JP5509311B2 - Three-fluid heat exchanger and air-conditioning hot-water supply system using the same - Google Patents

Three-fluid heat exchanger and air-conditioning hot-water supply system using the same Download PDF

Info

Publication number
JP5509311B2
JP5509311B2 JP2012501606A JP2012501606A JP5509311B2 JP 5509311 B2 JP5509311 B2 JP 5509311B2 JP 2012501606 A JP2012501606 A JP 2012501606A JP 2012501606 A JP2012501606 A JP 2012501606A JP 5509311 B2 JP5509311 B2 JP 5509311B2
Authority
JP
Japan
Prior art keywords
hot water
fluid
heat exchanger
water supply
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012501606A
Other languages
Japanese (ja)
Other versions
JPWO2011104878A1 (en
Inventor
陽子 國眼
寛 楠本
正直 小谷
智弘 小松
麻理 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2011104878A1 publication Critical patent/JPWO2011104878A1/en
Application granted granted Critical
Publication of JP5509311B2 publication Critical patent/JP5509311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、三流体熱交換器およびそれを用いた空調給湯システムに係り、特に、冷房と暖房とを切替えて行う空気温度調節用冷媒回路と、貯湯を行う給湯用冷媒回路と、蓄熱タンクに用いられる温水冷媒回路とが三流体熱交換器を介して接続されて冷凍サイクルを形成する空調給湯システムに好適な三流体熱交換器およびそれを用いた空調給湯システムに関する。   The present invention relates to a three-fluid heat exchanger and an air conditioning and hot water supply system using the same, and more particularly to an air temperature adjusting refrigerant circuit that switches between cooling and heating, a hot water supply refrigerant circuit that stores hot water, and a heat storage tank. The present invention relates to a three-fluid heat exchanger suitable for an air-conditioning hot-water supply system in which a hot water refrigerant circuit used is connected via a three-fluid heat exchanger to form a refrigeration cycle, and an air-conditioning hot-water supply system using the same.

空調機と給湯機の省エネ性を向上させることを目的に、特許文献1と特許文献2には、給湯用冷媒回路と空気温度調節用冷媒回路とを組み合わせた空調給湯システムが開示されている。この空調給湯システムは、給湯用冷媒回路と、空気温度調節用冷媒回路と、空気温度調節用冷温水回路とを備え、給湯用冷媒回路と空気温度調節用冷媒回路が、空気温度調節用冷温水回路内に設けられた水熱交換器を介して熱交換する装置である。   For the purpose of improving the energy saving performance of an air conditioner and a hot water heater, Patent Literature 1 and Patent Literature 2 disclose an air conditioning hot water supply system that combines a hot water supply refrigerant circuit and an air temperature adjusting refrigerant circuit. The air conditioning hot water supply system includes a hot water supply refrigerant circuit, an air temperature adjustment refrigerant circuit, and an air temperature adjustment cold / hot water circuit, and the hot water supply refrigerant circuit and the air temperature adjustment refrigerant circuit include cold / hot water for air temperature adjustment. It is a device that exchanges heat through a water heat exchanger provided in the circuit.

特許文献1,2に開示された水熱交換器は、外管と複数本の内管で構成され、所定本数の内管を空気温度調節用冷媒回路用、残りの内管を給湯用冷媒回路用とするとともに、外管と内管の隙間に空気温度調節用冷温水回路の冷温水を流通させる多重管式熱交換器である。この多重管式熱交換器によると、給湯用冷媒回路と空気温度調節用冷媒回路とが冷温水を介して熱交換関係に配置されているため、給湯用冷媒回路の蒸発圧力が水熱源のために空気熱源のようには低くならずに効率よく高温出湯を可能とし、あわせて冷暖房も可能である旨が特許文献1,2に記述されている。   The water heat exchanger disclosed in Patent Documents 1 and 2 is composed of an outer tube and a plurality of inner tubes, and a predetermined number of inner tubes are used for an air temperature adjusting refrigerant circuit, and the remaining inner tubes are used as a hot water supply refrigerant circuit. This is a multi-tube heat exchanger that circulates cold / hot water of a cold / hot water circuit for adjusting the air temperature through the gap between the outer pipe and the inner pipe. According to this multi-tube heat exchanger, since the hot water supply refrigerant circuit and the air temperature adjusting refrigerant circuit are arranged in a heat exchange relationship via cold / hot water, the evaporation pressure of the hot water supply refrigerant circuit is the water heat source. Patent Documents 1 and 2 describe that high-temperature hot water can be efficiently produced without being lowered as in the case of an air heat source, and that air conditioning can also be performed.

また、特許文献3には、給湯用熱交換器の設置面積が大型化するのを抑制する技術として、多重管式熱交換器を螺旋状に巻回させることによって、伝熱面積を維持しつつ設置面積を小型化する構成が開示されている。この螺旋状巻回の熱交換器によると、伝熱管の管長を延長する場合においても、熱交換器のコンパクト化が可能である旨が特許文献3に記述されている。   In Patent Document 3, as a technique for suppressing an increase in the installation area of the hot water supply heat exchanger, the heat transfer area is maintained by spirally winding the multi-tube heat exchanger. A configuration for reducing the installation area is disclosed. Patent Document 3 describes that, according to this spirally wound heat exchanger, the heat exchanger can be made compact even when the length of the heat transfer tube is extended.

特開昭60−248963号公報JP-A-60-248963 特開昭60−248965号公報JP 60-248965 A 特開2005−69620号公報JP 2005-69620 A

ところで、空調給湯システムのさらなる省エネ性向上のため、暖房や給湯の熱源として例えば太陽熱集熱器で得られた温水などの自然エネルギを利用することが考えられる。上記の特許文献1と特許文献2に開示されるシステムを、自然エネルギの温水回路に対しても熱交換可能なシステムとする場合、給湯用冷媒回路と空気温度調節用冷媒回路との熱交換用の中間熱交換器に加えて、給湯用冷媒回路と自然エネルギの温水回路との熱交換用の中間熱交換器と、空調用冷媒回路と自然エネルギの温水回路との熱交換用の中間熱交換器とを増設する必要があり、装置が大型化するという課題が生じる。   By the way, in order to further improve the energy saving performance of the air conditioning and hot water supply system, it is conceivable to use natural energy such as hot water obtained by a solar heat collector as a heat source for heating or hot water supply. When the systems disclosed in Patent Document 1 and Patent Document 2 described above are systems capable of exchanging heat even with a natural energy hot water circuit, heat exchange between a hot water supply refrigerant circuit and an air temperature adjusting refrigerant circuit is possible. In addition to the intermediate heat exchanger, an intermediate heat exchanger for heat exchange between the hot water supply refrigerant circuit and the natural energy hot water circuit, and an intermediate heat exchange for heat exchange between the air conditioning refrigerant circuit and the natural energy hot water circuit This increases the size of the device.

また、特許文献3に開示されているような多重管式熱交換器が、第一の流体が流れる内管と第二の流体が流れる内管の2種類からなる内管を形成しているとき、第一の流体と第二の流体と、外管を流れる第三の流体と、の間で熱交換可能な3流体熱交換器として用いた場合、第一の流体と第二の流体とは、第三の流体を介して熱交換するため伝熱性能が低下する。   Further, when the multi-tube heat exchanger as disclosed in Patent Document 3 forms an inner pipe composed of two types, an inner pipe through which the first fluid flows and an inner pipe through which the second fluid flows. , When used as a three-fluid heat exchanger capable of exchanging heat between the first fluid, the second fluid, and the third fluid flowing in the outer tube, the first fluid and the second fluid are Since heat is exchanged via the third fluid, the heat transfer performance is reduced.

