JP5511061B2 - Crack repair method for underground reinforced concrete structures - Google Patents

Crack repair method for underground reinforced concrete structures Download PDF

Info

Publication number
JP5511061B2
JP5511061B2 JP2010067220A JP2010067220A JP5511061B2 JP 5511061 B2 JP5511061 B2 JP 5511061B2 JP 2010067220 A JP2010067220 A JP 2010067220A JP 2010067220 A JP2010067220 A JP 2010067220A JP 5511061 B2 JP5511061 B2 JP 5511061B2
Authority
JP
Japan
Prior art keywords
ground
reinforced concrete
crack
concrete structure
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010067220A
Other languages
Japanese (ja)
Other versions
JP2011196160A (en
Inventor
知明 堤
光男 原田
泰仁 相京
剛 丸屋
賢一 堀口
三馨 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Tokyo Electric Power Co Inc
Original Assignee
Taisei Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Tokyo Electric Power Co Inc filed Critical Taisei Corp
Priority to JP2010067220A priority Critical patent/JP5511061B2/en
Publication of JP2011196160A publication Critical patent/JP2011196160A/en
Application granted granted Critical
Publication of JP5511061B2 publication Critical patent/JP5511061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、地盤中に構築された鉄筋コンクリート構造物のひび割れを、地盤上からの施工で短期間かつ低コストで補修し得るひび割れ補修方法に関する。   The present invention relates to a crack repair method capable of repairing a crack in a reinforced concrete structure built in the ground in a short period of time and at a low cost by construction from the ground.

コンクリート床版、コンクリート橋脚及び橋台、コンクリート壁、トンネル、ビル外壁、ボックスカルバートなどのコンクリート構造物は、地震などの外力を受けたり、建造後の経年変化により外面にひび割れ(クラックともいう。)が生じる。ひび割れが生じると、この亀裂から塩化物イオンなど、鉄筋の腐食を発生あるいは促進させる物質が侵入し内部鉄筋を腐食させるため、鉄筋コンクリート構造物の耐力を低下させたり、剥落を生じさせたりする原因となるため、早期にひび割れを補修する必要性が生じる。   Concrete structures such as concrete slabs, concrete piers and abutments, concrete walls, tunnels, building outer walls, and box culverts are subject to external forces such as earthquakes, and cracks (also called cracks) on the outer surface due to secular changes after construction. Arise. When cracks occur, substances that generate or accelerate corrosion of reinforcing bars, such as chloride ions, invade from the cracks and corrode internal reinforcing bars, which may cause the strength of reinforced concrete structures to decrease or cause peeling. Therefore, it becomes necessary to repair the cracks at an early stage.

従来より、コンクリート構造物のひび割れ補修方法が数多く提案されているが、それらの多くは、ひび割れ内部に合成樹脂の接着剤を注入してひび割れを埋める工法である。例えば、下記特許文献1では、クラック上に固定した注入パイプと注入ホースとの間に、ゴムパイプ等の弾性材料からなる逆止弁付圧力緩衝部を設け、注入圧力を緩衝させながら接着剤をクラック内に注入し、注入を連続しながらゴムパイプを膨張させて接着剤を留め、その後ゴムの収縮力を利用して接着剤を徐々に注入する方法が提案されている。また、下記特許文献2では、コンクリート構造物等のクラックや隙間が生じた部分にコアドリルを用いて円筒状の切目を入れ、この切目で囲まれた部分を除去することによって凹部を作り、次に、凹部内に座金付の先端を挿入した注入具を、凹部内に充填した固定剤によって固定化した後、この注入具を介してクラックや隙間内に接着剤を注入する接着剤の注入工法が提案されている。   Conventionally, many methods for repairing cracks in concrete structures have been proposed, but most of them are methods of filling the cracks by injecting a synthetic resin adhesive into the cracks. For example, in Patent Document 1 below, a pressure buffer portion with a check valve made of an elastic material such as a rubber pipe is provided between an injection pipe fixed on a crack and an injection hose, and the adhesive is cracked while buffering the injection pressure. There has been proposed a method in which a rubber pipe is expanded while being continuously injected, the adhesive is fixed by expanding the rubber pipe, and then the adhesive is gradually injected using the shrinkage force of the rubber. Moreover, in the following Patent Document 2, a cylindrical cut is made by using a core drill in a portion where a crack or a gap occurs in a concrete structure or the like, and a concave portion is formed by removing a portion surrounded by the cut, An injection method for injecting an adhesive into which a tip with a washer is inserted into a recess is fixed by a fixing agent filled in the recess, and then an adhesive is injected into a crack or a gap through the injection tool. Proposed.

また、近年は接着剤の注入には多くの手間と時間が掛かるとして、クラック部分に塗布するだけで補修を完了するようにした補修工法も提案されている。具体的には、下記特許文献3では、エポキシ樹脂主剤を主成分とするA液と、硬化剤を主成分とするB液とからなる2液型のエポキシ樹脂組成物であり、このエポキシ樹脂組成物が充填剤を含まないクリア系の組成物であり、その粘度がB型粘度計による測定で100〜2000mPa・s/20℃の範囲内であり、2液混合後の組成物の5rpmにおける粘度と50rpmにおける粘度との比率ηs/ηsoが、B型粘度計による測定で1.1〜2.0の範囲内であり、水平面における0.2mmのひび割れに対する浸透深さが15mm以上で、垂直面における0.2mmのひび割れに対する浸透深さが25mm以上である浸透型接着性組成物を、コンクリート構造物の表面に複数回塗布して微細なひび割れ部に浸透させて硬化させることを特徴とするコンクリート構造物の補強・補修方法が提案されている。   In recent years, a repair method has been proposed in which repairing is completed by simply applying the adhesive to the cracked part because it takes a lot of labor and time to inject the adhesive. Specifically, the following Patent Document 3 is a two-component epoxy resin composition comprising a liquid A mainly composed of an epoxy resin main component and a liquid B mainly composed of a curing agent, and this epoxy resin composition. The product is a clear composition containing no filler, and its viscosity is in the range of 100 to 2000 mPa · s / 20 ° C. as measured by a B-type viscometer, and the viscosity of the composition after mixing two liquids at 5 rpm And the viscosity ηs / ηso at 50 rpm is in the range of 1.1 to 2.0 as measured with a B-type viscometer, the penetration depth for 0.2 mm cracks in the horizontal plane is 15 mm or more, and the vertical plane A concrete characterized in that a penetration type adhesive composition having a penetration depth of 25 mm or more with respect to 0.2 mm cracks is applied to the surface of a concrete structure a plurality of times to penetrate into fine cracks and hardened. Structure Reinforcement and repair methods have been proposed.

