JP5510845B2 - Standard sample for measurement of detection sensitivity of elemental analyzer attached to transmission electron microscope - Google Patents

Standard sample for measurement of detection sensitivity of elemental analyzer attached to transmission electron microscope Download PDF

Info

Publication number
JP5510845B2
JP5510845B2 JP2011553821A JP2011553821A JP5510845B2 JP 5510845 B2 JP5510845 B2 JP 5510845B2 JP 2011553821 A JP2011553821 A JP 2011553821A JP 2011553821 A JP2011553821 A JP 2011553821A JP 5510845 B2 JP5510845 B2 JP 5510845B2
Authority
JP
Japan
Prior art keywords
fullerene
transmission electron
electron microscope
nanotube
standard sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011553821A
Other languages
Japanese (ja)
Other versions
JPWO2011099434A1 (en
Inventor
和知 末永
俊也 岡崎
崢 劉
雄太 佐藤
陽子 飯泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011553821A priority Critical patent/JP5510845B2/en
Publication of JPWO2011099434A1 publication Critical patent/JPWO2011099434A1/en
Application granted granted Critical
Publication of JP5510845B2 publication Critical patent/JP5510845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]

Description

本発明は、特定元素を含むフラーレンまたは特定元素を含むフラーレン誘導体を内包したナノチューブ複合体の電子顕微鏡技術における元素分析検出感度測定用標準試料に関する。   The present invention relates to a standard sample for elemental analysis detection sensitivity measurement in an electron microscope technique of a nanotube composite including a fullerene containing a specific element or a fullerene derivative containing a specific element.

近年のナノテクノロジー研究により、物質を原子レベルで厳密に構造制御することで、従来得られなかった新しい機能・特性が見いだされてきている。近年、分析装置の性能が飛躍的に向上し、ppbレベルの微量元素を定量測定が可能となった一方、未だ感度が不十分な場合や正確さに欠けるという問題がある。そのため、単原子検出感度のある分析手法が物質の単原子レベルでの構造同定において極めて重要な手段となっている。   Recent nanotechnology research has discovered new functions and properties that have not been obtained by strict structural control of materials at the atomic level. In recent years, the performance of analyzers has improved dramatically, and quantitative measurement of trace elements at the ppb level has become possible. However, there is a problem that sensitivity is still insufficient and accuracy is still insufficient. For this reason, an analysis technique having a single atom detection sensitivity is an extremely important means for structural identification of a substance at a single atom level.

透過型電子顕微鏡は試料形状を数百倍から数百万倍にまで拡大して画像化する装置である。透過型電子顕微鏡の発展に伴い、付属の元素分析装置において、上述のような問題点を解決する単原子検出をおこなう技術が確立されつつある。従来は、元素分析において、検出可能な最小濃度(minimum detectable concentration)を調べるための標準試料は存在しても、検出可能な最小重量(minimum detectable mass)を調べるための標準試料は存在しなかった。
本発明者は、このような従来技術を背景として、元素分析において検出可能な最小重量(すなわち、単原子)がひとつずつ、元素分析機器の空間分解能にあわせて配置された標準試料が存在すれば、透過型電子顕微鏡に付随した元素分析装置が単原子を検出可能なものであるか否かを簡便に測定、確認することができ、上述のような物質の単原子レベルでの構造同定が容易となるのではないかと思い至った。
The transmission electron microscope is an apparatus that enlarges a sample shape from several hundred times to several million times to form an image. With the development of the transmission electron microscope, a technique for performing single atom detection that solves the above-described problems is being established in the attached elemental analyzer. Conventionally, in elemental analysis, there is no standard sample for examining the minimum detectable mass, although there is a standard sample for examining the minimum detectable concentration. .
With the background of such a conventional technique, the present inventor, if there is a standard sample in which the minimum weight (that is, a single atom) that can be detected in elemental analysis is arranged according to the spatial resolution of the elemental analysis instrument. In addition, the elemental analyzer attached to the transmission electron microscope can easily measure and confirm whether a single atom can be detected, and it is easy to identify the structure of a substance as described above at the single atom level. I thought it would be.