第一の流体と第二の流体との熱交換性能を向上させるためには、第一の流体と第二の流体が流通する内管を接合することが考えられる。ここで、接合には、機械的な接合(例.ネジ止めやバンドでの結束による接合)や、冶金的な接合(例.溶接の一種であるロウ付けや圧接などによる接合)の方法がある。なお、ロウ付けは、鑞つけ又はろう付けとも云われるが、以下、ロウ付けと称する。しかしながら、この接合する構成を特許文献3で開示されている小型化の手法に適用する場合には、内管同士の接合により、内管が硬化して、多重管式熱交換器を螺旋状に旋回させ小型化することが困難である。   In order to improve the heat exchange performance between the first fluid and the second fluid, it is conceivable to join the inner pipes through which the first fluid and the second fluid flow. Here, there are mechanical joining methods (eg, joining by screwing or banding) or metallurgical joining (eg, joining by brazing or pressure welding, which is a kind of welding). . The brazing is also called brazing or brazing, but is hereinafter referred to as brazing. However, when this joining structure is applied to the downsizing technique disclosed in Patent Document 3, the inner pipe is cured by joining the inner pipes, and the multi-tube heat exchanger is spirally formed. It is difficult to turn and downsize.

本発明の目的は、自然エネルギを利用した空調給湯システムを構成して一層の省エネ性能を向上させるとともに、空調サイクル、給湯サイクル及び自然エネルギサイクルで用いる三流体間の熱交換器の伝熱性能と小型化を図る、熱交換器およびそれを用いた空調給湯システムを提供することにある。   An object of the present invention is to improve the energy saving performance by configuring an air conditioning and hot water supply system using natural energy, and to achieve heat transfer performance of a heat exchanger between three fluids used in an air conditioning cycle, a hot water supply cycle, and a natural energy cycle. An object of the present invention is to provide a heat exchanger and an air-conditioning hot-water supply system using the heat exchanger that are miniaturized.

前記課題を解決するために、本発明は主として次のような構成を採用する。
空調サイクル、給湯サイクル及び自然エネルギサイクルで用いる三流体の内の第1の流体が循環する第1の冷媒回路、前記三流体の内の第2の流体が循環する第2の冷媒回路、前記三流体の内の自然エネルギを利用して蓄熱された第3の流体が循環する第3の冷媒回路、のそれぞれの冷媒回路に流れる、前記第1の流体と、前記第2の流体と、前記第3の流体との間で熱交換を行う三流体熱交換器であって、前記三流体熱交換器は、前記第1の流体と前記第2の流体がそれぞれ流れる複数の内管と、前記複数の内管を内包し且つ前記第3の流体が流れる外殻と、から形成され、異なる流体が流れていて接合された内管同士は、前記外殻内で直行部分と曲げ部分とからなる平面状の蛇行形状を形成し、前記内管における前記蛇行形状の各直行部分を仕切る仕切板は、前記内管の直行部分に並行して前記外殻内に配置されているとともに、前記内管の曲げ部分貫通している穴開き部を有し、前記第1の流体と前記第2の流体がそれぞれ流れる複数の前記内管は各々対角線上に配置され、隣接する前記内管同士が接合されている構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A first refrigerant circuit in which a first fluid among the three fluids used in an air conditioning cycle, a hot water supply cycle, and a natural energy cycle circulates, a second refrigerant circuit in which a second fluid among the three fluids circulates , and the three The first fluid , the second fluid, and the second fluid flowing in the respective refrigerant circuits of the third refrigerant circuit in which the third fluid stored using the natural energy of the fluid circulates . A three-fluid heat exchanger that exchanges heat with three fluids, wherein the three-fluid heat exchanger includes a plurality of inner pipes through which the first fluid and the second fluid respectively flow, An inner shell that includes the inner pipe and the third fluid flows, and the inner pipes that are joined by different fluids flowing are formed by a straight portion and a bent portion in the outer shell. Each meandering part of the meandering shape in the inner tube The separating partition plate, both the parallel to straight portions of the inner tube is disposed in the outer inner shell has a perforated portion bent portion of the inner tube extends through said first The plurality of inner pipes through which the fluid and the second fluid respectively flow are arranged diagonally, and the adjacent inner pipes are joined to each other .

また、前記三流体熱交換器において、前記外殻に流れる温水冷媒の流れ方向が逆転する前記外殻の角部に、前記温水冷媒の流れを前記内管の曲げ部分に沿うように誘導する整流板を設ける。さらに、前記仕切板の穴開き部は、前記矩形部の縦方向に前記内管を貫通させる寸法分だけ開口が略中央部分に設けられ、前記内管は、前記穴開き部の内側縁部と接合固定されるとともに、前記内管の通る前記外殻の入口側と出口側の縦方向の略中央部分で固定配置される。さらに、前記内管は、その曲げ部分を曲げた後に内管同士をロウ付け接合又はバンド固定して前記外殻に装填したものである。   Further, in the three-fluid heat exchanger, rectification for guiding the flow of the hot water refrigerant along the bent portion of the inner pipe to the corner portion of the outer shell where the flow direction of the hot water refrigerant flowing in the outer shell is reversed. Provide a plate. Furthermore, the opening portion of the partition plate is provided with an opening in a substantially central portion by a dimension that allows the inner tube to pass through in the longitudinal direction of the rectangular portion, and the inner tube is connected to an inner edge portion of the opening portion. In addition to being bonded and fixed, it is fixedly arranged at a substantially central portion in the vertical direction on the inlet side and outlet side of the outer shell through which the inner pipe passes. Furthermore, after bending the bent portion of the inner pipe, the inner pipes are brazed or fixed to a band and loaded into the outer shell.

また、前記三流体熱交換器において、前記空調用冷媒と前記給湯用冷媒がそれぞれ流れる複数の内管は、2本の内管から形成され、前記2本の内管は上下に重ね合わされて接合されている構成とする。さらに、前記空調用冷媒と前記給湯用冷媒がそれぞれ流れる複数の内管は、2本の内管から形成され、前記2本の内管は水平面上に配置されて接合され、前記内管の曲げ部分において、曲げ径の小さい内管の外側に対して曲げ径の大きな内管の内側を接合したものである。さらに、前記外殻はステンレス製の箱型を形成し、前記仕切板で仕切られた外殻内を前記内管の軸方向に沿って前記温水冷媒が流れるものである。   In the three-fluid heat exchanger, the plurality of inner pipes through which the air-conditioning refrigerant and the hot water supply refrigerant respectively flow are formed from two inner pipes, and the two inner pipes are overlapped and joined together. The configuration is as follows. Further, the plurality of inner pipes through which the air conditioning refrigerant and the hot water supply refrigerant respectively flow are formed from two inner pipes, and the two inner pipes are arranged and joined on a horizontal plane, and the inner pipe is bent. In the portion, the inner side of the inner tube having a large bending diameter is joined to the outer side of the inner tube having a small bending diameter. Further, the outer shell forms a stainless steel box shape, and the hot water refrigerant flows through the outer shell partitioned by the partition plate along the axial direction of the inner tube.

また、前記三流体熱交換機において、前記外殻は樹脂製の湾曲した構造であり、前記湾曲した構造は、前記外殻に流れる温水冷媒の流れ方向が逆転する前記外殻の両端部に形成されて、前記温水冷媒の流れを前記内管の曲げ部分に沿うように誘導する構成である。さらに、前記湾曲した構造は、前記内管の直行部分の軸方向に垂直な前記外殻の断面が略円管状を形成されている。さらに、前記外殻と前記仕切板は、樹脂で一体成形されたものである。   In the three-fluid heat exchanger, the outer shell has a curved structure made of resin, and the curved structure is formed at both ends of the outer shell where the flow direction of the hot water refrigerant flowing in the outer shell is reversed. Thus, the flow of the hot water refrigerant is guided along the bent portion of the inner pipe. Furthermore, in the curved structure, a cross section of the outer shell perpendicular to the axial direction of the direct portion of the inner tube is formed in a substantially circular tube shape. Further, the outer shell and the partition plate are integrally formed of resin.

また、上述した三流体熱交換器がそれぞれ用いられた、前記空調用冷媒回路を有する空調システムと、前記給湯用冷媒回路を有する給湯システムと、前記温水冷媒回路を有する自然エネルギ利用の蓄熱システムと、を備えた空調給湯システムを本発明の対象とする。   An air conditioning system having the air conditioning refrigerant circuit, a hot water supply system having the hot water supply refrigerant circuit, and a natural energy utilization heat storage system having the hot water refrigerant circuit, each of which uses the above-described three-fluid heat exchanger. The air-conditioning hot-water supply system provided with these is the object of the present invention.