特開昭57−87866号公報JP-A-57-87866 特公平8−6466号公報Japanese Patent Publication No. 8-6466 特許第3820469号公報Japanese Patent No. 3820469

しかしながら、前述したひび割れ注入工法やひび割れ塗布工法などの補修工法の場合は、クラック面が露出している必要があるため、地盤中の鉄筋コンクリート構造物のひび割れ補修方法に適用するには、周囲を矢板等で締め切り、内部を掘削するとともに、地下水を汲み上げてドライな環境にする必要があり、補修工事が大規模となる、工期が長期化する、補修工費が嵩む、周囲の環境によっては補修工事ができないなどの問題があった。   However, in the case of repair methods such as the crack injection method and crack coating method described above, the crack surface needs to be exposed, so to apply it to the crack repair method for reinforced concrete structures in the ground, the surrounding area is a sheet pile. It is necessary to make a dry environment by pumping up the groundwater and making it dry, and the repair work will be large, the construction period will be prolonged, the repair cost will increase, and repair work may be necessary depending on the surrounding environment There were problems such as being unable to do so.

そこで本発明の主たる課題は、地盤中に構築された鉄筋コンクリート構造物の外面に発生したひび割れを、地盤上からの施工で短期間かつ低コストで補修し得るひび割れ補修方法を提供することにある。   Therefore, a main problem of the present invention is to provide a crack repair method capable of repairing cracks generated on the outer surface of a reinforced concrete structure built in the ground in a short period of time and at low cost by construction from the ground.

前記課題を解決するために請求項1に係る本発明として、地盤中に構築された鉄筋コンクリート構造物の外面に発生したひび割れを補修するための補修工法であって、
地盤上に高圧噴射撹拌混合装置を配備し、地盤上からの施工により前記鉄筋コンクリート構造物のひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように地盤中に半円形状の地盤改良体を所定厚で造成し、ひび割れ部位に対する酸素供給を抑制することで鉄筋の腐食促進速度を低減させることを特徴とする地中鉄筋コンクリート構造物のひび割れ補修方法が提供される。
In order to solve the above-mentioned problems, the present invention according to claim 1 is a repair method for repairing cracks generated on the outer surface of a reinforced concrete structure built in the ground,
A high-pressure jet mixing device is installed on the ground , covering the crack repaired part of the reinforced concrete structure by construction from the ground, and improving the semicircular ground in the ground so that it adheres closely to the outer surface of the reinforced concrete structure There is provided a crack repairing method for an underground reinforced concrete structure characterized in that the body is formed with a predetermined thickness and the rate of accelerated corrosion of the reinforcing bar is reduced by suppressing oxygen supply to the cracked part.

上記請求項1記載の発明では、高圧噴射撹拌混合装置により、前記鉄筋コンクリート構造物のひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように地盤中に所定厚の地盤改良体を造成し、ひび割れ部位に対する酸素供給を抑制することで鉄筋の腐食速度を低減させる。すなわち、ひび割れ部分を、周囲の地盤を改良した硬化材による固化体によってキャッピングすることによりひび割れ部に対する酸素供給を遮断し、腐食速度を低下させることにより構造物の耐力低下速度を遅くし、構造物の延命化を図るものである。この際、前記固化体の造成に当たって、地盤上からの施工で地盤中に固化体を造成し得る地盤改良工法を利用するものである。   According to the first aspect of the present invention, the ground improvement body having a predetermined thickness is formed in the ground so as to cover the crack repair target portion of the reinforced concrete structure and to be in close contact with the outer surface of the reinforced concrete structure by the high-pressure jet stirring and mixing device. And the corrosion rate of a reinforcing bar is reduced by suppressing oxygen supply to a crack part. That is, by capping the cracked part with a solidified body with a hardened material that improves the surrounding ground, the oxygen supply to the cracked part is cut off, and the rate of decrease in the yield strength of the structure is slowed down by reducing the corrosion rate. Is intended to prolong life. Under the present circumstances, in the formation of the said solidified body, the ground improvement construction method which can create a solidified body in the ground by construction from the ground is utilized.

地盤改良工法としては、高圧噴射撹拌工法が採用される。この工法を採用することで、構造物に沿って改良体を造成する際、付着効果が期待できるとともに、高圧噴射によるブラスト効果で構造物壁面との間に高い密着性を確保することが可能となる。仮に、構造物壁面との間に高い密着性を確保し得ない場合には、改良体と構造物との境界面の間隙を流路としてひび割れ部に酸素が供給されることになる。   As the ground improvement method, a high-pressure jet stirring method is adopted. By adopting this construction method, it is possible to expect an adhesion effect when creating an improved body along the structure, and it is possible to ensure high adhesion with the structure wall surface by the blast effect by high pressure injection. Become. If high adhesion cannot be ensured between the structure wall surface and oxygen, oxygen is supplied to the cracked portion using the gap at the boundary surface between the improved body and the structure as a flow path.

請求項2に係る本発明として、地盤中に構築された鉄筋コンクリート構造物の外面に発生したひび割れを補修するための補修工法であって、
補修が必要となる基準ひび割れ幅を設定する第1手順と、
基準ひび割れ幅以上のひび割れが発生している構造物の外面部分を特定し、ひび割れ補修対象部位を特定する第2手順と、
ひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように、地盤中に所定厚の地盤改良体を造成したと仮定した有限要素解析モデルを設定し、地盤改良体中の酸素拡散解析を行い、経年後の鉄筋の腐食量及び残存耐力を予測し、造成する地盤改良体の厚みを決定する第3手順と、
施工現場において、地盤上に高圧噴射撹拌混合装置を配備し、前記鉄筋コンクリート構造物のひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように、前記第3手順で決定した厚みの地盤改良体を地盤中に造成し、ひび割れ部位に対する酸素供給を抑制することで鉄筋の腐食速度を低減させる第4手順と、からなることを特徴とする地中鉄筋コンクリート構造物のひび割れ補修方法が提供される。
As the present invention according to claim 2, a repair method for repairing cracks generated on the outer surface of a reinforced concrete structure built in the ground,
A first procedure for setting a reference crack width that requires repair;
A second procedure for identifying an outer surface portion of a structure where a crack larger than a reference crack width has occurred, and identifying a crack repair target part;
Established a finite element analysis model assuming that a ground improvement body of a predetermined thickness was created in the ground so as to cover the crack repair site and to be in close contact with the outer surface of the reinforced concrete structure, and analyze oxygen diffusion in the ground improvement body The third step of predicting the corrosion amount and residual strength of the reinforcing bars after aging, and determining the thickness of the ground improvement body to be created,
At the construction site, a high-pressure jet mixing device is installed on the ground, covering the crack repair target part of the reinforced concrete structure, and the ground having the thickness determined in the third step so as to be in close contact with the outer surface of the reinforced concrete structure A method for repairing a crack in an underground reinforced concrete structure is provided, comprising: a fourth step of reducing the corrosion rate of a reinforcing bar by creating an improved body in the ground and suppressing oxygen supply to the cracked part. The

上記請求項2記載の発明は、設計プロセスを含んだ具体的手順に係るひび割れ補修方法である。本発明では、地盤中に構築された鉄筋コンクリート構造物の外面に発生したひび割れを補修するものであり、地盤中に埋設しているため目視確認することができないため、精度良くひび割れ補修対象部位を特定し、且つ地盤改良体の厚みを決定するために上記第1手順から第3手順が重要なプロセスとなる。   The invention described in claim 2 is a crack repair method according to a specific procedure including a design process. In the present invention, cracks generated on the outer surface of the reinforced concrete structure built in the ground are repaired, and since they are buried in the ground, they cannot be visually confirmed, so the crack repair target site can be specified with high accuracy. In order to determine the thickness of the ground improvement body, the first to third procedures are important processes.

