the voltage levels VCS1 ′, VCS2 ′, VCS3 ′ is supplied to the auxiliary capacitance bus line CSLn. In the case where the auxiliary capacitor driver 14 is present, the auxiliary capacitor driver 14 applies the auxiliary capacitor bus line CSLn from time t2 ′ to time t3 ′ in one scanning period (one vertical scanning period Tv ′) from time t2 ′ to time t5 ′. The storage capacitor signal #CSLn is supplied in the period T1 ′, which takes the voltage level VCS2 ′, and in the period T2 ′ from the time t3 ′ to the time t5 ′, which takes the voltage level VCS3 ′ (VCS2 ′ <VCS3 ′).

一般に、画素電極に電圧が印加されていない場合に、黒表示となるノーマリーブラック方式においては、液晶の応答に有限の時間を有することに起因して、低輝度から高輝度への立ち上がりが不十分となる現象が生じる。換言すれば、低輝度から高輝度への変化に要する時間が、高輝度から低輝度への変化に要する時間よりも大きいという特性がある。上記現象は、画素電極に印加される信号が正極性である場合には、画素電極の電位が高電圧へと変化するタイミングにおいて生じ得る。   In general, in the normally black method in which black display is performed when no voltage is applied to the pixel electrode, the rise from low luminance to high luminance is not possible due to the fact that the response of the liquid crystal has a finite time. A sufficient phenomenon occurs. In other words, the time required for the change from low luminance to high luminance is longer than the time required for the change from high luminance to low luminance. The above phenomenon can occur at the timing when the potential of the pixel electrode changes to a high voltage when the signal applied to the pixel electrode is positive.

上記の構成によれば、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も低い電圧レベルが供給されている場合には、上記1走査期間において、前記画素電極に対して、電圧レベルのより低い電圧信号を供給し、それに引き続き、電圧レベルのより高い電圧信号を供給することができる。   According to the above configuration, when the gate driver supplies the conduction signal to the arbitrary gate bus line, the lowest voltage level among the voltage levels is set to the arbitrary auxiliary capacitance bus line. When supplied, a voltage signal having a lower voltage level can be supplied to the pixel electrode in the one scanning period, and a voltage signal having a higher voltage level can be subsequently supplied.

したがって、画素電極に印加される電位を段階的に高い電圧へと変化させることができる。これによって、ノーマリーブラック方式において生じ得る上記の低輝度から高輝度への立ち上がりが不十分となる現象を抑制することができる。   Therefore, the potential applied to the pixel electrode can be gradually changed to a higher voltage. As a result, the phenomenon that the rise from the low luminance to the high luminance, which may occur in the normally black method, becomes insufficient can be suppressed.

また、本動作例においては、前記ゲートドライバ13が前記任意のゲートバスラインGLnに対して前記導通信号(ゲート信号#GLnのハイレベル区間)を供給したときに、前記任意の補助容量バスラインCSLnに対して前記電圧レベルのうち、最も高い電圧レベルが供給されている場合には、前記補助容量ドライバ14は、前記任意の補助容量バスラインCSLnに対して、前記1走査期間において、前記電圧レベルが降順である前記矩形状の電圧信号を供給する。   In this operation example, when the gate driver 13 supplies the conduction signal (the high level period of the gate signal #GLn) to the arbitrary gate bus line GLn, the arbitrary auxiliary capacitance bus line CSLn. When the highest voltage level among the voltage levels is supplied, the auxiliary capacitance driver 14 applies the voltage level to the arbitrary auxiliary capacitance bus line CSLn in the one scanning period. Supplies the rectangular voltage signal in descending order.

すなわち、上述のように、時刻t4’から時刻t5’までの期間において、補助容量バスラインCSLnに対し、電圧レベルVCS1’、VCS2’、VCS3’のうち、最も高い電圧レベルVCS3’が供給されている場合には、補助容量ドライバ14は、補助容量バスラインCSLnに対し、時刻t5’から時刻t8’までの1走査期間(1垂直走査期間Tv’)において、時刻t5’から時刻t6’までの期間T3’において電圧レベルVCS2’をとり、時刻t6’から時刻t8’までの期間T4’において電圧レベルVCS1’(VCS1’<VCS2’)をとる補助容量信号#CSLnを供給する。   That is, as described above, during the period from time t4 ′ to time t5 ′, the highest voltage level VCS3 ′ among the voltage levels VCS1 ′, VCS2 ′, and VCS3 ′ is supplied to the auxiliary capacitance bus line CSLn. In the case where the auxiliary capacitor driver 14 is present, the auxiliary capacitor driver 14 performs the time from the time t5 ′ to the time t6 ′ on the auxiliary capacitor bus line CSLn in one scanning period (one vertical scanning period Tv ′) from the time t5 ′ to the time t8 ′. The auxiliary capacitance signal #CSLn is supplied in the period T3 ′, which takes the voltage level VCS2 ′, and in the period T4 ′ from time t6 ′ to time t8 ′, which takes the voltage level VCS1 ′ (VCS1 ′ <VCS2 ′).

一般に、画素電極に電圧が印加されていない場合に、黒表示となるノーマリーブラック方式においては、液晶の応答に有限の時間を有することに起因して、低輝度から高輝度への立ち上がりが不十分となる現象が生じる。換言すれば、低輝度から高輝度への変化に要する時間が、高輝度から低輝度への変化に要する時間よりも大きいという特性がある。上記現象は、画素電極に印加される信号が負極性である場合には、画素電極の電位が低電圧へと変化するタイミングにおいて生じ得る。   In general, in the normally black method in which black display is performed when no voltage is applied to the pixel electrode, the rise from low luminance to high luminance is not possible due to the fact that the response of the liquid crystal has a finite time. A sufficient phenomenon occurs. In other words, the time required for the change from low luminance to high luminance is longer than the time required for the change from high luminance to low luminance. The above phenomenon may occur at the timing when the potential of the pixel electrode changes to a low voltage when the signal applied to the pixel electrode has a negative polarity.

上記の構成によれば、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も高い電圧レベルが供給されている場合には、前記1走査期間において、前記画素電極に対して、電圧レベルのより高い電圧信号を供給し、それに引き続き、電圧レベルのより低い電圧信号を供給することができる。   According to the above configuration, when the gate driver supplies the conduction signal to the arbitrary gate bus line, the highest voltage level among the voltage levels is set to the arbitrary auxiliary capacity bus line. When supplied, a voltage signal having a higher voltage level can be supplied to the pixel electrode in the one scanning period, and subsequently, a voltage signal having a lower voltage level can be supplied.

したがって、画素電極に印加される電位を段階的に低い電圧へと変化させることができる。これによって、ノーマリーブラック方式において生じ得る上記の低輝度から高輝度への立ち上がりが不十分となる現象を抑制することができる。   Therefore, the potential applied to the pixel electrode can be changed gradually to a lower voltage. As a result, the phenomenon that the rise from the low luminance to the high luminance, which may occur in the normally black method, becomes insufficient can be suppressed.

次に、図6の(a)〜(d)を参照して、ソースドライバ12が、ソースバスラインSLmに対して、低階調に対応するソース信号#SLmを供給する場合について説明する。なお、上記の説明と重複する部分については、説明を省略する。   Next, the case where the source driver 12 supplies the source signal #SLm corresponding to the low gradation to the source bus line SLm will be described with reference to FIGS. In addition, description is abbreviate | omitted about the part which overlaps with said description.

図6の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートである。以下では、図6の(a)に示すように、導通信号#GLnがハイレベルのときであって、補助容量バスライン#CSLnが低レベルであるときのソース信号#SLmの電位が、同条件での図3の(a)に示された波形の電位よりも低い場合、若しくは、導通信号#GLnがハイレベルのときであって、補助容量バスライン#CSLnが高レベルであるときのソース信号#SLmの電位が、同条件での図3(a)に示された波形の電位より高い場合について説明する。   FIG. 6A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm. In the following, as shown in FIG. 6A, the potential of the source signal #SLm when the conduction signal #GLn is high and the auxiliary capacitance bus line #CSLn is low is 3 is lower than the potential of the waveform shown in FIG. 3A, or when the conduction signal #GLn is at a high level and the auxiliary capacitance bus line #CSLn is at a high level. A case where the potential of #SLm is higher than the potential of the waveform shown in FIG.

図6の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートであり、図3の(b)と同様の波形である。   FIG. 6B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn, which is the same waveform as in FIG.

図6の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 6C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図6の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートであり、図5の(d)と同様の波形である。   FIG. 6D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn, which is the same waveform as that of FIG.

まず、図6の(b)に示すように、時刻t1’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。図6の(c)に示すように、時刻t1’から時刻t2’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、例えば、電位V01’から電位V02’まで立ち下がる。   First, as shown in FIG. 6B, at time t1 ', the gate signal #GLn rises from a low level to a high level, and falls to a low level after a certain period. As shown in FIG. 6C, in the period from time t1 ′ to time t2 ′, the potential VPEn, m applied to the pixel electrode PEn, m falls from, for example, the potential V01 ′ to the potential V02 ′. .

また、時刻t2’において、補助容量信号#CSLnが、電位VCS1’から電位VCS2’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V02’から例えば電位V01’へと変化する。   At time t2 ', the auxiliary capacitance signal #CSLn rises from the potential VCS1' to the potential VCS2 '. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V02 'to, for example, the potential V01'.

続いて、時刻t3’において、補助容量信号#CSLnが、電位VCS2’から電位VCS3’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V01’から電位V03’へと変化する。ここで、電位V03’の具体的な値は、
V03’=(VCS3’−VCS2’)×CCS/ΣC+V01’
によって定まる。なお、上述のように、VCS2’<VCS3’であるので、電位V03’は、電位V01’よりも大きい。
Subsequently, at time t3 ′, the auxiliary capacitance signal #CSLn rises from the potential VCS2 ′ to the potential VCS3 ′. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V01 ′ to the potential V03 ′. Here, the specific value of the potential V03 ′ is
V03 ′ = (VCS3′−VCS2 ′) × CCS / ΣC + V01 ′
It depends on. Note that, as described above, since VCS2 ′ <VCS3 ′, the potential V03 ′ is higher than the potential V01 ′.

続いて、時刻t4’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。図6の(c)に示すように、時刻t4’から時刻t5’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V03’から電位V04’まで立ち上がる。   Subsequently, at time t4 ', the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. As shown in FIG. 6C, in the period from time t4 'to time t5', the potential VPEn, m applied to the pixel electrode PEn, m rises from the potential V03 'to the potential V04'.

また、時刻t5’において、補助容量信号#CSLnが、電位VCS3’から電位VCS2’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V04’から例えば電位V03’へと変化する。   At time t5 ', the auxiliary capacitance signal #CSLn falls from the potential VCS3' to the potential VCS2 '. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V04 'to, for example, the potential V03'.

続いて、時刻t6’において、補助容量信号#CSLnが、電位VCS2’から電位VCS1’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V03’から電位V01’へと変化する。   Subsequently, at time t6 ', the auxiliary capacitance signal #CSLn falls from the potential VCS2' to the potential VCS1 '. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V03 'to the potential V01'.

時刻t7’以降の動作は、上述した時刻t1’以降の動作と同様である。   The operation after time t7 'is the same as the operation after time t1' described above.

図6の(c)に示すように、画素電極PEn,mの電位VPEn,mと、共通電位VCOMとの電位差の絶対値は、全期間において常にほぼ一定に保たれている。すなわち、図6の(d)のように補助容量信号#CSLnの値を変化させる場合であっても、画素領域Pn,mが備える液晶LCの透過率をほぼ一定に保つことができる。   As shown in FIG. 6C, the absolute value of the potential difference between the potential VPEn, m of the pixel electrode PEn, m and the common potential VCOM is always kept substantially constant throughout the entire period. That is, even when the value of the auxiliary capacitance signal #CSLn is changed as shown in FIG. 6D, the transmittance of the liquid crystal LC included in the pixel region Pn, m can be kept substantially constant.

また、本動作例においては、前記1走査期間(1垂直走査期間Tv’)において、最初の前記電圧レベルの遷移後の前記液晶への印加電圧の極性と、次の前記電圧レベルの遷移後の前記液晶への印加電圧の極性とは、互いに異なった極性である。補助容量信号#CSLnが電位VCS2’であるときの画素電極PEn,mの電位V01’と対向電極の電位VCOMの差で表される液晶への印加電圧と、補助容量信号#CSLnが電位VCS3’であるときの画素電極PEn,mの電位V03’と対向電極の電位VCOMの差で表される液晶への印加電圧とは、互いに反対極性である。   In this operation example, in the one scanning period (one vertical scanning period Tv ′), the polarity of the voltage applied to the liquid crystal after the first transition of the voltage level and the transition after the next transition of the voltage level are performed. The polarity of the voltage applied to the liquid crystal is different from each other. The voltage applied to the liquid crystal expressed by the difference between the potential V01 'of the pixel electrode PEn, m and the potential VCOM of the counter electrode when the auxiliary capacitance signal #CSLn is the potential VCS2', and the auxiliary capacitance signal #CSLn is the potential VCS3 '. The voltage applied to the liquid crystal expressed by the difference between the potential V03 ′ of the pixel electrode PEn, m and the potential VCOM of the counter electrode is opposite to each other.

上記の構成によれば、前記1走査期間において、最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、前記液晶への印加電圧の絶対値を十分に小さくすることができる。   According to the above configuration, the absolute value of the voltage applied to the liquid crystal is sufficiently set in the one scanning period even after the first voltage level transition or after the next voltage level transition. Can be made smaller.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記1走査期間における最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、十分に低輝度な黒表示を行うことができる。   Therefore, according to the above configuration, even in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, even after the first transition of the voltage level in the one scanning period. Even after the next transition of the voltage level, sufficiently low luminance black display can be performed.

また、本動作例においては、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、中間の電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、最も高い電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下であることが好ましい。すなわち、本動作例においては、電位VCS1’、電位VCS2’、電位VCS3’のうち、中間の電圧レベルVCS2’と、最も高い電圧レベルVCS3’との電位差の絶対値は、液晶の閾値電圧の2倍以下であることが好ましい。   Further, in the present operation example, an intermediate voltage level, the first voltage level, the second voltage level among the first voltage level, the second voltage level, and the third voltage level are selected. Of the voltage level and the third voltage level, the absolute value of the potential difference from the highest voltage level is preferably not more than twice the threshold voltage of the liquid crystal. That is, in this operation example, the absolute value of the potential difference between the intermediate voltage level VCS2 ′ and the highest voltage level VCS3 ′ among the potentials VCS1 ′, VCS2 ′, and VCS3 ′ is 2 of the threshold voltage of the liquid crystal. It is preferable that it is less than 2 times.

上記の構成によれば、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、中間の電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、最も高い電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下であるため、すなわち、本動作例においては、電位VCS1’、電位VCS2’、電位VCS3’のうち、中間の電圧レベルVCS2’と、最も高い電圧レベルVCS3’との電位差の絶対値は、液晶の閾値電圧の2倍以下であるため、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、何れの電圧レベルであっても、前記液晶の配向が影響を受けないようにすることができる。   According to the above configuration, an intermediate voltage level, the first voltage level, and the second voltage among the first voltage level, the second voltage level, and the third voltage level The absolute value of the potential difference from the highest voltage level among the level and the third voltage level is not more than twice the threshold voltage of the liquid crystal, that is, in this operation example, the potential VCS1 ′, the potential Since the absolute value of the potential difference between the intermediate voltage level VCS2 ′ and the highest voltage level VCS3 ′ among the VCS2 ′ and the potential VCS3 ′ is less than twice the threshold voltage of the liquid crystal, the rectangular voltage signal The alignment of the liquid crystal is not affected regardless of the voltage level of the first voltage level, the second voltage level, or the third voltage level. Can do.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルの何れであっても、黒表示を行うことができる。   Therefore, according to the above configuration, in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, the voltage level of the rectangular voltage signal is the first voltage level, Black display can be performed at any of the second voltage level and the third voltage level.

(表示パネル1の動作例3)
以下では、図7の(a)〜(d)、および、図8の(a)〜(d)を参照して、本実施形態に係る表示パネル1の動作の第3の例について説明する。
(Operation example 3 of display panel 1)
Below, with reference to (a)-(d) of FIG. 7, and (a)-(d) of FIG. 8, the 3rd example of operation | movement of the display panel 1 which concerns on this embodiment is demonstrated.

まず、図7の(a)〜(d)を参照して、ソースドライバ12が、ソースバスラインSLmに対して、高階調に対応するソース信号#SLmを供給する場合について説明する。   First, the case where the source driver 12 supplies the source signal #SLm corresponding to the high gradation to the source bus line SLm will be described with reference to FIGS.

図7の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートである。図7の(a)に示すように、本動作例におけるソース信号#SLmの波形は、図3の(a)に示すソース信号#SLmの波形と同様であるとして説明を行う。   FIG. 7A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm. As shown in FIG. 7A, the description will be made assuming that the waveform of the source signal #SLm in this operation example is the same as the waveform of the source signal #SLm shown in FIG.

図7の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートである。図7の(b)に示すように、本動作例におけるゲート信号#GLnの波形は、図3の(b)に示すゲート信号#GLnの波形と同様であるとして説明を行う。   FIG. 7B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn. As shown in FIG. 7B, the description will be made assuming that the waveform of the gate signal #GLn in this operation example is the same as the waveform of the gate signal #GLn shown in FIG.

図7の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 7C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図7の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。図7の(d)に示すように、本動作例における補助容量信号#CSLnは、連続する2つの垂直走査期間Tv’’を1周期として、電位VCS1’’、電位VCS2’’、電位VCS3’’、および、電位VCS4’’をとる信号である。より具体的には、図7の(d)に示すように、補助容量信号#CSLnは、1垂直走査期間Tv’’における期間T1’’において電位VCS2’’をとり、期間T2’’において電位VCS3’’をとる。また、補助容量信号#CSLnは、それに引き続く垂直走査期間Tv’における期間T3’’において電位VCS4’’をとり、期間T4’’において電位VCS1’’をとる。なお、図7の(d)に示すように、電位VCS1’’、電位VCS2’’、電位VCS3’’、および、電位VCS4’’の具体的な値は、VCS1’’<VCS2’’<VCS4’’<VCS3’’、および、VCS2’’−VCS1’’<VCS3’’−VCS2’’、ならびに、VCS3’’−VCS4’’<VCS4’’−VCS1’’を満たすものとする。   FIG. 7D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn. As shown in FIG. 7D, the storage capacitor signal #CSLn in this operation example has a potential VCS1 ″, a potential VCS2 ″, a potential VCS3 ′ with two consecutive vertical scanning periods Tv ″ as one cycle. 'And a signal that takes the potential VCS4' '. More specifically, as shown in FIG. 7D, the auxiliary capacitance signal #CSLn takes the potential VCS2 ″ in the period T1 ″ in one vertical scanning period Tv ″ and the potential in the period T2 ″. Take VCS3 ''. Further, the auxiliary capacitance signal #CSLn takes the potential VCS4 ″ in the subsequent period T3 ″ in the vertical scanning period Tv ′ and takes the potential VCS1 ″ in the period T4 ″. As shown in FIG. 7D, specific values of the potential VCS1 ″, the potential VCS2 ″, the potential VCS3 ″, and the potential VCS4 ″ are VCS1 ″ <VCS2 ″ <VCS4. It is assumed that '' <VCS3 '' and VCS2 ''-VCS1 '' <VCS3 ''-VCS2 '' and VCS3 ''-VCS4 '' <VCS4 ''-VCS1 '' are satisfied.

図7の(c)および(d)に示すように、補助容量信号#CSLnが、最も低い電位(電位VCS1’’)であるときであって、ゲート信号#GLnがハイレベルであるときに、液晶LCへの印加電圧は正極性へと変化し、補助容量信号#CSLnが、最も高い電位(電位VCS3’’)であるときであって、ゲート信号#GLnがハイレベルであるときに、液晶LCへの印加電圧は負極性へと変化する。   As shown in FIGS. 7C and 7D, when the auxiliary capacitance signal #CSLn is at the lowest potential (potential VCS1 ″) and the gate signal #GLn is at the high level, The voltage applied to the liquid crystal LC changes to positive polarity, and when the auxiliary capacitance signal #CSLn is at the highest potential (potential VCS3 ″) and the gate signal #GLn is at the high level, the liquid crystal The applied voltage to LC changes to negative polarity.

以下では、本動作例における表示パネル1の画素領域Pn,mの各部の動作について、説明する。   Hereinafter, the operation of each part of the pixel region Pn, m of the display panel 1 in this operation example will be described.

まず、図7の(b)に示すように、時刻t1’’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になる。トランジスタMn,mが導通状態になると、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。図7の(c)に示すように、時刻t1’’から時刻t2’’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V1’’から電位V2’’(V2’’は正)まで立ち上がる。   First, as shown in FIG. 7B, at time t1 ″, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. During the period when the gate signal #GLn is at the high level, the transistor Mn, m becomes conductive. When the transistor Mn, m becomes conductive, the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. As shown in FIG. 7C, the potential VPEn, m applied to the pixel electrode PEn, m during the period from the time t1 ″ to the time t2 ″ is from the potential V1 ″ to the potential V2 ″ ( V2 '' stands up to positive).

また、時刻t2’’において、補助容量信号#CSLnが、電位VCS1’’から電位VCS2’’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V2’’から電位V3’’へと変化する。ここで、電位V3’’の具体的な値は、
V3’’=(VCS2’’−VCS1’’)×CCS/ΣC+V2’’
によって定まる。なお、上述のように、VCS1’’<VCS2’’であるので、電位V3’’は、電位V2’’よりも大きい。
At time t2 ″, the auxiliary capacitance signal #CSLn rises from the potential VCS1 ″ to the potential VCS2 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V2 ″ to the potential V3 ″. Here, the specific value of the potential V3 '' is
V3 ″ = (VCS2 ″ −VCS1 ″) × CCS / ΣC + V2 ″
It depends on. As described above, since VCS1 ″ <VCS2 ″, the potential V3 ″ is higher than the potential V2 ″.

続いて、時刻t3’’において、補助容量信号#CSLnが、電位VCS2’’から電位VCS3’’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V3’’から電位V4’’へと変化する。ここで、電位V4’’の具体的な値は、
V4’’=(VCS3’’−VCS2’’)×CCS/ΣC+V3’’
によって定まる。なお、上述のように、VCS2’’<VCS3’’であるので、電位V4’’は、電位V3’’よりも大きい。
Subsequently, at time t3 ″, the auxiliary capacitance signal #CSLn rises from the potential VCS2 ″ to the potential VCS3 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V3 ″ to the potential V4 ″. Here, the specific value of the potential V4 '' is
V4 ″ = (VCS3 ″ −VCS2 ″) × CCS / ΣC + V3 ″
It depends on. As described above, since VCS2 ″ <VCS3 ″, the potential V4 ″ is larger than the potential V3 ″.

また、図7の(c)に示すように、電位V4’’と共通電位VCOMとの電位差は、電位V3’’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t3’’から時刻t4’’までの期間における液晶LCの透過率は、時刻t2’’から時刻t3’’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t3’’から時刻t4’’までの期間における画素領域Pn,mの輝度は、時刻t2’’から時刻t3’’までの期間における画素領域Pn,mの輝度よりも大きい。   Further, as shown in FIG. 7C, the potential difference between the potential V4 ″ and the common potential VCOM is larger than the potential difference between the potential V3 ″ and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t3 ″ to the time t4 ″ is larger than the transmittance of the liquid crystal LC in the period from the time t2 ″ to the time t3 ″. That is, the luminance of the pixel region Pn, m in the period from time t3 ″ to time t4 ″ is larger than the luminance of the pixel region Pn, m in the period from time t2 ″ to time t3 ″.

続いて、時刻t4’’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になり、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。   Subsequently, at time t4 ″, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a predetermined period. During a period in which the gate signal #GLn is at a high level, the transistor Mn, m is in a conductive state, and the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m.

図7の(a)に示すように、時刻t4’’から時刻t5’’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V4’’から電位V5’’(V5’’は負)まで立ち下がる。   As shown in FIG. 7A, the potential VPEn, m applied to the pixel electrode PEn, m during the period from the time t4 ″ to the time t5 ″ is from the potential V4 ″ to the potential V5 ″ ( V5 '' falls to negative).

また、時刻t5’’において、補助容量信号#CSLnが、電位VCS3’’から電位VCS4’’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V5’’から電位V6’’へと変化する。ここで、電位V6’’の具体的な値は、
V6’’=(VCS4’’−VCS3’’)×CCS/ΣC+V5’’
によって定まる。なお、上述のように、VCS4’’<VCS3’’であるので、電位V6’’は、電位V5’’よりも小さい。
At time t5 ″, the auxiliary capacitance signal #CSLn falls from the potential VCS3 ″ to the potential VCS4 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V5 ″ to the potential V6 ″. Here, the specific value of the potential V6 '' is
V6 ″ = (VCS4 ″ −VCS3 ″) × CCS / ΣC + V5 ″
It depends on. As described above, since VCS4 ″ <VCS3 ″, the potential V6 ″ is smaller than the potential V5 ″.

続いて、時刻t6’’において、補助容量信号#CSLnが、電位VCS4’’から電位VCS1’’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V6’’から電位V1’’へと変化する。ここで、電位V1’’の具体的な値は、
V1’’=(VCS1’’−VCS4’’)×CCS/ΣC+V6’’
によって定まる。なお、上述のように、VCS1’’<VCS4’’であるので、電位V1’’は、電位V6’’よりも小さい。
Subsequently, at time t6 ″, the auxiliary capacitance signal #CSLn falls from the potential VCS4 ″ to the potential VCS1 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V6 ″ to the potential V1 ″. Here, the specific value of the potential V1 '' is
V1 ″ = (VCS1 ″ −VCS4 ″) × CCS / ΣC + V6 ″
It depends on. As described above, since VCS1 ″ <VCS4 ″, the potential V1 ″ is smaller than the potential V6 ″.

また、図7の(c)に示すように、電位V1’’と共通電位VCOMとの電位差は、電位V6’’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t6’’から時刻t7’’までの期間における液晶LCの透過率は、時刻t5’’から時刻t6’’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t6’’から時刻t7’’までの期間における画素領域Pn,mの輝度は、時刻t5’’から時刻t6’’までの期間における画素領域Pn,mの輝度よりも大きい。   Further, as shown in FIG. 7C, the potential difference between the potential V1 ″ and the common potential VCOM is larger than the potential difference between the potential V6 ″ and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t6 ″ to the time t7 ″ is larger than the transmittance of the liquid crystal LC in the period from the time t5 ″ to the time t6 ″. That is, the luminance of the pixel region Pn, m in the period from time t6 ″ to time t7 ″ is greater than the luminance of the pixel region Pn, m in the period from time t5 ″ to time t6 ″.

時刻t7’’以降の動作は、上述した時刻t1’’以降の動作と同様である。   The operation after time t7 '' is the same as the operation after time t1 '' described above.

なお、上記の動作例においては、時刻t2’’において、補助容量信号#CSLnが、電位VCS1’’から電位VCS2’’まで立ち上がり、時刻t5’’において、補助容量信号#CSLnが、電位VCS3’’から電位VCS4’’まで立ち下がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t2’’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS1’’から電位VCS2’’まで立ち上がり、時刻t5’’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS3’’から電位VCS4’’まで立ち下がる。   In the above operation example, the auxiliary capacitance signal #CSLn rises from the potential VCS1 ″ to the potential VCS2 ″ at time t2 ″, and the auxiliary capacitance signal #CSLn becomes the potential VCS3 ′ at time t5 ″. The case where the voltage falls from 'to the potential VCS4 ″ has been described. More generally, however, the auxiliary capacitance signal #CSLn is used until several horizontal periods (multiple times the horizontal period Th) elapse from time t2 ″. Rises from the potential VCS1 ″ to the potential VCS2 ″ during the period from the potential VCS3 ″ to the potential VCS4 ″ from the time t5 ″ until several horizontal periods (multiple times of the horizontal period Th) elapse. Fall down.

また、本動作例においては、前記補助容量ドライバ14は、前記1走査期間(垂直走査期間Tv’’)において、前記任意の補助容量バスラインCSLnに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給し、前記1走査期間(垂直走査期間Tv’’)の次の1走査期間において、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、何れか2つの電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルの何れとも異なる第4の電圧レベルとからなる矩形状の電圧信号(補助容量信号#CSLn)を供給する。   In this operation example, the auxiliary capacitor driver 14 synchronizes with the conduction signal with respect to the arbitrary auxiliary capacitor bus line CSLn in the one scanning period (vertical scanning period Tv ″). A rectangular voltage signal having a voltage level of 1, a second voltage level, and a third voltage level different from any of the first voltage level and the second voltage level; In one scanning period following the scanning period (vertical scanning period Tv ″), any two voltage levels of the first voltage level, the second voltage level, and the third voltage level are A rectangular voltage signal (auxiliary capacitance signal #CSLn) comprising the first voltage level, the second voltage level, and a fourth voltage level different from any of the third voltage levels is supplied. .

すなわち、本動作例においては、前記補助容量ドライバ14は、連続する2垂直走査期間において、電位VCS1’’、電位VCS2’’、電位VCS3’’、および、電位VCS4’’からなる矩形状の電圧信号(補助容量信号#CSLn)を供給する。   That is, in this operation example, the auxiliary capacitor driver 14 is a rectangular voltage composed of the potential VCS1 ″, the potential VCS2 ″, the potential VCS3 ″, and the potential VCS4 ″ in two consecutive vertical scanning periods. A signal (auxiliary capacitance signal #CSLn) is supplied.

したがって、本動作例においては、前記補助容量ドライバ14は、前記1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給することができるので、上記1走査期間において、上記任意の補助容量バスラインに印加される電圧レベルは、3値に変化する。換言すれば、上記1走査期間において、補助容量バスラインに印加される電圧レベルは、2回遷移する。上記1走査期間における上記電圧レベルの第1回目の遷移によって、上記電圧レベルの第1回目の遷移後において上記液晶に印加される電圧を、上記電圧レベルの第1回目の遷移後における表示に好適なものとし、上記電圧レベルの第2回目の遷移によって、高輝度と低輝度との切り替えを行うことができる。   Therefore, in the present operation example, the auxiliary capacitor driver 14 synchronizes the first voltage level and the second voltage with respect to the arbitrary auxiliary capacitor bus line in synchronization with the conduction signal in the one scanning period. And a rectangular voltage signal having a third voltage level that is different from any of the first voltage level and the second voltage level can be supplied. The voltage level applied to any auxiliary capacitance bus line changes to a ternary value. In other words, the voltage level applied to the storage capacitor bus line transitions twice in the one scanning period. The voltage applied to the liquid crystal after the first transition of the voltage level by the first transition of the voltage level in the one scanning period is suitable for display after the first transition of the voltage level. It is possible to switch between high luminance and low luminance by the second transition of the voltage level.

したがって、上記の構成によれば、動画ボケの現象を効果的に抑制しつつ、より高輝度な表示が可能となる。   Therefore, according to the above configuration, it is possible to display with higher luminance while effectively suppressing the phenomenon of moving image blur.