本発明によれば、空調や給湯の熱源として、太陽熱や地熱等の自然エネルギ(再生可能エネルギ)を利用することができるため、空調給湯システムの省エネ性をさらに高めることができる。   According to the present invention, natural energy (renewable energy) such as solar heat and geothermal heat can be used as a heat source for air conditioning and hot water supply, so that the energy saving performance of the air conditioning and hot water supply system can be further enhanced.

また、従来の多重管式の熱交換器をそのまま螺旋状に湾曲させる場合に最小曲げ半径が外管の径により決まるのに対して、本発明によると、最小曲げ半径が内管の径により決まるため、従来技術に比べて伝熱性能を維持しつつ三流体熱交換器を小型化することが可能となる。   In addition, when the conventional multi-tube heat exchanger is curved as it is, the minimum bending radius is determined by the diameter of the outer tube, whereas according to the present invention, the minimum bending radius is determined by the diameter of the inner tube. Therefore, it is possible to reduce the size of the three-fluid heat exchanger while maintaining the heat transfer performance as compared with the prior art.

本発明の実施形態に係る空調給湯システムの全体構成を示す系統図である。It is a distribution diagram showing the whole air-conditioning hot-water supply system composition concerning an embodiment of the present invention. 本発明の実施形態に係る三流体熱交換器に関する第1実施例の内管曲げ構造と外管構造を示す平面図である。It is a top view which shows the inner pipe bending structure and outer pipe structure of 1st Example regarding the three-fluid heat exchanger which concerns on embodiment of this invention. 本実施形態に係る三流体熱交換器に関する第1実施例の内管及び外管の直行部分の管軸方向に対する垂直な面から見た断面図である。It is sectional drawing seen from the surface perpendicular | vertical with respect to the pipe-axis direction of the direct part of the inner tube | pipe of the 1st Example regarding the three-fluid heat exchanger which concerns on this embodiment, and an outer tube | pipe. 本実施形態に係る三流体熱交換器に関する第1実施例の内管及び外管の曲げ部分の管軸方向に対する垂直な面から見た断面図である。It is sectional drawing seen from the surface perpendicular | vertical with respect to the pipe-axis direction of the bending part of the inner tube | pipe of the 1st Example regarding the three fluid heat exchanger which concerns on this embodiment, and an outer tube | pipe. 本実施形態に係る三流体熱交換器に関する第1実施例の内管の曲げ部分、外管(外殻)、仕切板の全体構造を示す見取図である。It is a sketch which shows the whole structure of the bending part of the inner tube | pipe of the 1st Example regarding the three-fluid heat exchanger which concerns on this embodiment, an outer tube | pipe (outer shell), and a partition plate. 本実施形態に係る三流体熱交換器において外管を形成する箱型外殻内に2本の内管を上下にロウ付け接合で重ね合わせた第2実施例を示す断面図である。It is sectional drawing which shows the 2nd Example which piled up two inner pipes by the brazing joining up and down in the box-type outer shell which forms an outer pipe in the three-fluid heat exchanger which concerns on this embodiment. 本実施形態に係る三流体熱交換器において外管を形成する箱型外殻内に2本の内管を平面状にロウ付け接合で組み合わせた第3実施例を示す断面図である。It is sectional drawing which shows the 3rd Example which combined two inner pipes by the brazing joining planarly in the box-type outer shell which forms an outer pipe | tube in the three-fluid heat exchanger which concerns on this embodiment. 本実施形態に係る三流体熱交換器において外管を形成する樹脂製外殻の端部における湾曲構造と樹脂製外殻内の内管曲げ構造を示す第4実施例の平面図である。It is a top view of 4th Example which shows the curved structure in the edge part of the resin outer shell which forms an outer pipe | tube, and the inner pipe bending structure in a resin outer shell in the three-fluid heat exchanger which concerns on this embodiment. 本実施形態に係る三流体熱交換器に関する第4実施例の内管及び外管(樹脂製外殻)の直行部分の管軸方向に対する垂直な面から見た断面図である。It is sectional drawing seen from the surface perpendicular | vertical with respect to the pipe-axis direction of the orthogonal part of the inner tube | pipe and outer tube | pipe (resin outer shell) of 4th Example regarding the three-fluid heat exchanger which concerns on this embodiment.

本発明の実施形態に係る三流体熱交換器およびそれを用いた空調給湯システムについて、図面を参照しながら以下詳細に説明する。まず、本発明の実施形態に係る自然エネルギを利用する空調給湯システムについてその概要を説明し、続いて、本実施形態に係る自然エネルギを利用する空調給湯システムに用いられる三流体熱交換器についてその構成と機能乃至効果を説明する。   A three-fluid heat exchanger according to an embodiment of the present invention and an air conditioning hot water supply system using the same will be described in detail below with reference to the drawings. First, the outline of the air-conditioning hot water supply system using natural energy according to the embodiment of the present invention will be described, and then the three-fluid heat exchanger used in the air conditioning hot water supply system using natural energy according to the present embodiment will be described. The structure, function, and effect will be described.

図1は本発明の実施形態に係る空調給湯システムの全体構成を示す系統図である。この空調給湯システムの基本的な構成は、主として、空調用圧縮機21、四方弁22、三流体熱交換器(熱回収用熱交換器)23、空調側熱源側熱交換器24、膨張弁27、空調用利用側熱交換器28からなる空調システムと、主として、給湯用圧縮機41、給湯用利用側熱交換器42、膨張弁43、三流体熱交換器23、給湯用熱源側熱交換器44からなる給湯システムと、主として、水道水供給口78、貯湯タンク70、給湯用利用側熱交換器42、温水供給口79からなる貯湯システムと、主として、太陽熱集熱器4、太陽熱用熱交換器91からなる太陽熱集熱システムと、主として、水道水供給口78、蓄熱タンク50、中間温水配管52,53、三流体熱交換器23、太陽熱用熱交換器91、給湯余熱熱交換器92、温水供給口79からなる蓄熱システムと、主として、空調用利用側熱交換器28、給湯余熱熱交換器92、室内熱交換器61からなる室内空調用冷温水システムと、を備えている。   FIG. 1 is a system diagram showing an overall configuration of an air conditioning and hot water supply system according to an embodiment of the present invention. The basic configuration of this air conditioning and hot water supply system is mainly composed of an air conditioning compressor 21, a four-way valve 22, a three-fluid heat exchanger (heat recovery heat exchanger) 23, an air conditioning side heat source side heat exchanger 24, and an expansion valve 27. , An air conditioning system comprising an air conditioning use side heat exchanger 28, and a hot water supply compressor 41, a hot water use side heat exchanger 42, an expansion valve 43, a three-fluid heat exchanger 23, a hot water source heat source side heat exchanger. 44, a hot water storage system consisting mainly of a tap water supply port 78, a hot water storage tank 70, a hot water use side heat exchanger 42, and a hot water supply port 79, and mainly a solar heat collector 4, solar heat exchange. A solar heat collecting system comprising a heat exchanger 91, mainly a tap water supply port 78, a heat storage tank 50, intermediate hot water pipes 52 and 53, a three-fluid heat exchanger 23, a solar heat exchanger 91, a hot water remaining heat heat exchanger 92, Hot water supply port 7 A thermal storage system consisting mainly includes the air-conditioning use-side heat exchanger 28, the hot water supply remaining heat heat exchanger 92, the hot and cold water system for a room air conditioner comprising the indoor heat exchanger 61, the.