一方、カーボンナノチューブの持つ電子放出機能、水素吸蔵機能、磁気機能等を効率よく応用するための研究・開発の一環として、単層カーボン内にドーパント物質を密に充填・内包させたハイブリッド単層カーボンナノチューブを製造すること、そのようなドーパントとして金属内包フラーレンを用いることが知られている(特許文献1,2参照)。
しかしながら、金属原子内包フラーレンが内包されたナノチューブを透過型電子顕微鏡の標準試料とすることは知られていないし、まして、透過型電子顕微鏡に付随した元素分析装置の検出感度測定用標準試料とすることは、全く知られていなかった。
On the other hand, as a part of research and development to efficiently apply the electron emission function, hydrogen storage function, magnetic function, etc. possessed by carbon nanotubes, hybrid single-walled carbon in which single-walled carbon is densely packed and encapsulated with dopant substances It is known to produce nanotubes and to use metal-encapsulated fullerene as such a dopant (see Patent Documents 1 and 2).
However, it is not known that nanotubes containing metal atom-encapsulated fullerenes are used as standard samples for transmission electron microscopes. Furthermore, they should be used as standard samples for detection sensitivity measurement of elemental analyzers attached to transmission electron microscopes. Was not known at all.

特開2002−97009号公報JP 2002-97009 A 特開2002−97010号公報Japanese Patent Laid-Open No. 2002-97010

本発明の目的は、透過型電子顕微鏡に付随した元素分析装置が検出可能な最小重量(すなわち、単原子)を検出可能なものであるか否かや、単原子でなくても既知の原子2個〜5個等の小重量を検出可能なものであるか否かを簡便に測定、確認することのできる検出感度測定用標準試料を提供することである。   The object of the present invention is to determine whether or not the minimum weight (that is, a single atom) that can be detected by the elemental analyzer attached to the transmission electron microscope can be detected. It is an object to provide a standard sample for measurement of detection sensitivity, which can easily measure and confirm whether or not small to five pieces can be detected.

本発明は、上記目的のもと上記従来技術を背景とした研究の過程で本発明者が見出した次の(A)〜(C)等の知見に基づくものである。
(A)微小クラスター(直径およそ数ナノメートル程度)を標準試料に使った場合は、いくら電子線プローブを細く(小さく)しても検出シグナルが単原子からのものかどうか識別できないが、電子線プローブより十分大きな間隔を持って単原子をならべたものを標準試料とすると、透過型電子顕微鏡に付随した元素分析装置が検出可能な最小重量(すなわち単原子)を検出可能なものであるか否かを簡便に測定、確認することができる。
(B)所定の電子線プローブより十分大きな間隔を持って単原子をならべたものとして、ナノチューブに金属原子内包フラーレンを複数内包するナノチューブ複合体が存在する。
(C)金属原子内包フラーレンに限らず、フラーレンに化学修飾を施すことにより元素を1個〜5個導入させることによっても、所定の電子線プローブより十分大きな間隔を持って1個〜5個ずつならべることができる。
このような知見に基づく本願発明は、下記(1)〜()の特徴を有するものである。
(1)観察試料を保持するホルダと、元素分析装置と、前記ホルダと一体的な部分に予め固定された、前記元素分析装置の検出感度測定用標準試料とを具備した透過型電子顕微鏡であって、前記検出感度測定用標準試料は、カーボンナノチューブ又はボロンナイトライド(BN)ナノチューブに特定元素を含むフラーレンまたは特定元素を含むフラーレン誘導体を複数内包するナノチューブ複合体からなることを特徴とする透過型電子顕微鏡。
(2)前記ナノチューブ複合体は、カーボンナノチューブ又はボロンナイトライド(BN)ナノチューブに特定元素の原子が1個〜5個ずつほぼ一定の間隔で並んでいるものであることを特徴とする上記(1)に記載の透過型電子顕微鏡。
(3)前記特定元素が、フラーレン骨格やナノチューブ骨格を構成する元素以外から選ばれる1種又は2種以上の元素であることを特徴とする上記(1)又は(2)に記載の透過型電子顕微鏡。
The present invention is based on the following findings (A) to (C) and the like found by the present inventors in the course of research against the background of the above-described conventional technology.
(A) When a small cluster (approximately several nanometers in diameter) is used as a standard sample, it cannot be identified whether the detection signal is from a single atom no matter how thin (small) the electron probe is. If the standard sample is a single atom with a sufficiently larger distance than the probe, is it possible to detect the minimum weight (ie, single atom) that can be detected by the elemental analyzer attached to the transmission electron microscope? Can be measured and confirmed easily.
(B) A nanotube complex in which a plurality of metal atom-containing fullerenes are included in a nanotube exists as a single atom arranged with a sufficiently larger interval than a predetermined electron beam probe.
(C) Not only metal atom-encapsulated fullerenes, but also by introducing 1 to 5 elements by chemical modification of fullerene, 1 to 5 elements with a sufficiently larger interval than a predetermined electron beam probe. You can line up.
The present invention based on such knowledge has the following features (1) to ( 3 ).
(1) A transmission electron microscope comprising a holder for holding an observation sample, an element analyzer, and a standard sample for measuring the detection sensitivity of the element analyzer, which is fixed in advance to an integral part of the holder. Te, the detection sensitivity for measuring the standard sample, Toru characterized by comprising a nanotube complex that multiple encapsulating fullerene derivatives containing fullerene or a specific element includes a specific element in the carbon nanotube or boron nitride (BN) nanotube over-type electron microscope.
(2) The above-mentioned nanotube composite is characterized in that carbon atoms or boron nitride (BN) nanotubes are formed by arranging one to five atoms of a specific element at almost constant intervals (1 transmission electron microscope according to).
(3) The transmission electron according to (1) or (2), wherein the specific element is one or more elements selected from elements other than those constituting the fullerene skeleton or the nanotube skeleton microscope.