請求項3に係る本発明として、前記鉄筋コンクリート構造物の少なくとも一部は地下水位以下に構築され、地下水位以下で生じた構造物外面のひび割れを補修対象とする請求項1、2いずれかに記載の地中鉄筋コンクリート構造物のひび割れ補修方法が提供される。   According to a third aspect of the present invention, at least a part of the reinforced concrete structure is constructed below the groundwater level, and cracks on the outer surface of the structure generated below the groundwater level are to be repaired. A method for repairing cracks in underground reinforced concrete structures is provided.

上記請求項3記載の発明は、ひび割れ補修対象部位を地下水位以下とするものであり、このようなケースの場合でも本発明ではドライアップすることなく施工が可能である。   According to the third aspect of the present invention, the crack repair target site is set below the groundwater level. Even in such a case, the present invention can be constructed without drying up.

請求項4に係る本発明として、前記地盤改良体の硬化材には、高炉スラグ微粉末、シリカフューム、フライアッシュを含む請求項1〜3いずれかに記載の地中鉄筋コンクリート構造物のひび割れ補修方法が提供される。   As the present invention according to claim 4, there is provided a method for repairing a crack in an underground reinforced concrete structure according to any one of claims 1 to 3, wherein the hardened material of the ground improvement body includes blast furnace slag fine powder, silica fume, and fly ash. Provided.

上記請求項4記載の発明は、地盤改良体の硬化材には、高炉スラグ微粉末、シリカフューム、フライアッシュを含む材料を使用するものである。これらを含む硬化材は、ポゾラン反応によってセメント硬化体が緻密になり、地盤改良体中の拡散係数が他のセメント系硬化材よりも低くなる傾向にあるため望ましい。   In the invention according to the fourth aspect, a material containing ground granulated blast furnace slag, silica fume, and fly ash is used as the hardening material for the ground improvement body. Curing materials containing these are desirable because the cement hardened body becomes dense due to the pozzolanic reaction and the diffusion coefficient in the ground improvement body tends to be lower than other cement-based hardeners.

以上詳説のとおり本発明によれば、地盤中に構築された鉄筋コンクリート構造物の外面に発生したひび割れを、地盤上からの施工で短期間かつ低コストで補修を行えるようになる。   As described in detail above, according to the present invention, cracks generated on the outer surface of a reinforced concrete structure built in the ground can be repaired in a short period of time and at low cost by construction from the ground.

地盤中に構築された鉄筋コンクリート構造物のひび割れ補修要領を示す横断面図である。It is a cross-sectional view which shows the crack repair point of the reinforced concrete structure constructed | assembled in the ground. 図1のII−II線矢視図である。It is the II-II arrow directional view of FIG. 鉄筋位置における塩化物イオン濃度の経年変化を示す図である。It is a figure which shows the secular change of the chloride ion density | concentration in a reinforcing bar position. (A)〜(C)は有限要素解析における条件を説明するための図である。(A)-(C) are the figures for demonstrating the conditions in a finite element analysis. 溶存酸素の拡散・対流モデル解析の概念図である。It is a conceptual diagram of the diffusion / convection model analysis of dissolved oxygen. 有限要素解析モデルを示す図である。It is a figure which shows a finite element analysis model. ひび割れ部における溶存酸素の流束変化の経年変化を示す図である。It is a figure which shows the secular change of the flux change of the dissolved oxygen in a crack part. 単位長さ当たりのひび割れ幅に入る酸素量の変化の経年変化を示す図である。It is a figure which shows the secular change of the change of the oxygen content which enters into the crack width per unit length. 改良体中の溶存酸素の濃度分布(30年後)を示す図である。It is a figure which shows the density | concentration distribution (after 30 years) of the dissolved oxygen in an improved body. 腐食量の経年変化を示す図である。It is a figure which shows the secular change of the corrosion amount. 高圧噴射撹拌混合装置(S−RJP工法)による地盤改良体の造成要領を示す図である。It is a figure which shows the preparation point of the ground improvement body by a high pressure injection stirring mixing apparatus (S-RJP method).

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係るひび割れ補修方法は、図1に示されるように、地盤中に構築された鉄筋コンクリート構造物(カルバート)1の外面に発生したひび割れを補修するための補修工法であって、地盤上に高圧噴射撹拌混合装置3を配備し、図2に示されるように、前記鉄筋コンクリート構造物1のひび割れ補修対象部位4を覆うとともに、鉄筋コンクリート構造物1の外面に密着するように、地盤中に所定厚D(最小厚)の地盤改良体2、2…を造成し、ひび割れ部位に対する酸素供給を抑制することで鉄筋の腐食速度を低減させるものである。   The crack repairing method according to the present invention is a repairing method for repairing a crack generated on the outer surface of a reinforced concrete structure (culvert) 1 constructed in the ground as shown in FIG. As shown in FIG. 2, a high-pressure jet agitating and mixing device 3 is provided and covers a crack repair target portion 4 of the reinforced concrete structure 1 and has a predetermined thickness in the ground so as to be in close contact with the outer surface of the reinforced concrete structure 1. The ground improvement body 2, D ... of D (minimum thickness) is created, and the corrosion rate of a reinforcing bar is reduced by suppressing the oxygen supply with respect to a crack site | part.

以下、更に設計プロセスを含んだ具体的手順に従いながら詳述する。   Hereinafter, detailed description will be made in accordance with a specific procedure including a design process.