さらに、上記の構成によれば、前記1走査期間の次の1走査期間において、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、何れか2つの電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルの何れとも異なる第4の電圧レベルとからなる矩形状の電圧信号を供給することができるので、前記1走査期間の次の1走査期間において、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルとからなる矩形状の電圧信号を供給する場合に比べて、高輝度と低輝度の輝度レベルの調整をより柔軟に行うことができる。   Further, according to the above configuration, any one of the first voltage level, the second voltage level, and the third voltage level in one scanning period following the one scanning period is selected. Since a rectangular voltage signal comprising a voltage level and a fourth voltage level different from any of the first voltage level, the second voltage level, and the third voltage level can be supplied. Compared to a case where a rectangular voltage signal composed of the first voltage level, the second voltage level, and the third voltage level is supplied in one scanning period following the one scanning period. In addition, the brightness levels of high brightness and low brightness can be adjusted more flexibly.

したがって、上記の構成によれば、上記動画ボケの現象をより一層効果的に抑制しつつ、高輝度な表示を行うことができる。   Therefore, according to the above configuration, it is possible to perform display with high luminance while further effectively suppressing the phenomenon of moving image blur.

また、本発明に係る表示パネルにおいては、前記1走査期間(垂直走査期間Tv’’)における最初の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値|VCS2’’−VCS1’’|は、前記1走査期間における次の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値|VCS3’’−VCS2’’|よりも小さい。ここで、記号|a|はaの絶対値を表すものとする。   In the display panel according to the present invention, the absolute value of the voltage level potential difference | VCS2 ″ −VCS1 ″ before and after the first transition of the voltage level in the one scanning period (vertical scanning period Tv ″). Is smaller than the absolute value | VCS3 ″ −VCS2 ″ | of the voltage level potential difference before and after the next transition of the voltage level in the one scanning period. Here, the symbol | a | represents the absolute value of a.

したがって、本動作例においては、時刻t3’’における補助容量信号#CSLnの電圧レベルの遷移に伴う画素領域Pn,mの輝度の変化を、輝度を高める効果は維持しつつ大きくすることができる。   Therefore, in this operation example, the change in the luminance of the pixel region Pn, m accompanying the voltage level transition of the auxiliary capacitance signal #CSLn at time t3 ″ can be increased while maintaining the effect of increasing the luminance.

したがって、本動作例においては、上記動画ボケの現象をより効果的に抑制することができる。また、時刻t5’’から時刻t8’’までの1垂直走査期間Tv’’についても同様である。   Therefore, in this operation example, the phenomenon of moving image blur can be more effectively suppressed. The same applies to one vertical scanning period Tv ″ from time t5 ″ to time t8 ″.

次に、図8の(a)〜(d)を参照して、ソースドライバ12が、ソースバスラインSLmに対して、低階調に対応するソース信号#SLmを供給する場合について説明する。なお、上記の説明と重複する部分については、説明を省略する。   Next, a case where the source driver 12 supplies the source signal #SLm corresponding to the low gradation to the source bus line SLm will be described with reference to FIGS. In addition, description is abbreviate | omitted about the part which overlaps with said description.

図8の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートであり、図6の(a)と同様の波形である。   FIG. 8A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm, which is the same waveform as that of FIG.

図8の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートである。図8の(b)に示すように、本動作例におけるゲート信号#GLnの波形は、図3の(b)に示すゲート信号#GLnの波形と同様であるとして説明を行う。   FIG. 8B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn. As shown in FIG. 8B, description will be made assuming that the waveform of the gate signal #GLn in this operation example is the same as the waveform of the gate signal #GLn shown in FIG.

図8の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 8C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図8の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートであり、図6の(d)と同様の波形である。   FIG. 8D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn, which is the same waveform as in FIG.

まず、図8の(b)に示すように、時刻t1’’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。図8の(a)に示すように、時刻t1’’から時刻t2’’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V01’’から電位V02’’まで立ち下がる。   First, as shown in FIG. 8B, at time t1 ″, the gate signal #GLn rises from a low level to a high level, and falls to a low level after a certain period. As shown in FIG. 8A, the potential VPEn, m applied to the pixel electrode PEn, m during the period from time t1 ″ to time t2 ″ is from potential V01 ″ to potential V02 ″. Fall down.

また、時刻t2’’において、補助容量信号#CSLnが、電位VCS1’’から電位VCS2’’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V2’’から例えば電位V01’’へと変化する。   At time t2 ″, the auxiliary capacitance signal #CSLn rises from the potential VCS1 ″ to the potential VCS2 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V2 ″ to, for example, the potential V01 ″.

続いて、時刻t3’’において、補助容量信号#CSLnが、電位VCS2’’から電位VCS3’’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V01’’から電位V03’’へと変化する。ここで、電位V03’’の具体的な値は、
V03’’=(VCS3’’−VCS2’’)×CCS/ΣC+V01’’
によって定まる。なお、上述のように、VCS2’’<VCS3’’であるので、電位V03’’は、電位V01’’よりも大きい。
Subsequently, at time t3 ″, the auxiliary capacitance signal #CSLn rises from the potential VCS2 ″ to the potential VCS3 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V01 ″ to the potential V03 ″. Here, the specific value of the potential V03 '' is
V03 ″ = (VCS3 ″ −VCS2 ″) × CCS / ΣC + V01 ″
It depends on. As described above, since VCS2 ″ <VCS3 ″, the potential V03 ″ is higher than the potential V01 ″.

続いて、時刻t4’’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。図8の(c)に示すように、時刻t4’’から時刻t5’’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V03’’から電位V04’’まで立ち上がる。   Subsequently, at time t4 ″, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a predetermined period. As shown in FIG. 8C, the potential VPEn, m applied to the pixel electrode PEn, m from the time t4 ″ to the time t5 ″ is from the potential V03 ″ to the potential V04 ″. stand up.

また、時刻t5’’において、補助容量信号#CSLnが、電位VCS3’’から電位VCS4’’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V04’’から例えば電位V03’’へと変化する。   At time t5 ″, the auxiliary capacitance signal #CSLn falls from the potential VCS3 ″ to the potential VCS4 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V04 ″ to, for example, the potential V03 ″.

続いて、時刻t6’’において、補助容量信号#CSLnが、電位VCS4’’から電位VCS1’’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V03’’から例えば電位V01’’へと変化する。   Subsequently, at time t6 ″, the auxiliary capacitance signal #CSLn falls from the potential VCS4 ″ to the potential VCS1 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V03 ″ to, for example, the potential V01 ″.

時刻t7’’以降の動作は、上述した時刻t1’’以降の動作と同様である。   The operation after time t7 '' is the same as the operation after time t1 '' described above.

図8の(c)に示すように、画素電極PEn,mの電位VPEn,mと、共通電位VCOMとの電位差の絶対値は、全期間において常にほぼ一定に保たれている。すなわち、図8の(d)のように補助容量信号#CSLnの値を変化させる場合であっても、画素領域Pn,mが備える液晶LCの透過率をほぼ一定に保つことができる。   As shown in FIG. 8C, the absolute value of the potential difference between the potential VPEn, m of the pixel electrode PEn, m and the common potential VCOM is always kept substantially constant throughout the entire period. That is, even when the value of the auxiliary capacitance signal #CSLn is changed as shown in FIG. 8D, the transmittance of the liquid crystal LC included in the pixel region Pn, m can be kept substantially constant.

上記の動作例1から動作例3においては、1垂直走査期間の後半における画素領域Pn,mの輝度が、当該1垂直走査期間の前半における画素領域Pn,mの輝度よりも大きい場合について説明を行ったが、本発明はこれに限られるものではない。以下では、1垂直走査期間の後半における画素領域Pn,mの輝度が、当該1垂直走査期間の前半における画素領域Pn,mの輝度よりも小さくなる場合の動作例4〜動作例6について、図9〜図11を参照して説明する。   In the above operation example 1 to operation example 3, the case where the luminance of the pixel region Pn, m in the second half of one vertical scanning period is higher than the luminance of the pixel region Pn, m in the first half of the one vertical scanning period will be described. Although performed, the present invention is not limited to this. Hereinafter, operation examples 4 to 6 in the case where the luminance of the pixel region Pn, m in the second half of one vertical scanning period is lower than the luminance of the pixel region Pn, m in the first half of the one vertical scanning period will be described with reference to This will be described with reference to FIGS.

なお、本動作例においては、前記1走査期間1垂直走査期間Tv’’において、最初の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性と、次の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性とは、互いに異なった極性である。すなわち、補助容量信号#CSLnが電位VCS2’’であるときの画素電極PEn,mの電位V01’’と対向電極の電位VCOMとの差で表される液晶への印加電圧と、補助容量信号#CSLnが電位VCS3’’であるときの画素電極PEn,mの電位V03’’と対向電極の電位VCOMの差で表される液晶への印加電圧とは、互いに反対極性である。   In this operation example, in the one scanning period 1 vertical scanning period Tv ″, the liquid crystal represented by the difference between the potential of the pixel electrode and the potential of the counter electrode after the first transition of the voltage level. The polarity of the voltage applied to the liquid crystal and the polarity of the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode and the potential of the counter electrode after the next transition of the voltage level are different from each other It is. That is, the voltage applied to the liquid crystal expressed by the difference between the potential V01 ″ of the pixel electrode PEn, m and the potential VCOM of the counter electrode when the auxiliary capacitance signal #CSLn is the potential VCS2 ″, and the auxiliary capacitance signal # The voltages applied to the liquid crystal expressed by the difference between the potential V03 ″ of the pixel electrode PEn, m when the CSLn is the potential VCS3 ″ and the potential VCOM of the counter electrode have opposite polarities.

上記の構成によれば、前記1走査期間において、最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、前記液晶への印加電圧の絶対値を十分に小さくすることができる。   According to the above configuration, the absolute value of the voltage applied to the liquid crystal is sufficiently set in the one scanning period even after the first voltage level transition or after the next voltage level transition. Can be made smaller.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記1走査期間における最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、十分に低輝度な黒表示を行うことができる。   Therefore, according to the above configuration, even in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, even after the first transition of the voltage level in the one scanning period. Even after the next transition of the voltage level, sufficiently low luminance black display can be performed.

また、本動作例においては、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、2番目に低い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、最も高い電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、ことが好ましい。すなわち、本動作例においては、電位VCS1’’、電位VCS2’’、電位VCS3’’、および、電位VCS4’’のうち、2番目に低い電圧レベルVCS2’’と、最も高い電圧レベルVCS3’’との電位差の絶対値は、液晶の閾値電圧の2倍以下であることが好ましい。   Further, in this operation example, the second lowest voltage level among the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level, and the first voltage level, Among the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level, the absolute value of the potential difference from the highest voltage level is not more than twice the threshold voltage of the liquid crystal It is preferable that That is, in this operation example, the second lowest voltage level VCS2 ″ and the highest voltage level VCS3 ″ among the potential VCS1 ″, the potential VCS2 ″, the potential VCS3 ″, and the potential VCS4 ″. The absolute value of the potential difference is preferably not more than twice the threshold voltage of the liquid crystal.

上記の構成によれば、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、2番目に低い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、最も高い電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、ことが好ましい。すなわち、本動作例においては、電位VCS1’’、電位VCS2’’、電位VCS3’’、および、電位VCS4’’のうち、2番目に低い電圧レベルVCS2’’と、最も高い電圧レベルVCS3’’との電位差の絶対値は、液晶の閾値電圧の2倍以下であるため、前記第3の電圧レベル、および、前記第4の電圧レベルの何れの電圧レベルであっても、前記液晶の配向が影響を受けないようにすることができる。   According to the above configuration, the second lowest voltage level among the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level, and the first voltage level, The absolute value of the potential difference from the highest voltage level among the second voltage level, the second voltage level, the third voltage level, and the fourth voltage level is not more than twice the threshold voltage of the liquid crystal. It is preferable that there is. That is, in this operation example, the second lowest voltage level VCS2 ″ and the highest voltage level VCS3 ″ among the potential VCS1 ″, the potential VCS2 ″, the potential VCS3 ″, and the potential VCS4 ″. The absolute value of the potential difference with respect to the liquid crystal is less than or equal to twice the threshold voltage of the liquid crystal, so that the orientation of the liquid crystal is the same regardless of the voltage level of the third voltage level or the fourth voltage level. It can be made unaffected.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルの何れであっても、黒表示を行うことができる。   Therefore, according to the above configuration, in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, the voltage level of the rectangular voltage signal is the first voltage level, Black display can be performed at any of the second voltage level, the third voltage level, and the fourth voltage level.

(表示パネル1の動作例4)
以下では、図9の(a)〜(d)を参照して、本実施形態に係る表示パネル1の動作の第4の例について説明する。
(Operation example 4 of display panel 1)
Below, with reference to (a)-(d) of FIG. 9, the 4th example of operation | movement of the display panel 1 which concerns on this embodiment is demonstrated.

図9の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートである。図9の(a)に示すように、本動作例におけるソース信号#SLmの波形は、図3の(a)に示すソース信号#SLmの波形とほぼ同様であるとして説明を行う。   FIG. 9A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm. As shown in FIG. 9A, the description will be made assuming that the waveform of the source signal #SLm in this operation example is substantially the same as the waveform of the source signal #SLm shown in FIG.

図9の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートである。図9の(b)に示すように、本動作例におけるゲート信号#GLnの波形は、図3の(b)に示すゲート信号#GLnの波形と同様であるとして説明を行う。   FIG. 9B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn. As shown in FIG. 9B, the description will be made assuming that the waveform of the gate signal #GLn in this operation example is the same as the waveform of the gate signal #GLn shown in FIG.

図9の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 9C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図9の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。図9の(d)に示すように、本動作例における補助容量信号#CSLnは、連続する2つの垂直走査期間Tvを1周期として、電位VCS11、電位VCS12をとる信号である。より具体的には、図9の(d)に示すように、補助容量信号#CSLnは、1垂直走査期間Tvにおける期間T11において電位VCS12をとり、期間T12における時刻t13から時刻t14において電位VCS11をとり、期間T12における時刻t14から時刻t15において電位VCS12をとる。また、補助容量信号#CSLnは、それに引き続く垂直走査期間Tvにおける期間T13において電位VCS11をとり、期間T14における時刻t16から時刻t17において電位VCS12をとり、期間T14における時刻t17から時刻t18において電位VCS11をとる。なお、図9の(d)に示すように、電位VCS11、および、電位VCS12の具体的な値は、VCS11<VCS12を満たすものとする。   FIG. 9D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn. As shown in FIG. 9D, the storage capacitor signal #CSLn in this operation example is a signal that takes the potentials VCS11 and VCS12 with two consecutive vertical scanning periods Tv as one cycle. More specifically, as shown in FIG. 9D, the auxiliary capacitance signal #CSLn takes the potential VCS12 in the period T11 in one vertical scanning period Tv, and the potential VCS11 in the period T12 from the time t13 to the time t14. Thus, the potential VCS12 is taken from the time t14 to the time t15 in the period T12. The auxiliary capacitance signal #CSLn takes the potential VCS11 in the subsequent period T13 in the vertical scanning period Tv, takes the potential VCS12 in the period T14 from the time t16 to the time t17, and takes the potential VCS11 in the period T14 from the time t17 to the time t18. Take. As shown in FIG. 9D, specific values of the potential VCS11 and the potential VCS12 satisfy VCS11 <VCS12.

以下では、本動作例における表示パネル1の画素領域Pn,mの各部の動作について、説明する。   Hereinafter, the operation of each part of the pixel region Pn, m of the display panel 1 in this operation example will be described.

まず、図9の(b)に示すように、時刻t11において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になる。トランジスタMn,mが導通状態になると、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。図9の(c)に示すように、時刻t11から時刻t12までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V11から電位V12(V12は正)まで立ち上がる。   First, as shown in FIG. 9B, at time t11, the gate signal #GLn rises from a low level to a high level, and falls to a low level after a certain period of time. During the period when the gate signal #GLn is at the high level, the transistor Mn, m becomes conductive. When the transistor Mn, m becomes conductive, the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. As shown in FIG. 9C, in the period from time t11 to time t12, the potential VPEn, m applied to the pixel electrode PEn, m rises from the potential V11 to the potential V12 (V12 is positive).

また、時刻t12において、補助容量信号#CSLnが、電位VCS11から電位VCS12まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V12から電位V13へと変化する。ここで、電位V13の具体的な値は、
V13=(VCS12−VCS11)×CCS/ΣC+V12
によって定まる。なお、上述のように、VCS11<VCS12であるので、電位V13は、電位V12よりも大きい。
At time t12, the auxiliary capacitance signal #CSLn rises from the potential VCS11 to the potential VCS12. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V12 to the potential V13. Here, the specific value of the potential V13 is
V13 = (VCS12−VCS11) × CCS / ΣC + V12
It depends on. Note that, as described above, since VCS11 <VCS12, the potential V13 is higher than the potential V12.

続いて、時刻t13において、補助容量信号#CSLnが、電位VCS12から電位VCS11まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V13から電位V12へと変化する。   Subsequently, at time t13, the auxiliary capacitance signal #CSLn falls from the potential VCS12 to the potential VCS11. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V13 to the potential V12.

図9の(c)に示すように、電位V13と共通電位VCOMとの電位差は、電位V12と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t12から時刻t13までの期間における液晶LCの透過率は、時刻t13から時刻t14までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t12から時刻t13までの期間における画素領域Pn,mの輝度は、時刻t13から時刻t14までの期間における画素領域Pn,mの輝度よりも大きい。   As shown in FIG. 9C, the potential difference between the potential V13 and the common potential VCOM is larger than the potential difference between the potential V12 and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t12 to the time t13 is larger than the transmittance of the liquid crystal LC in the period from the time t13 to the time t14. That is, the luminance of the pixel region Pn, m in the period from time t12 to time t13 is larger than the luminance of the pixel region Pn, m in the period from time t13 to time t14.

続いて、時刻t14において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になり、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。また、時刻t14において、補助容量信号#CSLnが、電位VCS11から電位VCS12まで立ち上がる。   Subsequently, at time t14, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. During a period in which the gate signal #GLn is at a high level, the transistor Mn, m is in a conductive state, and the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. At time t14, the auxiliary capacitance signal #CSLn rises from the potential VCS11 to the potential VCS12.

図9の(a)に示すように、時刻t14から時刻t15までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V12から、例えば、電位V11まで立ち下がる。   As shown in FIG. 9A, in the period from time t14 to time t15, the potential VPEn, m applied to the pixel electrode PEn, m falls from the potential V12 to, for example, the potential V11.

また、時刻t15において、補助容量信号#CSLnが、電位VCS12から電位VCS11まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V11から電位V14へと変化する。ここで、電位V14の具体的な値は、
V14=(VCS11−VCS12)×CCS/ΣC+V11
によって定まる。なお、上述のように、VCS11<VCS12であるので、電位V14は、電位V11よりも小さい。
At time t15, the auxiliary capacitance signal #CSLn falls from the potential VCS12 to the potential VCS11. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V11 to the potential V14. Here, the specific value of the potential V14 is
V14 = (VCS11−VCS12) × CCS / ΣC + V11
It depends on. As described above, since VCS11 <VCS12, the potential V14 is smaller than the potential V11.

続いて、時刻t16において、補助容量信号#CSLnが、電位VCS11から電位VCS12へと立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V14から電位V11へと変化する。   Subsequently, at time t16, the auxiliary capacitance signal #CSLn rises from the potential VCS11 to the potential VCS12. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V14 to the potential V11.

図9の(c)に示すように、電位V14と共通電位VCOMとの電位差は、電位V11と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t15から時刻t16までの期間における液晶LCの透過率は、時刻t16から時刻t17までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t15から時刻t16までの期間における画素領域Pn,mの輝度は、時刻t16から時刻t17までの期間における画素領域Pn,mの輝度よりも大きい。   As shown in FIG. 9C, the potential difference between the potential V14 and the common potential VCOM is larger than the potential difference between the potential V11 and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t15 to the time t16 is larger than the transmittance of the liquid crystal LC in the period from the time t16 to the time t17. That is, the luminance of the pixel region Pn, m in the period from time t15 to time t16 is larger than the luminance of the pixel region Pn, m in the period from time t16 to time t17.

続いて、時刻t17において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。また、補助容量信号#CSLnが、電位VCS12から電位VCS11まで立ち下がる。時刻t17以降の動作は、上述した時刻t11以降の動作と同様である。   Subsequently, at time t17, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a predetermined period. Further, the auxiliary capacitance signal #CSLn falls from the potential VCS12 to the potential VCS11. The operation after time t17 is the same as the operation after time t11 described above.

なお、上記の動作例においては、補助容量信号#CSLnが、時刻t12において、電位VCS11から電位VCS12まで立ち上がり、時刻t15において、電位VCS12から電位VCS11まで立ち下がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t12から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS11から電位VCS12まで立ち上がり、時刻t15から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS12から電位VCS11まで立ち下がる。   In the above operation example, the case where the auxiliary capacitance signal #CSLn rises from the potential VCS11 to the potential VCS12 at time t12 and falls from the potential VCS12 to the potential VCS11 at time t15 has been described. The auxiliary capacitance signal #CSLn rises from the potential VCS11 to the potential VCS12 from the time t12 until several horizontal periods (multiple times the horizontal period Th) elapse, and from the time t15 for several horizontal periods (horizontal period Th). The potential falls from the potential VCS12 to the potential VCS11 until a period of a plurality of times elapses.

また、上記の動作例においては、補助容量信号#CSLnが、時刻t14において、電位VCS11から電位VCS12まで立ち上がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t13から時刻t15までの間に電位VCS11から電位VCS12まで立ち上がる。   In the above operation example, the case where the auxiliary capacitance signal #CSLn rises from the potential VCS11 to the potential VCS12 at time t14 has been described, but more generally, the auxiliary capacitance signal #CSLn is It rises from the potential VCS11 to the potential VCS12 during t15.

本動作例のように、本発明に係る表示パネル1は、1垂直走査期間の後半における画素領域Pn,mの輝度が当該1垂直走査期間の前半における画素領域Pn,mの輝度よりも小さくなるように補助容量信号#CSLnを供給することによっても、1垂直走査期間における画素領域Pn,mの輝度の変化を生じせしめることができる。   As in this operation example, in the display panel 1 according to the present invention, the luminance of the pixel region Pn, m in the second half of one vertical scanning period is smaller than the luminance of the pixel region Pn, m in the first half of the one vertical scanning period. By supplying the auxiliary capacitance signal #CSLn as described above, it is possible to cause a change in luminance of the pixel region Pn, m in one vertical scanning period.

したがって、本動作例においても、上記動画ボケの現象を抑制することができる。   Therefore, also in this operation example, the moving image blurring phenomenon can be suppressed.

(表示パネル1の動作例5)
以下では、図10の(a)〜(d)を参照して、本実施形態に係る表示パネル1の動作の第5の例について説明する。
(Operation example 5 of display panel 1)
Below, with reference to (a)-(d) of FIG. 10, the 5th example of operation | movement of the display panel 1 which concerns on this embodiment is demonstrated.

図10の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートである。図10の(a)に示すように、本動作例におけるソース信号#SLmの波形は、図3の(a)に示すソース信号#SLmの波形とほぼ同様であるとして説明を行う。   FIG. 10A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm. As shown in FIG. 10A, the description will be made assuming that the waveform of the source signal #SLm in this operation example is substantially the same as the waveform of the source signal #SLm shown in FIG.

図10の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートである。図10の(b)に示すように、本動作例におけるゲート信号#GLnの波形は、図3の(b)に示すゲート信号#GLnの波形とほぼ同様であるとして説明を行う。   FIG. 10B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn. As shown in FIG. 10B, the description will be made assuming that the waveform of the gate signal #GLn in this operation example is substantially the same as the waveform of the gate signal #GLn shown in FIG.

図10の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 10C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図10の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。図10の(d)に示すように、本動作例における補助容量信号#CSLnは、連続する2つの垂直走査期間Tv’を1周期として、電位VCS11’、電位VCS12’、および、電位VCS13’をとる信号である。より具体的には、図10の(d)に示すように、補助容量信号#CSLnは、1垂直走査期間Tv’における期間T11’において電位VCS12’をとり、期間T12’における時刻t13’から時刻t14’において電位VCS13’をとり、期間T12’における時刻t14’から時刻t15’において電位VCS12’をとる。また、補助容量信号#CSLnは、それに引き続く垂直走査期間Tv’における期間T13’において電位VCS11’をとり、期間T14’における時刻t16’から時刻t17’において電位VCS13’をとり、期間T14’における時刻t17’から時刻t18’において電位VCS11’をとる。なお、図10の(d)に示すように、電位VCS11’、電位VCS12’、および、電位VCS13’の具体的な値は、VCS11’<VCS13’<VCS12’を満たすものとする。   FIG. 10D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn. As shown in FIG. 10 (d), the auxiliary capacitance signal #CSLn in this operation example has the potential VCS11 ′, the potential VCS12 ′, and the potential VCS13 ′ as one cycle of two consecutive vertical scanning periods Tv ′. It is a signal to take. More specifically, as shown in FIG. 10 (d), the storage capacitor signal #CSLn takes the potential VCS12 'in the period T11' in one vertical scanning period Tv 'and starts from the time t13' in the period T12 '. The potential VCS13 ′ is taken at t14 ′, and the potential VCS12 ′ is taken from time t14 ′ to time t15 ′ in the period T12 ′. Further, the auxiliary capacitance signal #CSLn takes the potential VCS11 ′ in the subsequent period T13 ′ in the vertical scanning period Tv ′, takes the potential VCS13 ′ in the period T14 ′ from the time t16 ′ to the time t17 ′, and takes the time in the period T14 ′. The potential VCS11 'is taken from t17' to time t18 '. As shown in FIG. 10D, specific values of the potential VCS11 ', the potential VCS12', and the potential VCS13 'satisfy VCS11' <VCS13 '<VCS12'.

以下では、本動作例における表示パネル1の画素領域Pn,mの各部の動作について、説明する。   Hereinafter, the operation of each part of the pixel region Pn, m of the display panel 1 in this operation example will be described.

まず、図10の(b)に示すように、時刻t11’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になる。トランジスタMn,mが導通状態になると、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。図10の(a)に示すように、時刻t11’から時刻t12’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V11’から電位V12’(V12’は正)まで立ち上がる。   First, as shown in FIG. 10B, at time t11 ', the gate signal #GLn rises from a low level to a high level, and falls to a low level after a certain period. During the period when the gate signal #GLn is at the high level, the transistor Mn, m becomes conductive. When the transistor Mn, m becomes conductive, the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. As shown in FIG. 10A, the potential VPEn, m applied to the pixel electrode PEn, m from the potential V11 ′ to the potential V12 ′ (V12 ′ is positive) during the period from the time t11 ′ to the time t12 ′. ) Stand up.

また、時刻t12’において、補助容量信号#CSLnが、電位VCS11’から電位VCS12’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V12’から電位V13’へと変化する。ここで、電位V13’の具体的な値は、
V13’=(VCS12’−VCS11’)×CCS/ΣC+V12’
によって定まる。なお、上述のように、VCS11’<VCS12’であるので、電位V13’は、電位V12’よりも大きい。
At time t12 ′, the auxiliary capacitance signal #CSLn rises from the potential VCS11 ′ to the potential VCS12 ′. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V12 ′ to the potential V13 ′. Here, the specific value of the potential V13 ′ is
V13 ′ = (VCS12′−VCS11 ′) × CCS / ΣC + V12 ′
It depends on. As described above, since VCS11 ′ <VCS12 ′, the potential V13 ′ is higher than the potential V12 ′.

続いて、時刻t13’において、補助容量信号#CSLnが、電位VCS12’から電位VCS13’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V13’から電位V14’へと変化する。ここで、電位V14’の具体的な値は、
V14’=(VCS13’−VCS12’)×CCS/ΣC+V13’
によって定まる。なお、上述のように、VCS13’<VCS12’であるので、電位V14’は、電位V13’よりも小さい。
Subsequently, at time t13 ′, the auxiliary capacitance signal #CSLn falls from the potential VCS12 ′ to the potential VCS13 ′. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V13 ′ to the potential V14 ′. Here, the specific value of the potential V14 ′ is
V14 ′ = (VCS13′−VCS12 ′) × CCS / ΣC + V13 ′
It depends on. As described above, since VCS13 ′ <VCS12 ′, the potential V14 ′ is smaller than the potential V13 ′.

図10の(c)に示すように、電位V13’と共通電位VCOMとの電位差は、電位V14’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t12’から時刻t13’までの期間における液晶LCの透過率は、時刻t13’から時刻t14’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t12’から時刻t13’までの期間における画素領域Pn,mの輝度は、時刻t13’から時刻t14’までの期間における画素領域Pn,mの輝度よりも大きい。   As shown in FIG. 10C, the potential difference between the potential V13 'and the common potential VCOM is larger than the potential difference between the potential V14' and the common potential VCOM. That is, the transmittance of the liquid crystal LC during the period from the time t12 'to the time t13' is larger than the transmittance of the liquid crystal LC during the period from the time t13 'to the time t14'. That is, the luminance of the pixel region Pn, m in the period from time t12 'to time t13' is larger than the luminance of the pixel region Pn, m in the period from time t13 'to time t14'.

続いて、時刻t14’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になり、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。また、時刻t14’において、補助容量信号#CSLnが、電位VCS13’から電位VCS12’まで立ち上がる。   Subsequently, at time t14 ', the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. During a period in which the gate signal #GLn is at a high level, the transistor Mn, m is in a conductive state, and the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. At time t14 ', the auxiliary capacitance signal #CSLn rises from the potential VCS13' to the potential VCS12 '.

図10の(c)に示すように、時刻t14’から時刻t15’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V14’から電位V15’(V15’は負)まで立ち下がる。   As shown in FIG. 10C, the potential VPEn, m applied to the pixel electrode PEn, m from the potential V14 ′ to the potential V15 ′ (V15 ′ is negative) in the period from the time t14 ′ to the time t15 ′. ).

また、時刻t15’において、補助容量信号#CSLnが、電位VCS12’から電位VCS11’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V15’から電位V16’へと変化する。ここで、電位V16’の具体的な値は、
V16’=(VCS11’−VCS12’)×CCS/ΣC+V15’
によって定まる。なお、上述のように、VCS11’<VCS12’であるので、電位V16’は、電位V15’よりも小さい。
At time t15 ′, the auxiliary capacitance signal #CSLn falls from the potential VCS12 ′ to the potential VCS11 ′. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V15 ′ to the potential V16 ′. Here, the specific value of the potential V16 ′ is
V16 ′ = (VCS11′−VCS12 ′) × CCS / ΣC + V15 ′
It depends on. As described above, since VCS11 ′ <VCS12 ′, the potential V16 ′ is smaller than the potential V15 ′.

続いて、時刻t16’において、補助容量信号#CSLnが、電位VCS11’から電位VCS13’へと立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V16’から電位V11’へと変化する。   Subsequently, at time t16 ', the auxiliary capacitance signal #CSLn rises from the potential VCS11' to the potential VCS13 '. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V16 'to the potential V11'.