また、別の視点でみると、本実施形態に係る空調給湯システムは、冷房運転と暖房運転とを切り替えて運転を行う空調用冷媒回路5と、給湯を行う給湯用冷媒回路6と、空調用冷媒回路5及び給湯用冷媒回路6を循環する冷媒と熱交換を行って温熱又は冷熱を蓄熱した水を循環させる中間温水循環回路(熱媒体回路)7と、空調用冷媒回路5と熱交換を行って室内の空調を行う空調用冷温水循環回路8と、給湯用冷媒回路6と熱交換を行って給湯を行う給湯回路9と、太陽熱集熱器4で集熱された太陽熱を蓄熱した熱搬送媒体を循環させる太陽熱集熱用熱媒体循環回路10と、給湯回路9にある温水を外部に供給するための出湯経路11と、太陽熱集熱用熱媒体循環回路10と熱交換を行って温熱が蓄熱された水を循環させて空調用冷温水循環回路8と熱交換を行う給湯余熱温水循環回路12と、を備えている。また、本実施形態に係る空調給湯システムは、室外に配置されるヒートポンプユニット1と、室内に配置される室内熱交換器を含む室内ユニット2と、室外に配置される給湯・蓄熱タンクユニット3と、室外に配置される太陽熱集熱器4と、を備えたユニット構成となっている。   From another viewpoint, the air conditioning and hot water supply system according to the present embodiment includes an air conditioning refrigerant circuit 5 that switches between a cooling operation and a heating operation, a hot water supply refrigerant circuit 6 that supplies hot water, and an air conditioning Heat exchange with the refrigerant circulating in the refrigerant circuit 5 and the hot water supply refrigerant circuit 6 is carried out to circulate the water that has stored hot or cold heat, and heat exchange with the refrigerant circuit 5 for air conditioning. Air-conditioning cold / hot water circulation circuit 8 that performs air conditioning indoors, hot-water supply circuit 9 that supplies hot water by exchanging heat with the hot-water supply refrigerant circuit 6, and heat transport that stores solar heat collected by the solar heat collector 4 A heat medium circulation circuit 10 for collecting solar heat for circulating the medium, a hot water supply path 11 for supplying hot water in the hot water supply circuit 9 to the outside, and a heat medium circulation circuit 10 for collecting solar heat to exchange heat, Circulating the stored water to circulate cold / hot water for air conditioning Includes a hot water preheating hot water circulation circuit 12 for circuit 8 and the heat exchanger, the. Moreover, the air-conditioning hot-water supply system which concerns on this embodiment has the heat pump unit 1 arrange | positioned outdoor, the indoor unit 2 containing the indoor heat exchanger arrange | positioned indoors, and the hot-water supply / heat storage tank unit 3 arrange | positioned outdoor. And a solar heat collector 4 disposed outside the unit.

また、図1に示す本実施形態に係る空調給湯システムは、制御装置1aによる運転制御に基づいて、運転パターン1〜運転パターン5を形成することができ、それらの運転パターンの概略を以下説明する。   Moreover, the air-conditioning hot-water supply system which concerns on this embodiment shown in FIG. 1 can form the operation pattern 1-the operation pattern 5 based on the operation control by the control apparatus 1a, and demonstrates the outline of those operation patterns below. .

運転パターン1としての冷房・給湯運転においては、空調サイクルが圧縮式冷房運転であり、空調用熱源側熱交換器24が外気へ放熱し、三流体熱交換器23で空調用配管23aが給湯用配管23bと蓄熱中間温水配管23cの双方へ放熱し、空調用利用側分割熱交換器28a,28bが室内空調用冷温水循環回路8から吸熱し、当該吸熱により室内を冷房する。また、この冷房・給湯運転においては、給湯サイクルが圧縮式給湯運転であり、給湯用熱源側交換器44が外気から吸熱し、三流体熱交換器23で給湯用配管23bが空調用配管23aから吸熱して給湯用冷媒の気化を促進し、給湯用利用側熱交換器42が貯湯タンク70への給湯用温水に放熱する。   In the cooling / hot-water supply operation as the operation pattern 1, the air-conditioning cycle is a compression-type cooling operation, the air-conditioning heat source side heat exchanger 24 radiates heat to the outside air, and the three-fluid heat exchanger 23 uses the air-conditioning pipe 23a for hot water supply. Heat is dissipated to both the pipe 23b and the heat storage intermediate hot water pipe 23c, and the air-conditioning use-side divided heat exchangers 28a and 28b absorb heat from the indoor air-conditioning cold / hot water circulation circuit 8 and cool the room by the heat absorption. In this cooling / hot water supply operation, the hot water supply cycle is a compression hot water supply operation, the hot water supply heat source side exchanger 44 absorbs heat from the outside air, and in the three-fluid heat exchanger 23, the hot water supply pipe 23b is connected to the air conditioning pipe 23a. It absorbs heat and promotes vaporization of the hot water supply refrigerant, and the hot water supply side heat exchanger 42 radiates heat to the hot water supply water to the hot water storage tank 70.

この運転パターン1において、空調サイクルの排熱を給湯サイクルの熱源とすることによって、給湯サイクルの蒸発温度を上げ、空調サイクルの凝縮温度を下げることで、給湯サイクルの消費電力、空調サイクルの消費電力を低減でき、システム効率を上げることができる。   In this operation pattern 1, by using the exhaust heat of the air conditioning cycle as a heat source of the hot water supply cycle, the evaporation temperature of the hot water supply cycle is raised and the condensation temperature of the air conditioning cycle is lowered, thereby reducing the power consumption of the hot water supply cycle and the power consumption of the air conditioning cycle. Can be reduced and the system efficiency can be increased.

運転パターン2としての暖房・給湯運転においては、空調サイクルが圧縮式暖房運転であり、空調用熱源側熱交換器24が外気から吸熱し、三流体熱交換器23で空調用配管23aが蓄熱中間温水配管23cから吸熱し、空調用利用側分割熱交換器28a,28bが室内空調用冷温水循環回路8へ放熱し、室内を暖房する。また、この暖房・給湯運転においては、給湯サイクルが圧縮式給湯運転であり、給湯用熱源側交換器44が外気から吸熱し、三流体熱交換器23で給湯用配管23bが蓄熱中間温水配管23cから吸熱して給湯用冷媒の気化が促進され、給湯用利用側熱交換器42が貯湯タンク70への給湯用配管72の温水に放熱する。また、空調用利用側分割熱交換器28a,28bから吸熱した室内空調用冷温水循環回路8の空調用冷温水が、給湯余熱熱交換器92において給湯余熱温水循環回路12の温水に放熱して熱利用を一層促進している。   In the heating / hot water supply operation as the operation pattern 2, the air conditioning cycle is a compression heating operation, the air-conditioning heat source side heat exchanger 24 absorbs heat from the outside air, and the three-fluid heat exchanger 23 stores the air-conditioning pipe 23a in the middle of heat storage. Heat is absorbed from the hot water pipe 23c, and the use side divided heat exchangers 28a and 28b for air conditioning dissipate heat to the cold / hot water circulation circuit 8 for indoor air conditioning to heat the room. In this heating / hot water supply operation, the hot water supply cycle is a compression hot water supply operation, the hot water supply heat source side exchanger 44 absorbs heat from the outside air, and in the three-fluid heat exchanger 23, the hot water supply pipe 23b is a heat storage intermediate hot water pipe 23c. The hot water supply side heat exchanger 42 radiates heat to the hot water in the hot water supply pipe 72 to the hot water storage tank 70. Further, the cold / warm water for air conditioning in the cold / hot water circulation circuit 8 for indoor air conditioning, which has absorbed heat from the use side divided heat exchangers 28a and 28b for air conditioning, dissipates heat to the hot water in the hot / cold hot water circulation circuit 12 in the hot water / remaining heat heat exchanger 92. The use is further promoted.