(第1手順)
先ず、鉄筋コンクリート構造物1の外面に発生したひび割れの内、補修が必要となる基準ひび割れ幅を設定する。具体的には、前記鉄筋コンクリート構造物1からサンプリングしたコンクリートコアの塩化物イオンに基づき、今後の予定供用期間を設定し、構造物内側からサンプリングしたコンクリートコアの塩化物イオン濃度に基づき、予定供用期間において鉄筋の腐食が生じないひび割れ幅とする。図3に示されるように、解析条件として、コンクリート中の塩化物イオンの拡散係数を設定するとともに、コンクリート表面の塩化物イオン濃度を測定し、ひび割れ幅毎に、鉄筋位置の塩化物イオン濃度の経年変化曲線を描き、供用期間(図示例では30年)内に限界塩化物濃度(一般に発錆限界として1.2kg/m)を超えないひび割れ幅が基準ひび割れ幅として設定される。図示例では、ひび割れ幅:0.5mmが基準ひび割れ幅として設定される。
(First procedure)
First, among the cracks generated on the outer surface of the reinforced concrete structure 1, a reference crack width that requires repair is set. Specifically, based on the chloride ion of the concrete core sampled from the reinforced concrete structure 1, a future planned service period is set, and based on the chloride ion concentration of the concrete core sampled from the inside of the structure, the planned service period The crack width is such that no corrosion of the reinforcing bars occurs. As shown in Fig. 3, as analysis conditions, the diffusion coefficient of chloride ions in the concrete is set, and the chloride ion concentration on the concrete surface is measured, and for each crack width, the chloride ion concentration at the reinforcing bar position is measured. A aging curve is drawn, and the crack width that does not exceed the limit chloride concentration (generally 1.2 kg / m 3 as the rust limit) within the service period (30 years in the illustrated example) is set as the reference crack width. In the illustrated example, the crack width: 0.5 mm is set as the reference crack width.

(第2手順)
地盤中に構築された鉄筋コンクリート構造物1の場合は、内部に生じたひび割れは目視で確認することができるが、外面に生じたひび割れが目視で確認することができない。従って、内部ひび割れから外部ひび割れの位置及びその幅を推定する。推定に当たっては、構造物によっては、ひび割れが生じる原因となった外力(地震力)の載荷方向及び大きさ、断面形状や鉄筋量の影響を考慮することにより推定できる場合もあるが、断面形状が複雑な場合は、構造物を骨組でモデル化し、外力(地震力)を載荷し各箇所での断面力と内部ひび割れ幅との関係を相関付け、構造物の外面のどの部位にどの程度の幅でひび割れが発生しているかを推定する。
(Second procedure)
In the case of the reinforced concrete structure 1 constructed in the ground, cracks generated inside can be visually confirmed, but cracks generated on the outer surface cannot be visually confirmed. Therefore, the position and width of the external crack are estimated from the internal crack. In estimation, depending on the structure, it may be estimated by considering the loading direction and size of the external force (seismic force) that caused the crack, the influence of the cross-sectional shape and the amount of reinforcing bars, but the cross-sectional shape is In complex cases, the structure is modeled as a framework, external force (seismic force) is loaded, the relationship between the cross-sectional force at each location and the internal crack width is correlated, and how much width is on which part of the outer surface of the structure It is estimated whether cracks have occurred.

このようにして、基準ひび割れ幅以上のひび割れが発生している構造物の外面部分を推定するとともに、ひび割れ幅を推定し、ひび割れ補修対象部位を特定する。   Thus, while estimating the outer surface part of the structure in which the crack more than a standard crack width has occurred, the crack width is estimated and the crack repair target part is specified.

(第3手順)
第3手順では、ひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように、地盤中に所定厚の地盤改良体を造成したと仮定した有限要素解析モデルを設定し、地盤改良体中の酸素拡散解析を行い、経年後の鉄筋の腐食量及び残存耐力を予測し、造成する地盤改良体の厚みを決定する。
(Third procedure)
In the third procedure, a finite element analysis model was set assuming that a ground improvement body of a predetermined thickness was created in the ground so as to cover the crack repair target part and to be in close contact with the outer surface of the reinforced concrete structure. Analyze the oxygen diffusion inside, predict the corrosion amount and residual strength of rebar after aging, and determine the thickness of the ground improvement body to be created.

前記有限要素解析に当たっては、下記(1)〜(5)に示す幾つかの解析条件を設定する。
(1)図4(A)に示されるように、地盤改良体の地盤側と躯体壁面側とで水の移動はない。また、図示されるように、仮にカルバート内に水が流水していても、コンクリートが難透水性(W/C=50%で透水係数が約10-11m/s)のため、躯体外側に通水しない。
(2)地盤改良体の空隙は地下水で飽和している。
(3)図4(B)に示されるように、地盤側地下水中の溶存酸素と地盤改良体中空隙内の溶存酸素濃度は同じで且つ一定(初期条件)とする。
(4)地盤改良体中を通過する酸素量は、地盤改良体中の酸素拡散係数に依存する。 図5の溶存酸素の拡散・対流モデル図に示されるように、地盤改良体中では、間隙水中の溶存酸素がある拡散係数(以下、溶存酸素の拡散係数をDoとする。)をもってコンクリート表面まで拡散すると仮定する。
In the finite element analysis, several analysis conditions shown in the following (1) to (5) are set.
(1) As shown in FIG. 4 (A), there is no movement of water between the ground side and the frame wall surface side of the ground improvement body. Also, as shown in the figure, even if water is flowing in the culvert, the concrete is hardly permeable (W / C = 50% and the permeability coefficient is about 10 -11 m / s). Do not pass water.
(2) The void of the ground improvement body is saturated with groundwater.
(3) As shown in FIG. 4 (B), the dissolved oxygen concentration in the ground side groundwater and the dissolved oxygen concentration in the void in the ground improvement body are the same and constant (initial condition).
(4) The amount of oxygen passing through the ground improvement body depends on the oxygen diffusion coefficient in the ground improvement body. As shown in the model diagram of diffusion and convection of dissolved oxygen in FIG. 5, in the ground improvement body, the surface of the concrete has a diffusion coefficient with dissolved oxygen in pore water (hereinafter, the diffusion coefficient of dissolved oxygen is Do 2 ). Assuming that