本発明の金属原子等の特定元素の原子がほぼ等間隔で整列したナノチューブ複合体を標準試料として用いることで、あるフラーレンに含まれる特定元素の原子と隣接するフラーレンに含まれる特定元素の原子との間隔を電子線プローブより十分大きくでき、透過型電子顕微鏡に付随した元素分析装置について、単原子検出能の有無や原子2個〜5個等の小重量検出能の有無が容易に判別できる。また、このような標準試料を用いることにより、透過型電子顕微鏡の倍率や性能の確認を容易に行うことができるため、透過型電子顕微鏡の倍率や性能の調整及び付随する元素分析装置の調整も容易に行うことができる。さらに、透過型電子顕微鏡の観察試料を保持するホルダと一体的な部分にこのような標準試料を予め固定しておくと、透過型電子顕微鏡の倍率や性能の調整及び付随する元素分析装置の調整をより容易とすることができる。   By using, as a standard sample, a nanotube complex in which atoms of a specific element such as a metal atom of the present invention are aligned at approximately equal intervals, an atom of a specific element contained in a certain fullerene and an atom of a specific element contained in an adjacent fullerene Can be sufficiently larger than the electron beam probe, and the elemental analyzer attached to the transmission electron microscope can easily determine the presence or absence of single-atom detectability or the presence or absence of small-weight detectability such as 2 to 5 atoms. In addition, by using such a standard sample, it is possible to easily confirm the magnification and performance of the transmission electron microscope. Therefore, adjustment of the magnification and performance of the transmission electron microscope and adjustment of the accompanying elemental analyzer are also possible. It can be done easily. Furthermore, if such a standard sample is fixed in advance to a part that is integral with a holder for holding an observation sample of a transmission electron microscope, adjustment of the magnification and performance of the transmission electron microscope and adjustment of the accompanying elemental analyzer Can be made easier.

ランタン金属内包フラーレンおよびエルビウム金属内包フラーレンの模式図Schematic diagram of lanthanum metal-encapsulated fullerene and erbium metal-encapsulated fullerene 本実施例1にかかわる金属内包フラーレンを内包したカーボンナノチューブの透過型電子顕微鏡像および各元素分析マッピングおよびその模式図Transmission electron microscopic image of carbon nanotube encapsulating metal-encapsulated fullerene according to Example 1, each elemental analysis mapping, and schematic diagram thereof 本実施例2にかかわる金属内包フラーレンを内包したカーボンナノチューブの透過型電子顕微鏡像および各元素分析マッピングおよび各元素と炭素を同時に観測した暗視野像Transmission electron microscopic image of carbon nanotube encapsulating metal-encapsulated fullerene according to Example 2, elemental analysis mapping, and dark-field image of simultaneously observing each element and carbon