この運転パターン2において、空調用熱源側熱交換器24と給湯用熱源側交換器44が外気を熱源として運転する場合には,従来の空調機と給湯機と同様な運転が可能である。また、三流体熱交換器23を用いて蓄熱媒体を熱源として運転する場合、太陽熱や機器排熱などの外気以外のより高温の熱源を用いることで効率を上げることができる。さらに、外気温度が低く、空調用熱源側熱交換器24又は給湯用熱源側交換器44が着霜した場合、これらの熱交換器24,44へ高温の冷媒(高温の蓄熱媒体から吸熱することで高温冷媒)を流して着霜を解消できる。   In this operation pattern 2, when the air-conditioning heat source side heat exchanger 24 and the hot water supply heat source side exchanger 44 are operated using outside air as a heat source, the same operation as that of the conventional air conditioner and hot water supply device is possible. Further, when the three-fluid heat exchanger 23 is used to operate the heat storage medium as a heat source, the efficiency can be increased by using a higher-temperature heat source other than the outside air such as solar heat or equipment exhaust heat. Furthermore, when the outside air temperature is low and the air-conditioning heat source side heat exchanger 24 or the hot water supply heat source side exchanger 44 is frosted, a high-temperature refrigerant (heat is absorbed from a high-temperature heat storage medium) to these heat exchangers 24 and 44. Frosting can be eliminated by flowing a high-temperature refrigerant.

運転パターン3としての冷房自然循環併用・給湯運転においては、空調サイクルが圧縮式冷房運転と自然循環冷房運転の併用運転であり、圧縮式冷房運転の場合に空調用圧縮機21で圧縮された空調用媒体が膨張弁27bを通り、空調用利用側分割熱交換器28aが室内空調用冷温水循環回路8から吸熱して室内を冷房し、自然循環冷房運転の場合に空調用圧縮機21を使用せずに、高位置に設置された凝縮器機能の空調用熱源側熱交換器24から空調用媒体が膨張弁27aを通り、空調用利用側分割熱交換器28bが室内空調用冷温水循環回路8から吸熱して室内を冷房する。この際、当該吸熱で気化した空調用媒体は空調用熱源側熱交換器24に戻る。また、この冷房自然循環併用・給湯運転においては、給湯サイクルが圧縮式給湯運転であり、給湯用熱源側交換器44が外気から吸熱し、三流体熱交換器23で給湯用配管23bが空調用配管23aから吸熱し、給湯用利用側熱交換器42が貯湯タンク70への給湯用温水に放熱する。また、三流体熱交換器23の蓄熱中間温水配管23cが空調用配管23aから吸熱し、当該吸熱により蓄熱タンク50への蓄熱中間温水は温められる。   In the cooling natural circulation combined use / hot water supply operation as the operation pattern 3, the air conditioning cycle is a combined operation of the compression cooling operation and the natural circulation cooling operation, and the air conditioning compressed by the air conditioning compressor 21 in the case of the compression cooling operation. The medium passes through the expansion valve 27b, and the air-conditioning use side heat exchanger 28a absorbs heat from the indoor air-conditioning cold / hot water circulation circuit 8 to cool the room, and the air-conditioning compressor 21 is used in the case of natural circulation cooling operation. The air conditioning medium passes through the expansion valve 27a from the air conditioning heat source side heat exchanger 24 of the condenser function installed at a high position, and the air conditioning use side divided heat exchanger 28b from the cold / hot water circulation circuit 8 for indoor air conditioning. It absorbs heat and cools the room. At this time, the air conditioning medium vaporized by the heat absorption returns to the heat source side heat exchanger 24 for air conditioning. In this cooling natural circulation combined use / hot water supply operation, the hot water supply cycle is a compression hot water supply operation, the hot water supply heat source side exchanger 44 absorbs heat from the outside air, and the three-fluid heat exchanger 23 uses the hot water supply pipe 23b for air conditioning. Heat is absorbed from the pipe 23 a, and the hot water use side heat exchanger 42 radiates heat to the hot water for hot water supply to the hot water storage tank 70. Further, the heat storage intermediate hot water pipe 23c of the three-fluid heat exchanger 23 absorbs heat from the air conditioning pipe 23a, and the heat storage intermediate hot water to the heat storage tank 50 is warmed by the heat absorption.

この運転パターン3において、空調負荷の一部を圧縮機21を介さずに外気に放熱でき、圧縮機の仕事量を低減できる。さらに、給湯用の蒸発器として、三流体熱交換器23のみを使用する場合、給湯サイクルの蒸発温度を上げることで給湯サイクルの効率も向上できる。   In this operation pattern 3, a part of the air conditioning load can be radiated to the outside air without going through the compressor 21, and the work of the compressor can be reduced. Further, when only the three-fluid heat exchanger 23 is used as an evaporator for hot water supply, the efficiency of the hot water supply cycle can be improved by increasing the evaporation temperature of the hot water supply cycle.

運転パターン4としての給湯サイクル利用・外気併用冷房自然循環運転においては、空調サイクルが給湯サイクル利用と外気による自然循環併用運転であり、この自然循環併用運転の一方は、高位置に設置された凝縮器機能の空調用熱源側熱交換器24から空調用媒体が膨張弁27aを通り、空調用利用側分割熱交換器28bが室内空調用冷温水循環回路8から吸熱して室内を冷房する。この際、当該吸熱で気化した空調用媒体は空調用熱源側熱交換器24に戻る。この自然循環併用運転の他方は、三流体熱交換器23で空調用配管23aが運転中の給湯サイクルの給湯用配管23bに吸熱されて空調用媒体が凝縮され、その後膨張弁27bを通り、空調用利用側分割熱交換器28aが室内空調用冷温水循環回路8から吸熱して室内を冷房する。また、この給湯サイクル利用・外気併用冷房自然循環運転においては、給湯サイクルが圧縮式給湯運転であり、給湯用熱源側交換器44が外気から吸熱し、給湯用利用側熱交換器42が貯湯タンク70への給湯用温水に放熱する。   In the hot water cycle use and outdoor air combined cooling natural circulation operation as the operation pattern 4, the air conditioning cycle is the hot water cycle use and the natural circulation combined operation by the outside air. One of the natural circulation combined operation is a condensation installed at a high position. The air conditioning medium passes through the expansion valve 27a from the air conditioning heat source side heat exchanger 24 having the air conditioner function, and the air conditioning use side divided heat exchanger 28b absorbs heat from the indoor air conditioning cold / hot water circulation circuit 8 to cool the room. At this time, the air conditioning medium vaporized by the heat absorption returns to the heat source side heat exchanger 24 for air conditioning. In the other of the natural circulation combined operation, the three-fluid heat exchanger 23 absorbs heat to the hot water supply pipe 23b of the hot water supply cycle in which the air conditioning pipe 23a is operating, and the air conditioning medium is condensed, and then passes through the expansion valve 27b. The use side divided heat exchanger 28a absorbs heat from the cold / hot water circulation circuit 8 for indoor air conditioning and cools the room. Further, in this hot water supply cycle use / cooling natural circulation operation combined with outside air, the hot water supply cycle is a compression hot water supply operation, the hot water supply heat source side exchanger 44 absorbs heat from the outside air, and the hot water use side heat exchanger 42 serves as a hot water storage tank. Dissipate heat to hot water for hot water supply to 70.

この運転パターン4において、外気温度がある程度高くても、給湯サイクルの圧縮機41を運転するのみで空調サイクルの圧縮機21を動かすことなく、冷房運転が可能となるためシステム全体で消費電力を低減できる。   In this operation pattern 4, even if the outside air temperature is high to some extent, it is possible to perform a cooling operation only by operating the compressor 41 of the hot water supply cycle without moving the compressor 21 of the air conditioning cycle. it can.