また、ひび割れ部分では、改良体からひび割れ内の水に酸素が拡散するが、水に拡散した酸素は、対流により鉄筋表面近傍まで移動する。水中での溶存酸素の拡散係数はD'02=10−5cm2/secのオーダーであるため、対流の場合は拡散よりも早く鉄筋表面近傍まで移動する。更に、鉄筋近傍に達した酸素は、ごく薄い水膜(D'02=10−5cm2/sec)を拡散により移動して、鉄筋表面にてカソード反応で全て消費されるとする。従って、改良体中での拡散係数Doが鉄筋近傍でのごく薄い水膜での拡散係数D'02よりも小さい場合には、ひび割れ部分の鉄筋の腐食速度は、改良体中の拡散係数Doに支配されることになる。また、改良体中の拡散係数Doの方が鉄筋近傍の拡散層の拡散係数D'02よりも小さいため、ひび割れ部分並びに鉄筋近傍の拡散層は解析上無視することとした。
(5)図4(C)に示されるように、改良体中を拡散してきた酸素は、躯体コンクリートとの境界部に達した時点で全て腐食に消費されるものと仮定する。
In the cracked portion, oxygen diffuses from the improved body into the water in the crack, but the oxygen diffused in the water moves to the vicinity of the reinforcing bar surface by convection. Since the diffusion coefficient of dissolved oxygen in water is on the order of D ′ 02 = 10 −5 cm 2 / sec, in the case of convection, it moves to the vicinity of the reinforcing bar surface earlier than the diffusion. Furthermore, it is assumed that oxygen that has reached the vicinity of the reinforcing bar moves through a very thin water film (D ′ 02 = 10 −5 cm 2 / sec) by diffusion and is consumed entirely by the cathode reaction on the surface of the reinforcing bar. Therefore, if the diffusion coefficient Do 2 of the improved body in less than the diffusion coefficient D '02 in a very thin water film on the rebar vicinity, the corrosion rate of reinforcing steel cracked portion, the diffusion coefficient in the improved body Do It will be dominated by 2 . Further, towards the diffusion coefficient Do 2 in improved body smaller than the diffusion coefficient D '02 rebar vicinity of the diffusion layer, cracking portion and rebar vicinity of the diffusion layer was to ignore the analysis.
(5) As shown in FIG. 4 (C), it is assumed that all the oxygen diffused in the improved body is consumed for corrosion when it reaches the boundary with the concrete.

<地盤改良体中の溶存酸素の拡散係数Do
改良体中にある間隙水中の拡散係数Doについては、実測値は無いが、水中に置かれたコンクリートの拡散係数DCoから推定した。既往の文献〔(1)(社)日本コンクリート工学協会;コンクリート構造物の補修工法研究委員会報告書(I),(III),1992.10、 (2)小林和夫,宮川豊章,久米生泰;耐久性設計の手法に基づいた鉄筋コンクリート部材の表面処理効の評価,p.p.151-160,土木学会論文集第390号/V−8,1988.2〕によれば、水で飽和したコンクリートにおける拡散係数DCoは10−7cm2/secのオーダーとされる。また、これら既往の文献によれば、飽和度が80%程度のコンクリートの拡散係数DCoは10−5〜10−6cm2/secのオーダーとされる。これらの既往文献から、コンクリート中の拡散係数DCoは、間隙が水で完全に満たされている飽和状態の方が間隙の一部に気相がある不飽和状態よりも10−1〜10−2cm2/secのオーダーで小さいことが分かる。高圧噴射撹拌混合工法で造成される地盤改良体は、水の透水係数が10−5m/sec程度と比較的高い材料と推定され、地下水位を考慮すると常時水中にあるため、飽和状態に置かれると考えられる。
<Diffusion coefficient Do 2 of dissolved oxygen in ground improvement body>
The diffusion coefficient Do 2 of pore water present in an improved body, although measured values are not, were estimated from the diffusion coefficient D C o 2 concrete placed in water. Previous literature [(1) Japan Concrete Engineering Association; Report of the Research Committee for Repair Method of Concrete Structures (I), (III), 1992.10, (2) Kazuo Kobayashi, Toyoaki Miyagawa, Ikuyasu Kume; Endurance evaluation of the surface treatment effect of the reinforced concrete member based on techniques of sexual design, Pp151-160, according to the Japan Society of civil Engineers papers No. 390 /V-8,1988.2], diffusion in the concrete saturated with water coefficient D C o 2 Is on the order of 10 −7 cm 2 / sec. Also, according to these previous documents, saturation diffusion coefficient D C o 2 80% of the concrete is the order of 10 -5 ~10 -6 cm 2 / sec . From these previous literatures, the diffusion coefficient D C o 2 in concrete is 10 −1 ˜ in the saturated state where the gap is completely filled with water than in the unsaturated state where the gas phase is part of the gap. It can be seen that it is small on the order of 10 −2 cm 2 / sec. The ground improvement body created by the high-pressure jet mixing method is estimated to be a relatively high material with a water permeability coefficient of about 10 −5 m / sec, and is always in water considering the groundwater level. It is thought that it will be taken.

一方、水中における拡散係数D'02は10−5cm2/secのオーダーである。これらコンクリート中の溶存酸素の拡散係数、飽和・不飽和における拡散係数の相違及び水中における溶存酸素の拡散係数を考慮すると、改良体中における拡散係数Doは、10−7〜10−5cm2/secにあると考えられるが、飽和状態であれば水中における拡散係数よりは小さくなると考えられる。従って、改良体中の拡散係数Doは、10−6cm2/secとした。 On the other hand, the diffusion coefficient D′ 02 in water is on the order of 10 −5 cm 2 / sec. Considering the diffusion coefficient of dissolved oxygen in these concretes, the difference in diffusion coefficient between saturation and unsaturation, and the diffusion coefficient of dissolved oxygen in water, the diffusion coefficient Do 2 in the improved body is 10 −7 to 10 −5 cm 2. Although it is considered to be at / sec, if it is saturated, it is considered to be smaller than the diffusion coefficient in water. Therefore, the diffusion coefficient Do 2 in the improved body was set to 10 −6 cm 2 / sec.

<有限要素解析モデル>
図6に有限要素解析モデルを示す。このモデルの解析範囲は、ひび割れ幅0.2cmとして、そのひび割れを中心にしてX方向(改良体幅方向)には、要素幅1cm×100要素として100cmとしたケース、要素幅1cm×70要素として70cmとしたケース、要素幅1cm×60要素として60cmとしたケース、要素幅1cm×50要素として50cmとしたケースの計4ケースとした。
<Finite element analysis model>
FIG. 6 shows a finite element analysis model. The analysis range of this model is that the crack width is 0.2 cm, the element width is 1 cm x 100 elements in the X direction (improved body width direction) around the crack, and the element width is 1 cm x 70 elements. There were 4 cases in total: 70 cm, element width 1 cm × 60 elements 60 cm, and element width 1 cm × 50 elements 50 cm.

Y方向には、下から1番目の要素幅を0.1cm、2番目の要素幅を0.9cm、3番目以降の要素幅を1cm×149要素として、150cmとした。   In the Y direction, the first element width from the bottom is 0.1 cm, the second element width is 0.9 cm, the third and subsequent element widths are 1 cm × 149 elements, and 150 cm.