本発明において、フラーレンに含まれる特定元素は、フラーレンに内包されたものでもよいし、フラーレンを化学修飾することにより導入されたものであってもよい。
そのようなフラーレンに含まれる特定元素は、フラーレン骨格やナノチューブ骨格を構成する元素の炭素、ホウ素、窒素以外であれば、特に種類は問わない。
フラーレンに内包される特定元素は、原子として内包されてもよいし、また、分子として内包されてもよい。原子として内包される元素としては、金属元素、希ガス元素を挙げることができる。そのような金属元素としてはリチウム、カルシウム、スカンジウム、チタン、バナジウム、ストロンチウム、イットリウム、ランタノイド元素、ハフニウム、ラジウム、アクチノイド元素から選ばれる1種又は2種以上の金属元素があげられる。
フラーレンに内包される特定元素の分子としては、H分子等の数個程度の原子で構成される分子が挙げられる。
フラーレンを化学修飾することにより導入される特定元素としては、フラーレンに内包されるものと同じ金属元素や、シリコン、リン、鉄、コバルト、モリブデン、ルテニウム、ロジウム、パラジウム、タングステン、オスミウム、イリジウム、白金、タリウムなどが挙げられる。また、さらに、水素や、2個〜5個程度の原子からなる置換基を構成する元素が挙げられる。そのような置換基としては、水酸基、アミノ基、ニトロ基、スルホン酸基、ホスホン酸基等が挙げられる。
また、フラーレン誘導体としては、フラーレン骨格中に特定元素を導入したものでもよい。その例としては、C60分子の一つの炭素を窒素に置換したアザフラーレンなどが挙げられる。
なお、フラーレンに内包される分子や前記置換基は、特定元素以外の一部として、ナノチューブ骨格やフラーレン骨格を構成する元素の炭素、ホウ素、窒素を含んでいてもよい。
In the present invention, the specific element contained in fullerene may be contained in fullerene or may be introduced by chemically modifying fullerene.
The specific element contained in such fullerene is not particularly limited as long as it is other than carbon, boron, and nitrogen as elements constituting the fullerene skeleton or the nanotube skeleton.
The specific element included in the fullerene may be included as an atom or may be included as a molecule. Examples of elements included as atoms include metal elements and rare gas elements. Examples of such metal elements include one or more metal elements selected from lithium, calcium, scandium, titanium, vanadium, strontium, yttrium, lanthanoid elements, hafnium, radium, and actinoid elements.
The molecules of the specific elements to be included in the fullerene include molecules composed by several order of atoms such as H 2 molecules.
Specific elements introduced by chemically modifying fullerene include the same metal elements as those contained in fullerene, silicon, phosphorus, iron, cobalt, molybdenum, ruthenium, rhodium, palladium, tungsten, osmium, iridium, platinum And thallium. Furthermore, the element which comprises the substituent which consists of hydrogen and about 2-5 atoms is mentioned. Examples of such a substituent include a hydroxyl group, an amino group, a nitro group, a sulfonic acid group, and a phosphonic acid group.
Moreover, as a fullerene derivative, what introduce | transduced the specific element in the fullerene skeleton may be used. Examples thereof include azafullerene in which one carbon of C 60 molecule is substituted with nitrogen.
In addition, the molecule | numerator and the said substituent which are included in fullerene may contain carbon, boron, and nitrogen of the element which comprises nanotube skeleton or fullerene skeleton as a part other than a specific element.

フラーレン1分子あたりに含まれる上記特定元素の原子の数は1個〜5個とすることができる。フラーレン1分子あたりに含まれる上記特定元素の原子の数が1個であれば、当然に単原子検出能の有無を測定、確認することができるが、フラーレン1分子あたりに含まれる上記特定元素の原子の数を2個〜5個等の複数個とする場合でも、そのうち1個の原子の種類を他の原子と異なるものとしておけば、その1個の原子についての元素分析を行うことにより単原子検出能の有無を測定、確認することができる。また、フラーレン1分子あたりに含まれる同一種類の原子の数を既知の複数個とする場合には、既知の複数個の原子についての検出能の有無を測定、確認することができる。   The number of atoms of the specific element contained per fullerene molecule can be 1 to 5. If the number of atoms of the specific element contained in one fullerene molecule is one, it is possible to measure and confirm the presence or absence of single atom detection ability, but the specific element contained in one fullerene molecule Even when the number of atoms is two to five, etc., if the type of one atom is different from the other atoms, elemental analysis of the one atom is performed. The presence or absence of atomic detectability can be measured and confirmed. Further, when the number of atoms of the same kind contained in one fullerene molecule is a plurality of known atoms, the presence or absence of detectability of the plurality of known atoms can be measured and confirmed.