運転パターン5としての外気利用自然循環冷房運転においては、空調サイクルが空調用圧縮機21を使用しない外気自然循環運転であり、この自然循環運転は、高位置に設置された凝縮器機能の空調用熱源側熱交換器24から空調用媒体が膨張弁27aを通り、空調用利用側分割熱交換器28b,28aが室内空調用冷温水循環回路8から吸熱して室内を冷房する。この際、当該吸熱で気化した空調用媒体は空調用熱源側熱交換器24に戻る。また、この外気利用自然循環冷房運転においては、給湯サイクルが圧縮式給湯運転であり、給湯用熱源側交換器44が外気から吸熱し、給湯用利用側熱交換器42が貯湯タンク70への給湯用温水に放熱する。さらに、三流体熱交換器23で給湯用配管23bが蓄熱中間温水配管23cから吸熱して給湯用膨張弁43の後流の給湯用冷媒の気化を促進する。   The natural air cooling operation using the outside air as the operation pattern 5 is an outdoor air natural circulation operation in which the air conditioning cycle does not use the air conditioning compressor 21, and this natural circulation operation is for air conditioning with a condenser function installed at a high position. The air conditioning medium passes from the heat source side heat exchanger 24 through the expansion valve 27a, and the air conditioning use side divided heat exchangers 28b and 28a absorb heat from the indoor air conditioning cold / hot water circulation circuit 8 to cool the room. At this time, the air conditioning medium vaporized by the heat absorption returns to the heat source side heat exchanger 24 for air conditioning. In this natural air cooling operation using the outside air, the hot water supply cycle is a compression hot water supply operation, the hot water heat source side exchanger 44 absorbs heat from the outside air, and the hot water use side heat exchanger 42 supplies hot water to the hot water storage tank 70. Dissipate heat to hot water. Further, in the three-fluid heat exchanger 23, the hot water supply pipe 23 b absorbs heat from the heat storage intermediate hot water pipe 23 c and promotes vaporization of the hot water supply refrigerant downstream of the hot water supply expansion valve 43.

この運転パターン5において、空調サイクルの圧縮機を動かすことなく、冷房運転が可能となるため、消費電力を低減できる。   In this operation pattern 5, since the cooling operation can be performed without moving the compressor of the air conditioning cycle, the power consumption can be reduced.

上述した運転パターン1〜運転パターン5のすべてにおいて、太陽熱用熱交換器91においては、太陽熱集熱用配管83から給湯余熱温水循環回路12へ放熱しており、太陽熱を常に有効に利用している。   In all of the operation patterns 1 to 5 described above, the solar heat exchanger 91 radiates heat from the solar heat collecting pipe 83 to the hot water hot water circulating circuit 12 and always uses solar heat effectively. .

次に、本発明の実施形態に係る空調給湯システムに用いられる各構成要素の接続構造について説明する。ヒートポンプユニット1は、空調用冷媒回路5と給湯用冷媒回路6とを備えている。さらに、空調用冷媒回路5と給湯用冷媒回路6との間には三流体熱交換器23が配置されている。この三流体熱交換器23は、空調用冷媒回路5を循環する冷媒と、給湯用冷媒回路6を循環する冷媒と、中間温水循環回路7を循環する熱媒体との3流体の間で熱交換を行うことが可能な構造となっていて、熱回収用熱交換器の機能を奏するものである。具体的には、三流体熱交換器23は、中間温水循環回路7の水が流れる外管23cの中に、空調用冷媒が流れる空調用冷媒伝熱管23aと、給湯用冷媒が流れる給湯用冷媒伝熱管23bとが接合した状態で挿入された構造である。そして、この三流体熱交換器23の具体的な構造は、図面を用いて詳細に後述するが、本発明の主たる特徴を示すものである。   Next, the connection structure of each component used for the air conditioning and hot water supply system according to the embodiment of the present invention will be described. The heat pump unit 1 includes an air conditioning refrigerant circuit 5 and a hot water supply refrigerant circuit 6. Further, a three-fluid heat exchanger 23 is disposed between the air conditioning refrigerant circuit 5 and the hot water supply refrigerant circuit 6. This three-fluid heat exchanger 23 exchanges heat between the three fluids of the refrigerant circulating in the air conditioning refrigerant circuit 5, the refrigerant circulating in the hot water supply refrigerant circuit 6, and the heat medium circulating in the intermediate hot water circulation circuit 7. It has a structure capable of performing the above, and exhibits the function of a heat exchanger for heat recovery. Specifically, the three-fluid heat exchanger 23 includes an air-conditioning refrigerant heat transfer pipe 23a in which the air-conditioning refrigerant flows and an hot-water supply refrigerant in which the hot-water supply refrigerant flows in the outer pipe 23c through which water in the intermediate hot water circulation circuit 7 flows. It is the structure inserted in the state which joined the heat exchanger tube 23b. The specific structure of the three-fluid heat exchanger 23, which will be described in detail later with reference to the drawings, shows the main features of the present invention.

空調用冷媒回路5は、空調用冷媒が循環する回路であり、空調用冷媒を圧縮する空調用圧縮機21、冷媒の流路を切り替える四方弁22、三流体熱交換器23、ファン25により送られてくる大気と熱交換を行う空調用熱源側熱交換器24、第1の冷媒タンク26a、第2の冷媒タンク26b、空調用冷媒を減圧する第1の膨張弁27aおよび第2の膨張弁27b、空調用冷温水循環回路8と熱交換を行う空調用利用側熱交換器28を冷媒配管で接続して環状に形成されている。なお、本実施形態において、空調用利用側熱交換器28は、第1の空調用利用側分割熱交換器28aと、第2の空調用利用側分割熱交換器28bとに2分割されており、第1の空調用利用側分割熱交換器28aと第2の空調用利用側分割熱交換器28bとは冷媒配管で直列に接続されている。   The air conditioning refrigerant circuit 5 is a circuit in which the air conditioning refrigerant circulates, and is sent by an air conditioning compressor 21 that compresses the air conditioning refrigerant, a four-way valve 22 that switches a refrigerant flow path, a three-fluid heat exchanger 23, and a fan 25. The air-conditioning heat source side heat exchanger 24 for exchanging heat with the atmospheric air, the first refrigerant tank 26a, the second refrigerant tank 26b, the first expansion valve 27a and the second expansion valve for decompressing the air-conditioning refrigerant. 27b, the air-conditioning cold / hot water circulation circuit 8 and the air-conditioning use-side heat exchanger 28 for exchanging heat are connected by a refrigerant pipe to form an annular shape. In the present embodiment, the air-conditioning use-side heat exchanger 28 is divided into a first air-conditioning use-side divided heat exchanger 28a and a second air-conditioning use-side divided heat exchanger 28b. The first air-conditioning use-side divided heat exchanger 28a and the second air-conditioning use-side divided heat exchanger 28b are connected in series by a refrigerant pipe.

さらに、空調用冷媒回路5の構成の詳細を説明する。空調用冷媒回路5は、まず、空調用圧縮機21の吐出口21b、四方弁22、三流体熱交換器23、第1の冷媒タンク26a、第1の膨張弁27a、第2の空調用利用側分割熱交換器28b、第1の空調量利用側分割熱交換器28a、四方弁22、空調圧縮機21の吸込口21aの順に冷媒配管で接続して環状に形成された空調用冷媒主回路5aを備えている。   Furthermore, the detail of a structure of the refrigerant circuit 5 for an air conditioning is demonstrated. The air-conditioning refrigerant circuit 5 includes the discharge port 21b, the four-way valve 22, the three-fluid heat exchanger 23, the first refrigerant tank 26a, the first expansion valve 27a, and the second air-conditioning use of the air-conditioning compressor 21. An air conditioning refrigerant main circuit formed in an annular shape by connecting the side division heat exchanger 28b, the first air conditioning amount utilization side division heat exchanger 28a, the four-way valve 22, and the suction port 21a of the air conditioning compressor 21 with refrigerant piping in this order. 5a.

空調用冷媒回路5は、この空調用冷媒主回路5aに5つの空調用冷媒分岐回路が設けられて構成されている。第1の空調用冷媒分岐回路は、三流体熱交換器23と並列に接続された空調用冷媒分岐回路であり、具体的には、四方弁22と三流体熱交換器23との間の位置にある分岐点Iから分岐し、空調用熱源側熱交換器24を経由して、三流体熱交換器23と第1の冷媒タンク26aの間の位置にある分岐点Jで合流する空調用冷媒分岐回路である。   The air conditioning refrigerant circuit 5 is configured by providing five air conditioning refrigerant branch circuits in the air conditioning refrigerant main circuit 5a. The first air conditioning refrigerant branch circuit is an air conditioning refrigerant branch circuit connected in parallel with the three-fluid heat exchanger 23, and specifically, a position between the four-way valve 22 and the three-fluid heat exchanger 23. Air-conditioning refrigerant which branches from the branch point I located at the point B and joins at the branch point J between the three-fluid heat exchanger 23 and the first refrigerant tank 26a via the air-conditioning heat source side heat exchanger 24. It is a branch circuit.