改良体と原地盤との境界条件は、改良体表面の溶存酸素濃度が常に水中の溶存酸素濃度と同じ条件とした。但し、改良体中での溶存酸素濃度は、間隙水にある溶存酸素量に対する割合であるため、水中での溶存酸素濃度2.5×10−7(mol/cm3)に、高圧噴射撹拌混合工法による改良体の間隙率0.601を乗じて、改良体単位体積当たりの溶存酸素濃度は1.5×10−7(mol/cm3)とした。一方、Y方向の改良体における境界条件は、溶存酸素の出入りがないとする条件とした。
また、この有限要素解析では、ひび割れ部分の要素(幅0.1cm)のみから供給される溶存酸素が鉄筋の腐食に消費されるとした。
The boundary condition between the improved body and the original ground was such that the dissolved oxygen concentration on the improved body surface was always the same as the dissolved oxygen concentration in the water. However, since the dissolved oxygen concentration in the improved body is a ratio to the dissolved oxygen amount in the pore water, the dissolved oxygen concentration in water is 2.5 × 10 −7 (mol / cm 3 ), and high-pressure jet stirring mixing The dissolved oxygen concentration per unit volume of the improved body was 1.5 × 10 −7 (mol / cm 3 ) by multiplying the porosity of the improved body by the construction method of 0.601. On the other hand, the boundary condition in the improved body in the Y direction was a condition that no dissolved oxygen entered or exited.
Further, in this finite element analysis, it is assumed that dissolved oxygen supplied only from the cracked element (width 0.1 cm) is consumed for corrosion of the reinforcing bar.

<鉄筋の腐食量解析結果>
有限要素法による解析は、汎用解析ソフトABAQUSにより行った。図7(A)にひび割れ部における溶存酸素の流束の経年変化を示し、図7(B)に単位1m当たりのひび割れ部に入る酸素量の経年変化を示した。また、図8に、改良体厚み毎の補修から30年後の改良体中の溶存酸素の濃度分布を示した。更に、図9に鉄筋腐食量の経年変化を示した。
<Results of corrosion analysis of reinforcing bars>
Analysis by the finite element method was performed by general-purpose analysis software ABAQUS. FIG. 7 (A) shows the secular change of the flux of dissolved oxygen in the cracked part, and FIG. 7 (B) shows the secular change of the oxygen amount entering the cracked part per 1 m. FIG. 8 shows the concentration distribution of dissolved oxygen in the improved body 30 years after the repair for each thickness of the improved body. Further, FIG. 9 shows the secular change in the amount of corrosion of the reinforcing bars.

解析の結果、改良体を造成してから30年が経過した時点での鉄筋腐食量は、奥行き方向に1m当たり、改良体厚さが100cmで0.951g/m、70cmで0.951g/m、60cmで0.951g/m、50cmで0.952g/mとなり、改良体の厚さ間では、鉄筋腐食量に有意差は見られなかった。表1にこれらの結果から32年後(ひび割れ発生からから2年後に補修を行い30年経過後)の断面減少率を改良体の厚み毎に計算した。その結果、断面減少率は、4.3%〜7.3%程度となった。断面減少率の推定値に範囲を有するのは、改良前の腐食量推定に当たり、断面欠損率に幅を持たせたためである。   As a result of analysis, the corrosion amount of the reinforcing bar at the time when 30 years have passed since the improvement body was created is 0.951 g / m for the improvement body thickness of 100 cm and 0.951 g / m for the improvement body thickness of 1 cm in the depth direction. , 60 cm was 0.951 g / m, and 50 cm was 0.952 g / m. No significant difference was observed in the amount of corrosion of reinforcing bars between the thicknesses of the improved bodies. From these results in Table 1, the cross-sectional reduction rate after 32 years (after repairing 2 years after the occurrence of cracking and after 30 years) was calculated for each thickness of the improved body. As a result, the cross-sectional reduction rate was about 4.3% to 7.3%. The reason why there is a range in the estimated value of the cross-section reduction rate is that the cross-sectional defect rate has been widened in estimating the corrosion amount before improvement.

以上より、改良体中の溶存酸素が腐食に消費される範囲は、30年間で半径30cm程度の範囲に留まっていることから、安全率を2程度と考え、改良体の厚みは60cmとした。また、改良体の高さは、構造体2の下面から上方に3.2mとした。   From the above, the range in which dissolved oxygen in the improved body is consumed for corrosion remains within a radius of about 30 cm over 30 years, so the safety factor is considered to be about 2, and the thickness of the improved body is set to 60 cm. The height of the improved body was 3.2 m upward from the lower surface of the structure 2.

Figure 0005511061
Figure 0005511061

<残存耐力>
上記<鉄筋の腐食量解析結果>の欄で、地盤改良体によるひび割れ補修を行った場合、30年後の断面減少率は4〜7%程度となることが判明した。この結果から、30年後の残存耐力を推定する。既往の文献〔村上,大下,鈴木,堤:鉄筋腐食したRC梁部材の残存耐力性状に及ぼすせん断補強筋ならびに定着性能の影響に関する研究;土木学会論文集E,Vol.64,631-649,2008.12〕から、図10に単純梁を用いた電食による載荷試験結果から求まった主鉄筋の腐食率と曲げ耐力比との関係を示す。同図によれば、主鉄筋の断面減少率が4〜7%程度に達すると、残存曲げ耐荷力が90%になると予想される。設計に比べてコンクリートや鉄筋の実強度が大きいことを考慮すれば、この程度の耐力低下であれば問題ないと判断できる。
<Residual yield strength>
In the section of <Reinforcing Bar Corrosion Analysis Results> above, it was found that when crack repair was performed with a ground improvement body, the cross-sectional reduction rate after 30 years was about 4-7%. From this result, the residual strength after 30 years is estimated. Previous literature [Murakami, Ohshita, Suzuki, Tsutsumi: Study on the effect of shear reinforcement and anchorage performance on the residual strength of RC beams with corroded reinforcing steel; Proceedings of Japan Society of Civil Engineers E, Vol.64, 631-649, 2008.12] FIG. 10 shows the relationship between the corrosion rate of the main reinforcing bar and the bending strength ratio determined from the loading test result by electric corrosion using simple beams. According to the figure, when the cross-section reduction rate of the main reinforcing bar reaches about 4 to 7%, the residual bending load bearing capacity is expected to be 90%. Considering that the actual strength of concrete and reinforcing bars is greater than that of the design, it can be determined that there is no problem if the yield strength is reduced to this extent.

なお、残存耐力80%になるには、約38〜53年程度の年数を要すると推測される。   In addition, it is estimated that it takes about 38 to 53 years to reach the remaining proof stress of 80%.

(第4手順)
第4手順では、第1手順から第3手順までの手順によって、ひび割れ補修対象部位が特定され、かつ地盤改良体の厚み(及び高さ)が決定されたため、実施工を行う。
(4th procedure)
In the fourth procedure, since the crack repair target site is specified and the thickness (and height) of the ground improvement body is determined by the procedure from the first procedure to the third procedure, the execution work is performed.