元素分析が対象とする特定元素以外は、カーボンもしくはボロンナイトライド(BN)などの軽元素のみで構成されていること、特に中空のカーボンナノチューブやフラーレン分子で構成されていることが望ましい。   In addition to the specific element that is the subject of elemental analysis, it is desirable that it be composed of only light elements such as carbon or boron nitride (BN), and in particular composed of hollow carbon nanotubes or fullerene molecules.

カーボンナノチューブやボロンナイトライド(BN)ナノチューブの層数については、限定する必要はないが、実用的には、単層や2層が好ましい。   The number of carbon nanotubes and boron nitride (BN) nanotubes need not be limited, but is practically preferably a single layer or two layers.

カーボンナノチューブやボロンナイトライド(BN)ナノチューブは、その中に内包される複数のフラーレンが一列となるような直径および長さに設定される。そのような直径は1-3nm程度、長さは10nm-10mm程度が好ましい。ナノチューブに内包されるフラーレンは、ナノチューブの直径や含まれる特定元素等に応じて、C60、C70、さらに高次のフラーレンの中から選択することができる。複数のフラーレンは、あるフラーレンに含まれる1個乃至5個の原子と隣接するフラーレンに含まれる1個乃至5個の原子との間隔がほぼ一定となるように、ナノチューブ内に密に充填されることが望ましい。
本発明の標準試料は、透過型電子顕微鏡の観察試料用のホルダに保持されるかホルダと一体的な部分に予め固定されていても良い。
Carbon nanotubes and boron nitride (BN) nanotubes are set to a diameter and a length such that a plurality of fullerenes contained therein are arranged in a row. Such a diameter is preferably about 1-3 nm and a length of about 10 nm-10 mm. The fullerene included in the nanotube can be selected from C 60 , C 70 , and higher order fullerenes according to the diameter of the nanotube, the specific element contained therein, and the like. The plurality of fullerenes are closely packed in the nanotubes so that the distance between one to five atoms contained in a certain fullerene and one to five atoms contained in an adjacent fullerene is substantially constant. It is desirable.
The standard sample of the present invention may be held in a holder for an observation sample of a transmission electron microscope or may be fixed in advance to a portion integral with the holder.

透過型電子顕微鏡に付随する上述の元素分析装置とは、電子線エネルギー損失分光、エネルギー分散型蛍光X線分析およびカソードルミネッセンスなど、透過型電子顕微鏡を用いた元素分析装置のことである。またこれらに加えて、二次電子、透過電子、後方散乱電子などを用いた検出装置も含まれる。   The above-mentioned elemental analysis apparatus attached to the transmission electron microscope is an elemental analysis apparatus using a transmission electron microscope, such as electron beam energy loss spectroscopy, energy dispersive X-ray fluorescence analysis, and cathode luminescence. In addition to these, detection devices using secondary electrons, transmitted electrons, backscattered electrons, and the like are also included.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれら実施例に何ら限定されない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)[ランタン金属内包フラーレンおよびエルビウム金属内包フラーレンを内包したカーボンナノチューブ複合体による単原子検出]
空気中で酸化処理を施すことで、端を開管したカーボンナノチューブと、ランタン金属内包フラーレンおよびエルビウム金属内包フラーレン(図1)を同一石英管内に挿入し、真空条件下(約10-4Pa)で石英管を封じ切った。封じ切った石英管を600℃で24h温めた。放冷後、管内のナノチューブを取り出し、トルエン洗浄を数回おこなった。得られた試料を透過型電子顕微鏡による形状観察をおこなった(図2)。aの暗視野像において光って見えているのはフラーレンに内包されたランタンあるいはエルビウム単原子であり、両者はおよそ2nm離れている。フラーレンに内包されている限り両者は1nm以下の距離に近づくことはない。通常用いられる電子線プローブサイズは通常0.1〜0.5nm程度なので、原子同士の距離より十分小さい。そのため両者から検出信号が混ざり合わずに、当該原子ひとつひとつの元素分析が可能となる。aの暗視野像からは、ランタンあるいはエルビウム原子の識別は不可能であるが、当該原子を含む元素分析をおこなうことによって両者を識別することができる。bからdには、電子線エネルギー損失分光を用いて元素分析を行った際のランタン原子、エルビウム原子、炭素のそれぞれの元素マッピングを示す。このことから元素分析に用いた透過型電子顕微鏡に付随した元素分析装置は単原子検出が可能なものであることが分かる。eは模式図である。ここで、スケールバーは1nmである。
Example 1 [Detection of single atom by carbon nanotube composite including lanthanum metal-encapsulated fullerene and erbium-encapsulated fullerene]
By performing oxidation treatment in air, carbon nanotubes with open ends, lanthanum metal-encapsulated fullerene and erbium-encapsulated fullerene (Fig. 1) are inserted into the same quartz tube, and under vacuum conditions (about 10 -4 Pa) The quartz tube was sealed. The sealed quartz tube was warmed at 600 ° C. for 24 h. After allowing to cool, the nanotubes in the tube were taken out and washed with toluene several times. The shape of the obtained sample was observed with a transmission electron microscope (FIG. 2). In the dark field image of a, the lanthanum or erbium monoatom encapsulated in fullerene is seen brightly, and the two are separated by approximately 2 nm. As long as they are encapsulated in fullerenes, they do not approach a distance of 1 nm or less. Since the size of the electron beam probe usually used is usually about 0.1 to 0.5 nm, it is sufficiently smaller than the distance between atoms. Therefore, elemental analysis of each of the atoms becomes possible without mixing detection signals from both. Although a lanthanum or erbium atom cannot be identified from the dark field image of a, both can be identified by performing elemental analysis including the atom. From b to d, elemental mapping of lanthanum atom, erbium atom, and carbon when elemental analysis is performed using electron beam energy loss spectroscopy is shown. This shows that the elemental analyzer attached to the transmission electron microscope used for elemental analysis can detect single atoms. e is a schematic diagram. Here, the scale bar is 1 nm.