第2の空調用冷媒分岐回路は、空調用圧縮機21の吸込口21aと吐出口21bとをバイパスする空調用冷媒分岐回路であり、具体的には、第1の空調用利用側分割熱交換器28aと四方弁22との間の位置にある分岐点Aと、四方弁22と分岐点Iの間の位置にある分岐点Bとを空調用冷媒バイパス配管29で繋いで形成された空調用冷媒分岐回路である。なお、分岐点Aには三方弁34aが、分岐点Bには三方弁34bがそれぞれ設けられている。   The second air conditioning refrigerant branch circuit is an air conditioning refrigerant branch circuit that bypasses the suction port 21a and the discharge port 21b of the air conditioning compressor 21, and more specifically, the first air conditioning use-side divided heat exchange. For air conditioning formed by connecting a branch point A located between the vessel 28a and the four-way valve 22 and a branch point B located between the four-way valve 22 and the branch point I by an air-conditioning refrigerant bypass pipe 29. It is a refrigerant branch circuit. A three-way valve 34a is provided at the branch point A, and a three-way valve 34b is provided at the branch point B.

第3の空調用冷媒分岐回路は、三流体熱交換器23と分岐点Jの間の位置にある分岐点Dから分岐し、第2の冷媒タンク26b、第2の膨張弁27bを順次経由して、第1の空調用利用側分割熱交換器28aと第2の空調用利用側分割熱交換器28bとの間の位置にある分岐点Eで合流する空調用冷媒分岐回路である。なお、分岐点Dには三方弁34dが、分岐点Eには三方弁34eが設けられている。   The third air conditioning refrigerant branch circuit branches from a branch point D located between the three-fluid heat exchanger 23 and the branch point J, and sequentially passes through the second refrigerant tank 26b and the second expansion valve 27b. The air conditioning refrigerant branch circuit joins at a branch point E located between the first air conditioning use-side split heat exchanger 28a and the second air-conditioning use-side split heat exchanger 28b. The branch point D is provided with a three-way valve 34d, and the branch point E is provided with a three-way valve 34e.

第4の空調用冷媒分岐回路は、第3の空調用冷媒分岐回路に設けられている第2の膨張弁27bと分岐点Eとの間の位置にある分岐点Hから分岐し、空調用冷媒主回路5aに設けられている第1の膨張弁27aと第2の空調用利用側分割熱交換器28bとの間の位置にある分岐点Gで合流する空調用冷媒分岐回路である。   The fourth air conditioning refrigerant branch circuit branches from a branch point H located between the second expansion valve 27b provided in the third air conditioning refrigerant branch circuit and the branch point E, and the air conditioning refrigerant. This is an air conditioning refrigerant branch circuit that merges at a branch point G located between the first expansion valve 27a provided in the main circuit 5a and the second air conditioning use-side split heat exchanger 28b.

第5の空調用冷媒分岐回路は、分岐点Iと空調用熱源側熱交換器24の間の位置にある分岐点Cと、第2の空調用利用側分割熱交換器28bと分岐点Eの間の位置にある分岐点Fとを冷媒配管で繋いで形成された空調用冷媒分岐回路である。なお、分岐点Fには三方弁が設けられている。   The fifth air conditioning refrigerant branch circuit includes a branch point C located between the branch point I and the air source heat source side heat exchanger 24, a second air conditioning use-side divided heat exchanger 28b, and the branch point E. It is the refrigerant | coolant branch circuit for an air conditioning formed by connecting the branch point F in the position between them with refrigerant | coolant piping. Note that a three-way valve is provided at the branch point F.

ここで、三流体熱交換器23は、空調用冷媒伝熱管23aと、給湯用冷媒伝熱管23bと、熱媒体伝熱管(中間温水冷媒伝熱管)23cとがお互いに熱的に接触するように一体に構成されている熱回収用熱交換器である。また、第1の膨張弁27aおよび第2の膨張弁27bは、弁の開度を調整することにより、空調用冷媒の圧力を減圧するとともに、三流体熱交換器23と空調用熱源側熱交換器24とに流れる空調用冷媒の流量比率の調整を行うことができるようになっている。また、第1の空調用利用側分割熱交換器28aおよび第2の空調用利用側分割熱交換器28bは、空調用熱源側熱交換器24よりも低い位置に設置されていて、この低位置設置は空調用冷媒の自然循環サイクルを形成するためである。なお、空調用冷媒回路5を循環する空調用冷媒としては、例えば、R410a,R134a,HFO1234yf,HFO1234zeを用いることができる。   Here, the three-fluid heat exchanger 23 is configured so that the air conditioning refrigerant heat transfer tube 23a, the hot water supply refrigerant heat transfer tube 23b, and the heat medium heat transfer tube (intermediate hot water refrigerant heat transfer tube) 23c are in thermal contact with each other. It is the heat exchanger for heat recovery constituted integrally. In addition, the first expansion valve 27a and the second expansion valve 27b reduce the pressure of the air-conditioning refrigerant by adjusting the opening of the valve, and also exchange heat between the three-fluid heat exchanger 23 and the air-conditioning heat source. The flow rate ratio of the air-conditioning refrigerant flowing to the vessel 24 can be adjusted. In addition, the first air-conditioning use-side divided heat exchanger 28a and the second air-conditioning use-side divided heat exchanger 28b are installed at positions lower than the air-conditioning heat source-side heat exchanger 24, and this low position The installation is to form a natural circulation cycle of the air conditioning refrigerant. For example, R410a, R134a, HFO1234yf, and HFO1234ze can be used as the air conditioning refrigerant circulating in the air conditioning refrigerant circuit 5.

次に、空調用冷温水循環回路(空調用熱搬送媒体循環回路)8は、空調用冷媒回路5と熱交換を行う空調用冷温水メイン回路8aと、給湯余熱温水循環回路12と熱交換を行う給湯余熱用冷温水分岐回路8bとの2つの回路を有している。なお、この空調用冷温水循環回路8内を流れる熱搬送媒体は水(冷水または温水)であるが、寒冷地で使用されるような場合には、水に代えてエチレングリコール等のブラインを用いても良い。   Next, the air-conditioning cold / hot water circulation circuit (air-conditioning heat transfer medium circulation circuit) 8 performs heat exchange with the air-conditioning cold / hot water main circuit 8a for exchanging heat with the air-conditioning refrigerant circuit 5 and the hot-water supply hot / cold water circulation circuit 12. It has two circuits, a hot / cold hot water hot / cold water branch circuit 8b. The heat transfer medium flowing through the air-conditioning cold / hot water circulation circuit 8 is water (cold water or hot water). However, when used in a cold district, a brine such as ethylene glycol is used instead of water. Also good.

空調用冷温水メイン回路8aは、図1に示すように、住宅60に設置された室内熱交換器61、空調用冷温水循環ポンプ67、第2の空調用利用側分割熱交換器28b、および第1の空調用利用側分割熱交換器28aを空調用冷温水配管65a,65b,65cで順次接続して環状に形成された回路である。この空調用冷温水メイン回路8aには、第1の空調用冷温水分岐管66aおよび第2の空調用冷温水分岐管66bが立体交差するように(所謂タスキ掛けをするように)設けられている。   As shown in FIG. 1, the air-conditioning cold / hot water main circuit 8a includes an indoor heat exchanger 61, an air-conditioning cold / hot water circulation pump 67, a second air-conditioning use-side divided heat exchanger 28b, This is a circuit formed by annularly connecting one air-conditioning use-side divided heat exchanger 28a by air-conditioning cold / hot water pipes 65a, 65b, 65c. The air-conditioning cold / hot water main circuit 8a is provided so that the first air-conditioning cold / hot water branch pipe 66a and the second air-conditioning cold / hot water branch pipe 66b are three-dimensionally crossed (so-called tacking). Yes.