図10の(c)に示すように、電位V16’と共通電位VCOMとの電位差は、電位V11’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t15’から時刻t16’までの期間における液晶LCの透過率は、時刻t16’から時刻t17’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t15’から時刻t16’までの期間における画素領域Pn,mの輝度は、時刻t16’から時刻t17’までの期間における画素領域Pn,mの輝度よりも大きい。   As shown in FIG. 10C, the potential difference between the potential V16 'and the common potential VCOM is larger than the potential difference between the potential V11' and the common potential VCOM. That is, the transmittance of the liquid crystal LC in the period from the time t15 'to the time t16' is larger than the transmittance of the liquid crystal LC in the period from the time t16 'to the time t17'. That is, the luminance of the pixel region Pn, m in the period from time t15 'to time t16' is larger than the luminance of the pixel region Pn, m in the period from time t16 'to time t17'.

続いて、時刻t17’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。また、補助容量信号#CSLnが、電位VCS12’から電位VCS11’まで立ち下がる。時刻t17’以降の動作は、上述した時刻t11’以降の動作と同様である。   Subsequently, at time t17 ', the gate signal #GLn rises from the low level to the high level, and falls to the low level after a predetermined period. Further, the auxiliary capacitance signal #CSLn falls from the potential VCS12 'to the potential VCS11'. The operation after time t17 'is the same as the operation after time t11' described above.

なお、上記の動作例においては、補助容量信号#CSLnが、時刻t12’において、電位VCS11’から電位VCS12’まで立ち上がり、時刻t15’において、電位VCS12’から電位VCS11’まで立ち下がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t12’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS11’から電位VCS12’まで立ち上がり、時刻t15’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS12’から電位VCS11’まで立ち下がる。   In the above operation example, the case where the auxiliary capacitance signal #CSLn rises from the potential VCS11 ′ to the potential VCS12 ′ at time t12 ′ and falls from the potential VCS12 ′ to the potential VCS11 ′ at time t15 ′ will be described. More generally, the auxiliary capacitance signal #CSLn rises from the potential VCS11 ′ to the potential VCS12 ′ from the time t12 ′ until several horizontal periods (multiple times of the horizontal period Th) elapse. The voltage falls from the potential VCS12 ′ to the potential VCS11 ′ until several horizontal periods (multiple times the horizontal period Th) elapse from t15 ′.

また、上記の動作例においては、補助容量信号#CSLnが、時刻t14’において、電位VCS13’から電位VCS12’まで立ち上がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t13’から時刻t15’までの間に電位VCS13’から電位VCS12’まで立ち上がる。   In the above operation example, the case where the auxiliary capacitance signal #CSLn rises from the potential VCS13 ′ to the potential VCS12 ′ at time t14 ′ has been described. More generally, however, the auxiliary capacitance signal #CSLn Between the time t13 'and the time t15', the potential rises from the potential VCS13 'to the potential VCS12'.

本動作例のように、本発明に係る表示パネル1は、1垂直走査期間の後半における画素領域Pn,mの輝度が当該1垂直走査期間の前半における画素領域Pn,mの輝度よりも小さくなるように補助容量信号#CSLnを供給することによっても、1垂直走査期間における画素領域Pn,mの輝度の変化を生じせしめることができる。   As in this operation example, in the display panel 1 according to the present invention, the luminance of the pixel region Pn, m in the second half of one vertical scanning period is smaller than the luminance of the pixel region Pn, m in the first half of the one vertical scanning period. By supplying the auxiliary capacitance signal #CSLn as described above, it is possible to cause a change in luminance of the pixel region Pn, m in one vertical scanning period.

したがって、本動作例においても、上記動画ボケの現象を抑制することができる。また、本動作例においては、補助容量信号#CSLnは、3値の電圧レベルをとる。したがって、上述した動作例4に比べて、上記動画ボケの現象を抑制する効果は維持しつつ、高輝度な表示を行うことができる。   Therefore, also in this operation example, the moving image blurring phenomenon can be suppressed. In this operation example, the auxiliary capacitance signal #CSLn takes a ternary voltage level. Therefore, as compared with the above-described operation example 4, it is possible to perform display with high luminance while maintaining the effect of suppressing the moving image blur phenomenon.

(表示パネル1の動作例6)
以下では、図11の(a)〜(d)を参照して、本実施形態に係る表示パネル1の動作の第6の例について説明する。
(Operation example 6 of display panel 1)
Below, with reference to (a)-(d) of FIG. 11, the 6th example of operation | movement of the display panel 1 which concerns on this embodiment is demonstrated.

図11の(a)は、ソースバスラインSLmに供給されるソース信号#SLmの波形の一例を示すタイミングチャートである。図11の(a)に示すように、本動作例におけるソース信号#SLmの波形は、図3の(a)に示すソース信号#SLmの波形とほぼ同様であるとして説明を行う。   FIG. 11A is a timing chart showing an example of the waveform of the source signal #SLm supplied to the source bus line SLm. As shown in (a) of FIG. 11, description will be made assuming that the waveform of the source signal #SLm in this operation example is substantially the same as the waveform of the source signal #SLm shown in (a) of FIG. 3.

図11の(b)は、ゲートバスラインGLnに供給されるゲート信号#GLnの波形を示すタイミングチャートである。図11の(b)に示すように、本動作例におけるゲート信号#GLnの波形は、図3の(b)に示すゲート信号#GLnの波形とほぼ同様であるとして説明を行う。   FIG. 11B is a timing chart showing the waveform of the gate signal #GLn supplied to the gate bus line GLn. As shown in FIG. 11B, the description will be made assuming that the waveform of the gate signal #GLn in this operation example is substantially the same as the waveform of the gate signal #GLn shown in FIG.

図11の(c)は、対向電極用配線COMLに供給される共通電位VCOMと、画素電極PEn,mに印加される電位VPEn,mとを示すタイミングチャートである。   FIG. 11C is a timing chart showing the common potential VCOM supplied to the counter electrode wiring COML and the potential VPEn, m applied to the pixel electrode PEn, m.

図11の(d)は、補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。図11の(d)に示すように、本動作例における補助容量信号#CSLnは、連続する2つの垂直走査期間Tv’’を1周期として、電位VCS11’’、電位VCS12’’、電位VCS13’’、および、電位VCS14’’をとる信号である。より具体的には、図11の(d)に示すように、補助容量信号#CSLnは、1垂直走査期間Tv’’における期間T11’’において電位VCS12’をとり、期間T12’’における時刻t13’’から時刻t14’’において電位VCS13’’をとり、期間T12’’における時刻t14’’から時刻t15’’において電位VCS12’’をとる。また、補助容量信号#CSLnは、それに引き続く垂直走査期間Tv’’における期間T13’’において電位VCS11’’をとり、期間T14’’における時刻t16’’から時刻t17’’において電位VCS14’’をとり、期間T14’’における時刻t17’’から時刻t18’’において電位VCS11’’をとる。なお、図11の(d)に示すように、電位VCS11’’、電位VCS12’’、電位VCS13’’、および、電位VCS14’’の具体的な値は、VCS11’’<VCS13’’<VCS14’’<VCS12’’を満たすものとする。   FIG. 11D is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn. As shown in FIG. 11D, the storage capacitor signal #CSLn in this operation example has the potential VCS11 ″, the potential VCS12 ″, the potential VCS13 ′ with two consecutive vertical scanning periods Tv ″ as one cycle. 'And a signal that takes the potential VCS14' '. More specifically, as shown in FIG. 11 (d), the storage capacitor signal #CSLn takes the potential VCS12 ′ in the period T11 ″ in one vertical scanning period Tv ″ and the time t13 in the period T12 ″. The potential VCS13 ″ is taken from ″ to time t14 ″, and the potential VCS12 ″ is taken from time t14 ″ to time t15 ″ in the period T12 ″. Further, the auxiliary capacitance signal #CSLn takes the potential VCS11 ″ in the subsequent period T13 ″ in the vertical scanning period Tv ″ and the potential VCS14 ″ from the time t16 ″ to the time t17 ″ in the period T14 ″. Thus, the potential VCS11 ″ is taken from the time t17 ″ to the time t18 ″ in the period T14 ″. As shown in FIG. 11D, specific values of the potential VCS11 ″, the potential VCS12 ″, the potential VCS13 ″, and the potential VCS14 ″ are VCS11 ″ <VCS13 ″ <VCS14. It shall satisfy '' <VCS12 ''.

以下では、本動作例における表示パネル1の画素領域Pn,mの各部の動作について、説明する。   Hereinafter, the operation of each part of the pixel region Pn, m of the display panel 1 in this operation example will be described.

まず、図11の(b)に示すように、時刻t11’’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になる。トランジスタMn,mが導通状態になると、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。図11の(c)に示すように、時刻t11’’から時刻t12’’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V11’’から電位V12’’(V12’’は正)まで立ち上がる。   First, as shown in FIG. 11B, at time t11 ″, the gate signal #GLn rises from a low level to a high level, and falls to a low level after a certain period. During the period when the gate signal #GLn is at the high level, the transistor Mn, m becomes conductive. When the transistor Mn, m becomes conductive, the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. As shown in FIG. 11C, the potential VPEn, m applied to the pixel electrode PEn, m during the period from time t11 ″ to time t12 ″ is from the potential V11 ″ to the potential V12 ″ ( V12 '' will stand up to positive).

また、時刻t12’’において、補助容量信号#CSLnが、電位VCS11’’から電位VCS12’’まで立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V12’’から電位V13’’へと変化する。ここで、電位V13’’の具体的な値は、
V13’’=(VCS12’’−VCS11’’)×CCS/ΣC+V12’’
によって定まる。なお、上述のように、VCS11’’<VCS12’’であるので、電位V13’’は、電位V12’’よりも大きい。
At time t12 ″, the auxiliary capacitance signal #CSLn rises from the potential VCS11 ″ to the potential VCS12 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V12 ″ to the potential V13 ″. Here, the specific value of the potential V13 '' is
V13 ″ = (VCS12 ″ −VCS11 ″) × CCS / ΣC + V12 ″
It depends on. As described above, since VCS11 ″ <VCS12 ″, the potential V13 ″ is higher than the potential V12 ″.

続いて、時刻t13’’において、補助容量信号#CSLnが、電位VCS12’’から電位VCS13’’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V13’’から電位V14’’へと変化する。ここで、電位V14’’の具体的な値は、
V14’’=(VCS13’’−VCS12’’)×CCS/ΣC+V13’’
によって定まる。なお、上述のように、VCS13’’<VCS12’’であるので、電位V14’’は、電位V13’’よりも小さい。
Subsequently, at time t13 ″, the auxiliary capacitance signal #CSLn falls from the potential VCS12 ″ to the potential VCS13 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V13 ″ to the potential V14 ″. Here, the specific value of the potential V14 '' is
V14 ″ = (VCS13 ″ −VCS12 ″) × CCS / ΣC + V13 ″
It depends on. As described above, since VCS13 ″ <VCS12 ″, the potential V14 ″ is smaller than the potential V13 ″.

図11の(c)に示すように、電位V13’’と共通電位VCOMとの電位差は、電位V14’’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t12’’から時刻t13’’までの期間における液晶LCの透過率は、時刻t13’’から時刻t14’’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t12’’から時刻t13’’までの期間における画素領域Pn,mの輝度は、時刻t13’’から時刻t14’’までの期間における画素領域Pn,mの輝度よりも大きい。   As shown in FIG. 11C, the potential difference between the potential V13 ″ and the common potential VCOM is larger than the potential difference between the potential V14 ″ and the common potential VCOM. That is, the transmittance of the liquid crystal LC during the period from the time t12 ″ to the time t13 ″ is larger than the transmittance of the liquid crystal LC during the period from the time t13 ″ to the time t14 ″. That is, the luminance of the pixel region Pn, m in the period from the time t12 ″ to the time t13 ″ is larger than the luminance of the pixel region Pn, m in the period from the time t13 ″ to the time t14 ″.

続いて、時刻t14’’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。ゲート信号#GLnがハイレベルである期間において、トランジスタMn,mは導通状態になり、ソース信号#SLmが、画素電極PEn,mおよび第1の補助容量電極CE1n,mに供給される。また、時刻t14’’において、補助容量信号#CSLnが、電位VCS13’’から電位VCS12’’まで立ち上がる。   Subsequently, at time t14 ″, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. During a period in which the gate signal #GLn is at a high level, the transistor Mn, m is in a conductive state, and the source signal #SLm is supplied to the pixel electrode PEn, m and the first auxiliary capacitance electrode CE1n, m. Further, at the time t14 ″, the auxiliary capacitance signal #CSLn rises from the potential VCS13 ″ to the potential VCS12 ″.

図11の(a)に示すように、時刻t14’’から時刻t15’’までの期間において、画素電極PEn,mに印加される電位VPEn,mは、電位V14’’から電位V15’’(V15’’は負)まで立ち下がる。   As shown in FIG. 11A, the potential VPEn, m applied to the pixel electrode PEn, m during the period from the time t14 ″ to the time t15 ″ is from the potential V14 ″ to the potential V15 ″ ( V15 '' will fall to negative).

また、時刻t15’’において、補助容量信号#CSLnが、電位VCS12’’から電位VCS11’’まで立ち下がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V15’’から電位V16’’へと変化する。ここで、電位V16’’の具体的な値は、
V16’’=(VCS11’’−VCS12’’)×CCS/ΣC+V15’’
によって定まる。なお、上述のように、VCS11’’<VCS12’’であるので、電位V16’’は、電位V15’’よりも小さい。
At time t15 ″, the auxiliary capacitance signal #CSLn falls from the potential VCS12 ″ to the potential VCS11 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V15 ″ to the potential V16 ″. Here, the specific value of the potential V16 '' is
V16 ″ = (VCS11 ″ −VCS12 ″) × CCS / ΣC + V15 ″
It depends on. As described above, since VCS11 ″ <VCS12 ″, the potential V16 ″ is smaller than the potential V15 ″.

続いて、時刻t16’’において、補助容量信号#CSLnが、電位VCS11’’から電位VCS14’’へと立ち上がる。それに伴い、画素電極PEn,mの電位VPEn,mは、電位V16’’から電位V17’’へと変化する。ここで、電位V17’’の具体的な値は、
V17’’=(VCS14’’−VCS11’’)×CCS/ΣC+V16’’
によって定まる。なお、上述のように、VCS11’’<VCS14’’であるので、電位V17’’は、電位V16’’よりも大きい。
Subsequently, at time t16 ″, the auxiliary capacitance signal #CSLn rises from the potential VCS11 ″ to the potential VCS14 ″. Accordingly, the potential VPEn, m of the pixel electrode PEn, m changes from the potential V16 ″ to the potential V17 ″. Here, the specific value of the potential V17 '' is
V17 ″ = (VCS14 ″ −VCS11 ″) × CCS / ΣC + V16 ″
It depends on. As described above, since VCS11 ″ <VCS14 ″, the potential V17 ″ is higher than the potential V16 ″.

図11の(c)に示すように、電位V16’’と共通電位VCOMとの電位差は、電位V17’’と共通電位VCOMとの電位差よりも大きい。すなわち、時刻t15’’から時刻t16’’までの期間における液晶LCの透過率は、時刻t16’’から時刻t17’’までの期間における液晶LCの透過率よりも大きい。すなわち、時刻t15’’から時刻t16’’までの期間における画素領域Pn,mの輝度は、時刻t16’’から時刻t17’’までの期間における画素領域Pn,mの輝度よりも大きい。   As shown in FIG. 11C, the potential difference between the potential V16 ″ and the common potential VCOM is larger than the potential difference between the potential V17 ″ and the common potential VCOM. That is, the transmittance of the liquid crystal LC during the period from the time t15 ″ to the time t16 ″ is larger than the transmittance of the liquid crystal LC during the period from the time t16 ″ to the time t17 ″. That is, the luminance of the pixel region Pn, m in the period from time t15 ″ to time t16 ″ is larger than the luminance of the pixel region Pn, m in the period from time t16 ″ to time t17 ″.

続いて、時刻t17’’において、ゲート信号#GLnがローレベルからハイレベルに立ち上がり、一定期間経過後、ローレベルへと立ち下がる。また、補助容量信号#CSLnが、電位VCS14’’から電位VCS11’’まで立ち下がる。時刻t17’’以降の動作は、上述した時刻t11’’以降の動作と同様である。   Subsequently, at time t17 ″, the gate signal #GLn rises from the low level to the high level, and falls to the low level after a certain period. Also, the auxiliary capacitance signal #CSLn falls from the potential VCS14 ″ to the potential VCS11 ″. The operation after time t17 '' is the same as the operation after time t11 '' described above.

なお、上記の動作例においては、補助容量信号#CSLnが、時刻t12’’において、電位VCS11’’から電位VCS12’’まで立ち上がり、時刻t15’’において、電位VCS12’’から電位VCS11’’まで立ち下がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t12’’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS11’’から電位VCS12’’まで立ち上がり、時刻t15’’から数水平期間(水平期間Thの複数倍の期間)が経過するまでの間に電位VCS12’’から電位VCS11’’まで立ち下がる。   In the above operation example, the auxiliary capacitance signal #CSLn rises from the potential VCS11 ″ to the potential VCS12 ″ at time t12 ″, and from the potential VCS12 ″ to the potential VCS11 ″ at time t15 ″. The case of the fall has been described, but more generally, the auxiliary capacitance signal #CSLn has the potential VCS11 ″ from the time t12 ″ until several horizontal periods (multiple times of the horizontal period Th) elapse. Rises from the potential VCS12 ″ to the potential VCS11 ″ from the time t15 ″ until several horizontal periods (multiple times the horizontal period Th) elapse.

また、上記の動作例においては、補助容量信号#CSLnが、時刻t14’’において、電位VCS13’’から電位VCS12’’まで立ち上がる場合について説明を行ったが、より一般には、補助容量信号#CSLnは、時刻t13’’から時刻t15’’までの間に電位VCS13’’から電位VCS12’’まで立ち上がる。   In the above operation example, the case where the auxiliary capacitance signal #CSLn rises from the potential VCS13 ″ to the potential VCS12 ″ at the time t14 ″ has been described, but more generally, the auxiliary capacitance signal #CSLn. Rises from the potential VCS13 ″ to the potential VCS12 ″ from time t13 ″ to time t15 ″.

本動作例のように、本発明に係る表示パネル1は、1垂直走査期間の後半における画素領域Pn,mの輝度が当該1垂直走査期間の前半における画素領域Pn,mの輝度よりも小さくなるように補助容量信号#CSLnを供給することによっても、1垂直走査期間における画素領域Pn,mの輝度の変化を生じせしめることができる。   As in this operation example, in the display panel 1 according to the present invention, the luminance of the pixel region Pn, m in the second half of one vertical scanning period is smaller than the luminance of the pixel region Pn, m in the first half of the one vertical scanning period. By supplying the auxiliary capacitance signal #CSLn as described above, it is possible to cause a change in luminance of the pixel region Pn, m in one vertical scanning period.

したがって、本動作例においても、上記動画ボケの現象を抑制することができる。また、本動作例においては、補助容量信号#CSLnは、4値の電圧レベルをとる。したがって、動作例4、および、動作例5に比べて、より高輝度の表示を行い、より効果的に上記動画ボケの現象を抑制することができる。   Therefore, also in this operation example, the moving image blurring phenomenon can be suppressed. In this operation example, the auxiliary capacitance signal #CSLn takes a quaternary voltage level. Therefore, compared with the operation example 4 and the operation example 5, a display with higher luminance can be performed, and the phenomenon of the moving image blur can be more effectively suppressed.

上記の動作例1〜6では、n番目のゲートバスラインGLnに供給されるゲート信号#GLn、および、n番目の補助容量バスラインCSLnに供給される補助容量信号#CSLnを例に挙げ説明を行ったが、n番目以外のゲートバスラインGLp(p≠n)に供給されるゲート信号#GLp、および、n番目以外の補助容量バスラインCSLp(p≠n)に供給される補助容量信号#CSLpに対しても同様である。   In the above operation examples 1 to 6, the gate signal #GLn supplied to the nth gate bus line GLn and the auxiliary capacitance signal #CSLn supplied to the nth auxiliary capacitance bus line CSLn will be described as examples. The gate signal #GLp supplied to the non-nth gate bus line GLp (p ≠ n) and the auxiliary capacitance signal # supplied to the non-nth auxiliary capacitance bus line CSLp (p ≠ n). The same applies to CSLp.

また、本発明に係る表示パネル1における補助容量ドライバ14は、補助容量バスラインCSLnに対し、補助容量信号#CSLnを、ゲート信号#GLnに同期して供給する。   Further, the auxiliary capacitance driver 14 in the display panel 1 according to the present invention supplies the auxiliary capacitance signal #CSLn to the auxiliary capacitance bus line CSLn in synchronization with the gate signal #GLn.

さらに、画素電極PEn,mに対して上述のような極性反転信号が印加される場合、すなわち、画素電極PEn,mの電位VPEn,mが1水平走査期間ごとに対向電極の電圧VCOMに対する極性を反転する場合には、補助容量ドライバ14は、補助容量信号#CSLn+1の極性を補助容量信号#CSLnの極性に対し反転させて供給する。   Further, when the polarity inversion signal as described above is applied to the pixel electrode PEn, m, that is, the potential VPEn, m of the pixel electrode PEn, m has a polarity with respect to the voltage VCOM of the counter electrode every horizontal scanning period. In the case of inversion, the auxiliary capacitance driver 14 supplies the auxiliary capacitance signal # CSLn + 1 with the polarity inverted from that of the auxiliary capacitance signal #CSLn.

図12の(a)は、ゲートバスラインGLn〜GLn+3に対してそれぞれ供給されるゲート信号#GLn〜#GLn+3の波形の一例を示すタイミングチャートであり、図12の(b)は、上述した動作例1における、補助容量バスラインCSLn〜CSLn+3のそれぞれに対して供給される補助容量信号#CSLn〜#CSLn+3の波形の一例を示すタイミングチャートであり、図12の(c)は、上述した動作例2における、補助容量バスラインCSLn〜CSLn+3のそれぞれに対して供給される#CSLn〜#CSLn+3の波形の一例を示すタイミングチャートである。   FIG. 12A is a timing chart showing an example of waveforms of gate signals #GLn to # GLn + 3 supplied to the gate bus lines GLn to GLn + 3, respectively, and FIG. 12 is a timing chart showing an example of waveforms of auxiliary capacitance signals #CSLn to # CSLn + 3 supplied to the auxiliary capacitance bus lines CSLn to CSLn + 3 in the operation example 1 described above. c) is a timing chart showing an example of waveforms of #CSLn to # CSLn + 3 supplied to each of the auxiliary capacity bus lines CSLn to CSLn + 3 in the operation example 2 described above.

動作例1のように、選択期間における補助容量信号の電位レベルが、1水平ライン期間ごとに、複数の電位レベルのうちの最大の電位レベルと、最小の電位レベルとに切り替わる場合、すなわちライン反転駆動である場合には、図12の(b)〜(c)に示すように、補助容量ドライバ14は、補助容量信号#CSLn+1の極性を補助容量信号#CSLnの極性に対し反転させて供給する。   When the potential level of the auxiliary capacitance signal in the selection period is switched between the maximum potential level of the plurality of potential levels and the minimum potential level for each horizontal line period as in operation example 1, that is, line inversion In the case of driving, as shown in FIGS. 12B to 12C, the auxiliary capacitance driver 14 inverts the polarity of the auxiliary capacitance signal # CSLn + 1 with respect to the polarity of the auxiliary capacitance signal #CSLn. Supply.

また、図12の(b)〜(c)に示すように、補助容量ドライバ14は、補助容量バスラインCSLnに対し、補助容量信号#CSLn〜#CSLn+3を、それぞれ、ゲート信号#GLn〜#GLn+3に同期して供給する。   Further, as shown in FIGS. 12B to 12C, the auxiliary capacitor driver 14 supplies the auxiliary capacitance signals #CSLn to # CSLn + 3 to the gate signal #GLn to the auxiliary capacitance bus line CSLn. Supply in synchronization with # GLn + 3.

また、その他のゲート信号#GLq(q≦n−1、q≧n+4)、および、その他の補助容量信号#CSLq(q≦n−1、q≧n+4)に対しても同様である。   The same applies to other gate signals #GLq (q ≦ n−1, q ≧ n + 4) and other auxiliary capacitance signals #CSLq (q ≦ n−1, q ≧ n + 4).

なお、選択期間における補助容量信号の電位レベルが、複数の水平ライン期間ごとに、複数の電位レベルのうちの最大の電位レベルと、最小の電位レベルとに切り替わる場合には、補助容量ドライバ14は、複数の補助容量バスラインごとに極性を反転させた補助容量信号を供給するような構成とすることが好ましい。   When the potential level of the auxiliary capacitance signal in the selection period is switched between the maximum potential level of the plurality of potential levels and the minimum potential level for each of the plurality of horizontal line periods, the auxiliary capacitance driver 14 It is preferable that an auxiliary capacity signal with the polarity reversed is supplied for each of the plurality of auxiliary capacity bus lines.

(表示パネル1の動作例7)
上述した動作例1〜6においては、補助容量ドライバ14が、複数の補助容量バスラインCSL1〜CSLNのそれぞれに対し、水平走査期間Th毎に補助容量信号#CSL1〜#CSLNを順次供給する場合、すなわち、補助容量信号#CSLnと補助容量信号#CSLn+1との間に、水平走査期間Thの長さに対応する位相差が存在する場合を例に挙げ説明を行ったが、本発明はこれに限られるものではない。
(Operation example 7 of display panel 1)
In the operation examples 1 to 6 described above, when the auxiliary capacitor driver 14 sequentially supplies the auxiliary capacitor signals # CSL1 to #CSLN for each of the plurality of auxiliary capacitor bus lines CSL1 to CSLN for each horizontal scanning period Th, That is, the case where there is a phase difference corresponding to the length of the horizontal scanning period Th between the auxiliary capacitance signal #CSLn and the auxiliary capacitance signal # CSLn + 1 has been described as an example. It is not limited to.

以下では、図13の(a)〜(b)を参照して、本実施形態に係る表示パネル1の動作の第7の例について説明する。また、本動作例においては、選択期間における補助容量信号の電位レベルが、2つの水平ライン期間ごとに、複数の電位レベルのうちの最大の電位レベルと、最小の電位レベルとに切り替わる場合を例にとり説明を行う。   Below, with reference to (a)-(b) of FIG. 13, the 7th example of operation | movement of the display panel 1 which concerns on this embodiment is demonstrated. In this operation example, the potential level of the auxiliary capacitance signal in the selection period is switched between the maximum potential level of the plurality of potential levels and the minimum potential level every two horizontal line periods. I will explain to you.

図13の(a)は、ゲートバスラインGLn〜GLn+3に対してそれぞれ供給されるゲート信号#GLn〜#GLn+3の波形の一例を示すタイミングチャートであり、図13の(b)は、本動作例における、補助容量バスラインCSLn〜CSLn+3のそれぞれに対して供給される補助容量信号#CSLn〜#CSLn+3の波形の一例を示すタイミングチャートである。   FIG. 13A is a timing chart showing an example of waveforms of gate signals #GLn to # GLn + 3 supplied to the gate bus lines GLn to GLn + 3, respectively, and FIG. 10 is a timing chart showing an example of waveforms of auxiliary capacitance signals #CSLn to # CSLn + 3 supplied to the auxiliary capacitance bus lines CSLn to CSLn + 3 in this operation example.

図13の(b)に示すように、補助容量ドライバ14は、補助容量バスラインCSLn、および、補助容量バスラインCSLn+1に対し、互いに同相である補助容量信号#CSLn、および、補助容量信号#CSLn+1を供給する。換言すれば、補助容量ドライバ14は、隣接する2本の補助容量バスラインを1対とし、当該1対の補助容量バスラインに対して、共通の補助容量信号を供給する。   As shown in FIG. 13B, the auxiliary capacitor driver 14 has an auxiliary capacitor signal #CSLn and an auxiliary capacitor signal that are in phase with each other with respect to the auxiliary capacitor bus line CSLn and the auxiliary capacitor bus line CSLn + 1. # CSLn + 1 is supplied. In other words, the auxiliary capacitance driver 14 makes a pair of two adjacent auxiliary capacitance bus lines and supplies a common auxiliary capacitance signal to the pair of auxiliary capacitance bus lines.

このように、本動作例においては、前記補助容量ドライバ14は、前記複数のゲートバスラインGL1〜GLNのうちn番目のゲートバスラインGLnに前記トランジスタMn,m及び前記キャパシタCn,mを介して接続された前記補助容量バスラインCSLnと、前記複数のゲートバスラインGL1〜GLNのうちn+1番目のゲートバスラインGLn+1に前記トランジスタMn+1,m及び前記キャパシタCn+1,mを介して接続された前記補助容量バスラインCSLn+1とに対し、前記矩形状の電圧信号(補助容量信号#CSLn、および補助容量信号#CSLn+1)を同期して供給する。   Thus, in the present operation example, the auxiliary capacitance driver 14 is connected to the nth gate bus line GLn among the plurality of gate bus lines GL1 to GLN via the transistor Mn, m and the capacitor Cn, m. The connected auxiliary capacitance bus line CSLn and the n + 1th gate bus line GLn + 1 among the plurality of gate bus lines GL1 to GLN are connected to the transistor Mn + 1, m and the capacitor Cn + 1, m. The rectangular voltage signals (auxiliary capacitance signal #CSLn and auxiliary capacitance signal # CSLn + 1) are synchronously supplied to the connected auxiliary capacitance bus line CSLn + 1.

1対の補助容量バスラインに対して共通の補助容量信号を供給するための構成としては、例えば、補助容量信号#CSLn、および、補助容量信号#CSLn+1を、補助容量ドライバ14における同一の信号生成手段によって生成し、それぞれ、補助容量バスラインCSLn、および、補助容量バスラインCSLn+1に対し供給すればよい。   As a configuration for supplying a common auxiliary capacitance signal to a pair of auxiliary capacitance bus lines, for example, the auxiliary capacitance signal #CSLn and the auxiliary capacitance signal # CSLn + 1 are the same in the auxiliary capacitance driver 14. What is necessary is just to produce | generate by a signal production | generation means and to supply with respect to each auxiliary capacity bus line CSLn and auxiliary capacity bus line CSLn + 1.

したがって、本動作例においては、より簡単な構成の前記補助容量ドライバ14により、上記動画ボケの現象を抑制することができる。   Therefore, in this operation example, the moving image blur phenomenon can be suppressed by the auxiliary capacitor driver 14 having a simpler configuration.