一方、透過型電子顕微鏡に付随した元素分析装置で元素分析を行う際に、上記と同じ標準試料を用いても、ランタン金属とエルビウム金属の元素マッピングによる識別が不可能な場合は、透過型電子顕微鏡に付随した当該元素分析装置は、単原子検出が不可能なものであることが分かる。   On the other hand, when elemental analysis is performed with an elemental analyzer attached to a transmission electron microscope, transmission electron is used when elemental mapping between lanthanum metal and erbium metal is impossible even with the same standard sample as above. It can be seen that the elemental analyzer attached to the microscope cannot detect single atoms.

(実施例2)[ランタン金属内包フラーレン、セリウム金属内包フラーレンおよびエルビウム金属内包フラーレンを内包したカーボンナノチューブ複合体による単原子検出]
空気中で酸化処理を施すことで、端を開管したカーボンナノチューブと、ランタン金属内包フラーレン(La@C82)、セリウム金属内包フラーレン(Ce@C82)およびエルビウム金属内包フラーレン(Er@C82)を同一石英管内に挿入し、真空条件下(約10-4Pa)で石英管を封じ切った。封じ切った石英管を600℃で24h温めた。放冷後、管内のナノチューブを取り出し、トルエン洗浄を数回おこなった。得られた試料を透過型電子顕微鏡による形状観察をおこなった(図3)。図3上部の明視野(BF)像において黒点として見えているのはフラーレンに内包されたランタン、セリウムあるいはエルビウム単原子であり、両者はおよそ2nm離れている。フラーレンに内包されている限り両者は1nm以下の距離に近づくことはない。通常用いられる電子線プローブサイズは通常0.1〜0.5nm程度なので、原子同士の距離より十分小さい。そのため両者から検出信号が混ざり合わずに、当該原子ひとつひとつの元素分析が可能となる。図3上部の明視野(BF)像からは、ランタン、セリウムあるいはエルビウム原子の識別は不可能であるが、当該原子を含む元素分析をおこなうことによって両者を識別することができる。図3下部には、電子線エネルギー損失分光を用いて元素分析を行った際のランタン原子、セリウム原子、エルビウム原子のそれぞれの元素マッピングを示す。このことから元素分析に用いた透過型電子顕微鏡に付随した元素分析装置は単原子検出が可能なものであることが分かる。図3下部一番右はランタン原子、セリウム原子、エルビウム原子および炭素を同時に観測した暗視野像である。ここで、スケールバーは2nmである。
(Example 2) [Single atom detection using a carbon nanotube composite including lanthanum metal-encapsulated fullerene, cerium metal-encapsulated fullerene, and erbium metal-encapsulated fullerene]
Carbon nanotubes with open ends, lanthanum metal-encapsulated fullerene (La @ C 82 ), cerium-encapsulated fullerene (Ce @ C 82 ) and erbium metal-encapsulated fullerene (Er @ C 82) ) Was inserted into the same quartz tube, and the quartz tube was sealed under vacuum conditions (about 10 −4 Pa). The sealed quartz tube was warmed at 600 ° C. for 24 h. After allowing to cool, the nanotubes in the tube were taken out and washed with toluene several times. The shape of the obtained sample was observed with a transmission electron microscope (FIG. 3). In the bright field (BF) image in the upper part of FIG. 3, lanthanum, cerium, or erbium monoatom contained in fullerene is visible as a black spot, and the two are separated by approximately 2 nm. As long as they are encapsulated in fullerenes, they do not approach a distance of 1 nm or less. Since the size of the electron beam probe usually used is usually about 0.1 to 0.5 nm, it is sufficiently smaller than the distance between atoms. Therefore, elemental analysis of each of the atoms becomes possible without mixing detection signals from both. From the bright field (BF) image in the upper part of FIG. 3, lanthanum, cerium, or erbium atoms cannot be identified, but both can be identified by performing elemental analysis including the atoms. The lower part of FIG. 3 shows element mapping of each of lanthanum atoms, cerium atoms, and erbium atoms when elemental analysis is performed using electron beam energy loss spectroscopy. This shows that the elemental analyzer attached to the transmission electron microscope used for elemental analysis can detect single atoms. The lower rightmost part of FIG. 3 is a dark field image in which lanthanum atom, cerium atom, erbium atom and carbon are observed simultaneously. Here, the scale bar is 2 nm.