補修施工は、地盤上に高圧噴射撹拌混合装置を配備し、鉄筋コンクリート構造物のひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように地盤改良体を地盤中に造成し、ひび割れ部位に対する酸素供給を抑制することで鉄筋の腐食速度を低減させる。   For repair work, a high-pressure jet mixing device is installed on the ground to cover the crack repair area of the reinforced concrete structure, and a ground improvement body is created in the ground so as to adhere to the outer surface of the reinforced concrete structure. Reducing the corrosion rate of reinforcing bars by suppressing oxygen supply to the steel.

ここで、高圧噴射撹拌工法は、地盤を高圧噴流で破壊し、強制的に硬化材と地盤とを置換又は混合撹拌することにより地盤内に基本的には円柱形の固結体(地盤改良体)を造成する工法である。分類的には、主としてCCP工法に代表される単管工法(硬化材)、JSG工法に代表される二重管工法(硬化材+圧縮空気)、RJP工法に代表される三重管工法(硬化材+水+圧縮空気)とが存在する。これら各工法によって造成される地盤改良体の有効径は、単管工法がφ300〜1500mm、二重管工法がφ1000〜2000mm、三重管工法がφ2000〜3500mmとなっている。   Here, the high-pressure jet agitation method basically breaks the ground with a high-pressure jet and forcibly replaces the hardened material with the ground or mixes and stirs it. ). Categorically, single pipe method (cured material) represented by CCP method, double pipe method (cured material + compressed air) represented by JSG method, triple pipe method (cured material) represented by RJP method. + Water + compressed air). The effective diameter of the ground improvement body constructed by these methods is φ300-1500 mm for the single pipe method, φ1000-2000 mm for the double pipe method, and φ2000-3500 mm for the triple pipe method.

これらの高圧噴射撹拌工法の中で、本発明に最も好適なのは三重管工法に分類されるRJP工法である。このRJP工法は、図11に示されるように、改良深度まで削孔後、上段ノズルから圧縮空気を添わせた超高圧水と、下段ノズルから圧縮空気と超高圧スラリーを噴射させながら回転、引上げし、発生するスライムを出して大口径の円柱状等の改良体を造成するものであり、この工法の特徴は噴射管を回転させる他、所定の角度範囲で揺動回転させることができ、90〜270°の範囲で扇状の改良体を造成できるため、本補修方法のように構造物の壁面に沿わせて改良体を造成する場合に、図2に示されるように、半円形状の改良体を造成することが可能である。また、改良体の強度は硬化材の選定によって、砂質土地盤の場合で2〜3MN/m2、粘性土地盤で0.3〜1.0MN/m2とされる。 Among these high-pressure jet agitation methods, the RJP method classified as the triple pipe method is most suitable for the present invention. In this RJP method, as shown in FIG. 11, after drilling to an improved depth, ultra high pressure water with compressed air added from the upper nozzle, and rotating and pulling up while injecting compressed air and ultra high pressure slurry from the lower nozzle Then, the slime generated is produced to form an improved body such as a large-diameter cylinder. The feature of this construction method is that it can be rotated and swung within a predetermined angle range in addition to rotating the injection tube. Since a fan-shaped improved body can be created in a range of ˜270 °, when the improved body is created along the wall surface of the structure as in this repair method, as shown in FIG. It is possible to create a body. The intensity of the improved body by the choice of hardener, 2~3MN / m 2 in the case of sandy land board, are 0.3~1.0MN / m 2 by the viscous land board.

更に、装置も比較的小型で済む。土砂の混じらない均質な改良体が造成でき、構造物に沿って改良体を造成する際、付着効果が期待できるとともに、高圧噴射によるブラスト効果で構造物壁面との間に高い密着性を確保することが可能である。使用する硬化材としては、一般的にセメント系であるが、拡散係数を小さくするために、高炉スラグ微粉末、シリカフューム、フライアッシュを含む材料を使用するのが望ましい。ポゾラン反応によってセメント硬化体が緻密になり、地盤改良体中の拡散係数が他のセメント系硬化材よりも低くなる傾向にある。   Furthermore, the device can be relatively small. A homogeneous improvement body that does not mix with earth and sand can be created, and when building an improvement body along the structure, an adhesion effect can be expected, and a high-pressure jet blasting effect ensures high adhesion to the structure wall. It is possible. The hardener used is generally cement-based, but it is desirable to use a material containing fine blast furnace slag powder, silica fume and fly ash in order to reduce the diffusion coefficient. The cement hardened body becomes dense due to the pozzolanic reaction, and the diffusion coefficient in the ground improvement body tends to be lower than that of other cement-based hardened materials.

〔他の形態例〕
(1)上記形態例では、地下水位以下のひび割れを補修対象としたが、地盤中で地下水位以上のひび割れを補修対象とすることも可能である。この場合は、改良体中の拡散係数Doを、水中での拡散係数D'o(=10−5cm2/sec)よりも小さくなる範囲で適切に設定すればい。
[Other examples]
(1) In the above embodiment, cracks below the groundwater level are targeted for repair. However, cracks above the groundwater level in the ground can also be repaired. In this case, the diffusion coefficient Do 2 in the improved body may be appropriately set in a range smaller than the diffusion coefficient D′ o 2 (= 10 −5 cm 2 / sec) in water.

1…鉄筋コンクリート構造物、2…地盤改良体、3…高圧噴射撹拌混合装置   DESCRIPTION OF SYMBOLS 1 ... Reinforced concrete structure, 2 ... Ground improvement body, 3 ... High-pressure jet stirring mixing device

Claims (4)