また、本発明に係る表示パネルにおいては、前記補助容量ドライバ14は、前記複数のゲートバスラインGL1〜GLNのうちn番目のゲートバスラインGLnに前記トランジスタMn,m及び前記キャパシタCn,mを介して接続された前記補助容量バスラインCSLnと、前記複数のゲートバスラインGL1〜GLNのうちn+2番目のゲートバスラインGLn+2に前記トランジスタMn+2,m及び前記キャパシタCn+2,mを介して接続された前記補助容量バスラインCSLn+2とに対し、前記矩形状の電圧信号(補助容量信号#CSLn、および補助容量信号#CSLn+2)を同期して供給するような構成としてもよい。   In the display panel according to the present invention, the auxiliary capacitance driver 14 is connected to the nth gate bus line GLn of the plurality of gate bus lines GL1 to GLN via the transistor Mn, m and the capacitor Cn, m. Connected to the auxiliary capacity bus line CSLn and the n + 2th gate bus line GLn + 2 among the plurality of gate bus lines GL1 to GLN via the transistor Mn + 2, m and the capacitor Cn + 2, m. The rectangular voltage signals (auxiliary capacitance signal #CSLn and auxiliary capacitance signal # CSLn + 2) may be supplied to the auxiliary capacitance bus line CSLn + 2 connected in synchronization. .

上記の構成によれば、より簡単な構成の前記補助容量ドライバ14により、フリッカや極性反転に応じたスジの発生を抑制しつつ、上記動画ボケの現象を抑制することができるという更なる効果を奏する。   According to the above configuration, the auxiliary capacitor driver 14 having a simpler configuration can further suppress the phenomenon of moving image blur while suppressing the generation of streaks according to flicker and polarity inversion. Play.

また、補助容量ドライバ14は、隣接する3本以上の補助容量バスラインを1組とし、当該1組の補助容量バスラインに対して、共通の補助容量信号を供給するような構成としてもよい。   Further, the auxiliary capacitor driver 14 may be configured such that three or more adjacent auxiliary capacitor bus lines are set as one set and a common auxiliary capacitor signal is supplied to the one set of auxiliary capacitor bus lines.

以上の動作例1〜7において説明したように、本実施形態に係る表示パネル1は、補助容量バスラインCSL1〜CSLNに対し、1垂直走査期間において、複数の電圧レベルからなる矩形状の補助容量信号#CSL1〜#CSLNを供給することによって、1垂直走査期間において、画素領域Pn,mの輝度が相対的に高い期間(以下、「明期間」と呼ぶ)と、画素領域Pn,mの輝度が相対的に低い期間(以下、「暗期間」と呼ぶ)とを生じせしめることができる。   As described in the above operation examples 1 to 7, the display panel 1 according to the present embodiment has a rectangular auxiliary capacitor having a plurality of voltage levels in one vertical scanning period with respect to the auxiliary capacitor bus lines CSL1 to CSLN. By supplying the signals # CSL1 to #CSLN, in one vertical scanning period, the luminance of the pixel region Pn, m is relatively high (hereinafter referred to as “bright period”) and the luminance of the pixel region Pn, m Can generate a relatively low period (hereinafter referred to as “dark period”).

また、1垂直走査期間において、明期間と暗期間が存在することによって、表示パネル1に表示される画像のぼやけを抑制することができる。   Further, since there are a bright period and a dark period in one vertical scanning period, blurring of an image displayed on the display panel 1 can be suppressed.

また、1垂直走査期間における明期間の長さと暗期間の長さとは、補助容量ドライバ14が供給する補助容量信号#CSLnのデューティ比を変えることにより、調整することが可能である。   Further, the length of the bright period and the length of the dark period in one vertical scanning period can be adjusted by changing the duty ratio of the auxiliary capacitance signal #CSLn supplied by the auxiliary capacitance driver 14.

ここで、選択期間における補助容量信号#CSLnの電位レベルが、複数の電位レベルのうち、最小の電位レベルをとった直後の1垂直走査期間においては、補助容量信号#CSLnのデューティ比とは、当該1垂直走査期間における補助容量信号#CSLnの電圧レベルが複数の電圧レベルのうち最大の電圧レベルをとる期間の割合のことであり、選択期間における補助容量信号#CSLnの電位レベルが、複数の電位レベルのうち、最大の電位レベルをとった直後の1垂直走査期間においては、補助容量信号#CSLnのデューティ比とは、当該1垂直走査期間における補助容量信号#CSLnの電圧レベルが複数の電圧レベルのうち最小の電圧レベルをとる期間の割合のことである。   Here, in one vertical scanning period immediately after the potential level of the auxiliary capacitance signal #CSLn in the selection period takes the minimum potential level among the plurality of potential levels, the duty ratio of the auxiliary capacitance signal #CSLn is This is a ratio of a period in which the voltage level of the auxiliary capacitance signal #CSLn in the one vertical scanning period takes the maximum voltage level among a plurality of voltage levels, and the potential level of the auxiliary capacitance signal #CSLn in the selection period is a plurality of voltage levels. Among the potential levels, in one vertical scanning period immediately after taking the maximum potential level, the duty ratio of the auxiliary capacitance signal #CSLn is the voltage level of the auxiliary capacitance signal #CSLn in the one vertical scanning period. This is the ratio of the period during which the minimum voltage level is taken.

図14の(c)は、図5の(d)に示された補助容量信号#CSLnであって、デューティ比が約90パーセントとなるように設定された補助容量信号#CSLnの波形を示している。   FIG. 14C shows the waveform of the auxiliary capacitance signal #CSLn shown in FIG. 5D, which is set so that the duty ratio is about 90%. Yes.

図14の(c)に示すように、補助容量信号#CSLnの電圧レベルが相対的に低い期間である期間TDは、1垂直走査期間Tv’の約10パーセントであり、補助容量信号#CSLnの電圧レベルが相対的に高い期間である期間TBは1垂直走査期間Tv’の約90パーセントである。また、図14の(c)に示した1垂直走査期間Tv’は、画素電極PEn,mに対し、正極性の電位が印加された直後の垂直走査期間である。したがって、当該補助容量信号#CSLnのデューティ比は約90パーセントである。   As shown in FIG. 14C, the period TD in which the voltage level of the auxiliary capacitance signal #CSLn is relatively low is about 10% of one vertical scanning period Tv ′, and the auxiliary capacitance signal #CSLn A period TB in which the voltage level is relatively high is about 90 percent of one vertical scanning period Tv ′. Further, one vertical scanning period Tv ′ shown in FIG. 14C is a vertical scanning period immediately after a positive potential is applied to the pixel electrode PEn, m. Therefore, the duty ratio of the auxiliary capacitance signal #CSLn is about 90%.

図14の(b)に示すように、期間TDにおける画素電極PEn,mの電位VPEn,mと供給電位VCOMとの電位差は、期間TBにおける画素電極PEn,mの電位VPEn,mと供給電位VCOMとの電位差よりも小さいので、期間TDは暗期間に対応し、期間TBは明期間に対応する。換言すれば、デューティ比が約90パーセントとなるように設定された補助容量信号#CSLnを供給することによって、1垂直走査期間の約90パーセントの期間が明期間となり、残りの約10パーセントの期間が暗期間となる。   As shown in FIG. 14B, the potential difference between the potential VPEn, m of the pixel electrode PEn, m and the supply potential VCOM in the period TD is equal to the potential VPEn, m of the pixel electrode PEn, m and the supply potential VCOM in the period TB. Therefore, the period TD corresponds to the dark period, and the period TB corresponds to the bright period. In other words, by supplying the auxiliary capacitance signal #CSLn set so that the duty ratio is about 90%, about 90% of one vertical scanning period becomes a light period, and the remaining about 10% period Is the dark period.

図15の(c)は、図5の(d)に示された補助容量信号#CSLnであって、デューティ比が約10パーセントとなるように設定された補助容量信号#CSLnの波形を示している。   FIG. 15C shows the waveform of the auxiliary capacitance signal #CSLn shown in FIG. 5D, which is set so that the duty ratio is about 10%. Yes.

図15の(c)に示すように、補助容量信号#CSLnの電圧レベルが相対的に低い期間である期間TDは、1垂直走査期間Tv’の約90パーセントであり、補助容量信号#CSLnの電圧レベルが相対的に高い期間である期間TBは1垂直走査期間Tv’の約10パーセントである。また、図15の(c)に示した1垂直走査期間Tv’は、画素電極PEn,mに対し、正極性の電位が印加された直後の垂直走査期間である。したがって、当該補助容量信号#CSLnのデューティ比は約10パーセントである。   As shown in FIG. 15C, the period TD in which the voltage level of the auxiliary capacitance signal #CSLn is relatively low is about 90% of one vertical scanning period Tv ′, and the auxiliary capacitance signal #CSLn A period TB in which the voltage level is relatively high is about 10 percent of one vertical scanning period Tv ′. Further, one vertical scanning period Tv ′ shown in FIG. 15C is a vertical scanning period immediately after a positive potential is applied to the pixel electrode PEn, m. Therefore, the duty ratio of the auxiliary capacitance signal #CSLn is about 10%.

図15の(b)に示すように、期間TDにおける画素電極PEn,mの電位VPEn,mと供給電位VCOMとの電位差は、期間TBにおける画素電極PEn,mの電位VPEn,mと供給電位VCOMとの電位差よりも小さいので、期間TDは暗期間に対応し、期間TBは明期間に対応する。換言すれば、デューティ比が約10パーセントとなるように設定された補助容量信号#CSLnを供給することによって、1垂直走査期間の約10パーセントの期間が明期間となり、残りの約90パーセントの期間が暗期間となる。   As shown in FIG. 15B, the potential difference between the potential VPEn, m of the pixel electrode PEn, m and the supply potential VCOM in the period TD is equal to the potential VPEn, m of the pixel electrode PEn, m and the supply potential VCOM in the period TB. Therefore, the period TD corresponds to the dark period, and the period TB corresponds to the bright period. In other words, by supplying the auxiliary capacitance signal #CSLn set so that the duty ratio is about 10%, a period of about 10% of one vertical scanning period becomes a light period, and the remaining period of about 90% Is the dark period.

図16は、上記デューティ比と輝度の関係を示すグラフである。図16の縦軸は、最低輝度を0.0、最高輝度を1.0とした相対輝度を表しており、図16の横軸は、上記デューティ比を表している。   FIG. 16 is a graph showing the relationship between the duty ratio and the luminance. The vertical axis in FIG. 16 represents relative luminance with the minimum luminance being 0.0 and the maximum luminance being 1.0, and the horizontal axis in FIG. 16 represents the duty ratio.

図16に示すように、デューティ比が大きいほど、相対輝度は大きい。   As shown in FIG. 16, the relative luminance increases as the duty ratio increases.

図17は、上記デューティ比と表示パネル1に表示される動画像の視認性との関係を示す実験データのグラフである。   FIG. 17 is a graph of experimental data showing the relationship between the duty ratio and the visibility of a moving image displayed on the display panel 1.

図17の縦軸は、表示パネル1に表示される動画像を観察する観察者が感じる視認性を5段階評価で表しており、当該視認性が高いほど、観察者によって当該動画像がよりクリアに、すなわち、よりぼやけが少なく見えていることを示している。図17の横軸は、上述したデューティ比を表している。   The vertical axis in FIG. 17 represents the visibility perceived by the observer observing the moving image displayed on the display panel 1 in a five-step evaluation. The higher the visibility, the clearer the moving image is by the observer. That is, it shows that the image is less blurred. The horizontal axis in FIG. 17 represents the duty ratio described above.

図17における点線は、複数の観察者のそれぞれによってなされた視認性の評価のうち、最も低い評価を表すグラフであり、図17における破線は、複数の観察者のそれぞれによってなされた視認性の評価のうち、最も高い評価を表すグラフであり、図17における実線は複数の観察者のそれぞれによってなされた視認性の評価の平均値を示すグラフである。   The dotted line in FIG. 17 is a graph showing the lowest evaluation among the visibility evaluations made by each of the plurality of observers, and the broken line in FIG. 17 is the visibility evaluation made by each of the plurality of observers. Among them, the graph shows the highest evaluation, and the solid line in FIG. 17 is a graph showing the average value of the visibility evaluation made by each of a plurality of observers.

図17に示すように、デューティ比が約10パーセント以下では、全ての観察者が視認性に対して最高の評価を行っている。一方で、デューティ比が約90パーセント以上になると、ほとんどの観察者が視認性の変化を感じ取ることができないことがわかる。   As shown in FIG. 17, when the duty ratio is about 10% or less, all observers perform the highest evaluation for visibility. On the other hand, when the duty ratio is about 90% or more, it can be seen that most observers cannot perceive a change in visibility.

図17に示された実験データから、上述したデューティ比の設定は、約10パーセントから約90パーセントの範囲内で行うことが好ましいことがわかる。   From the experimental data shown in FIG. 17, it can be seen that the above-described duty ratio is preferably set within a range of about 10 percent to about 90 percent.

また、本実施形態に係る表示パネル1においては、ソースドライバ12は、補助容量ドライバ14が供給する補助容量信号#CSL1〜#CSLNの振幅の大きさに応じて、ソース信号#SL1〜#SLMの振幅の大きさを設定することが好ましい。   In the display panel 1 according to the present embodiment, the source driver 12 receives the source signals # SL1 to #SLM in accordance with the amplitudes of the auxiliary capacitance signals # CSL1 to #CSLN supplied from the auxiliary capacitance driver 14. It is preferable to set the magnitude of the amplitude.

図18の(a)は、ゲート信号#GLnの波形を示すタイミングチャートであり、図18の(b)は、共通電位VCOMと、ソース信号#SLmの振幅がより大きい場合に画素電極PEn,mに印加される電位VPEn,mの波形を示すタイミングチャートであり、図18の(c)は、ソース信号#SLmの振幅がより大きい場合に補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。   18A is a timing chart showing the waveform of the gate signal #GLn. FIG. 18B shows the pixel electrode PEn, m when the common potential VCOM and the amplitude of the source signal #SLm are larger. FIG. 18C is a timing chart showing the waveform of the potential VPEn, m applied to the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn when the amplitude of the source signal #SLm is larger. It is a timing chart which shows the waveform.

また、図18の(d)は、共通電位VCOMと、ソース信号#SLmの振幅がより小さい場合に画素電極PEn,mに印加される電位VPEn,mの波形を示すタイミングチャートであり、図18の(e)は、ソース信号#SLmの振幅がより小さい場合に補助容量バスラインCSLnに供給される補助容量信号#CSLnの波形を示すタイミングチャートである。   FIG. 18D is a timing chart showing waveforms of the potential VPEn, m applied to the pixel electrode PEn, m when the amplitude of the common potential VCOM and the source signal #SLm is smaller. (E) is a timing chart showing the waveform of the auxiliary capacitance signal #CSLn supplied to the auxiliary capacitance bus line CSLn when the amplitude of the source signal #SLm is smaller.

図18の(b)に示す振幅A1、および、図18の(d)に示す振幅A2は、ソース信号#SLmの振幅を表している。   The amplitude A1 shown in (b) of FIG. 18 and the amplitude A2 shown in (d) of FIG. 18 represent the amplitude of the source signal #SLm.

図18の(b)〜(e)に示すように、補助容量ドライバ14は、ソース信号#SLmの振幅がより大きい場合には、振幅のより小さい補助容量信号#CSLnを供給し、ソース信号#SLmの振幅がより小さい場合には、振幅のより大きい補助容量信号#CSLnを供給する。   As shown in FIGS. 18B to 18E, when the amplitude of the source signal #SLm is larger, the auxiliary capacitance driver 14 supplies the auxiliary capacitance signal #CSLn having a smaller amplitude, and the source signal #SL When the amplitude of SLm is smaller, the auxiliary capacitance signal #CSLn having a larger amplitude is supplied.

このように、補助容量ドライバ14が振幅のより小さい補助容量信号#CSLnを供給する場合には、ソースドライバ12が、より振幅の大きいソース信号#SLmを供給し、補助容量ドライバ14が振幅のより大きい補助容量信号#CSLnを供給する場合には、ソースドライバ12が、より振幅の小さいソース信号#SLmを供給することによって、補助容量信号#CSLnの振幅がより大きい場合であっても、より小さい場合であっても、1垂直走査期間Tvにおける画素領域Pn,mの輝度の平均値をほぼ一定に保つことができる。   In this way, when the auxiliary capacitor driver 14 supplies the auxiliary capacitor signal #CSLn having a smaller amplitude, the source driver 12 supplies the source signal #SLm having a larger amplitude, and the auxiliary capacitor driver 14 has the higher amplitude. When the large auxiliary capacitance signal #CSLn is supplied, the source driver 12 supplies the source signal #SLm having a smaller amplitude so that the amplitude of the auxiliary capacitance signal #CSLn is smaller. Even in this case, the average value of the luminance of the pixel region Pn, m in one vertical scanning period Tv can be kept substantially constant.

また、上述したような、補助容量バスラインCSL1〜CSLNに対し複数の電圧レベルからなる矩形状の補助容量信号#CSL1〜#CSLNを供給するための具体的な構成は、例えば、補助容量ドライバ14が、当該複数の電圧レベルを供給する複数の電源と、当該複数の電源から供給される電圧レベルのうち、何れかを選択するセレクタとを備えることによって実現することができる。   The specific configuration for supplying rectangular auxiliary capacitance signals # CSL1 to #CSLN having a plurality of voltage levels to the auxiliary capacitance bus lines CSL1 to CSLN as described above is, for example, the auxiliary capacitance driver 14 However, this can be realized by including a plurality of power supplies that supply the plurality of voltage levels and a selector that selects one of the voltage levels supplied from the plurality of power supplies.

図19は、4値の電圧レベルからなる補助容量信号#CSL1〜#CSLNを供給するための、補助容量ドライバ14の構成を示すブロック図である。   FIG. 19 is a block diagram showing a configuration of the auxiliary capacitor driver 14 for supplying the auxiliary capacitor signals # CSL1 to #CSLN having four voltage levels.

図19に示すように、補助容量ドライバ14は、第1の電源B1、第2の電源B2、第3の電源B3、および、第4の電源B4を備えている。また、図19に示すように、補助容量ドライバ14は、補助容量バスラインCSLn(1≦n≦N)に接続された第nのセレクタSELn(1≦n≦N)を備えている。   As shown in FIG. 19, the auxiliary capacitor driver 14 includes a first power supply B1, a second power supply B2, a third power supply B3, and a fourth power supply B4. As shown in FIG. 19, the auxiliary capacitor driver 14 includes an nth selector SELn (1 ≦ n ≦ N) connected to the auxiliary capacitor bus line CSLn (1 ≦ n ≦ N).

また、図19に示すように、第nのセレクタSELnには、制御部11から出力される制御信号#11cが供給される。   As shown in FIG. 19, the control signal # 11c output from the control unit 11 is supplied to the nth selector SELn.

図19に示すように、第1の電源B1から出力される第1の電位、第2の電源から出力される第2の電位、第3の電源から出力される第3の電位、および、第4の電源から出力される第4の電位は、第nのセレクタSELn(1≦n≦N)に供給されている。第nのセレクタSELnは、上記第1の電位、第2の電位、第3の電位、および、第4の電位のうち、制御信号#11cに応じて、何れか1つの電位を選択し、補助容量バスラインCSLnに対して供給する。   As shown in FIG. 19, the first potential output from the first power supply B1, the second potential output from the second power supply, the third potential output from the third power supply, The fourth potential output from the power source 4 is supplied to the nth selector SELn (1 ≦ n ≦ N). The n-th selector SELn selects any one of the first potential, the second potential, the third potential, and the fourth potential in accordance with the control signal # 11c, and supports it. Supply to the capacity bus line CSLn.

なお、上記第1〜第4の電源の具体的な構成は、本発明を限定するものではないが、例えば、それぞれ、上記第1〜第4の電位に対応するデジタル値が入力されるDAC(Digital−Analog Converter)を用いてもよいし、他の構成を用いてもよい。   Note that the specific configurations of the first to fourth power supplies do not limit the present invention. For example, each of the DACs to which digital values corresponding to the first to fourth potentials are input ( (Digital-Analog Converter) may be used, and other configurations may be used.

上記のように、本発明に係る表示パネル1における前記補助容量ドライバ14は、前記矩形状の電圧信号(補助容量信号#CSLn)の振幅の大きさを変更する振幅変更手段を備えていることが好ましい。   As described above, the auxiliary capacitance driver 14 in the display panel 1 according to the present invention includes amplitude changing means for changing the amplitude of the rectangular voltage signal (auxiliary capacitance signal #CSLn). preferable.

このように、前記補助容量ドライバ14が、前記矩形状の電圧信号の振幅の大きさを変更する振幅変更手段を備えることによって、より効果的に動画ボケの現象を抑制することができる。   As described above, the auxiliary capacitance driver 14 includes the amplitude changing unit that changes the amplitude of the rectangular voltage signal, so that the phenomenon of moving image blur can be more effectively suppressed.

また、本発明に係る表示パネル1においては、前記ソースドライバ12は、前記矩形状の電圧信号の振幅(補助容量信号#CSLn)がより小さい場合に、より振幅の大きな前記ソース信号#SLmを供給し、前記矩形状の電圧信号(補助容量信号#CSLn)の振幅がより大きい場合に、より振幅の小さな前記ソース信号#SLmを供給する。   In the display panel 1 according to the present invention, the source driver 12 supplies the source signal #SLm having a larger amplitude when the amplitude of the rectangular voltage signal (auxiliary capacitance signal #CSLn) is smaller. Then, when the amplitude of the rectangular voltage signal (auxiliary capacitance signal #CSLn) is larger, the source signal #SLm having a smaller amplitude is supplied.

上記の構成によれば、前記ソースドライバは、前記矩形状の電圧信号の振幅がより小さい場合に、より振幅の大きな前記ソース信号を供給し、前記矩形状の電圧信号の振幅がより大きい場合に、より振幅の小さな前記ソース信号を供給することができるため、前記矩形状の電圧信号の振幅がより大きい場合であっても、前記矩形状の電圧信号の振幅がより小さい場合であっても、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   According to the above configuration, when the amplitude of the rectangular voltage signal is smaller, the source driver supplies the source signal having a larger amplitude, and when the amplitude of the rectangular voltage signal is larger. Since the source signal having a smaller amplitude can be supplied, even if the amplitude of the rectangular voltage signal is larger or the amplitude of the rectangular voltage signal is smaller, There is a further effect that the motion blur phenomenon can be effectively suppressed.

なお、前記ソース信号の振幅とは、正極性書き込み時における前記ソース信号の電位から負極性書き込み時における前記ソース信号の電位を引き算したものとして定義されるものとする(以下同様)。また、正極性書き込み時とは、前記導通信号供給時であって前記矩形状の電圧信号が最も低い電圧レベルである場合を指し、負極性書き込み時とは、前記導通信号供給時であって前記矩形状の電圧信号が最も高い電圧レベルである場合を指す(以下同様)。   The amplitude of the source signal is defined as a value obtained by subtracting the potential of the source signal at the time of negative polarity writing from the potential of the source signal at the time of positive polarity writing (the same applies hereinafter). The positive polarity writing refers to the case where the conduction signal is supplied and the rectangular voltage signal is at the lowest voltage level, and the negative polarity writing is the time when the conduction signal is supplied. This refers to the case where the rectangular voltage signal has the highest voltage level (the same applies hereinafter).

〔実施形態2〕
実施形態1においては、表示パネル1が、N本のゲートバスラインGL1〜GLN、および、N本の補助容量バスラインCSL1〜CSLNを備える構成について説明を行ったが、本発明はこれに限られるものではない。
[Embodiment 2]
In the first embodiment, the configuration in which the display panel 1 includes the N gate bus lines GL1 to GLN and the N auxiliary capacitor bus lines CSL1 to CSLN has been described, but the present invention is not limited thereto. It is not a thing.

以下では、図20および図21を参照して、本発明の第2の実施形態に係る表示パネル2について説明を行う。なお、すでに説明した部分については、同じ符号を付し、説明を省略する。   Below, with reference to FIG. 20 and FIG. 21, the display panel 2 which concerns on the 2nd Embodiment of this invention is demonstrated. In addition, about the part already demonstrated, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図20は、本実施形態に係る表示パネル2の構成を示すブロック図である。図20に示すように、表示パネル2は、表示パネル1における補助容量ドライバ14に代えて、補助容量ドライバ24を備えており、表示パネル1における表示部16に代えて、表示部26を備えている。   FIG. 20 is a block diagram showing a configuration of the display panel 2 according to the present embodiment. As shown in FIG. 20, the display panel 2 includes an auxiliary capacitor driver 24 instead of the auxiliary capacitor driver 14 in the display panel 1, and includes a display unit 26 instead of the display unit 16 in the display panel 1. Yes.

図20に示すように、表示部26には、N本のゲートバスラインGL1〜GLN(本実施形態においては、Nは偶数であるとして説明を行う)とM本のソースバスラインSL1〜SLMとに加えて、N/2本の補助容量バスラインCSL1〜CSLN/2を備えている。   As shown in FIG. 20, the display unit 26 includes N gate bus lines GL1 to GLN (in the present embodiment, description is made assuming that N is an even number), and M source bus lines SL1 to SLM. In addition, N / 2 auxiliary capacity bus lines CSL1 to CSLN / 2 are provided.

また、図20に示すように、ゲートバスラインGLn(nは奇数とする)によって画定される画素領域Pn,mに形成された第2の補助容量電極CE2n,m、および、ゲートバスラインGLn+1によって画定される画素領域Pn+1,mに形成された第2の補助容量電極CE2 n+1,mは、共に、補助容量バスラインCSLp(p=(n+1)/2)に接続されている。   Further, as shown in FIG. 20, the second auxiliary capacitance electrode CE2n, m formed in the pixel region Pn, m defined by the gate bus line GLn (n is an odd number), and the gate bus line GLn + The second auxiliary capacitance electrode CE2 n + 1, m formed in the pixel region Pn + 1, m defined by 1 is connected to the auxiliary capacitance bus line CSLp (p = (n + 1) / 2). Yes.

補助容量ドライバ24は、N/2本の補助容量バスラインCSL1〜CSLN/2のそれぞれに対して、補助容量信号#CSL1〜#CSLN/2を供給する。   The auxiliary capacity driver 24 supplies auxiliary capacity signals # CSL1 to # CSLN / 2 to the N / 2 auxiliary capacity bus lines CSL1 to CSLN / 2, respectively.

また、本実施形態におけるソースドライバ12は、ソースバスラインSLmに対し、連続する2つの水平走査期間ごとに極性を反転させるソース信号を供給するものとして説明を行う。   Further, the description will be made assuming that the source driver 12 in this embodiment supplies a source signal whose polarity is inverted every two consecutive horizontal scanning periods to the source bus line SLm.

表示パネル2のその他の構成は、表示パネル1と同様である。   Other configurations of the display panel 2 are the same as those of the display panel 1.

図21の(a)は、表示パネル2におけるゲートドライバ13が、ゲートバスラインGLn〜GLn+3のそれぞれに対して供給するゲート信号#GLn〜#GLn+3の波形の一例を示すタイミングチャートであり、図21の(b)は、表示パネル2における補助容量ドライバ24が、補助容量バスラインCSLp(p=(n+1)/2)および補助容量バスラインCSLp+1のそれぞれに対して供給する補助容量信号#CSLpおよび補助容量信号#CSLp+1の波形の一例を示すタイミングチャートである。   FIG. 21A is a timing chart showing an example of waveforms of gate signals #GLn to # GLn + 3 supplied to the gate bus lines GLn to GLn + 3 by the gate driver 13 in the display panel 2, respectively. In FIG. 21B, the auxiliary capacitor driver 24 in the display panel 2 supplies the auxiliary capacitor bus line CSLp (p = (n + 1) / 2) and the auxiliary capacitor bus line CSLp + 1. It is a timing chart which shows an example of the waveform of capacity signal #CSLp and auxiliary capacity signal # CSLp + 1.

図21の(a)〜(b)に示すように、補助容量ドライバ24は、ゲート信号#GLn、および、ゲート信号#GLn+1に同期して、補助容量バスラインCSLp(p=(n+1)/2)に対して、補助容量信号#CSLp(p=(n+1)/2)を供給し、ゲート信号#GLn+2、および、ゲート信号#GLn+3に同期して、補助容量バスラインCSLp+1(p=(n+1)/2)に対して、補助容量信号#CSLp+1(p=(n+1)/2)を供給する。   As shown in FIGS. 21A to 21B, the auxiliary capacitor driver 24 synchronizes with the gate signal #GLn and the gate signal # GLn + 1 in the auxiliary capacitor bus line CSLp (p = (n + 1)). / 2) is supplied with the auxiliary capacitance signal #CSLp (p = (n + 1) / 2), and in synchronization with the gate signal # GLn + 2 and the gate signal # GLn + 3, the auxiliary capacitance bus line CSLp For +1 (p = (n + 1) / 2), an auxiliary capacitance signal # CSLp + 1 (p = (n + 1) / 2) is supplied.

このように、本実施形態に係る表示パネル2においては、前記複数のゲートバスラインGL1〜GLNの本数は偶数であり、前記複数の補助容量バスラインの本数は、前記ゲートバスラインの本数の半数(すなわちN/2本)であり、前記複数のゲートバスラインのうち2k−1番目(kは自然数)のゲートバスラインGL2k-1に前記トランジスタM2k-1,mを介して接続された前記キャパシタC2k-1,mの前記他の一端(第2の補助容量電極CE2 2k-1,m)と、前記複数のゲートバスラインのうち2k番目のゲートバスラインGL2k,mに前記トランジスタM2k,mを介して接続された前記キャパシタC2k,mの前記他の一端(第2の補助容量電極CE2 2k)とが、前記複数の補助容量バスラインのうちk番目の補助容量バスラインCSLkに接続されている。   Thus, in the display panel 2 according to the present embodiment, the number of the plurality of gate bus lines GL1 to GLN is an even number, and the number of the plurality of auxiliary capacitance bus lines is half the number of the gate bus lines. (Ie, N / 2), and the capacitor connected to the 2k-1th (k is a natural number) gate bus line GL2k-1 among the plurality of gate bus lines via the transistor M2k-1, m The transistor M2k, m is connected to the other end of the C2k-1, m (second auxiliary capacitance electrode CE2 2k-1, m) and the 2kth gate bus line GL2k, m of the plurality of gate bus lines. The other end of the capacitor C2k, m connected via the second auxiliary capacitance electrode CE2 2k is connected to the kth auxiliary capacitance bus line CSLk among the plurality of auxiliary capacitance bus lines. .

本実施形態に係る表示パネル2は、実施形態1における表示パネル1に比べて、補助容量バスラインの本数を半分にすることができる。したがって、表示パネル2における表示部26の構成を、表示パネル1における表示部16の構成に比べて簡単にすることができる。また、表示パネル2における補助容量ドライバ24は、N/2本の補助容量バスラインCSL1〜CSLN/2のそれぞれに対して、補助容量信号#CSL1〜#CSLN/2を供給すればよいので、N本の補助容量バスラインCSL1〜CSLNのそれぞれに対して、補助容量信号#CSL1〜#CSLNを供給する表示パネル1における補助容量ドライバ14に比べて構成を簡単にすることができる。すなわち、本実施形態に係る表示パネル2によれば、実施形態1における表示パネル1に比べてより簡単な構成により、上記動画ボケの現象を抑制することができる。   The display panel 2 according to the present embodiment can halve the number of storage capacitor bus lines compared to the display panel 1 according to the first embodiment. Therefore, the configuration of the display unit 26 in the display panel 2 can be simplified as compared with the configuration of the display unit 16 in the display panel 1. Further, the auxiliary capacitor driver 24 in the display panel 2 only has to supply the auxiliary capacitor signals # CSL1 to # CSLN / 2 to the N / 2 auxiliary capacitor bus lines CSL1 to CSLN / 2. The configuration can be simplified compared to the auxiliary capacitor driver 14 in the display panel 1 that supplies the auxiliary capacitance signals # CSL1 to #CSLN to the auxiliary capacitance bus lines CSL1 to CSLN. That is, according to the display panel 2 according to the present embodiment, the moving image blurring phenomenon can be suppressed with a simpler configuration than the display panel 1 in the first embodiment.