本発明のナノチューブ複合体からなる標準試料は、透過型電子顕微鏡の観察試料を保持するホルダに着脱自在に保持するか、又は、該ホルダと一体的な部分に予め固定しておくことにより、透過型電子顕微鏡に付随した元素分析装置の単原子検出能の有無を容易に確認することができるし、また、そのような単原子検出能の調整にも利用することができる。
The standard sample composed of the nanotube composite of the present invention is detachably held in a holder for holding an observation sample of a transmission electron microscope, or is fixed in advance to an integral part of the holder to transmit the standard sample. The presence or absence of single atom detectability of the elemental analyzer attached to the scanning electron microscope can be easily confirmed, and can also be used to adjust such single atom detectability.

Claims (3)

観察試料を保持するホルダと、元素分析装置と、前記ホルダと一体的な部分に予め固定された、前記元素分析装置の検出感度測定用標準試料とを具備した透過型電子顕微鏡であって、前記検出感度測定用標準試料は、カーボンナノチューブ又はボロンナイトライド(BN)ナノチューブに特定元素を含むフラーレンまたは特定元素を含むフラーレン誘導体を複数内包するナノチューブ複合体からなることを特徴とする透過型電子顕微鏡。 A transmission electron microscope comprising a holder for holding an observation sample, an elemental analyzer, and a standard sample for detection sensitivity measurement of the elemental analyzer, which is fixed in advance to an integral part of the holder, detection sensitivity measurement for a standard sample, a carbon nanotube or boron nitride (BN) transparently electron you characterized by comprising a nanotube complex that multiple encapsulating fullerene derivatives containing fullerene or a specific element includes a specific element to the nanotube microscope. 前記ナノチューブ複合体は、カーボンナノチューブ又はボロンナイトライド(BN)ナノチューブに特定元素の原子が1個〜5個ずつほぼ一定の間隔で並んでいるものであることを特徴とする請求項1に記載の透過型電子顕微鏡。 2. The nanotube composite according to claim 1, wherein atoms of a specific element are arranged in a carbon nanotube or a boron nitride (BN) nanotube at intervals of approximately 1 to 5 each. a transmission electron microscope. 前記特定元素が、フラーレン骨格やナノチューブ骨格を構成する元素以外の元素から選ばれる1種又は2種以上の元素であることを特徴とする請求項1又は2に記載の透過型電子顕微鏡。 Wherein the specific element, a transmission electron microscope according to claim 1 or 2, characterized in that one or more elements selected from elements other than elements constituting the fullerene skeleton or nanotube skeleton.
JP2011553821A 2010-02-12 2011-02-07 Standard sample for measurement of detection sensitivity of elemental analyzer attached to transmission electron microscope Active JP5510845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553821A JP5510845B2 (en) 2010-02-12 2011-02-07 Standard sample for measurement of detection sensitivity of elemental analyzer attached to transmission electron microscope