地盤中に構築された鉄筋コンクリート構造物の外面に発生したひび割れを補修するための補修工法であって、
地盤上に高圧噴射撹拌混合装置を配備し、地盤上からの施工により前記鉄筋コンクリート構造物のひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように地盤中に半円形状の地盤改良体を所定厚で造成し、ひび割れ部位に対する酸素供給を抑制することで鉄筋の腐食促進速度を低減させることを特徴とする地中鉄筋コンクリート構造物のひび割れ補修方法。
A repair method for repairing cracks generated on the outer surface of a reinforced concrete structure built in the ground,
A high-pressure jet mixing device is installed on the ground , covering the crack repaired part of the reinforced concrete structure by construction from the ground, and improving the semicircular ground in the ground so that it adheres closely to the outer surface of the reinforced concrete structure A crack repairing method for underground reinforced concrete structures, wherein the body is formed with a predetermined thickness and the rate of accelerated corrosion of the reinforcing bars is reduced by suppressing oxygen supply to the cracked part.
地盤中に構築された鉄筋コンクリート構造物の外面に発生したひび割れを補修するための補修工法であって、
補修が必要となる限界ひび割れ幅を設定する第1手順と、
限界ひび割れ幅以上のひび割れが発生している構造物の外面部分を特定し、ひび割れ補修対象部位を特定する第2手順と、
ひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように、地盤中に所定厚の地盤改良体を造成したと仮定した有限要素解析モデルを設定し、地盤改良体中の酸素拡散解析を行い、経年後の鉄筋の腐食量及び残存耐力を予測し、造成する地盤改良体の厚みを決定する第3手順と、
施工現場において、地盤上に高圧噴射撹拌混合装置を配備し、前記鉄筋コンクリート構造物のひび割れ補修対象部位を覆うとともに、鉄筋コンクリート構造物の外面に密着するように、前記第3手順で決定した厚みの地盤改良体を地盤中に造成し、ひび割れ部位に対する酸素供給を抑制することで鉄筋の腐食促進速度を低減させる第4手順と、からなることを特徴とする地中鉄筋コンクリート構造物のひび割れ補修方法。
A repair method for repairing cracks generated on the outer surface of a reinforced concrete structure built in the ground,
A first procedure for setting a limit crack width that requires repair;
A second procedure for identifying an outer surface portion of a structure where a crack larger than the limit crack width has occurred and identifying a crack repair target part;
Established a finite element analysis model assuming that a ground improvement body of a predetermined thickness was created in the ground so as to cover the crack repair site and to be in close contact with the outer surface of the reinforced concrete structure, and analyze oxygen diffusion in the ground improvement body The third step of predicting the corrosion amount and residual strength of the reinforcing bars after aging, and determining the thickness of the ground improvement body to be created,
At the construction site, a high-pressure jet mixing device is installed on the ground, covering the crack repair target part of the reinforced concrete structure, and the ground having the thickness determined in the third step so as to be in close contact with the outer surface of the reinforced concrete structure A method for repairing a crack in an underground reinforced concrete structure, comprising: a fourth step in which an improved body is created in the ground and the rate of accelerated corrosion of the reinforcing bar is reduced by suppressing oxygen supply to the cracked part.
前記鉄筋コンクリート構造物の少なくとも一部は地下水位以下に構築され、地下水位以下で生じた構造物外面のひび割れを補修対象とする請求項1、2いずれかに記載の地中鉄筋コンクリート構造物のひび割れ補修方法。   The repair of a crack in an underground reinforced concrete structure according to any one of claims 1 and 2, wherein at least a part of the reinforced concrete structure is constructed below a groundwater level and repairs a crack on the outer surface of the structure that occurs below the groundwater level. Method. 前記地盤改良体の硬化材として高炉セメントを主体とする材料を使用する請求項1〜3いずれかに記載の地中鉄筋コンクリート構造物のひび割れ補修方法。   The method for repairing cracks in underground reinforced concrete structures according to any one of claims 1 to 3, wherein a material mainly composed of blast furnace cement is used as a hardener for the ground improvement body.
JP2010067220A 2010-03-24 2010-03-24 Crack repair method for underground reinforced concrete structures Active JP5511061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067220A JP5511061B2 (en) 2010-03-24 2010-03-24 Crack repair method for underground reinforced concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067220A JP5511061B2 (en) 2010-03-24 2010-03-24 Crack repair method for underground reinforced concrete structures

Publications (2)

Publication Number Publication Date
JP2011196160A JP2011196160A (en) 2011-10-06
JP5511061B2 true JP5511061B2 (en) 2014-06-04

Family

ID=44874715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067220A Active JP5511061B2 (en) 2010-03-24 2010-03-24 Crack repair method for underground reinforced concrete structures

Country Status (1)

Country Link
JP (1) JP5511061B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508981B2 (en) * 2015-03-06 2019-05-08 ケミカルグラウト株式会社 Ground improvement method
CN105064335A (en) * 2015-08-06 2015-11-18 中铁五局(集团)有限公司 Ultrahigh pressure rotary jet grouting method suitable for sandy cobble stratum shield end well reinforcement
JP6659935B2 (en) * 2016-03-25 2020-03-04 株式会社安藤・間 Strength evaluation method for reinforced concrete structures and strength evaluation program
CN113935220B (en) * 2021-12-02 2024-04-09 浙大城市学院 Submarine concrete tunnel endurance life prediction method based on diffusion-convection model

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276129A (en) * 1986-05-23 1987-12-01 Shigeo Nagahama Water-stop work for underground concrete structure
JP2005171702A (en) * 2003-12-15 2005-06-30 Taisei Corp Seismic response control structure of existing structure
JP2006056909A (en) * 2004-07-20 2006-03-02 Kyokado Eng Co Ltd Plastic grout and grouting technique

Also Published As

Publication number Publication date
JP2011196160A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
Tan et al. Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: Building response
Caré et al. Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel
Panasyuk et al. Injection technologies for the repair of damaged concrete structures
US10196832B2 (en) High performing protective shell for concrete structures
Zacchei et al. Chloride diffusion assessment in RC structures considering the stress-strain state effects and crack width influences
JP5511061B2 (en) Crack repair method for underground reinforced concrete structures
CN105464002A (en) Reinforcing construction method of reinforcing steel concrete thin-walled abutment
Abbas Structural and durability performance of precast segmental tunnel linings
Pastor et al. Skin friction coefficient change on cement grouts for micropiles due to sulfate attack
Wu et al. Chloride diffusivity and service life prediction of fatigue damaged RC beams under seawater wet-dry environment
Yao et al. Effect of the degradation of concrete friction piles exposed to external sulfate attack on the pile bearing capacity
Ababneh et al. Effectiveness of benzotriazole as corrosion protection material for steel reinforcement in concrete
Meek et al. Corrosion protection of steel embedded in cement-stabilised rammed earth
Shao et al. Probabilistic lifetime assessment of RC pipe piles subjected to chloride environments
Chynoweth et al. Concrete repair guide
Sangoju et al. Durability performance criteria for precast RC box units and repair measures based on nondestructive testing and evaluation
ElKhatib et al. Methods and surface materials repair for concrete structures–A review
Radzi et al. A study on the use of polyurethane for road flood damage control
Vijayalakshmi et al. Case Study on the Repair and Rehablitation of G+ 3Residential Appartment Located Near Sea Shore, Tamil Nadu, India
Fyall Analysis of the temperature effect on the stresses and deformations of GRP panels during the grouting process when using relining technology
Raut et al. Structural health assessment of reinforced concrete structure
Tung et al. Application of pile bottom post-grouting technology to increase the bearing capacity of bored piles in Vietnam
Pattanaik et al. Polymeric Materials for Repair of Distressed Concrete Structures
Rubaratuka et al. Defects in Reinforced Concrete due to Environmental Conditions and Concrete Treatment: a Case Study at the University of Dar es Salaam
JP2001193286A (en) Repair and reinforcing method for surface of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5511061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250