〔実施形態3〕
以下では、図22および図23を参照して、本発明の第3の実施形態に係る表示パネル3について説明する。
[Embodiment 3]
Below, with reference to FIG. 22 and FIG. 23, the display panel 3 which concerns on the 3rd Embodiment of this invention is demonstrated.

図22は、本実施形態に係る表示パネル3の構成を示すブロック図である。図22に示すように、表示パネル3は、制御部31、ソースドライバ12、補助容量ドライバ141、補助容量ドライバ142、および、表示部36を備えている。また、表示パネル3は、図示しないゲートドライバ、および、図示しない対向電極ドライバを備えている。ここで、上記図示しないゲートドライバ、および、上記図示しない対向電極ドライバは、それぞれ、表示パネル1におけるゲートドライバ13、および、対向電極ドライバ15と同様の構成である。   FIG. 22 is a block diagram showing a configuration of the display panel 3 according to the present embodiment. As shown in FIG. 22, the display panel 3 includes a control unit 31, a source driver 12, an auxiliary capacitance driver 141, an auxiliary capacitance driver 142, and a display unit 36. The display panel 3 includes a gate driver (not shown) and a counter electrode driver (not shown). Here, the gate driver (not shown) and the counter electrode driver (not shown) have the same configurations as the gate driver 13 and the counter electrode driver 15 in the display panel 1, respectively.

図22に示すように、表示部36の両側には、それぞれ、補助容量ドライバ141、および、補助容量ドライバ142が配置されている。また、補助容量ドライバ141には、制御部31から制御信号#11c2が供給され、補助容量ドライバ142には、制御部31から制御信号#11c1が供給されている。   As shown in FIG. 22, the auxiliary capacitor driver 141 and the auxiliary capacitor driver 142 are arranged on both sides of the display unit 36, respectively. The auxiliary capacity driver 141 is supplied with a control signal # 11c2 from the controller 31, and the auxiliary capacity driver 142 is supplied with a control signal # 11c1 from the controller 31.

表示部36には、M本のソースバスラインSL1〜SLM、および、図示しないN本のゲートバスラインが形成されている。なお、当該図示しないN本のゲートバスラインは、表示パネル1におけるN本のゲートバスラインGL1〜GLNと同様の構成である。また、表示部36には、表示パネル1における対向電極用配線COMLと同様の図示しない対向電極用配線が形成されている。   In the display unit 36, M source bus lines SL1 to SLM and N gate bus lines (not shown) are formed. The N gate bus lines (not shown) have the same configuration as the N gate bus lines GL1 to GLN in the display panel 1. The display unit 36 is provided with a counter electrode wiring (not shown) similar to the counter electrode wiring COML in the display panel 1.

また、図22に示すように、表示部36の左側半面には、ソースバスラインSL1〜SLMとほぼ垂直に、N本の補助容量バスラインCSLL1〜CSLLNが形成されており、表示部36の右側半面には、ソースバスラインSL1〜SLMとほぼ垂直に、N本の補助容量バスラインCSLR1〜CSLRNが形成されている。また、N本の補助容量バスラインCSLL1〜CSLLNとN本の補助容量バスラインCSLR1〜CSLRNとは互いに絶縁されている。また、図22に示すように、補助容量バスラインCSLLnと補助容量バスラインCSLRnとは、同一直線上に配置されている。したがって、換言すれば、本実施形態においては、表示パネル1における補助容量バスラインCSLnが、絶縁部を介して同一直線上に形成された2本の補助容量バスラインCSLLn、および、補助容量バスラインCSLRnから構成されている。   Further, as shown in FIG. 22, N auxiliary capacity bus lines CSLL1 to CSLN are formed on the left half surface of the display unit 36 substantially perpendicularly to the source bus lines SL1 to SLM. On the half surface, N auxiliary capacitor bus lines CSLR1 to CSLRN are formed substantially perpendicular to the source bus lines SL1 to SLM. Further, the N auxiliary capacity bus lines CSLL1 to CSLNL and the N auxiliary capacity bus lines CSLR1 to CSLRN are insulated from each other. Further, as shown in FIG. 22, the auxiliary capacity bus line CSLLn and the auxiliary capacity bus line CSLRn are arranged on the same straight line. Therefore, in other words, in the present embodiment, the auxiliary capacitance bus line CSLn in the display panel 1 includes two auxiliary capacitance bus lines CSLLn formed on the same straight line via the insulating portion, and the auxiliary capacitance bus line. It consists of CSLRn.

また、N本の補助容量バスラインCSLL1〜CSLLNのぞれぞれの一端は、補助容量ドライバ141に接続されており、N本の補助容量バスラインCSLR1〜CSLRNのぞれぞれの一端は、補助容量ドライバ142に接続されている。   Further, one end of each of the N auxiliary capacity bus lines CSLL1 to CSLNL is connected to the auxiliary capacity driver 141, and one end of each of the N number of auxiliary capacity bus lines CSLR1 to CSLRN is The auxiliary capacity driver 142 is connected.

なお、補助容量バスラインCSLL1〜CSLLNと、補助容量バスラインCSLR1〜CSLRNとは絶縁されている。   The auxiliary capacity bus lines CSLL1 to CSLRN are insulated from the auxiliary capacity bus lines CSLR1 to CSLRN.

補助容量ドライバ141は、補助容量バスラインCSLL1〜CSLLNに対し、それぞれ、補助容量信号#CSLL1〜#CSLLNを供給し、補助容量ドライバ142は、補助容量バスラインCSLR1〜CSLRNに対し、それぞれ、補助容量信号#CSLR1〜#CSLRNを供給する。   The auxiliary capacity driver 141 supplies auxiliary capacity signals # CSLL1 to #CLLN to the auxiliary capacity bus lines CSLL1 to CSLNL, respectively, and the auxiliary capacity driver 142 corresponds to the auxiliary capacity bus lines CSLR1 to CSLRN, respectively. Signals # CSLR1 to #CSLRN are supplied.

図23は、図22に示す領域Rにおける表示部36の構成を示す回路図である。図23に示すように、ソースバスラインSL1〜SLkによって画定される画素領域Pn,1〜Pn,kに形成されている第2の補助容量電極CE2n,1〜CE2n,kは、補助容量バスラインCSLLnに接続されており、ソースバスラインSLk+1〜SLMによって画定される画素領域Pn,k+1〜Pn,Mに形成されている第2の補助容量電極CE2n,k+1〜CE2n,Mは、補助容量バスラインCSLRnに接続されている。画素領域Ps,1〜Ps,k、(s≠n、1≦s≦N)および、画素領域Ps,k+1〜Ps,M(s≠n、1≦s≦N)に対しても同様である。   FIG. 23 is a circuit diagram showing a configuration of display unit 36 in region R shown in FIG. As shown in FIG. 23, the second auxiliary capacitance electrodes CE2n, 1 to CE2n, k formed in the pixel regions Pn, 1 to Pn, k defined by the source bus lines SL1 to SLk are the auxiliary capacitance bus lines. Second auxiliary capacitance electrodes CE2n, k + 1 to CE2n, M connected to CSLLn and formed in pixel regions Pn, k + 1 to Pn, M defined by source bus lines SLk + 1 to SLM Are connected to the auxiliary capacity bus line CSLRn. The same applies to the pixel regions Ps, 1 to Ps, k (s ≠ n, 1 ≦ s ≦ N) and the pixel regions Ps, k + 1 to Ps, M (s ≠ n, 1 ≦ s ≦ N). It is.

ここで、上記kの値は、M/2程度であることが好ましい。ここで、Mはソースバスラインの本数である。また、上記kの値は、ほぼ0.45×Mから0.55×Mまでの範囲であることが好ましい。   Here, the value of k is preferably about M / 2. Here, M is the number of source bus lines. The value of k is preferably in the range of approximately 0.45 × M to 0.55 × M.

補助容量ドライバ141、および、補助容量ドライバ142は、実施形態1において説明した補助容量ドライバ14と同様の動作を行う構成としてもよいし、互いに異なる補助容量信号を供給するような構成としてもよい。例えば、補助容量ドライバ141が実施形態1の動作例2のような補助容量信号#CSLL1〜#CSLLNを供給し、補助容量ドライバ142が実施形態1の動作例5のような補助容量信号CSLR1〜#CSLRNを供給してもよい。また、補助容量ドライバ141が出力する補助容量信号#CSLL1〜#CSLLNのデューティ比と、補助容量ドライバ142が出力する補助容量信号#CSLR1〜#CSLRNのデューティ比とが異なるような構成としてもよい。   The auxiliary capacitance driver 141 and the auxiliary capacitance driver 142 may be configured to perform the same operation as the auxiliary capacitance driver 14 described in the first embodiment, or may be configured to supply different auxiliary capacitance signals. For example, the auxiliary capacitance driver 141 supplies auxiliary capacitance signals # CSLL1 to #CLLN as in the operation example 2 of the first embodiment, and the auxiliary capacitance driver 142 supplies the auxiliary capacitance signals CSLR1 to # CLR1 as in the operation example 5 of the first embodiment. CSLRN may be supplied. Further, the duty ratio of the auxiliary capacity signals # CSLL1 to #CSLNL output from the auxiliary capacity driver 141 may be different from the duty ratio of the auxiliary capacity signals # CSLR1 to #CSLRN output from the auxiliary capacity driver 142.

また、ソースドライバ12が、ソースバスラインSL1〜SLkに対し、図18の(b)に示すような振幅のより大きいソース信号#SL1〜#SLkを供給し、ソースバスラインSLk+1〜SLMに対し、図18の(d)に示すような振幅のより小さいソース信号#SLk+1〜#SLMを供給する場合には、補助容量ドライバ141は、補助容量バスラインCSLL1〜CSLLNに対し、図18の(c)に示すような振幅のより小さい補助容量信号#CSLL1〜#CSLLNを供給し、補助容量ドライバ142は、補助容量バスラインCSLR1〜CSLRNに対し、図18の(e)に示すような振幅のより大きい補助容量信号#CSLR1〜#CSLRNを供給することが好ましい。   Further, the source driver 12 supplies source signals # SL1 to #SLk having a larger amplitude as shown in FIG. 18B to the source bus lines SL1 to SLk, and is supplied to the source bus lines SLk + 1 to SLM. On the other hand, when source signals # SLk + 1 to #SLM having smaller amplitudes as shown in FIG. 18D are supplied, the auxiliary capacitor driver 141 applies the auxiliary capacitor bus lines CSLL1 to CSLLN to FIG. The auxiliary capacitance signals # CSLL1 to #CSLLN having a smaller amplitude as shown in (c) of FIG. 18 are supplied, and the auxiliary capacitance driver 142 is supplied to the auxiliary capacitance bus lines CSLR1 to CSLRN as shown in FIG. It is preferable to supply auxiliary capacity signals # CSLR1 to #CSLRN having a larger amplitude.

また、本実施形態に係る表示パネル3は、2つの前記補助容量ドライバ(補助容量ドライバ141、および、補助容量ドライバ142)を備え、前記任意の補助容量バスライン(補助容量バスラインCSLn)は、絶縁部を介して同一直線上に形成された2本の補助容量バスライン(補助容量バスラインCSLLn、および、補助容量バスラインCSLRn)から構成され、2つの前記補助容量ドライバのうち一方の前記補助容量ドライバ(補助容量ドライバ141)は、前記1走査期間(1垂直走査期間)において、前記2本の補助容量バスラインのうち一方の補助容量バスライン(補助容量バスラインCSLLn)に対し、前記導通信号(ゲート信号GLnのハイレベル区間)に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号(補助容量信号#CSLLn)を供給し、2つの前記補助容量ドライバのうち他の一方の前記補助容量ドライバ(補助容量ドライバ142)は、前記1走査期間において、前記2本の補助容量バスラインのうち他の一方の補助容量バスライン(補助容量バスラインCSLRn)に対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号(補助容量信号#CSLRn)を供給する。   Further, the display panel 3 according to the present embodiment includes two auxiliary capacitor drivers (auxiliary capacitor driver 141 and auxiliary capacitor driver 142), and the arbitrary auxiliary capacitor bus line (auxiliary capacitor bus line CSLn) It is composed of two auxiliary capacity bus lines (auxiliary capacity bus line CSLLn and auxiliary capacity bus line CSLRn) formed on the same straight line through an insulating portion, and the auxiliary capacity of one of the two auxiliary capacity drivers The capacity driver (auxiliary capacity driver 141) is connected to one of the two auxiliary capacity bus lines (auxiliary capacity bus line CSLLn) in the one scanning period (one vertical scanning period). In synchronization with the signal (high level interval of the gate signal GLn), the first voltage level is different from the first voltage level. A rectangular voltage signal (auxiliary capacitance signal #CSLLn) having a second voltage level is supplied, and the other auxiliary capacitance driver (auxiliary capacitance driver 142) of the two auxiliary capacitance drivers performs the one scan. In the period, the other one of the two auxiliary capacitor bus lines (auxiliary capacitor bus line CSLRn) is synchronized with the conduction signal in the first voltage level and the first voltage. A rectangular voltage signal (auxiliary capacitance signal #CSLRn) having a second voltage level different from the level is supplied.

本実施形態に係る表示パネル3によれば、上記一方の補助容量バスライン(補助容量バスラインCSLLn)に接続された画素電極と、上記他の補助容量バスライン(補助容量バスラインCSLRn)に接続された画素電極とに対し、互いに独立に上記矩形状の電圧信号(補助容量信号#CSLLn、および、補助容量信号#CSLRn)を供給することができる。   According to the display panel 3 according to the present embodiment, the pixel electrode connected to the one auxiliary capacitance bus line (auxiliary capacitance bus line CSLLn) and the other auxiliary capacitance bus line (auxiliary capacitance bus line CSLRn) are connected. The rectangular voltage signals (auxiliary capacitance signal #CSLLn and auxiliary capacitance signal #CSLRn) can be supplied to the pixel electrodes thus formed independently of each other.

したがって、上記の構成によれば、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができるため、ユーザに対して、本発明による上記動画ボケの改善効果を訴求することができる。すなわち、ユーザに対して、本発明による上記動画ボケの改善効果を効果的にアピールすることができる。   Therefore, according to the above configuration, a pixel region including a pixel electrode connected to the one auxiliary capacitance bus line and a pixel region including a pixel electrode connected to the other one auxiliary capacitance bus line include: Since it is possible to display images with different effects of improving the motion blur phenomenon, it is possible to appeal the motion blur improvement effect of the present invention to the user. That is, the effect of improving the moving image blur according to the present invention can be effectively appealed to the user.

また、上述のように、前記ソースドライバ12は、前記一方の補助容量バスライン(補助容量バスラインCSLLn)に前記キャパシタCn,m(m≦k)および前記トランジスタMn,mを介して接続された前記ソースバスラインSLmと、前記他の補助容量バスライン(補助容量バスラインCSLRn)に前記キャパシタCn,r(r≧k+1)および前記トランジスタMn,rを介して接続された前記ソースバスラインSLrとに対し、それぞれ振幅の異なったソース信号を供給してもよい。   Further, as described above, the source driver 12 is connected to the one auxiliary capacitor bus line (auxiliary capacitor bus line CSLLn) via the capacitor Cn, m (m ≦ k) and the transistor Mn, m. The source bus line SLm and the source bus line SLr connected to the other auxiliary capacitance bus line (auxiliary capacitance bus line CSLRn) via the capacitor Cn, r (r ≧ k + 1) and the transistor Mn, r; On the other hand, source signals having different amplitudes may be supplied.

したがって、本動作例においては、上記一方の補助容量バスライン(補助容量バスラインCSLLn)に接続された画素電極PEn,m(m≦k)と、上記他の一方の補助容量バスライン(補助容量バスラインCSLRn)に接続された画素電極PEn,m(m≧k+1)とに対し、互いに独立に上記矩形状の電圧信号(補助容量信号#CSLLn、および、補助容量信号#CSLRn)を供給することによって、上記動画ボケの現象以外の画像の視認性を同一にしつつ、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができるため、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的に訴求することができる。すなわち、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的にアピールすることができる。   Therefore, in this operation example, the pixel electrode PEn, m (m ≦ k) connected to the one auxiliary capacitance bus line (auxiliary capacitance bus line CSLLn) and the other one auxiliary capacitance bus line (auxiliary capacitance bus line (auxiliary capacitance bus line CSLLn)). The rectangular voltage signals (auxiliary capacitance signal #CSLLn and auxiliary capacitance signal #CSLRn) are supplied to the pixel electrodes PEn, m (m ≧ k + 1) connected to the bus line CSLRn) independently of each other. With the same visibility of the image other than the moving image blurring phenomenon, the pixel region including the pixel electrode connected to the one auxiliary capacitance bus line and the other one auxiliary capacitance bus line are connected. Since the pixel region including the pixel electrode can display images having different effects of improving the phenomenon of moving image blur, the moving image blur according to the present invention can be displayed to the user. It is possible to more effectively appeal for the improvement effect. That is, the effect of improving the moving image blur according to the present invention can be more effectively appealed to the user.

また、上記一方の補助容量バスライン(補助容量バスラインCSLLn)の長さは、上記任意の補助容量バスライン(表示パネル1における補助容量バスラインCSLn)の長さの略45パーセントから略55パーセントの長さであり、上記他の補助容量バスライン(補助容量バスラインCSLRn)の長さは、上記任意の補助容量バスライン(表示パネル1における補助容量バスラインCSLn)の長さから上記一方の補助容量バスライン(補助容量バスラインCSLLn)の長さを引いた長さに略等しい。   The length of the one auxiliary capacitor bus line (auxiliary capacitor bus line CSLLn) is approximately 45% to approximately 55% of the length of the arbitrary auxiliary capacitor bus line (auxiliary capacitor bus line CSLn in the display panel 1). The length of the other auxiliary capacity bus line (auxiliary capacity bus line CSLRn) is determined from the length of the arbitrary auxiliary capacity bus line (auxiliary capacity bus line CSLn in the display panel 1). It is substantially equal to the length obtained by subtracting the length of the auxiliary capacity bus line (auxiliary capacity bus line CSLLn).

したがって、上記の構成のように構成された表示パネル3によれば、上記表示部36の一方の半面に配置された画素電極PEn,m(n≦k)を備える画素領域の輝度、および、もう一方の半面に配置された画素電極PEn,m(n≧k+1)を備える画素領域の輝度を、上記1走査期間において、各々独立に制御することができる。したがって、上記の構成によれば、上記動画ボケの現象をより効果的に抑制することができる。   Therefore, according to the display panel 3 configured as described above, the luminance of the pixel region including the pixel electrodes PEn, m (n ≦ k) disposed on one half surface of the display unit 36, and The luminance of the pixel area including the pixel electrodes PEn, m (n ≧ k + 1) arranged on one half surface can be controlled independently in the one scanning period. Therefore, according to the above configuration, the moving image blur phenomenon can be more effectively suppressed.

また、前記一方の補助容量バスラインの負荷特性と、前記他の一方の補助容量バスラインの負荷特性とを略同一にすることができるため、前記一方の補助容量バスラインに接続された補助容量ドライバの構成と、前記他の一方の補助容量バスラインに接続された補助容量ドライバの構成とを略同一にすることができる。   Further, since the load characteristic of the one auxiliary capacity bus line and the load characteristic of the other one auxiliary capacity bus line can be made substantially the same, the auxiliary capacity connected to the one auxiliary capacity bus line The configuration of the driver and the configuration of the auxiliary capacitance driver connected to the other auxiliary capacitance bus line can be made substantially the same.

したがって、上記の構成によれば、設計および製造がより容易な構成によって、ユーザに対して、本発明による上記動画ボケの改善効果を効果的にアピールすることができる。   Therefore, according to the above configuration, it is possible to effectively appeal the effect of improving the moving image blur according to the present invention to the user with a configuration that is easier to design and manufacture.

また、本実施形態に係る表示パネル3においては、前記一方の補助容量ドライバ(補助容量ドライバ141)は、前記矩形状の電圧信号の振幅の大きさを変更する第1の振幅変更手段(図19に示す構成と同様の構成)を備えており、前記他の一方の補助容量ドライバ(補助容量ドライバ142)は、前記矩形状の電圧信号の振幅の大きさを変更する第2の振幅変更手段(図19に示す構成と同様の構成)を備えている。   Further, in the display panel 3 according to the present embodiment, the one auxiliary capacitor driver (auxiliary capacitor driver 141) is a first amplitude changing unit (FIG. 19) that changes the amplitude of the rectangular voltage signal. The other one of the auxiliary capacitor drivers (auxiliary capacitor driver 142) has a second amplitude changing means (which changes the amplitude of the rectangular voltage signal). A configuration similar to the configuration shown in FIG. 19 is provided.

したがって、上記の構成によれば、前記一方の補助容量ドライバ、および、前記他の一方の補助容量ドライバが、それぞれ振幅の異なった前記矩形状の電圧信号を供給することによって、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができるため、ユーザに対して、本発明による上記動画ボケの改善効果を訴求することができる。すなわち、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的にアピールすることができる。   Therefore, according to the above configuration, the one auxiliary capacitance driver and the other one auxiliary capacitance driver supply the rectangular voltage signals having different amplitudes, respectively. A pixel region having a pixel electrode connected to a bus line and a pixel region having a pixel electrode connected to the other auxiliary capacitor bus line display images having different effects of improving the moving image blur phenomenon. Therefore, the effect of improving the moving image blur according to the present invention can be appealed to the user. That is, the effect of improving the moving image blur according to the present invention can be more effectively appealed to the user.

また、前記ソースドライバ12は、前記一方の補助容量ドライバ(補助容量ドライバ141)が前記一方の補助容量バスラインCSLLnに振幅のより小さい前記矩形状の電圧信号(補助容量信号#CSLLn)を供給した場合には、前記一方の補助容量バスラインCSLLnに前記キャパシタCn,m(m≦k)および前記トランジスタMn,mを介して接続された前記ソースバスラインSLmに対して振幅のより大きい前記ソース信号#SLmを供給し、前記一方の補助容量ドライバ(補助容量ドライバ141)が前記一方の補助容量バスラインCSLLnに振幅のより大きい前記矩形状の電圧信号(補助容量信号#CSLLn)を供給した場合には、前記一方の補助容量バスラインCSLLnに前記キャパシタCn,mおよび前記トランジスタMn,mを介して接続された前記ソースバスラインSLmに対して振幅のより小さい前記ソース信号#SLmを供給し、前記他の一方の補助容量ドライバ(補助容量ドライバ142)が前記他の一方の補助容量バスラインCSLRnに振幅のより小さい前記矩形状の電圧信号(補助容量信号#CSLRn)を供給した場合には、前記他の一方の補助容量バスラインに前記キャパシタCn,mおよび前記トランジスタMn,mを介して接続された前記ソースバスラインSLmに対して振幅のより大きい前記ソース信号#SLmを供給し、前記他の一方の補助容量ドライバ(補助容量ドライバ142)が前記他の一方の補助容量バスラインCSLRnに振幅のより大きい前記矩形状の電圧信号(補助容量信号#CSLRn)を供給した場合には、前記他の一方の補助容量バスラインCSLRnに前記キャパシタCn,mおよび前記トランジスタMn,mを介して接続された前記ソースバスラインSLmに対して振幅のより小さい前記ソース信号#SLmを供給することが好ましい。   The source driver 12 supplies the rectangular voltage signal (auxiliary capacitance signal #CSLLn) having a smaller amplitude to the one auxiliary capacitance bus line CSLLn from the one auxiliary capacitance driver (auxiliary capacitance driver 141). In this case, the source signal having a larger amplitude than the source bus line SLm connected to the one auxiliary capacitance bus line CSLLn via the capacitor Cn, m (m ≦ k) and the transistor Mn, m. When #SLm is supplied and the one auxiliary capacitor driver (auxiliary capacitor driver 141) supplies the rectangular voltage signal (auxiliary capacitor signal #CSLLn) having a larger amplitude to the one auxiliary capacitor bus line CSLLn. Is connected to the one auxiliary capacitance bus line CSLLn via the capacitor Cn, m and the transistor Mn, m. The source signal #SLm having a smaller amplitude is supplied to the source bus line SLm, and the other auxiliary capacitor driver (auxiliary capacitor driver 142) has an amplitude on the other auxiliary capacitor bus line CSLRn. When the rectangular voltage signal (auxiliary capacitance signal #CSLRn) is supplied, the other auxiliary capacitance bus line is connected to the other auxiliary capacitance bus line via the capacitor Cn, m and the transistor Mn, m. The source signal #SLm having a larger amplitude is supplied to the source bus line SLm, and the other auxiliary capacitor driver (auxiliary capacitor driver 142) supplies the other auxiliary capacitor bus line CSLRn according to the amplitude. When the large rectangular voltage signal (auxiliary capacitance signal #CSLRn) is supplied, the other auxiliary capacitance bus line CSL Wherein the n capacitors Cn, m and the transistors Mn, it is preferable to supply the smaller the source signal #SLm amplitude relative to the source bus line SLm connected via the m.

上記の構成によれば、前記一方の補助容量ドライバが前記一方の補助容量バスラインに供給する前記矩形状の電圧信号の振幅に応じて、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して前記ソースドライバが供給するソース信号の振幅を制御し、前記他の一方の補助容量ドライバが前記他の一方の補助容量バスラインに供給する前記矩形状の電圧信号の振幅に応じて、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して前記ソースドライバが供給するソース信号の振幅を制御することによって、上記動画ボケの現象以外の画像の視認性を同一にしつつ、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができる。したがって、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的にアピールすることができる。   According to the above configuration, the capacitor and the transistor are connected to the one auxiliary capacitor bus line in accordance with the amplitude of the rectangular voltage signal supplied to the one auxiliary capacitor bus line by the one auxiliary capacitor driver. The rectangular shape which controls the amplitude of the source signal supplied from the source driver to the source bus line connected via the other bus, and the other one auxiliary capacitor driver supplies to the other auxiliary capacitor bus line. The amplitude of the source signal supplied by the source driver to the source bus line connected to the other auxiliary capacitor bus line via the capacitor and the transistor is controlled in accordance with the amplitude of the voltage signal of As a result, it is possible to connect the one auxiliary capacity bus line while maintaining the same visibility of the image other than the moving picture blurring phenomenon. The pixel region including the pixel electrode and the pixel region including the pixel electrode connected to the other auxiliary capacitance bus line can display images having different effects of improving the moving image blur phenomenon. . Therefore, the effect of improving the moving image blur according to the present invention can be more effectively appealed to the user.

〔実施形態4〕
実施形態1〜3においては、主に、ライン反転駆動方式に対する本発明の適用について説明を行ったが、本発明はこれに限定されるものではない。以下では、隣り合う画素電極に対して、互いに反対極性の電位が供給されるドット反転駆動方式に対して本発明を適用した場合について図24および図25を参照して説明を行う。
[Embodiment 4]
In the first to third embodiments, the application of the present invention to the line inversion driving method has been mainly described. However, the present invention is not limited to this. Hereinafter, a case where the present invention is applied to a dot inversion driving method in which potentials having opposite polarities are supplied to adjacent pixel electrodes will be described with reference to FIGS. 24 and 25. FIG.

図24は、本実施形態に係る表示パネルにおける表示部46の構成を示す回路図である。本実施形態に係る表示パネルの他の構成は、実施形態1における表示パネル1の構成と同様である。   FIG. 24 is a circuit diagram showing a configuration of the display unit 46 in the display panel according to the present embodiment. Other configurations of the display panel according to the present embodiment are the same as the configuration of the display panel 1 according to the first embodiment.

図25は、表示部46の各画素電極に印加される電位の極性を示す図である。図25に示すように、本実施形態においては、互いに隣接する画素に対して、反対極性の電位が印加される。このようなドット反転駆動を行うためには、例えば、本実施形態におけるソースドライバが、任意のタイミングにおいて、ソース信号#SLmの極性とソース信号#SLm+1の極性とが反対の極性であるようなソース信号#SL1〜#SLMを供給するような構成とすればよい。   FIG. 25 is a diagram illustrating the polarity of the potential applied to each pixel electrode of the display unit 46. As shown in FIG. 25, in the present embodiment, potentials having opposite polarities are applied to adjacent pixels. In order to perform such dot inversion driving, for example, the source driver in the present embodiment seems to have the polarity of the source signal #SLm and the polarity of the source signal # SLm + 1 opposite to each other at an arbitrary timing. The source signal # SL1 to #SLM may be supplied.

図24に示すように、表示部46における画素領域Pn,mに形成された第2の補助容量電極CE2n,mは、補助容量バスラインCSLnに接続され、画素領域Pn,m+1に形成された第2の補助容量電極CE2n,m+1は、補助容量バスラインCSLn-1に接続されている。   As shown in FIG. 24, the second auxiliary capacitance electrode CE2n, m formed in the pixel region Pn, m in the display unit 46 is connected to the auxiliary capacitance bus line CSLn and formed in the pixel region Pn, m + 1. The second auxiliary capacitance electrode CE2n, m + 1 is connected to the auxiliary capacitance bus line CSLn-1.

また、画素領域Pn+1,mに形成された第2の補助容量電極CE2n+1,mは、補助容量バスラインCSLn+1に接続され、画素領域Pn+1,m+1に形成された第2の補助容量電極CE2n+1,m+1は、補助容量バスラインCSLnに接続されている。   The second storage capacitor electrode CE2n + 1, m formed in the pixel region Pn + 1, m is connected to the storage capacitor bus line CSLn + 1 and formed in the pixel region Pn + 1, m + 1. The second auxiliary capacitance electrode CE2n + 1, m + 1 is connected to the auxiliary capacitance bus line CSLn.

また、本実施形態における補助容量ドライバは、補助容量信号#CSLnの極性と補助容量信号#CSLn+1の極性とが反対の極性であるような補助容量信号#CSL1〜#CSLNを供給する。これは、例えば、本実施形態における補助容量ドライバを実施形態1における補助容量ドライバ14と同じ構成とすることによって実現することができる。   In addition, the auxiliary capacitance driver in the present embodiment supplies auxiliary capacitance signals # CSL1 to #CSLN in which the polarity of the auxiliary capacitance signal #CSLn is opposite to the polarity of the auxiliary capacitance signal # CSLn + 1. This can be realized, for example, by making the auxiliary capacitance driver in the present embodiment the same configuration as the auxiliary capacitance driver 14 in the first embodiment.