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010028587 2010-02-12
JP2010028587 2010-02-12
PCT/JP2011/052478 WO2011099434A1 (en) 2010-02-12 2011-02-07 Standard sample for determination of detection sensitivity of elemental analyzer attached to transmission electron microscope
JP2011553821A JP5510845B2 (en) 2010-02-12 2011-02-07 Standard sample for measurement of detection sensitivity of elemental analyzer attached to transmission electron microscope

Publications (2)

Publication Number Publication Date
JPWO2011099434A1 JPWO2011099434A1 (en) 2013-06-13
JP5510845B2 true JP5510845B2 (en) 2014-06-04

Family

ID=44367708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553821A Active JP5510845B2 (en) 2010-02-12 2011-02-07 Standard sample for measurement of detection sensitivity of elemental analyzer attached to transmission electron microscope

Country Status (2)

Country Link
JP (1) JP5510845B2 (en)
WO (1) WO2011099434A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903733B (en) * 2021-01-25 2022-07-29 中国科学院广州地球化学研究所 Transmission electron microscope energy spectrum super-resolution analysis method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011019075; 佐藤雄太,外9名: '低加速STEM-EELSによるフラーレン内の金属単原子の検出' 炭素材料学会年会要旨集 , 20091130, P.250-251 *
JPN6011019076; 佐藤雄太,外9名: '低加速STEM-EELSによるフラーレン内の金属単原子の検出' 分析電子顕微鏡討論会予稿集 , 20090916, P.83 *
JPN6011019078; 末永和知,外2名: 'STEM-EELSを用いた究極の元素分析' 電子顕微鏡 Vol.36,No.1, 20010331, P.38-39 *

Also Published As

Publication number Publication date
JPWO2011099434A1 (en) 2013-06-13
WO2011099434A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
Goel et al. Size analysis of single fullerene molecules by electron microscopy
Hui et al. Scanning probe microscopy for advanced nanoelectronics
Arenal et al. Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures
Sousa et al. Development and application of STEM for the biological sciences
Meyer et al. Raman modes of index-identified freestanding single-walled carbon nanotubes
Zhu et al. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope
Menteş et al. Angle-resolved X-ray photoemission electron microscopy
JP2003524779A (en) Apparatus for analyzing biological objects by near-field optical method
JP5510845B2 (en) Standard sample for measurement of detection sensitivity of elemental analyzer attached to transmission electron microscope
Zhao et al. Characterizing the Chiral Index of a Single‐Walled Carbon Nanotube
Kaminska et al. Real-time in situ Raman imaging of carbon nanotube growth
Pierret et al. Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes
Sandoval et al. Determination of the length of single-walled carbon nanotubes by scanning electron microscopy
Martin et al. Detection of ring and adatom defects in activated disordered carbon via fluctuation nanobeam electron diffraction
Guignet et al. Repetitive reversible labeling of proteins at polyhistidine sequences for single‐molecule imaging in live cells
Zhu et al. The role of gas in determining image quality and resolution during in situ scanning transmission electron microscopy experiments
US8282905B2 (en) Fullerenic structures and such structures tethered to carbon materials
Haley et al. Atom probe analysis of ex situ gas-charged stable hydrides
Himbert et al. Anesthetics significantly increase the amount of intramembrane water in lipid membranes
Zhao et al. Medium-range order in molecular materials: Fluctuation electron microscopy for detecting fullerenes in disordered carbons
Wang et al. Probing interactions between human lung adenocarcinoma A549 cell and its aptamers at single‐molecule resolution
Mangler et al. Using electron beams to investigate carbonaceous materials
Lee et al. Vibronic transitions in single metalloporphyrins
Tantra et al. The detection of airborne carbon nanotubes in relation to toxicology and workplace safety
CN109884099A (en) The method for qualitative analysis of grapheme material in fiber

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5510845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250