このように、本実施形態に係る表示パネルにおいては、前記キャパシタCn,mの前記一端(第1の補助容量電極CE1n,m)が、前記複数のゲートバスラインのうちn番目のゲートバスラインGLnと、前記複数のソースラインのうちm番目のソースバスラインSLmとに接続された前記トランジスタMn,mに接続されている場合には、前記キャパシタCn,mの前記他の一端(第1の補助容量電極CE2n,m)は、前記複数の補助容量バスラインのうちn番目の補助容量バスラインCSLnに接続され、前記キャパシタCn,m+1の前記一端(第1の補助容量電極CE1n,m+1)が、前記複数のゲートバスラインのうちn番目のゲートバスラインGLnと、前記複数のソースラインのうちm+1番目のソースバスラインSLm+1とに接続された前記トランジスタMn,m+1に接続されている場合には、前記キャパシタCn,m+1の前記他の一端(第2の補助容量電極CE2n,m+1)は、前記複数の補助容量バスラインのうちn−1番目の補助容量バスラインCSLn-1に接続されている。   As described above, in the display panel according to the present embodiment, the one end (first auxiliary capacitance electrode CE1n, m) of the capacitor Cn, m is the nth gate bus line GLn among the plurality of gate bus lines. And the other end (first auxiliary) of the capacitor Cn, m when connected to the transistor Mn, m connected to the mth source bus line SLm among the plurality of source lines. The capacitance electrode CE2n, m) is connected to the nth auxiliary capacitance bus line CSLn among the plurality of auxiliary capacitance bus lines, and the one end (first auxiliary capacitance electrode CE1n, m +) of the capacitor Cn, m + 1. 1) includes the transistors Mn, m + 1 connected to the nth gate bus line GLn of the plurality of gate bus lines and the m + 1th source bus line SLm + 1 of the plurality of source lines. Connection The other end (second auxiliary capacitance electrode CE2n, m + 1) of the capacitor Cn, m + 1 is the (n-1) th auxiliary capacitance among the plurality of auxiliary capacitance bus lines. It is connected to the bus line CSLn-1.

上記のように構成された表示パネルによれば、互いに隣接する画素電極に印加される電位が互いに反対の極性であるドット反転駆動を行うことによって、フリッカやクロストークなどを抑制しつつ、上記動画ボケの現象を抑制することができる。   According to the display panel configured as described above, by performing dot inversion driving in which the potentials applied to the pixel electrodes adjacent to each other have opposite polarities, the above moving image is suppressed while suppressing flicker and crosstalk. The blur phenomenon can be suppressed.

(まとめ)
以上のように、本発明に係る表示パネルは、複数のゲートバスラインと、複数のソースバスラインと、複数の補助容量バスラインと、前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、前記トランジスタのドレインに接続された画素電極と、一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、液晶を介して前記画素電極に対向する対向電極と、前記対向電極に接続された対向電極用配線と、前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、を備えた表示パネルであって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する補助容量ドライバを備えており、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長い、ことを特徴としている。
(Summary)
As described above, the display panel according to the present invention is connected to a plurality of gate bus lines, a plurality of source bus lines, a plurality of auxiliary capacitance bus lines, and an arbitrary gate bus line among the plurality of gate bus lines. And a pixel electrode connected to a drain of the transistor, one end of which is in parallel with the pixel electrode. A capacitor connected to the drain of the transistor and having the other end connected to an arbitrary auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines and one end of each of the plurality of source bus lines; A source driver for supplying a source signal to a source bus line of each of the plurality of gate bus lines; A gate driver connected to the end and sequentially supplying a conduction signal for conducting the transistor to the arbitrary gate bus line; a counter electrode facing the pixel electrode through a liquid crystal; and a connection to the counter electrode And a counter electrode driver that supplies a common potential to the counter electrode wiring, wherein the gate driver is connected to the arbitrary gate bus line. In one scanning period from when the signal is supplied to when the next conduction signal is supplied, at least the first voltage level and the first voltage are synchronized with the conduction signal for the arbitrary auxiliary capacitance bus line. An auxiliary capacitor driver for supplying a rectangular voltage signal having a second voltage level different from the voltage level, and the rectangular driver is provided in the one scanning period. Period voltage signal is said first voltage level, and, the second period is a voltage level, respectively, longer than the response time of the liquid crystal is characterized in that.

液晶表示装置のようなホールド型の表示装置においては、あるフレームが表示されてから次のフレームが表示されるまで、物体がその位置に留まって表示されるが、観察者の視線は、物体が留まって表示されている期間であってもその物体を追尾しようと画面上を移動するため、当該動く物体の輪郭がぼけているように認識されてしまうという動画ボケの現象が発生する。   In a hold-type display device such as a liquid crystal display device, an object stays at that position until a next frame is displayed after a frame is displayed. Even during a period in which the object is displayed, the moving object moves on the screen to track the object, so that a moving image blur phenomenon occurs in which the outline of the moving object is recognized as blurred.

本発明に係る表示パネルは、上記のように、複数のゲートバスラインと、複数のソースバスラインと、複数の補助容量バスラインと、前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、前記トランジスタのドレインに接続された画素電極と、一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、液晶層を介して前記画素電極に対向する対向電極と、前記対向電極に接続された対向電極用配線と、前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、を備えた表示パネルであって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する補助容量ドライバを備えているため、上記任意のゲートバスラインに上記導通信号が供給されてから次の上記導通信号が供給されるまでの1走査期間において、上記任意のゲートバスラインに上記トランジスタを介して接続された上記画素電極に対し、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルを印加することができる。   As described above, the display panel according to the present invention is connected to a plurality of gate bus lines, a plurality of source bus lines, a plurality of auxiliary capacitance bus lines, and an arbitrary gate bus line among the plurality of gate bus lines. And a pixel electrode connected to a drain of the transistor, one end of which is in parallel with the pixel electrode. A capacitor connected to the drain of the transistor and having the other end connected to an arbitrary auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines and one end of each of the plurality of source bus lines; A source driver for supplying a source signal to a source bus line of each of the plurality of gate bus lines; A gate driver connected to the end and sequentially supplying a conduction signal for conducting the transistor to the arbitrary gate bus line; a counter electrode facing the pixel electrode through a liquid crystal layer; and a counter electrode A display panel comprising: a connected counter electrode wiring; and a counter electrode driver that supplies a common potential to the counter electrode wiring, wherein the gate driver is connected to the arbitrary gate bus line. In one scanning period from when the conduction signal is supplied to when the next conduction signal is supplied, the first voltage level and the first voltage are synchronized with the conduction signal for the arbitrary auxiliary capacitance bus line. Since the storage capacitor driver for supplying a rectangular voltage signal having a second voltage level different from the voltage level is provided, the conduction to the arbitrary gate bus line is provided. In one scanning period from when the signal is supplied to when the next conduction signal is supplied, the first voltage level and the pixel voltage connected to the arbitrary gate bus line via the transistor are A second voltage level different from the first voltage level can be applied.

また、本発明に係る表示パネルにおいては、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長い。ここで、前記液晶の応答時間とは、前記液晶に電界が印加されてから液晶の配向が変化するまでに要する時間のことであり、一般的に1ms以上を要する。   In the display panel according to the present invention, in the one scanning period, the period in which the rectangular voltage signal is at the first voltage level and the period in which the voltage signal is at the second voltage level are respectively Longer than response time of liquid crystal. Here, the response time of the liquid crystal is a time required for the alignment of the liquid crystal to change after an electric field is applied to the liquid crystal, and generally requires 1 ms or more.

したがって、上記の構成によれば、上記1走査期間において、上記画素電極が形成された画素領域における画像の輝度を2値に変化させることができる。   Therefore, according to the above configuration, the luminance of the image in the pixel region in which the pixel electrode is formed can be changed to binary in the one scanning period.

これによって、上記動画ボケの現象を抑制することができるという効果を奏する。   This produces an effect that the phenomenon of moving image blur can be suppressed.

また、本発明に係る表示パネルが備えている上記補助容量ドライバは、前記導通信号に同期して、上記第1の電圧レベルおよび上記第2の電圧レベルからなる矩形状の電圧信号を供給することができる。したがって、上記矩形状の電圧信号の電圧レベルは、上記導通信号供給されてから一定の時間が経過した後に変化する。   The auxiliary capacitor driver provided in the display panel according to the present invention supplies a rectangular voltage signal composed of the first voltage level and the second voltage level in synchronization with the conduction signal. Can do. Therefore, the voltage level of the rectangular voltage signal changes after a certain time has elapsed since the conduction signal was supplied.

したがって、前記導通信号に同期せずに上記電圧信号を供給する場合と異なり、画面上の全ての画素領域の各々において、映像データが更新されてから、一定の時間が経過した後に明暗の切り替えを行うことができる。   Therefore, unlike the case where the voltage signal is supplied without being synchronized with the conduction signal, the light / dark switching is performed after a certain time has elapsed since the video data was updated in each of all the pixel regions on the screen. It can be carried out.

また、本発明に係る上記の表示パネルにおいては、画像信号を一旦記憶しておくためのフレームメモリを用いることなく、上記動画ボケを抑制することができる。したがって、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、製造コストを削減することができるという効果を奏する。また、画像信号を一旦記憶しておくためのフレームメモリを用いる従来の構成に比べて、消費電力を削減することができるという効果を奏する。   In the display panel according to the present invention, the moving image blur can be suppressed without using a frame memory for temporarily storing an image signal. Therefore, the manufacturing cost can be reduced as compared with the conventional configuration using the frame memory for temporarily storing the image signal. In addition, there is an effect that power consumption can be reduced as compared with a conventional configuration using a frame memory for temporarily storing image signals.

また、本発明に係る表示パネルにおいては、前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの連続した期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の値の電圧レベルをとる、ことが好ましい。   Further, in the display panel according to the present invention, the rectangular voltage signal is generated by one of the first voltage level and the second voltage level in a continuous period of at least 10% of the one scanning period. It is preferable to take a voltage level of the value.

上記の構成によれば、前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの連続した期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の値の電圧レベルをとるため、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   According to the above configuration, the rectangular voltage signal has a voltage level of one of the first voltage level and the second voltage level in a continuous period of at least 10 percent of the one scanning period. Therefore, there is a further effect that the phenomenon of moving image blur can be effectively suppressed.

また、本発明に係る表示パネルにおいては、前記矩形状の電圧信号は、前記1走査期間の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の電圧レベルをとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち他の一方の電圧レベルをとる、ことが好ましい。   Further, in the display panel according to the present invention, the rectangular voltage signal is the first voltage level during a period from the start of the one scanning period until approximately 10% of the one scanning period elapses. Alternatively, one voltage level of the second voltage levels is taken, and the first voltage level or the first voltage level in the period from the lapse of about 90% of the one scanning period to the end of the one scanning period It is preferable to take the other one of the second voltage levels.

一般に明るい輝度と暗い輝度を切り替えて表示する場合、視聴者は、明るい輝度での表示の比率が90%以上の場合は動画ボケの改善を感じず、90〜10%の間で比率が小さくなるほど動画ボケの改善を感じ、10%程度でほぼ動画ボケが満足に改善されたと感じる。   In general, when displaying by switching between bright luminance and dark luminance, the viewer does not feel improvement in moving image blur when the display ratio at bright luminance is 90% or more, and the ratio decreases between 90 and 10%. Feeling that the motion blur has been improved, the motion blur has been improved almost satisfactorily at about 10%.

したがって、上記の構成によれば、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   Therefore, according to said structure, there exists the further effect that the phenomenon of the said moving image blur can be suppressed effectively.

また、本発明に係る表示パネルにおいては、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルであるときの前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性と、前記矩形状の電圧信号が前記第2の電圧レベルであるときの前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性とは、互いに異なった極性である、ことが好ましい。   Further, in the display panel according to the present invention, in the one scanning period, the display is represented by a difference between the potential of the pixel electrode and the potential of the counter electrode when the rectangular voltage signal is at the first voltage level. To the liquid crystal expressed by the difference between the polarity of the applied voltage to the liquid crystal and the potential of the pixel electrode and the potential of the counter electrode when the rectangular voltage signal is at the second voltage level. The polarity of the applied voltage is preferably different from each other.

上記の構成によれば、前記矩形状の電圧信号が前記第1の電圧レベルであるときであっても、前記矩形状の電圧信号が前記第2の電圧レベルであるときであっても、前記液晶への印加電圧の絶対値を十分に小さくすることができる。   According to the above configuration, even when the rectangular voltage signal is at the first voltage level, even when the rectangular voltage signal is at the second voltage level, The absolute value of the voltage applied to the liquid crystal can be made sufficiently small.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号が前記第1の電圧レベルであるときであっても、前記矩形状の電圧信号が前記第2の電圧レベルであるときであっても、十分に低輝度な黒表示を行うことができるという更なる効果を奏する。   Therefore, according to the above configuration, when the rectangular voltage signal is at the first voltage level in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller. Even when the rectangular voltage signal is at the second voltage level, there is a further effect that black display with sufficiently low luminance can be performed.

また、本発明に係る表示パネルにおいては、前記第1の電圧レベルと、前記第2の電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、ことが好ましい。   In the display panel according to the present invention, it is preferable that the absolute value of the potential difference between the first voltage level and the second voltage level is not more than twice the threshold voltage of the liquid crystal.

一般に、液晶の配向は、当該液晶に閾値電圧以下の電圧が印加されても、影響を受けない。換言すれば、前記閾値電圧とは、液晶の配向が影響を受け始める電圧のことである(以下同様)。   In general, the orientation of the liquid crystal is not affected even when a voltage lower than the threshold voltage is applied to the liquid crystal. In other words, the threshold voltage is a voltage at which the alignment of the liquid crystal starts to be affected (the same applies hereinafter).

上記の構成によれば、前記第1の電圧レベルと、前記第2の電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下であるため、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベルであっても、前記第2の電圧レベルであっても、前記液晶の配向が影響を受けないようにすることができる。   According to the above configuration, since the absolute value of the potential difference between the first voltage level and the second voltage level is not more than twice the threshold voltage of the liquid crystal, the voltage level of the rectangular voltage signal Even when the voltage level is the first voltage level or the second voltage level, the alignment of the liquid crystal can be prevented from being affected.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベルであっても、前記第2の電圧レベルであっても、黒表示を行うことができるという更なる効果を奏する。   Therefore, according to the above configuration, in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, the voltage level of the rectangular voltage signal is the first voltage level. Even if it is, even if it is the said 2nd voltage level, there exists the further effect that a black display can be performed.

また、本発明に係る表示パネルにおいては、前記補助容量ドライバは、前記1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給する、ことが好ましい。   Further, in the display panel according to the present invention, the auxiliary capacitance driver is configured to output the first voltage level in synchronization with the conduction signal with respect to the arbitrary auxiliary capacitance bus line in the one scanning period. It is preferable to supply a rectangular voltage signal composed of a second voltage level and a third voltage level different from any of the first voltage level and the second voltage level.

上記の構成によれば、前記補助容量ドライバは、前記1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給することができるので、上記1走査期間において、上記任意の補助容量バスラインに印加される電圧レベルは、3値に変化する。換言すれば、上記1走査期間において、補助容量バスラインに印加される電圧レベルは、2回遷移する。上記1走査期間における上記電圧レベルの第1回目の遷移によって、上記電圧レベルの第1回目の遷移後において上記液晶に印加される電圧を、上記電圧レベルの第1回目の遷移後における表示に好適なものとし、上記電圧レベルの第2回目の遷移によって、高輝度と低輝度との切り替えを行うことができる。   According to the above configuration, the auxiliary capacitance driver is configured such that the first voltage level and the second voltage are synchronized with the conduction signal with respect to the arbitrary auxiliary capacitance bus line in the one scanning period. Since a rectangular voltage signal having a level and a third voltage level different from any of the first voltage level and the second voltage level can be supplied, the arbitrary voltage can be supplied in the one scanning period. The voltage level applied to the auxiliary capacity bus line changes to three values. In other words, the voltage level applied to the storage capacitor bus line transitions twice in the one scanning period. The voltage applied to the liquid crystal after the first transition of the voltage level by the first transition of the voltage level in the one scanning period is suitable for display after the first transition of the voltage level. It is possible to switch between high luminance and low luminance by the second transition of the voltage level.

すなわち、上記の構成によれば、動画ボケの現象を効果的に抑制しつつ、より高輝度な表示が可能となるという更なる効果を奏する。   That is, according to said structure, there exists the further effect that a display with higher brightness | luminance is attained, suppressing the phenomenon of a moving image blur effectively.

また、本発明に係る表示パネルにおいては、前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの期間において、前記第1の電圧レベル、前記第2の電圧レベル、または、前記第3の電圧レベルのうち、何れかの電圧レベルをとる、ことが好ましい。   In the display panel according to the present invention, the rectangular voltage signal may be generated by the first voltage level, the second voltage level, or the third voltage signal in a period of at least 10 percent of the one scanning period. It is preferable to take any one of the voltage levels.

上記の構成によれば、前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの期間において、前記第1の電圧レベル、前記第2の電圧レベル、または、前記第3の電圧レベルのうち、何れかの電圧レベルをとるため、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   According to the above configuration, the rectangular voltage signal has the first voltage level, the second voltage level, or the third voltage level in a period of at least 10 percent of the one scanning period. Among them, since any one of the voltage levels is taken, there is a further effect that the moving image blur phenomenon can be effectively suppressed.

また、本発明に係る表示パネルにおいては、前記矩形状の電圧信号は、前記1走査期間の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、または、前記第3の電圧レベルのうち何れか1つの電圧レベルをとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、または、前記第3の電圧レベルのうち他の1つの電圧レベルをとる、ことが好ましい。   Further, in the display panel according to the present invention, the rectangular voltage signal is the first voltage level during a period from the start of the one scanning period until approximately 10% of the one scanning period elapses. Any one of the second voltage level and the third voltage level is taken, and after approximately 90% of the one scanning period has elapsed, the one scanning period ends. In the period, it is preferable to take another voltage level of the first voltage level, the second voltage level, or the third voltage level.

一般に明るい輝度と暗い輝度を切り替えて表示する場合、視聴者は、明るい輝度での表示の比率が90%以上の場合は動画ボケの改善を感じず、90〜10%の間で比率が小さくなるほど動画ボケの改善を感じ、10%程度でほぼ動画ボケが満足に改善されたと感じる。   In general, when displaying by switching between bright luminance and dark luminance, the viewer does not feel improvement in moving image blur when the display ratio at bright luminance is 90% or more, and the ratio decreases between 90 and 10%. Feeling that the motion blur has been improved, the motion blur has been improved almost satisfactorily at about 10%.

したがって、上記の構成によれば、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   Therefore, according to said structure, there exists the further effect that the phenomenon of the said moving image blur can be suppressed effectively.

また、本発明に係る表示パネルにおいては、前記1走査期間において、最初の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性と、次の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性とは、互いに異なった極性である、ことが好ましい。   In the display panel according to the present invention, the applied voltage to the liquid crystal represented by the difference between the potential of the pixel electrode and the potential of the counter electrode after the first transition of the voltage level in the one scanning period. And the polarity of the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode and the potential of the counter electrode after the next transition of the voltage level is different from each other. Is preferred.

上記の構成によれば、前記1走査期間において、最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、前記液晶への印加電圧の絶対値を十分に小さくすることができる。   According to the above configuration, the absolute value of the voltage applied to the liquid crystal is sufficiently set in the one scanning period even after the first voltage level transition or after the next voltage level transition. Can be made smaller.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記1走査期間における最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、十分に低輝度な黒表示を行うことができるという更なる効果を奏する。   Therefore, according to the above configuration, even in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, even after the first transition of the voltage level in the one scanning period. Even after the next transition of the voltage level, there is a further effect that black display with sufficiently low luminance can be performed.

また、本発明に係る表示パネルにおいては、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、最も高い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、中間の電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、ことが好ましい。   In the display panel according to the present invention, the highest voltage level among the first voltage level, the second voltage level, and the third voltage level, the first voltage level, Of the second voltage level and the third voltage level, the absolute value of the potential difference from the intermediate voltage level is preferably not more than twice the threshold voltage of the liquid crystal.

上記の構成によれば、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、最も高い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、中間の電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下であるため、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち何れの電圧レベルであっても、前記液晶の配向が影響を受けないようにすることができる。   According to the above configuration, the highest voltage level among the first voltage level, the second voltage level, and the third voltage level, the first voltage level, and the second voltage level. Since the absolute value of the potential difference from the intermediate voltage level among the level and the third voltage level is not more than twice the threshold voltage of the liquid crystal, the voltage level of the rectangular voltage signal is the first voltage level. It is possible to prevent the liquid crystal alignment from being affected at any voltage level of the voltage level, the second voltage level, and the third voltage level.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルの何れであっても、黒表示を行うことができるという更なる効果を奏する。   Therefore, according to the above configuration, in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, the voltage level of the rectangular voltage signal is the first voltage level, There is a further effect that black display can be performed at any of the second voltage level and the third voltage level.

また、本発明に係る表示パネルにおいては、前記補助容量ドライバは、前記1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給し、前記1走査期間の次の1走査期間において、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、何れか2つの電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルの何れとも異なる第4の電圧レベルとからなる矩形状の電圧信号を供給する、ことが好ましい。   Further, in the display panel according to the present invention, the auxiliary capacitance driver is configured to output the first voltage level in synchronization with the conduction signal with respect to the arbitrary auxiliary capacitance bus line in the one scanning period. A rectangular voltage signal comprising a second voltage level and a third voltage level different from any of the first voltage level and the second voltage level is supplied, and the next one scan of the one scan period In the period, any two voltage levels of the first voltage level, the second voltage level, and the third voltage level, the first voltage level, the second voltage level, Preferably, a rectangular voltage signal comprising a fourth voltage level different from any of the third voltage levels is supplied.

上記の構成によれば、前記補助容量ドライバは、前記1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給することができるので、上記1走査期間において、上記任意の補助容量バスラインに印加される電圧レベルは、3値に変化する。換言すれば、上記1走査期間において、補助容量バスラインに印加される電圧レベルは、2回遷移する。上記1走査期間における上記電圧レベルの第1回目の遷移によって、上記電圧レベルの第1回目の遷移後において上記液晶に印加される電圧を、上記電圧レベルの第1回目の遷移後における表示に好適なものとし、上記電圧レベルの第2回目の遷移によって、高輝度と低輝度との切り替えを行うことができる。   According to the above configuration, the auxiliary capacitance driver is configured such that the first voltage level and the second voltage are synchronized with the conduction signal with respect to the arbitrary auxiliary capacitance bus line in the one scanning period. Since a rectangular voltage signal having a level and a third voltage level different from any of the first voltage level and the second voltage level can be supplied, the arbitrary voltage can be supplied in the one scanning period. The voltage level applied to the auxiliary capacity bus line changes to three values. In other words, the voltage level applied to the storage capacitor bus line transitions twice in the one scanning period. The voltage applied to the liquid crystal after the first transition of the voltage level by the first transition of the voltage level in the one scanning period is suitable for display after the first transition of the voltage level. It is possible to switch between high luminance and low luminance by the second transition of the voltage level.

したがって、上記の構成によれば、動画ボケの現象を効果的に抑制しつつ、より高輝度な表示が可能となるという更なる効果を奏する。   Therefore, according to said structure, there exists an additional effect that a higher-intensity display is attained, suppressing the phenomenon of a moving image blur effectively.

さらに、上記の構成によれば、前記1走査期間の次の1走査期間において、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、何れか2つの電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルの何れとも異なる第4の電圧レベルとからなる矩形状の電圧信号を供給することができるので、前記1走査期間の次の1走査期間において、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルとからなる矩形状の電圧信号を供給する場合に比べて、高輝度と低輝度の輝度レベルの調整をより柔軟に行うことができる。   Further, according to the above configuration, any one of the first voltage level, the second voltage level, and the third voltage level in one scanning period following the one scanning period is selected. Since a rectangular voltage signal comprising a voltage level and a fourth voltage level different from any of the first voltage level, the second voltage level, and the third voltage level can be supplied. Compared to a case where a rectangular voltage signal composed of the first voltage level, the second voltage level, and the third voltage level is supplied in one scanning period following the one scanning period. In addition, the brightness levels of high brightness and low brightness can be adjusted more flexibly.

したがって、上記の構成によれば、上記動画ボケの現象をより一層効果的に抑制しつつ、高輝度な表示を行うことができるという更なる効果を奏する。   Therefore, according to said structure, there exists the further effect that a high-intensity display can be performed, suppressing the phenomenon of the said moving image blur more effectively.

また、本発明に係る表示パネルにおいては、前記1走査期間における最初の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値は、前記1走査期間における次の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値よりも小さい、ことが好ましい。   In the display panel according to the present invention, the absolute value of the potential difference of the voltage level before and after the first transition of the voltage level in the one scanning period is the time before and after the transition of the next voltage level in the one scanning period. Is preferably smaller than the absolute value of the potential difference of the voltage level.

上記の構成によれば、前記1走査期間における最初の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値は、前記1走査期間における次の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値よりも小さいため、前記次の前記電圧レベルの遷移の前後における輝度差を、前記最初の前記電圧レベルの遷移の前後における輝度差よりも大きくすることができる。したがって、上記の構成によれば、上記動画ボケの現象をより効果的に抑制することができるという更なる効果を奏する。   According to the above configuration, the absolute value of the potential difference of the voltage level before and after the first voltage level transition in the one scanning period is the voltage level before and after the next voltage level transition in the one scanning period. Therefore, the luminance difference before and after the next voltage level transition can be made larger than the luminance difference before and after the first voltage level transition. Therefore, according to said structure, there exists the further effect that the phenomenon of the said moving image blur can be suppressed more effectively.

また、本発明に係る表示パネルにおいては、前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの期間において、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、または、前記第4の電圧レベルのうち、何れかの電圧レベルをとる、ことが好ましい。   Further, in the display panel according to the present invention, the rectangular voltage signal is generated by the first voltage level, the second voltage level, and the third voltage in a period of at least 10 percent of the one scanning period. It is preferable to take any one of the level or the fourth voltage level.

上記の構成によれば、前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの期間において、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、または、前記第4の電圧レベルのうち、何れかの電圧レベルをとるため、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   According to the above configuration, the rectangular voltage signal is output from the first voltage level, the second voltage level, the third voltage level, or at least 10% of the one scanning period, or Since any one of the fourth voltage levels is taken, there is a further effect that the phenomenon of moving image blur can be effectively suppressed.

また、本発明に係る表示パネルにおいては、前記矩形状の電圧信号は、前記1走査期間の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、または、前記第4の電圧レベルのうち何れか1つの電圧レベルをとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、または、前記第4の電圧レベルのうち他の1つの電圧レベルをとる、ことが好ましい。   Further, in the display panel according to the present invention, the rectangular voltage signal is the first voltage level during a period from the start of the one scanning period until approximately 10% of the one scanning period elapses. Any one of the second voltage level, the third voltage level, and the fourth voltage level is taken, and after a period of approximately 90% of the one scanning period has elapsed, In the period until the end of one scanning period, another voltage level of the first voltage level, the second voltage level, the third voltage level, or the fourth voltage level is taken. Is preferable.

一般に明るい輝度と暗い輝度を切り替えて表示する場合、視聴者は、明るい輝度での表示の比率が90%以上の場合は動画ボケの改善を感じず、90〜10%の間で比率が小さくなるほど動画ボケの改善を感じ、10%程度でほぼ動画ボケが満足に改善されたと感じる。   In general, when displaying by switching between bright luminance and dark luminance, the viewer does not feel improvement in moving image blur when the display ratio at bright luminance is 90% or more, and the ratio decreases between 90 and 10%. Feeling that the motion blur has been improved, the motion blur has been improved almost satisfactorily at about 10%.

したがって、上記の構成によれば、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   Therefore, according to said structure, there exists the further effect that the phenomenon of the said moving image blur can be suppressed effectively.

また、本発明に係る表示パネルにおいては、前記1走査期間において、最初の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性と、次の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性とは、互いに異なった極性である、ことが好ましい。   In the display panel according to the present invention, the applied voltage to the liquid crystal represented by the difference between the potential of the pixel electrode and the potential of the counter electrode after the first transition of the voltage level in the one scanning period. And the polarity of the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode and the potential of the counter electrode after the next transition of the voltage level is different from each other. Is preferred.

上記の構成によれば、前記1走査期間において、最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、前記液晶への印加電圧の絶対値を十分に小さくすることができる。   According to the above configuration, the absolute value of the voltage applied to the liquid crystal is sufficiently set in the one scanning period even after the first voltage level transition or after the next voltage level transition. Can be made smaller.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記1走査期間における最初の前記電圧レベルの遷移後であっても、次の前記電圧レベルの遷移後であっても、十分に低輝度な黒表示を行うことができるという更なる効果を奏する。   Therefore, according to the above configuration, even in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, even after the first transition of the voltage level in the one scanning period. Even after the next transition of the voltage level, there is a further effect that black display with sufficiently low luminance can be performed.

また、本発明に係る表示パネルにおいては、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、2番目に低い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、最も高い電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、ことが好ましい。   In the display panel according to the present invention, the second lowest voltage level among the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level is The absolute value of the potential difference from the highest voltage level among the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level is the threshold voltage of the liquid crystal. It is preferable that it is 2 times or less.

上記の構成によれば、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、2番目に低い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、最も高い電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下であるため、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルの何れの電圧レベルであっても、前記液晶の配向が影響を受けないようにすることができる。   According to the above configuration, the second lowest voltage level among the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level, and the first voltage level, The absolute value of the potential difference from the highest voltage level among the second voltage level, the second voltage level, the third voltage level, and the fourth voltage level is not more than twice the threshold voltage of the liquid crystal. Therefore, the voltage level of the rectangular voltage signal is any one of the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level. In addition, the alignment of the liquid crystal can be prevented from being affected.

したがって、上記の構成によれば、前記液晶への印加電圧の絶対値がより小さい場合により低輝度となるノーマリーブラック方式において、前記矩形状の電圧信号の電圧レベルが前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルの何れであっても、黒表示を行うことができるという更なる効果を奏する。   Therefore, according to the above configuration, in the normally black method in which the luminance is lower when the absolute value of the voltage applied to the liquid crystal is smaller, the voltage level of the rectangular voltage signal is the first voltage level, There is a further effect that black display can be performed at any one of the second voltage level, the third voltage level, and the fourth voltage level.

また、本発明に係る表示パネルにおいては、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も低い電圧レベルが供給されている場合には、前記補助容量ドライバは、前記任意の補助容量バスラインに対して、前記1走査期間において、前記電圧レベルが昇順である前記矩形状の電圧信号を供給する、ことが好ましい。   In the display panel according to the present invention, when the gate driver supplies the conduction signal to the arbitrary gate bus line, the voltage level of the arbitrary auxiliary capacitance bus line is the highest among the voltage levels. When a low voltage level is supplied, the auxiliary capacitance driver supplies the rectangular voltage signal whose voltage level is in ascending order during the one scanning period to the arbitrary auxiliary capacitance bus line. It is preferable to do.

一般に、画素電極に電圧が印加されていない場合に、黒表示となるノーマリーブラック方式においては、液晶の応答に有限の時間を有することに起因して、低輝度から高輝度への立ち上がりが不十分となる現象が生じる。換言すれば、低輝度から高輝度への変化に要する時間が、高輝度から低輝度への変化に要する時間よりも大きいという特性がある。上記現象は、画素電極に印加される信号が正極性である場合には、画素電極の電位が高電圧へと変化するタイミングにおいて生じ得る。   In general, in the normally black method in which black display is performed when no voltage is applied to the pixel electrode, the rise from low luminance to high luminance is not possible due to the fact that the response of the liquid crystal has a finite time. A sufficient phenomenon occurs. In other words, the time required for the change from low luminance to high luminance is longer than the time required for the change from high luminance to low luminance. The above phenomenon can occur at the timing when the potential of the pixel electrode changes to a high voltage when the signal applied to the pixel electrode is positive.

上記の構成によれば、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も低い電圧レベルが供給されている場合には、上記1走査期間において、前記画素電極に対して、電圧レベルのより低い電圧信号を供給し、それに引き続き、電圧レベルのより高い電圧信号を供給することができる。   According to the above configuration, when the gate driver supplies the conduction signal to the arbitrary gate bus line, the lowest voltage level among the voltage levels is set to the arbitrary auxiliary capacitance bus line. When supplied, a voltage signal having a lower voltage level can be supplied to the pixel electrode in the one scanning period, and a voltage signal having a higher voltage level can be subsequently supplied.

したがって、画素電極に印加される電位を段階的に高い電圧へと変化させることができる。これによって、ノーマリーブラック方式において生じ得る上記の低輝度から高輝度への立ち上がりが不十分となる現象を抑制することができるという更なる効果を奏する。   Therefore, the potential applied to the pixel electrode can be gradually changed to a higher voltage. As a result, it is possible to suppress the phenomenon that the rise from the low luminance to the high luminance, which may occur in the normally black method, is insufficient.

また、本発明に係る表示パネルにおいては、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も高い電圧レベルが供給されている場合には、前記補助容量ドライバは、前記任意の補助容量バスラインに対して、前記1走査期間において、前記電圧レベルが降順である前記矩形状の電圧信号を供給する、ことが好ましい。   In the display panel according to the present invention, when the gate driver supplies the conduction signal to the arbitrary gate bus line, the voltage level of the arbitrary auxiliary capacitance bus line is the highest among the voltage levels. When a high voltage level is supplied, the auxiliary capacitor driver supplies the rectangular voltage signal whose voltage level is descending to the arbitrary auxiliary capacitor bus line in the one scanning period. It is preferable to do.

一般に、画素電極に電圧が印加されていない場合に、黒表示となるノーマリーブラック方式においては、液晶の応答に有限の時間を有することに起因して、低輝度から高輝度への立ち上がりが不十分となる現象が生じる。換言すれば、低輝度から高輝度への変化に要する時間が、高輝度から低輝度への変化に要する時間よりも大きいという特性がある。上記現象は、画素電極に印加される信号が負極性である場合には、画素電極の電位が低電圧へと変化するタイミングにおいて生じ得る。   In general, in the normally black method in which black display is performed when no voltage is applied to the pixel electrode, the rise from low luminance to high luminance is not possible due to the fact that the response of the liquid crystal has a finite time. A sufficient phenomenon occurs. In other words, the time required for the change from low luminance to high luminance is longer than the time required for the change from high luminance to low luminance. The above phenomenon may occur at the timing when the potential of the pixel electrode changes to a low voltage when the signal applied to the pixel electrode has a negative polarity.

上記の構成によれば、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も高い電圧レベルが供給されている場合には、前記1走査期間において、前記画素電極に対して、電圧レベルのより高い電圧信号を供給し、それに引き続き、電圧レベルのより低い電圧信号を供給することができる。   According to the above configuration, when the gate driver supplies the conduction signal to the arbitrary gate bus line, the highest voltage level among the voltage levels is set to the arbitrary auxiliary capacity bus line. When supplied, a voltage signal having a higher voltage level can be supplied to the pixel electrode in the one scanning period, and subsequently, a voltage signal having a lower voltage level can be supplied.

したがって、画素電極に印加される電位を段階的に低い電圧へと変化させることができる。これによって、ノーマリーブラック方式において生じ得る上記の低輝度から高輝度への立ち上がりが不十分となる現象を抑制することができるという更なる効果を奏する。   Therefore, the potential applied to the pixel electrode can be changed gradually to a lower voltage. As a result, it is possible to suppress the phenomenon that the rise from the low luminance to the high luminance, which may occur in the normally black method, is insufficient.

また、本発明に係る表示パネルにおいては、前記補助容量ドライバは、前記複数のゲートバスラインのうちn番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、前記複数のゲートバスラインのうちn+1番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインとに対し、前記矩形状の電圧信号を同期して供給する、ことが好ましい。   In the display panel according to the present invention, the auxiliary capacitor driver includes the auxiliary capacitor bus line connected to the nth gate bus line of the plurality of gate bus lines via the transistor and the capacitor; The rectangular voltage signal is synchronously supplied to the auxiliary capacitor bus line connected to the n + 1th gate bus line of the plurality of gate bus lines via the transistor and the capacitor. preferable.

上記の構成によれば、前記複数のゲートバスラインのうちn番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、前記複数のゲートバスラインのうちn+1番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインとに対し、前記矩形状の電圧信号を同期して供給することができるため、より簡単な構成の前記補助容量ドライバにより、上記動画ボケの現象を抑制することができるという更なる効果を奏する。   According to the above configuration, the auxiliary capacitance bus line connected to the nth gate bus line of the plurality of gate bus lines via the transistor and the capacitor, and the n + 1th of the plurality of gate bus lines. The rectangular voltage signal can be synchronously supplied to the auxiliary bus line connected to the gate bus line via the transistor and the capacitor, so that the auxiliary capacitor having a simpler configuration can be provided. The driver can further suppress the moving image blur phenomenon.

また、本発明に係る表示パネルにおいては、前記補助容量ドライバは、前記複数のゲートバスラインのうちn番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、前記複数のゲートバスラインのうちn+2番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインとに対し、前記矩形状の電圧信号を同期して供給する、ことが好ましい。   In the display panel according to the present invention, the auxiliary capacitor driver includes the auxiliary capacitor bus line connected to the nth gate bus line of the plurality of gate bus lines via the transistor and the capacitor; Supplying the rectangular voltage signal synchronously to the auxiliary capacitor bus line connected to the n + 2th gate bus line of the plurality of gate bus lines via the transistor and the capacitor. preferable.

上記の構成によれば、前記補助容量ドライバは、前記複数のゲートバスラインのうちn番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、前記複数のゲートバスラインのうちn+2番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインとに対し、前記矩形状の電圧信号を同期して供給することができるので、より簡単な構成の前記補助容量ドライバにより、フリッカや極性反転に応じたスジの発生を抑制しつつ、上記動画ボケの現象を抑制することができるという更なる効果を奏する。   According to the above configuration, the auxiliary capacitance driver includes the auxiliary capacitance bus line connected to the nth gate bus line of the plurality of gate bus lines via the transistor and the capacitor, and the plurality of gates. Since the rectangular voltage signal can be synchronously supplied to the auxiliary capacitor bus line connected to the n + 2th gate bus line of the bus line via the transistor and the capacitor, it is easier. With the auxiliary capacitor driver having a simple structure, the moving image blurring phenomenon can be suppressed while the occurrence of streaks in accordance with flicker and polarity inversion can be suppressed.

また、本発明に係る表示パネルにおいては、前記複数のゲートバスラインの本数は偶数であり、前記複数の補助容量バスラインの本数は、前記ゲートバスラインの本数の半数であり、前記複数のゲートバスラインのうち2k−1番目(kは自然数)のゲートバスラインに前記トランジスタを介して接続された前記キャパシタの前記他の一端と、前記複数のゲートバスラインのうち2k番目のゲートバスラインに前記トランジスタを介して接続された前記キャパシタの前記他の一端とが、前記複数の補助容量バスラインのうちk番目の補助容量バスラインに接続されている、ことが好ましい。   In the display panel according to the present invention, the number of the plurality of gate bus lines is an even number, the number of the plurality of auxiliary capacitance bus lines is half of the number of the gate bus lines, and the plurality of gate bus lines. The other end of the capacitor connected to the 2k-1th (k is a natural number) gate bus line of the bus lines via the transistor and the 2kth gate bus line of the plurality of gate bus lines It is preferable that the other end of the capacitor connected via the transistor is connected to the kth auxiliary capacitor bus line among the plurality of auxiliary capacitor bus lines.

上記の構成によれば、上記表示パネルに形成される上記補助容量バスラインの本数を、上記複数のゲートバスラインの本数の半分にすることができるため、より簡単な構成の表示パネルにより、上記動画ボケの現象を抑制することができるという更なる効果を奏する。   According to the above configuration, since the number of the auxiliary capacity bus lines formed in the display panel can be half of the number of the plurality of gate bus lines, the display panel having a simpler configuration can There is a further effect that the phenomenon of motion blur can be suppressed.

また、本発明に係る表示パネルにおいては、前記補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する振幅変更手段を備えている、ことが好ましい。   In the display panel according to the present invention, it is preferable that the auxiliary capacitance driver includes an amplitude changing unit that changes the amplitude of the rectangular voltage signal.

上記の構成によれば、前記補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する振幅変更手段を備えているため、より効果的に動画ボケの現象を抑制することができるという更なる効果を奏する。   According to the above configuration, since the auxiliary capacitor driver includes the amplitude changing unit that changes the amplitude of the rectangular voltage signal, the phenomenon of moving image blur can be more effectively suppressed. There is a further effect.

また、本発明に係る表示パネルにおいては、前記ソースドライバは、前記矩形状の電圧信号の振幅がより小さい場合に、より振幅の大きな前記ソース信号を供給し、前記矩形状の電圧信号の振幅がより大きい場合に、より振幅の小さな前記ソース信号を供給する、ことが好ましい。   In the display panel according to the present invention, the source driver supplies the source signal having a larger amplitude when the amplitude of the rectangular voltage signal is smaller, and the amplitude of the rectangular voltage signal is It is preferable to supply the source signal having a smaller amplitude when it is larger.

上記の構成によれば、前記ソースドライバは、前記矩形状の電圧信号の振幅がより小さい場合に、より振幅の大きな前記ソース信号を供給し、前記矩形状の電圧信号の振幅がより大きい場合に、より振幅の小さな前記ソース信号を供給することができるため、前記矩形状の電圧信号の振幅がより大きい場合であっても、前記矩形状の電圧信号の振幅がより小さい場合であっても、上記動画ボケの現象を効果的に抑制することができるという更なる効果を奏する。   According to the above configuration, when the amplitude of the rectangular voltage signal is smaller, the source driver supplies the source signal having a larger amplitude, and when the amplitude of the rectangular voltage signal is larger. Since the source signal having a smaller amplitude can be supplied, even if the amplitude of the rectangular voltage signal is larger or the amplitude of the rectangular voltage signal is smaller, There is a further effect that the motion blur phenomenon can be effectively suppressed.

なお、前記ソース信号の振幅とは、正極性書き込み時における前記ソース信号の電圧レベルから負極性書き込み時における前記ソース信号の電圧レベルを引き算したものとして定義されるものとする(以下同様)。また、正極性書き込み時とは、前記導通信号供給時であって前記矩形状の電圧信号が最も低い電圧レベルである場合を指し、負極性書き込み時とは、前記導通信号供給時であって前記矩形状の電圧信号が最も高い電圧レベルである場合を指す(以下同様)。   The amplitude of the source signal is defined as the voltage level of the source signal at the time of positive polarity writing minus the voltage level of the source signal at the time of negative polarity writing (the same applies hereinafter). The positive polarity writing refers to the case where the conduction signal is supplied and the rectangular voltage signal is at the lowest voltage level, and the negative polarity writing is the time when the conduction signal is supplied. This refers to the case where the rectangular voltage signal has the highest voltage level (the same applies hereinafter).

また、本発明に係る表示パネルは、2つの前記補助容量ドライバを備え、前記任意の補助容量バスラインは、絶縁部を介して同一直線上に形成された2本の補助容量バスラインから構成され、2つの前記補助容量ドライバのうち一方の前記補助容量ドライバは、前記1走査期間において、前記2本の補助容量バスラインのうち一方の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給し、2つの前記補助容量ドライバのうち他の一方の前記補助容量ドライバは、前記1走査期間において、前記2本の補助容量バスラインのうち他の一方の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給してもよい。   The display panel according to the present invention includes two auxiliary capacitor drivers, and the arbitrary auxiliary capacitor bus line includes two auxiliary capacitor bus lines formed on the same straight line through an insulating portion. One of the two auxiliary capacitor drivers is synchronized with the conduction signal with respect to one auxiliary capacitor bus line of the two auxiliary capacitor bus lines during the one scanning period. A rectangular voltage signal having a first voltage level and a second voltage level different from the first voltage level is supplied, and one of the two auxiliary capacitor drivers is the first auxiliary capacitor driver. In the scanning period, the other auxiliary capacitor bus line of the two auxiliary capacitor bus lines is synchronized with the conduction signal in the first voltage level and the first voltage. A rectangular voltage signal composed of level different from the second voltage level may be supplied.

上記の構成によれば、絶縁部を介して同一直線上に形成された2本の補助容量バスラインのうち一方の補助容量バスラインに対して、上記一方の補助容量ドライバによって、上記矩形状の電圧信号が供給され、上記他の一方の補助容量バスラインに対して、上記他の一方の補助容量ドライバによって、上記矩形状の電圧信号が供給される。   According to the above configuration, the rectangular shape of the two auxiliary capacitance bus lines formed on the same straight line via the insulating portion is applied to the one auxiliary capacitance bus line by the one auxiliary capacitance driver. A voltage signal is supplied, and the rectangular voltage signal is supplied to the other auxiliary capacitor bus line by the other auxiliary capacitor driver.

したがって、上記の構成によれば、上記一方の補助容量バスラインに接続された画素電極と、上記他の一方の補助容量バスラインに接続された画素電極とに対し、互いに独立に上記矩形状の電圧信号を供給することができる。   Therefore, according to the above configuration, the pixel electrode connected to the one auxiliary capacitance bus line and the pixel electrode connected to the other auxiliary capacitance bus line are independent of each other from the rectangular shape. A voltage signal can be supplied.

したがって、上記の構成によれば、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができるため、ユーザに対して、本発明による上記動画ボケの改善効果を訴求することができる。すなわち、ユーザに対して、本発明による上記動画ボケの改善効果を効果的にアピールすることができるという更なる効果を奏する。   Therefore, according to the above configuration, a pixel region including a pixel electrode connected to the one auxiliary capacitance bus line and a pixel region including a pixel electrode connected to the other one auxiliary capacitance bus line include: Since it is possible to display images with different effects of improving the motion blur phenomenon, it is possible to appeal the motion blur improvement effect of the present invention to the user. That is, there is a further effect that the effect of improving the moving image blur according to the present invention can be effectively appealed to the user.

また、本発明に係る表示パネルにおいては、前記ソースドライバは、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインと、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインとに対し、それぞれ振幅の異なったソース信号を供給する、ことが好ましい。   In the display panel according to the present invention, the source driver includes the source bus line connected to the one auxiliary capacitor bus line via the capacitor and the transistor, and the other one auxiliary capacitor bus line. Preferably, source signals having different amplitudes are supplied to the capacitor and the source bus line connected via the transistor.

上記の構成によれば、前記ソースドライバは、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインと、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインとに対し、それぞれ振幅の異なったソース信号を供給することができるため、上記一方の補助容量バスラインに接続された画素電極と、上記他の一方の補助容量バスラインに接続された画素電極とに対し、互いに独立に上記矩形状の電圧信号を供給することによって、上記動画ボケの現象以外の画像の視認性を同一にしつつ、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができるため、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的に訴求することができる。すなわち、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的にアピールすることができるという更なる効果を奏する。   According to the above configuration, the source driver includes the source bus line connected to the one auxiliary capacitance bus line via the capacitor and the transistor, and the capacitor and the other auxiliary capacitance bus line to the source bus line. Since source signals having different amplitudes can be supplied to the source bus line connected via the transistor, the pixel electrode connected to the one auxiliary capacitor bus line and the other one By supplying the rectangular voltage signals to the pixel electrodes connected to the auxiliary capacitance bus line independently of each other, the one auxiliary voltage can be obtained while maintaining the same image visibility except for the moving image blur phenomenon. A pixel region having a pixel electrode connected to a capacitor bus line, and a pixel connected to the other auxiliary capacitor bus line Since the pixel region having the pole can display images with different effects of improving the motion blur phenomenon, the user can more effectively appeal the motion blur improvement effect of the present invention to the user. Can do. That is, there is a further effect that the effect of improving the moving image blur according to the present invention can be more effectively appealed to the user.

また、本発明に係る表示パネルにおいては、前記一方の補助容量バスラインの長さは、前記任意の補助容量バスラインの長さの略45パーセントから略55パーセントの長さであり、前記他の一方の補助容量バスラインの長さは、前記任意の補助容量バスラインの長さから前記一方の補助容量バスラインの長さを引いた長さに略等しい、ことが好ましい。   In the display panel according to the present invention, the length of the one auxiliary capacitor bus line is approximately 45% to approximately 55% of the length of the arbitrary auxiliary capacitor bus line. It is preferable that the length of one auxiliary capacity bus line is substantially equal to a length obtained by subtracting the length of the one auxiliary capacity bus line from the length of the arbitrary auxiliary capacity bus line.

上記の構成によれば、上記任意の補助容量バスラインは、表示パネルにおいて画像を表示する表示部を上記ソースバスラインに平行に2等分する中心線から±5パーセントの範囲内において、上記一方の補助容量バスラインと、上記他の一方の補助容量バスラインとに電気的に分離されている。   According to the above-described configuration, the arbitrary auxiliary capacity bus line has the one side within a range of ± 5% from the center line that bisects the display unit for displaying an image on the display panel in parallel with the source bus line. The auxiliary capacity bus line is electrically separated from the other auxiliary capacity bus line.

したがって、上記の構成によれば、上記表示部の一方の半面に配置された画素電極を備える画素領域の輝度、および、もう一方の半面に配置された画素電極を備える画素領域の輝度を、上記1走査期間において、各々独立に制御することができる。また、前記一方の補助容量バスラインの負荷特性と、前記他の一方の補助容量バスラインの負荷特性とを略同一にすることができるため、前記一方の補助容量バスラインに接続された補助容量ドライバの構成と、前記他の一方の補助容量バスラインに接続された補助容量ドライバの構成とを略同一にすることができる。   Therefore, according to the above configuration, the luminance of the pixel region including the pixel electrode disposed on one half surface of the display unit and the luminance of the pixel region including the pixel electrode disposed on the other half surface are In one scanning period, each can be controlled independently. Further, since the load characteristic of the one auxiliary capacity bus line and the load characteristic of the other one auxiliary capacity bus line can be made substantially the same, the auxiliary capacity connected to the one auxiliary capacity bus line The configuration of the driver and the configuration of the auxiliary capacitance driver connected to the other auxiliary capacitance bus line can be made substantially the same.

したがって、上記の構成によれば、設計および製造がより容易な構成によって、ユーザに対して、本発明による上記動画ボケの改善効果を効果的にアピールすることができるという更なる効果を奏する。   Therefore, according to said structure, there exists the further effect that the improvement effect of the said moving image blurring by this invention can be effectively shown with respect to a user by the structure which design and manufacture are easier.

また、本発明に係る表示パネルにおいては、前記一方の補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する第1の振幅変更手段を備えており、前記他の一方の補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する第2の振幅変更手段を備えている、ことが好ましい。   In the display panel according to the present invention, the one auxiliary capacitor driver includes first amplitude changing means for changing the amplitude of the rectangular voltage signal, and the other auxiliary capacitor is provided. It is preferable that the capacitance driver includes a second amplitude changing unit that changes the amplitude of the rectangular voltage signal.

上記の構成によれば、前記一方の補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する第1の振幅変更手段を備えており、前記他の一方の補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する第2の振幅変更手段を備えているため、前記一方の補助容量ドライバ、および、前記他の一方の補助容量ドライバは、それぞれ振幅の異なった前記矩形状の電圧信号を供給することができる。   According to the above configuration, the one auxiliary capacitor driver includes the first amplitude changing unit that changes the amplitude of the rectangular voltage signal, and the other one auxiliary capacitor driver includes: Since the second amplitude changing means for changing the amplitude of the rectangular voltage signal is provided, the one auxiliary capacitor driver and the other auxiliary capacitor driver have different amplitudes. The rectangular voltage signal can be supplied.

したがって、上記の構成によれば、前記一方の補助容量ドライバ、および、前記他の一方の補助容量ドライバが、それぞれ振幅の異なった前記矩形状の電圧信号を供給することによって、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができるため、ユーザに対して、本発明による上記動画ボケの改善効果を訴求することができる。すなわち、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的にアピールすることができるという更なる効果を奏する。   Therefore, according to the above configuration, the one auxiliary capacitance driver and the other one auxiliary capacitance driver supply the rectangular voltage signals having different amplitudes, respectively. A pixel region having a pixel electrode connected to a bus line and a pixel region having a pixel electrode connected to the other auxiliary capacitor bus line display images having different effects of improving the moving image blur phenomenon. Therefore, the effect of improving the moving image blur according to the present invention can be appealed to the user. That is, there is a further effect that the effect of improving the moving image blur according to the present invention can be more effectively appealed to the user.

また、本発明に係る表示パネルにおいては、前記ソースドライバは、前記一方の補助容量ドライバが前記一方の補助容量バスラインに振幅のより小さい前記矩形状の電圧信号を供給した場合には、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより大きい前記ソース信号を供給し、前記一方の補助容量ドライバが前記一方の補助容量バスラインに振幅のより大きい前記矩形状の電圧信号を供給した場合には、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより小さい前記ソース信号を供給し、前記他の一方の補助容量ドライバが前記他の一方の補助容量バスラインに振幅のより小さい前記矩形状の電圧信号を供給した場合には、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより大きい前記ソース信号を供給し、前記他の一方の補助容量ドライバが前記他の一方の補助容量バスラインに振幅のより大きい前記矩形状の電圧信号を供給した場合には、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより小さい前記ソース信号を供給する、ことが好ましい。   In the display panel according to the present invention, when the one auxiliary capacitor driver supplies the rectangular voltage signal having a smaller amplitude to the one auxiliary capacitor bus line, The source signal having a larger amplitude is supplied to the source bus line connected to the auxiliary capacity bus line via the capacitor and the transistor, and the one auxiliary capacity driver is supplied to the one auxiliary capacity bus line. When the rectangular voltage signal having a larger amplitude is supplied, the source signal having a smaller amplitude with respect to the source bus line connected to the one auxiliary capacitor bus line via the capacitor and the transistor. And the other one auxiliary capacitor driver has an amplitude of the other auxiliary capacitor bus line. When the smaller rectangular voltage signal is supplied, the source signal having a larger amplitude than the source bus line connected to the other auxiliary capacitance bus line via the capacitor and the transistor. When the other auxiliary capacitor driver supplies the rectangular voltage signal having a larger amplitude to the other auxiliary capacitor bus line, the other auxiliary capacitor bus line is supplied to the other auxiliary capacitor bus line. Preferably, the source signal having a smaller amplitude is supplied to the source bus line connected through the capacitor and the transistor.

上記の構成によれば、前記一方の補助容量ドライバが前記一方の補助容量バスラインに供給する前記矩形状の電圧信号の振幅に応じて、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して前記ソースドライバが供給するソース信号の振幅を制御し、前記他の一方の補助容量ドライバが前記他の一方の補助容量バスラインに供給する前記矩形状の電圧信号の振幅に応じて、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して前記ソースドライバが供給するソース信号の振幅を制御することによって、上記動画ボケの現象以外の画像の視認性を同一にしつつ、上記一方の補助容量バスラインに接続された画素電極を備える画素領域と、上記他の一方の補助容量バスラインに接続された画素電極を備える画素領域とが、それぞれ上記動画ボケの現象の改善効果が異なる画像を表示することができる。したがって、ユーザに対して、本発明による上記動画ボケの改善効果をより効果的にアピールすることができるという更なる効果を奏する。   According to the above configuration, the capacitor and the transistor are connected to the one auxiliary capacitor bus line in accordance with the amplitude of the rectangular voltage signal supplied to the one auxiliary capacitor bus line by the one auxiliary capacitor driver. The rectangular shape which controls the amplitude of the source signal supplied from the source driver to the source bus line connected via the other bus, and the other one auxiliary capacitor driver supplies to the other auxiliary capacitor bus line. The amplitude of the source signal supplied by the source driver to the source bus line connected to the other auxiliary capacitor bus line via the capacitor and the transistor is controlled in accordance with the amplitude of the voltage signal of As a result, it is possible to connect the one auxiliary capacity bus line while maintaining the same visibility of the image other than the moving picture blurring phenomenon. The pixel region including the pixel electrode and the pixel region including the pixel electrode connected to the other auxiliary capacitance bus line can display images having different effects of improving the moving image blur phenomenon. . Therefore, it is possible to more effectively appeal to the user the effect of improving the moving image blur according to the present invention.

また、本発明に係る表示パネルにおいては、前記キャパシタの前記一端が、前記複数のゲートバスラインのうちn番目のゲートバスラインと、前記複数のソースラインのうちm番目のソースバスラインとに接続された前記トランジスタに接続されている場合には、前記キャパシタの前記他の一端は、前記複数の補助容量バスラインのうちn番目の補助容量バスラインに接続され、前記キャパシタの前記一端が、前記複数のゲートバスラインのうちn番目のゲートバスラインと、前記複数のソースラインのうちm+1番目のソースバスラインとに接続された前記トランジスタに接続されている場合には、前記キャパシタの前記他の一端は、前記複数の補助容量バスラインのうちn−1番目の補助容量バスラインに接続されている、ことが好ましい。   In the display panel according to the present invention, the one end of the capacitor is connected to an nth gate bus line of the plurality of gate bus lines and an mth source bus line of the plurality of source lines. The other end of the capacitor is connected to an nth auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines, and the one end of the capacitor is connected to the transistor, When connected to the transistor connected to the nth gate bus line of the plurality of gate bus lines and the (m + 1) th source bus line of the plurality of source lines, the other of the capacitors One end is preferably connected to the (n-1) th auxiliary capacity bus line among the plurality of auxiliary capacity bus lines. .

上記のように構成された表示パネルによれば、互いに隣接する画素電極に印加されるソース信号の極性が互いに反対の極性であるドット反転駆動を行うことによって、フリッカやクロストークなどを抑制しつつ、上記動画ボケの現象を抑制することができるという更なる効果を奏する。   According to the display panel configured as described above, by performing dot inversion driving in which the polarities of source signals applied to adjacent pixel electrodes are opposite to each other, flicker and crosstalk are suppressed. Further, there is a further effect that the phenomenon of moving image blur can be suppressed.

また、上記のように構成された表示パネルを備えた液晶表示装置も本発明の範疇に含まれる。   A liquid crystal display device including the display panel configured as described above is also included in the scope of the present invention.

また、本発明に係る駆動方法は、複数のゲートバスラインと、複数のソースバスラインと、複数の補助容量バスラインと、前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、前記トランジスタのドレインに接続された画素電極と、一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、液晶を介して前記画素電極に対向する対向電極と、前記対向電極に接続された対向電極用配線と、前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、を備えた表示パネルを駆動する駆動方法であって、前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する電圧信号供給工程を含んでおり、前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長い、ことを特徴としている。   The driving method according to the present invention includes a plurality of gate bus lines, a plurality of source bus lines, a plurality of auxiliary capacitance bus lines, and a gate connected to an arbitrary gate bus line among the plurality of gate bus lines. A transistor connected to an arbitrary source bus line of the plurality of source bus lines, a pixel electrode connected to the drain of the transistor, and one end of the transistor in parallel with the pixel electrode A capacitor connected to the drain and the other end connected to any one of the plurality of auxiliary capacitance bus lines and to one end of each of the plurality of source bus lines, and the arbitrary source bus A source driver that supplies a source signal to the line and connected to one end of each of the plurality of gate bus lines A gate driver that sequentially supplies a conduction signal for conducting the transistor to the arbitrary gate bus line, a counter electrode facing the pixel electrode via liquid crystal, and a counter connected to the counter electrode A driving method for driving a display panel including an electrode wiring and a counter electrode driver that supplies a common potential to the counter electrode wiring, wherein the gate driver is connected to the arbitrary gate bus line. In one scanning period from when the conduction signal is supplied to when the next conduction signal is supplied, at least the first voltage level and the first voltage level are synchronized with the conduction signal for the arbitrary auxiliary capacitance bus line. Including a voltage signal supply step of supplying a rectangular voltage signal having a second voltage level different from the voltage level of one, and in the one scanning period, Period serial rectangular voltage signal is said first voltage level, and, the second period is a voltage level, respectively, longer than the response time of the liquid crystal is characterized in that.

上記の方法によれば、本発明に係る上記表示パネルと同様の効果を奏する。   According to said method, there exists an effect similar to the said display panel which concerns on this invention.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

また、上述した各実施形態における表示パネルを備えている液晶表示装置も本発明に含まれる。   In addition, a liquid crystal display device including the display panel in each of the above-described embodiments is also included in the present invention.

本発明は、液晶を用いて画像を表示する表示パネルに好適に適用することができる。   The present invention can be suitably applied to a display panel that displays an image using liquid crystal.

1 表示パネル
11 制御部
12 ソースドライバ
13 ゲートドライバ
14 補助容量ドライバ
15 対向電極ドライバ
16 表示部
SLm ソースバスライン
GLn ゲートバスライン
CSLn 補助容量バスライン
COML 対向電極用配線
Pn,m 画素領域
PEn,m 画素電極
Mn,m トランジスタ
ECOM 対向電極
Cn,m キャパシタ
CE1n,m 第1の補助容量電極
CE2n,m 第2の補助容量電極
DESCRIPTION OF SYMBOLS 1 Display panel 11 Control part 12 Source driver 13 Gate driver 14 Auxiliary capacity driver 15 Counter electrode driver 16 Display part SLm Source bus line GLn Gate bus line CSLn Auxiliary capacity bus line COML Counter electrode wiring Pn, m Pixel area PEn, m Pixel Electrode Mn, m Transistor ECOM Counter electrode Cn, m Capacitor CE1n, m First auxiliary capacitance electrode CE2n, m Second auxiliary capacitance electrode

Claims (28)

複数のゲートバスラインと、
複数のソースバスラインと、
複数の補助容量バスラインと、
前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、
前記トランジスタのドレインに接続された画素電極と、
一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、
前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、
前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、
液晶を介して前記画素電極に対向する対向電極と、
前記対向電極に接続された対向電極用配線と、
前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、
を備えた表示パネルであって、
前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する補助容量ドライバを備えており、
前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長く、
前記矩形状の電圧信号は、前記1走査期間の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の電圧レベルをとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち他の一方の電圧レベルをとり、
2つの前記補助容量ドライバを備え、
前記任意の補助容量バスラインは、絶縁部を介して同一直線上に形成された2本の補助容量バスラインから構成され、
2つの前記補助容量ドライバのうち一方の前記補助容量ドライバは、
前記1走査期間において、前記2本の補助容量バスラインのうち一方の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給し、
2つの前記補助容量ドライバのうち他の一方の前記補助容量ドライバは、
前記1走査期間において、前記2本の補助容量バスラインのうち他の一方の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する、
ことを特徴とする表示パネル。
Multiple gate bus lines;
Multiple source bus lines,
A plurality of auxiliary capacity bus lines;
A transistor comprising: a gate connected to an arbitrary gate bus line of the plurality of gate bus lines; and a source connected to an arbitrary source bus line of the plurality of source bus lines;
A pixel electrode connected to the drain of the transistor;
A capacitor having one end connected in parallel to the pixel electrode to the drain of the transistor and the other end connected to an arbitrary auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines;
A source driver connected to one end of each of the plurality of source bus lines and supplying a source signal to the arbitrary source bus line;
A gate driver connected to one end of each of the plurality of gate bus lines and sequentially supplying a conduction signal for conducting the transistor to the arbitrary gate bus line;
A counter electrode facing the pixel electrode through a liquid crystal;
A counter electrode wiring connected to the counter electrode;
A counter electrode driver for supplying a common potential to the counter electrode wiring;
A display panel comprising:
In one scanning period from when the gate driver supplies the conduction signal to the arbitrary gate bus line until the next conduction signal is supplied, the conduction signal is applied to the arbitrary auxiliary capacitance bus line. A storage capacitor driver for supplying a rectangular voltage signal having at least a first voltage level and a second voltage level different from the first voltage level in synchronization;
In the one scanning period, a period in which the rectangular voltage signal is at the first voltage level and a period in which the rectangular voltage signal is at the second voltage level are longer than the response time of the liquid crystal,
The rectangular voltage signal is one of the first voltage level and the second voltage level during a period from the start of the one scanning period to the passage of approximately 10% of the one scanning period. One of the first voltage level and the second voltage level is taken in a period from when a period of about 90% of the one scanning period elapses until the end of the one scanning period. the voltage level door is,
Including two auxiliary capacity drivers;
The arbitrary auxiliary capacity bus line is composed of two auxiliary capacity bus lines formed on the same straight line through an insulating part,
One of the two auxiliary capacity drivers is the auxiliary capacity driver,
In the one scanning period, a second auxiliary voltage bus line different from the first voltage level and the first voltage level is synchronized with the conduction signal for one of the two auxiliary capacitance bus lines. Supply a rectangular voltage signal consisting of voltage levels,
Of the two auxiliary capacitance drivers, the other auxiliary capacitance driver is
In the one scanning period, the other one of the two auxiliary capacitor bus lines is different from the first voltage level and the first voltage level in synchronization with the conduction signal. Supplying a rectangular voltage signal comprising two voltage levels;
A display panel characterized by that.
前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの連続した期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の値の電圧レベルをとる、
ことを特徴とする請求項1に記載の表示パネル。
The rectangular voltage signal takes a voltage level of one of the first voltage level and the second voltage level in a continuous period of at least 10 percent of the one scanning period.
The display panel according to claim 1.
前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルであるときの前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性と、前記矩形状の電圧信号が前記第2の電圧レベルであるときの前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性とは、互いに異なった極性である、
ことを特徴とする請求項1または2に記載の表示パネル。
In the one scanning period, the polarity of the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode and the potential of the counter electrode when the rectangular voltage signal is at the first voltage level The polarity of the voltage applied to the liquid crystal expressed by the difference between the potential of the pixel electrode and the potential of the counter electrode when the rectangular voltage signal is at the second voltage level is different from each other. Polar,
The display panel according to claim 1, wherein the display panel is a display panel.
前記第1の電圧レベルと、前記第2の電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、
ことを特徴とする請求項1から3の何れか1項に記載の表示パネル。
The absolute value of the potential difference between the first voltage level and the second voltage level is not more than twice the threshold voltage of the liquid crystal;
The display panel according to claim 1, wherein the display panel is a display panel.
前記補助容量ドライバは、前記1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給する、
ことを特徴とする請求項1に記載の表示パネル。
In the one scanning period, the auxiliary capacitance driver is configured to synchronize the first voltage level, the second voltage level, and the first voltage level with respect to the arbitrary auxiliary capacitance bus line in synchronization with the conduction signal. Supplying a rectangular voltage signal comprising a voltage level and a third voltage level different from any of the second voltage levels;
The display panel according to claim 1.
前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの期間において、前記第1の電圧レベル、前記第2の電圧レベル、または、前記第3の電圧レベルのうち、何れかの電圧レベルをとる、
ことを特徴とする請求項5に記載の表示パネル。
The rectangular voltage signal is at least one of the first voltage level, the second voltage level, and the third voltage level in a period of at least 10 percent of the one scanning period. Take
The display panel according to claim 5.
前記矩形状の電圧信号は、前記1走査期間の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、または、前記第3の電圧レベルのうち何れか1つの電圧レベルをとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、または、前記第3の電圧レベルのうち他の1つの電圧レベルをとる、
ことを特徴とする請求項5または6に記載の表示パネル。
The rectangular voltage signal is the first voltage level, the second voltage level, or the period in a period from the start of the one scanning period to a period of about 10% of the one scanning period. Any one of the third voltage levels is taken, and the first voltage level in a period from when approximately 90 percent of the one scanning period has elapsed until the end of the one scanning period, Taking the second voltage level or another one of the third voltage levels;
The display panel according to claim 5, wherein the display panel is a display panel.
前記1走査期間において、最初の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性と、次の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性とは、互いに異なった極性である、
ことを特徴とする請求項5から7の何れか1項に記載の表示パネル。
In the one scanning period, the polarity of the voltage applied to the liquid crystal represented by the difference between the potential of the pixel electrode and the potential of the counter electrode after the first transition of the voltage level, and the next transition of the voltage level The polarity of the voltage applied to the liquid crystal represented by the difference between the potential of the pixel electrode and the potential of the counter electrode later is different from each other.
The display panel according to claim 5, wherein the display panel is a display panel.
前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、最も高い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、中間の電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、
ことを特徴とする請求項5から8の何れか1項に記載の表示パネル。
Of the first voltage level, the second voltage level, and the third voltage level, the highest voltage level, the first voltage level, the second voltage level, and the third voltage level The absolute value of the potential difference from the intermediate voltage level is less than twice the threshold voltage of the liquid crystal.
The display panel according to claim 5, wherein the display panel is a display panel.
前記補助容量ドライバは、前記1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、前記第1の電圧レベルと、前記第2の電圧レベルと、前記第1の電圧レベルおよび前記第2の電圧レベルの何れとも異なる第3の電圧レベルとからなる矩形状の電圧信号を供給し、前記1走査期間の次の1走査期間において、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルのうち、何れか2つの電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、および、前記第3の電圧レベルの何れとも異なる第4の電圧レベルとからなる矩形状の電圧信号を供給する、ことを特徴とする請求項1に記載の表示パネル。   In the one scanning period, the auxiliary capacitance driver is configured to synchronize the first voltage level, the second voltage level, and the first voltage level with respect to the arbitrary auxiliary capacitance bus line in synchronization with the conduction signal. A rectangular voltage signal having a voltage level and a third voltage level different from any of the second voltage levels is supplied, and the first voltage level, the first voltage level, Any two voltage levels of the second voltage level and the third voltage level and any of the first voltage level, the second voltage level, and the third voltage level The display panel according to claim 1, wherein a rectangular voltage signal having different fourth voltage levels is supplied. 前記1走査期間における最初の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値は、前記1走査期間における次の前記電圧レベルの遷移の前後における前記電圧レベルの電位差の絶対値よりも小さい、
ことを特徴とする請求項10に記載の表示パネル。
The absolute value of the voltage level potential difference before and after the first voltage level transition in the one scanning period is greater than the absolute value of the voltage level potential difference before and after the next voltage level transition in the one scanning period. small,
The display panel according to claim 10.
前記矩形状の電圧信号は、前記1走査期間の少なくとも10パーセントの期間において、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、または、前記第4の電圧レベルのうち、何れかの電圧レベルをとる、
ことを特徴とする請求項10または11に記載の表示パネル。
The rectangular voltage signal is a voltage of the first voltage level, the second voltage level, the third voltage level, or the fourth voltage level in a period of at least 10 percent of the one scanning period. Take one of the voltage levels,
The display panel according to claim 10, wherein the display panel is a display panel.
前記矩形状の電圧信号は、前記1走査期間の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、または、前記第4の電圧レベルのうち何れか1つの電圧レベルをとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、または、前記第4の電圧レベルのうち他の1つの電圧レベルをとる、
ことを特徴とする請求項10から12の何れか1項に記載の表示パネル。
The rectangular voltage signal is generated by the first voltage level, the second voltage level, and the third voltage level during a period from the start of the one scanning period to a period of about 10% of the one scanning period. Or a voltage level of any one of the fourth voltage levels, in a period from the lapse of approximately 90% of the one scanning period to the end of the one scanning period, Taking another voltage level of the first voltage level, the second voltage level, the third voltage level, or the fourth voltage level;
The display panel according to claim 10, wherein the display panel is a display panel.
前記1走査期間において、最初の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性と、次の前記電圧レベルの遷移後における前記画素電極の電位と前記対向電極の電位との差によって表される前記液晶への印加電圧の極性とは、互いに異なった極性である、
ことを特徴とする請求項10から13の何れか1項に記載の表示パネル。
In the one scanning period, the polarity of the voltage applied to the liquid crystal represented by the difference between the potential of the pixel electrode and the potential of the counter electrode after the first transition of the voltage level, and the next transition of the voltage level The polarity of the voltage applied to the liquid crystal represented by the difference between the potential of the pixel electrode and the potential of the counter electrode later is different from each other.
The display panel according to claim 10, wherein the display panel is a display panel.
前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、2番目に低い電圧レベルと、前記第1の電圧レベル、前記第2の電圧レベル、前記第3の電圧レベル、および、前記第4の電圧レベルのうち、最も高い電圧レベルとの電位差の絶対値は、液晶の閾値電圧の2倍以下である、
ことを特徴とする請求項10から14の何れか1項に記載の表示パネル。
Of the first voltage level, the second voltage level, the third voltage level, and the fourth voltage level, the second lowest voltage level, the first voltage level, and the second voltage level The absolute value of the potential difference from the highest voltage level among the voltage level, the third voltage level, and the fourth voltage level is not more than twice the threshold voltage of the liquid crystal.
The display panel according to claim 10, wherein the display panel is a display panel.
前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も低い電圧レベルが供給されている場合には、
前記補助容量ドライバは、前記任意の補助容量バスラインに対して、前記1走査期間において、前記電圧レベルが昇順である前記矩形状の電圧信号を供給する、
ことを特徴とする請求項1から15の何れか1項に記載の表示パネル。
When the gate driver supplies the conduction signal to the arbitrary gate bus line, the lowest voltage level among the voltage levels is supplied to the arbitrary auxiliary capacitance bus line. ,
The auxiliary capacity driver supplies the rectangular voltage signal whose voltage level is in ascending order during the one scanning period to the arbitrary auxiliary capacity bus line.
The display panel according to claim 1, wherein the display panel is a display panel.
前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給したときに、前記任意の補助容量バスラインに対して前記電圧レベルのうち、最も高い電圧レベルが供給されている場合には、
前記補助容量ドライバは、前記任意の補助容量バスラインに対して、前記1走査期間において、前記電圧レベルが降順である前記矩形状の電圧信号を供給する、
ことを特徴とする請求項1から16の何れか1項に記載の表示パネル。
When the gate driver supplies the conduction signal to the arbitrary gate bus line, the highest voltage level among the voltage levels is supplied to the arbitrary auxiliary capacitance bus line. ,
The auxiliary capacitor driver supplies the rectangular voltage signal whose voltage level is in descending order during the one scanning period to the arbitrary auxiliary capacitor bus line.
The display panel according to claim 1, wherein the display panel is a display panel.
前記補助容量ドライバは、
前記複数のゲートバスラインのうちn番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、
前記複数のゲートバスラインのうちn+1番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、
に対し、
前記矩形状の電圧信号を同期して供給する、
ことを特徴とする請求項1から17の何れか1項に記載の表示パネル。
The auxiliary capacity driver is:
The auxiliary capacitance bus line connected to the nth gate bus line of the plurality of gate bus lines via the transistor and the capacitor;
The auxiliary capacitance bus line connected to the n + 1th gate bus line of the plurality of gate bus lines via the transistor and the capacitor;
Whereas
Supplying the rectangular voltage signal synchronously;
The display panel according to claim 1, wherein the display panel is a display panel.
前記補助容量ドライバは、
前記複数のゲートバスラインのうちn番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、
前記複数のゲートバスラインのうちn+2番目のゲートバスラインに前記トランジスタ及び前記キャパシタを介して接続された前記補助容量バスラインと、
に対し、
前記矩形状の電圧信号を同期して供給する、
ことを特徴とする請求項1から17の何れか1項に記載の表示パネル。
The auxiliary capacity driver is:
The auxiliary capacitance bus line connected to the nth gate bus line of the plurality of gate bus lines via the transistor and the capacitor;
The auxiliary capacitance bus line connected to the n + 2th gate bus line of the plurality of gate bus lines via the transistor and the capacitor;
Whereas
Supplying the rectangular voltage signal synchronously;
The display panel according to claim 1, wherein the display panel is a display panel.
前記複数のゲートバスラインの本数は偶数であり、
前記複数の補助容量バスラインの本数は、前記ゲートバスラインの本数の半数であり、
前記複数のゲートバスラインのうち2k−1番目(kは自然数)のゲートバスラインに前記トランジスタを介して接続された前記キャパシタの前記他の一端と、
前記複数のゲートバスラインのうち2k番目のゲートバスラインに前記トランジスタを介して接続された前記キャパシタの前記他の一端とが、
前記複数の補助容量バスラインのうちk番目の補助容量バスラインに接続されている、
ことを特徴とする請求項1から17の何れか1項に記載の表示パネル。
The number of the plurality of gate bus lines is an even number,
The number of the plurality of auxiliary capacitance bus lines is half the number of the gate bus lines,
The other end of the capacitor connected to the 2k-1 th (k is a natural number) gate bus line of the plurality of gate bus lines via the transistor;
The other end of the capacitor connected to the 2kth gate bus line of the plurality of gate bus lines via the transistor,
Connected to the kth auxiliary capacity bus line among the plurality of auxiliary capacity bus lines;
The display panel according to claim 1, wherein the display panel is a display panel.
前記補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する振幅変更手段を備えている、
ことを特徴とする請求項1から20の何れか1項に記載の表示パネル。
The auxiliary capacity driver includes amplitude changing means for changing the amplitude of the rectangular voltage signal.
The display panel according to claim 1, wherein the display panel is a display panel.
前記ソースドライバは、前記矩形状の電圧信号の振幅がより小さい場合に、より振幅の大きな前記ソース信号を供給し、前記矩形状の電圧信号の振幅がより大きい場合に、より振幅の小さな前記ソース信号を供給する、
ことを特徴とする請求項21に記載の表示パネル。
The source driver supplies the source signal having a larger amplitude when the amplitude of the rectangular voltage signal is smaller, and the source having a smaller amplitude when the amplitude of the rectangular voltage signal is larger. Supply signal,
The display panel according to claim 21.
前記ソースドライバは、
前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインと、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインとに対し、それぞれ振幅の異なったソース信号を供給する
ことを特徴とする請求項1から22の何れか1項に記載の表示パネル。
The source driver is
The source bus line connected to the one auxiliary capacitance bus line via the capacitor and the transistor, and the source bus line connected to the other auxiliary capacitance bus line via the capacitor and the transistor 23. The display panel according to claim 1, wherein source signals having different amplitudes are supplied to each other .
前記一方の補助容量バスラインの長さは、前記任意の補助容量バスラインの長さの略45パーセントから略55パーセントの長さであり、前記他の一方の補助容量バスラインの長さは、前記任意の補助容量バスラインの長さから前記一方の補助容量バスラインの長さを引いた長さに略等しい、ことを特徴とする請求項1から23の何れか1項に記載の表示パネル。 The length of the one auxiliary capacity bus line is about 45% to about 55% of the length of the arbitrary auxiliary capacity bus line, and the length of the other auxiliary capacity bus line is: 24. The display panel according to claim 1 , wherein the display panel is substantially equal to a length obtained by subtracting a length of the one auxiliary capacitor bus line from a length of the arbitrary auxiliary capacitor bus line. . 前記一方の補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する第1の振幅変更手段を備えており、前記他の一方の補助容量ドライバは、前記矩形状の電圧信号の振幅の大きさを変更する第2の振幅変更手段を備えている、
ことを特徴とする請求項1から24の何れか1項に記載の表示パネル。
The one auxiliary capacitance driver includes first amplitude changing means for changing the amplitude of the rectangular voltage signal, and the other auxiliary capacitance driver is configured to output the rectangular voltage signal. A second amplitude changing means for changing the magnitude of the amplitude;
The display panel according to claim 1 , wherein the display panel is a display panel.
前記ソースドライバは、
前記一方の補助容量ドライバが前記一方の補助容量バスラインに振幅のより小さい前記矩形状の電圧信号を供給した場合には、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより大きい前記ソース信号を供給し、
前記一方の補助容量ドライバが前記一方の補助容量バスラインに振幅のより大きい前記矩形状の電圧信号を供給した場合には、前記一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより小さい前記ソース信号を供給し、
前記他の一方の補助容量ドライバが前記他の一方の補助容量バスラインに振幅のより小さい前記矩形状の電圧信号を供給した場合には、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより大きい前記ソース信号を供給し、
前記他の一方の補助容量ドライバが前記他の一方の補助容量バスラインに振幅のより大きい前記矩形状の電圧信号を供給した場合には、前記他の一方の補助容量バスラインに前記キャパシタおよび前記トランジスタを介して接続された前記ソースバスラインに対して振幅のより小さい前記ソース信号を供給する、
ことを特徴とする請求項25に記載の表示パネル。
The source driver is
When the one auxiliary capacitor driver supplies the rectangular voltage signal having a smaller amplitude to the one auxiliary capacitor bus line, the one auxiliary capacitor driver is connected to the one auxiliary capacitor bus line via the capacitor and the transistor. Supplying the source signal having a larger amplitude to the source bus line;
When the one auxiliary capacitor driver supplies the rectangular voltage signal having a larger amplitude to the one auxiliary capacitor bus line, the one auxiliary capacitor driver is connected to the one auxiliary capacitor bus line via the capacitor and the transistor. Supplying the source signal having a smaller amplitude to the source bus line;
When the other auxiliary capacitor driver supplies the rectangular voltage signal having a smaller amplitude to the other auxiliary capacitor bus line, the capacitor and the Supplying the source signal having a larger amplitude to the source bus line connected through a transistor;
When the other auxiliary capacitor driver supplies the rectangular voltage signal having a larger amplitude to the other auxiliary capacitor bus line, the capacitor and the capacitor are connected to the other auxiliary capacitor bus line. Supplying the source signal having a smaller amplitude to the source bus line connected through a transistor;
26. The display panel according to claim 25 .
請求項1から26の何れか1項に記載の表示パネルを備えている、
ことを特徴とする液晶表示装置。
The display panel according to any one of claims 1 to 26 is provided.
A liquid crystal display device characterized by the above.
複数のゲートバスラインと、
複数のソースバスラインと、
複数の補助容量バスラインと、
前記複数のゲートバスラインのうち任意のゲートバスラインに接続されたゲートと、前記複数のソースバスラインのうち任意のソースバスラインに接続されたソースとを備えたトランジスタと、
前記トランジスタのドレインに接続された画素電極と、
一端が前記画素電極と並列に前記トランジスタのドレインに接続され、他の一端が前記複数の補助容量バスラインのうち任意の補助容量バスラインに接続されたキャパシタと、
前記複数のソースバスラインのそれぞれの一端に接続され、前記任意のソースバスラインに対してソース信号を供給するソースドライバと、
前記複数のゲートバスラインのそれぞれの一端に接続され、前記トランジスタを導通させる導通信号を前記任意のゲートバスラインに対して逐次的に供給するゲートドライバと、
液晶を介して前記画素電極に対向する対向電極と、
前記対向電極に接続された対向電極用配線と、
前記対向電極用配線に対して共通電位を供給する対向電極ドライバと、
を備えた表示パネルを駆動する駆動方法であって、
前記ゲートドライバが前記任意のゲートバスラインに対して前記導通信号を供給してから次の前記導通信号を供給するまでの1走査期間において、前記任意の補助容量バスラインに対し、前記導通信号に同期して、少なくとも第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する電圧信号供給工程を含んでおり、
前記1走査期間において、前記矩形状の電圧信号が前記第1の電圧レベルである期間、および、前記第2の電圧レベルである期間は、それぞれ、前記液晶の応答時間よりも長く、
前記矩形状の電圧信号は、前記1走査期間の開始から前記1走査期間の略10パーセントの期間が経過するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち一方の電圧レベルをとり、前記1走査期間の略90パーセントの期間が経過してから前記1走査期間が終了するまでの期間において、前記第1の電圧レベルまたは前記第2の電圧レベルのうち他の一方の電圧レベルをとり、
2つの前記電圧信号供給工程を含み、
2つの前記電圧信号供給工程のうち一方の前記電圧信号供給工程は、
前記1走査期間において、前記任意の補助容量バスラインを構成する、絶縁部を介して同一直線上に形成された2本の補助容量バスラインのうち一方の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給し、
2つの前記電圧信号供給工程のうち他の一方の前記電圧信号供給工程は、
前記1走査期間において、前記2本の補助容量バスラインのうち他の一方の補助容量バスラインに対し、前記導通信号に同期して、第1の電圧レベルおよび前記第1の電圧レベルと異なる第2の電圧レベルからなる矩形状の電圧信号を供給する、
ことを特徴とする駆動方法。
Multiple gate bus lines;
Multiple source bus lines,
A plurality of auxiliary capacity bus lines;
A transistor comprising: a gate connected to an arbitrary gate bus line of the plurality of gate bus lines; and a source connected to an arbitrary source bus line of the plurality of source bus lines;
A pixel electrode connected to the drain of the transistor;
A capacitor having one end connected in parallel to the pixel electrode to the drain of the transistor and the other end connected to an arbitrary auxiliary capacitance bus line of the plurality of auxiliary capacitance bus lines;
A source driver connected to one end of each of the plurality of source bus lines and supplying a source signal to the arbitrary source bus line;
A gate driver connected to one end of each of the plurality of gate bus lines and sequentially supplying a conduction signal for conducting the transistor to the arbitrary gate bus line;
A counter electrode facing the pixel electrode through a liquid crystal;
A counter electrode wiring connected to the counter electrode;
A counter electrode driver for supplying a common potential to the counter electrode wiring;
A driving method for driving a display panel comprising:
In one scanning period from when the gate driver supplies the conduction signal to the arbitrary gate bus line until the next conduction signal is supplied, the conduction signal is applied to the arbitrary auxiliary capacitance bus line. A voltage signal supplying step of supplying a rectangular voltage signal consisting of at least a first voltage level and a second voltage level different from the first voltage level in synchronization;
In the one scanning period, a period in which the rectangular voltage signal is at the first voltage level and a period in which the rectangular voltage signal is at the second voltage level are longer than the response time of the liquid crystal,
The rectangular voltage signal is one of the first voltage level and the second voltage level during a period from the start of the one scanning period to the passage of approximately 10% of the one scanning period. One of the first voltage level and the second voltage level is taken in a period from when a period of about 90% of the one scanning period elapses until the end of the one scanning period. the voltage level door is,
Including two voltage signal supplying steps;
One of the two voltage signal supply steps is the voltage signal supply step,
In the one scanning period, the conduction signal is supplied to one auxiliary capacitor bus line of two auxiliary capacitor bus lines that are formed on the same straight line through an insulating portion and that constitutes the arbitrary auxiliary capacitor bus line. A rectangular voltage signal composed of a first voltage level and a second voltage level different from the first voltage level,
The other one of the two voltage signal supply steps is the voltage signal supply step,
In the one scanning period, the other one of the two auxiliary capacitor bus lines is different from the first voltage level and the first voltage level in synchronization with the conduction signal. Supplying a rectangular voltage signal comprising two voltage levels;
A driving method characterized by that.
JP2011545113A 2009-12-11 2010-09-22 Display panel, liquid crystal display device, and driving method Active JP5512698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545113A JP5512698B2 (en) 2009-12-11 2010-09-22 Display panel, liquid crystal display device, and driving method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009282187 2009-12-11
JP2009282187 2009-12-11
PCT/JP2010/066453 WO2011070836A1 (en) 2009-12-11 2010-09-22 Display panel, liquid crystal display, and driving method
JP2011545113A JP5512698B2 (en) 2009-12-11 2010-09-22 Display panel, liquid crystal display device, and driving method

Publications (2)

Publication Number Publication Date
JPWO2011070836A1 JPWO2011070836A1 (en) 2013-04-22
JP5512698B2 true JP5512698B2 (en) 2014-06-04

Family

ID=44145389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011545113A Active JP5512698B2 (en) 2009-12-11 2010-09-22 Display panel, liquid crystal display device, and driving method

Country Status (4)

Country Link
US (1) US20120242646A1 (en)
JP (1) JP5512698B2 (en)
CN (1) CN102652334B (en)
WO (1) WO2011070836A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631968B2 (en) * 2010-02-26 2014-11-26 シャープ株式会社 Liquid crystal display
US9336736B2 (en) * 2011-08-02 2016-05-10 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving auxiliary capacitance lines
CN104217688B (en) 2013-05-31 2016-08-10 京东方科技集团股份有限公司 A kind of LCD and display device
KR20150030907A (en) * 2013-09-13 2015-03-23 삼성디스플레이 주식회사 Method of manufacturing display substrate, display panel and display apparatus having the display panel
CN104166266B (en) * 2014-07-24 2018-03-30 京东方科技集团股份有限公司 A kind of mirror face display equipment control method, control device and control system
US20180240392A1 (en) * 2017-02-21 2018-08-23 Solomon Systech Limited Thin film transistor (tft) liquid crystal display (lcd) panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168617A (en) * 1989-11-28 1991-07-22 Matsushita Electric Ind Co Ltd Method for driving display device
JP2001265287A (en) * 2000-03-15 2001-09-28 Sharp Corp Active matrix type display device and its driving method
JP2009008919A (en) * 2007-06-28 2009-01-15 Sharp Corp Liquid crystal display device
JP2009098587A (en) * 2007-10-16 2009-05-07 Samsung Electronics Co Ltd Liquid crystal display device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324914B1 (en) * 1998-09-25 2002-02-28 니시무로 타이죠 Test method of substrate
JP3829809B2 (en) * 2003-02-18 2006-10-04 セイコーエプソン株式会社 Display device drive circuit and drive method, and display device and projection display device
US7187421B2 (en) * 2003-07-11 2007-03-06 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display having a source driver and scanning line drive circuit that is shutdown
JP2005062396A (en) * 2003-08-11 2005-03-10 Sony Corp Display device and method for driving the same
CN1702501A (en) * 2004-05-21 2005-11-30 三洋电机株式会社 Liquid-crystal display device
KR101112551B1 (en) * 2005-02-07 2012-02-15 삼성전자주식회사 Liquid crystal display and driving method thereof
KR101352343B1 (en) * 2006-12-11 2014-01-15 삼성디스플레이 주식회사 Liquid Crystal Display
KR100968720B1 (en) * 2007-06-29 2010-07-08 소니 주식회사 Liquid crystal device and electronic apparatus
TWI390279B (en) * 2007-08-30 2013-03-21 Japan Display West Inc Display apparatus and electronic equipment
KR100902214B1 (en) * 2007-11-08 2009-06-11 삼성모바일디스플레이주식회사 Liquid Crystal Display and driving method thereof
TWI386902B (en) * 2008-03-18 2013-02-21 Au Optronics Corp Liquid crystal display device based on dot inversion operation
JP2010079024A (en) * 2008-09-26 2010-04-08 Toshiba Corp Liquid crystal display device
JP2010079151A (en) * 2008-09-29 2010-04-08 Seiko Epson Corp Electrooptical apparatus, method for driving the same, and electronic device
CN102209929B (en) * 2008-11-19 2014-09-17 夏普株式会社 Active matrix substrate, liquid crystal display panel, liquid crystal display device, method for manufacturing active matrix substrate, method for manufacturing liquid crystal display panel and method for driving liquid crystal display panel
WO2011070838A1 (en) * 2009-12-11 2011-06-16 シャープ株式会社 Display panel, liquid crystal display, and driving method
WO2011080958A1 (en) * 2009-12-28 2011-07-07 シャープ株式会社 Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168617A (en) * 1989-11-28 1991-07-22 Matsushita Electric Ind Co Ltd Method for driving display device
JP2001265287A (en) * 2000-03-15 2001-09-28 Sharp Corp Active matrix type display device and its driving method
JP2009008919A (en) * 2007-06-28 2009-01-15 Sharp Corp Liquid crystal display device
JP2009098587A (en) * 2007-10-16 2009-05-07 Samsung Electronics Co Ltd Liquid crystal display device

Also Published As

Publication number Publication date
US20120242646A1 (en) 2012-09-27
CN102652334B (en) 2014-12-03
WO2011070836A1 (en) 2011-06-16
JPWO2011070836A1 (en) 2013-04-22
CN102652334A (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP3879484B2 (en) Liquid crystal display
JP3904524B2 (en) Liquid crystal display device and driving method thereof
KR100748840B1 (en) Liquid crystal display unit and driving method therefor
US9478177B2 (en) Display device configured to perform pseudo interlace scanning image display based on progressive image signal, driving method thereof, and display driving circuit
JP5512698B2 (en) Display panel, liquid crystal display device, and driving method
KR20040020032A (en) Liquid crystal display apparatus
JP4631917B2 (en) Electro-optical device, driving method, and electronic apparatus
JP4846217B2 (en) Liquid crystal display
JP2012103664A (en) Liquid crystal display device, and drive method for liquid crystal display device
US20140071105A1 (en) Display device
KR20060060590A (en) Display device
JP5529166B2 (en) Display panel, liquid crystal display device, and driving method
JP2004354742A (en) Liquid crystal display,and driving method and manufacturing method of liquid crystal display
KR20140042010A (en) Display device and driving method thereof
JP2007094008A (en) Display device
JP2006171342A (en) Liquid crystal display device
JP2006267303A (en) Display apparatus and driving method thereof
JP2011197353A (en) Display device and driving method of the same
US10818254B2 (en) Display device and method of driving display device
US8542168B2 (en) Display device
JP2008145909A (en) Liquid crystal display device
JP2010101915A (en) Image display device and image display method
JP2011197389A (en) Video display device
JP2010101914A (en) Image display device and image display method
JP2009271142A (en) Liquid crystal display device and its driving method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150