そして、第1の空調用冷温水分岐管66aの一端は、室内熱交換器61と第2の空調用利用側分割熱交換器28bを繋ぐ空調用冷温水配管65aと三方弁62aを介して接続されており、他端は空調用冷温水配管65cと三方弁を介することなく直接接続されている。また、第2の空調用冷温水分岐管66bの一端は、室内熱交換器61と第1の空調用利用側分割熱交換器28aを繋ぐ空調用冷温水配管65cと三方弁62bを介して接続されており、他端は空調用冷温水配管65aと三方弁を介することなく直接接続されている。三方弁62aと三方弁62bを操作することにより、水が空調用利用側熱交換器28a,28bに流れる方向を切替えることができる。   And one end of the 1st air-conditioning cold / hot water branch pipe 66a is connected via the three-way valve 62a and the air-conditioning cold / hot water piping 65a which connects the indoor heat exchanger 61 and the 2nd air-conditioning use side division | segmentation heat exchanger 28b. The other end is directly connected to the air-conditioning cold / hot water pipe 65c without a three-way valve. Further, one end of the second air conditioning cold / hot water branch pipe 66b is connected via an air conditioning cold / hot water pipe 65c and a three-way valve 62b connecting the indoor heat exchanger 61 and the first air conditioning use-side split heat exchanger 28a. The other end is directly connected to the air conditioning cold / hot water pipe 65a without a three-way valve. By operating the three-way valve 62a and the three-way valve 62b, the direction in which water flows to the air-conditioning use-side heat exchangers 28a and 28b can be switched.

また、室内熱交換器61をバイパスするための第3の空調用冷温水分岐管66cが設けられている。この第3の空調用冷温水分岐管66cの一端は、空調用冷温水配管65aと三方弁62cを介して接続され、他端は空調用冷温水配管65cに三方弁を介することなく直接接続されている。なお、室内熱交換器61を流れる水と第3の空調用冷温水分岐管66cを流れる水の流量比率は、三方弁62cのポートの開度で調整可能である。   Further, a third air conditioning cold / hot water branch pipe 66c for bypassing the indoor heat exchanger 61 is provided. One end of the third air conditioning cold / hot water branch pipe 66c is connected to the air conditioning cold / hot water pipe 65a via a three-way valve 62c, and the other end is directly connected to the air conditioning cold / hot water pipe 65c without a three-way valve. ing. The flow rate ratio of the water flowing through the indoor heat exchanger 61 and the water flowing through the third air conditioning cold / hot water branch pipe 66c can be adjusted by the opening degree of the port of the three-way valve 62c.

給湯余熱用冷温水分岐回路8bは、第1の空調用利用側分割熱交換器28aの出口と空調用冷温水循環ポンプ67の入口とを給湯余熱用冷温水配管63で接続し、その給湯余熱用冷温水配管63に後述する給湯余熱熱交換器92を組み込んで形成された環状の回路である。なお、給湯余熱用冷温水配管63において、給湯余熱熱交換器92と空調用冷温水循環ポンプ67の間の位置には、二方弁64aが取り付けられている。   The hot / cold hot water branch circuit 8b for hot water supply residual heat connects the outlet of the first air-conditioning use side split heat exchanger 28a to the inlet of the cold / hot water circulation pump 67 for air conditioning by a hot / cold hot water pipe 63 for hot water supply residual heat. This is an annular circuit formed by incorporating a hot water supply residual heat exchanger 92 described later into the cold / hot water pipe 63. In the hot / cold hot / cold water pipe 63 for hot water supply remaining heat, a two-way valve 64 a is attached at a position between the hot water remaining heat heat exchanger 92 and the cold / hot water circulation pump 67 for air conditioning.

このように構成された空調用冷温水循環回路8では、二方弁64aが閉じている場合には、空調用冷温水循環ポンプ67から送り出された水は、空調用冷温水メイン回路8a内を循環する。一方、二方弁64aが開いている場合には、空調用冷温水循環ポンプ67から送り出された水は、空調用冷温水メイン回路8a内を循環するだけでなく、給湯余熱用冷温水分岐回路8b内をも循環する。よって、二方弁64aが開いている場合には、第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bから受け取った温熱を、給湯余熱熱交換器92を介して給湯余熱温水循環回路12へ伝達することができることとなる。   In the air conditioning cold / hot water circulation circuit 8 configured as described above, when the two-way valve 64a is closed, the water sent from the air conditioning cold / hot water circulation pump 67 circulates in the air conditioning cold / hot water main circuit 8a. . On the other hand, when the two-way valve 64a is open, the water sent from the air conditioning cold / hot water circulation pump 67 not only circulates in the air conditioning cold / hot water main circuit 8a, but also the hot / cold hot water branch circuit 8b. It also circulates inside. Therefore, when the two-way valve 64a is open, the hot water received from the first air-conditioning use-side heat exchanger 28a and the second air-conditioning use-side heat exchanger 28b is transferred to the hot water supply residual heat exchanger 92. Thus, the hot water can be transmitted to the hot water circulating hot water circulation circuit 12.

次に、給湯用冷媒回路6は、給湯用冷媒が循環する回路であり、給湯用冷媒を圧縮する給湯用圧縮機41、給湯回路9と熱交換を行う給湯用利用側熱交換器42、給湯用冷媒タンク46、給湯用冷媒を減圧する給湯用膨張弁43、三流体熱交換器23、およびファン45により送られてくる大気と熱交換を行う給湯用熱源側熱交換器44を冷媒配管で接続して環状に形成されている。   Next, the hot water supply refrigerant circuit 6 is a circuit in which the hot water supply refrigerant circulates, and includes a hot water supply compressor 41 that compresses the hot water supply refrigerant, a hot water use side heat exchanger 42 that performs heat exchange with the hot water supply circuit 9, and hot water supply. Refrigerant tank 46, hot water supply expansion valve 43 that depressurizes hot water supply refrigerant, three-fluid heat exchanger 23, and hot water supply heat source side heat exchanger 44 that exchanges heat with the air sent by fan 45 are formed by refrigerant piping. It is connected and formed in an annular shape.

続いて、給湯用冷媒回路6の構成の詳細を説明する。給湯用冷媒回路6は、まず、給湯用圧縮機41の吐出口、給湯用熱交換器42、給湯用冷媒タンク46、給湯用膨張弁43、三流体熱交換器23、給湯用圧縮機41の吸込口の順に冷媒配管で接続して環状に形成された給湯用冷媒主回路6aを備えている。   Then, the detail of a structure of the hot water supply refrigerant circuit 6 is demonstrated. The hot water supply refrigerant circuit 6 includes a discharge port of a hot water supply compressor 41, a hot water supply heat exchanger 42, a hot water supply refrigerant tank 46, a hot water supply expansion valve 43, a three-fluid heat exchanger 23, and a hot water supply compressor 41. A hot water supply refrigerant main circuit 6a formed in an annular shape by connecting with refrigerant pipes in the order of the suction port is provided.

給湯用冷媒回路6は、この給湯用冷媒主回路6aに2つの給湯用冷媒分岐回路が設けられている。第1の給湯用冷媒分岐回路は、三流体熱交換器23と並列に接続された空調用冷媒分岐回路であり、具体的には、給湯用膨張弁43と三流体熱交換器23の間の位置にある分岐点Kから分岐し、給湯用空調用熱源側熱交換器44を経由して、三流体熱交換器23と給湯用圧縮機41の吸込口41aの間の位置にある分岐点Lで合流する給湯用冷媒分岐回路である。   In the hot water supply refrigerant circuit 6, two hot water supply refrigerant branch circuits are provided in the hot water supply refrigerant main circuit 6a. The first hot water supply refrigerant branch circuit is an air conditioning refrigerant branch circuit connected in parallel with the three-fluid heat exchanger 23, and specifically, between the hot water supply expansion valve 43 and the three-fluid heat exchanger 23. The branch point L is branched from the branch point K at the position, and is located between the three-fluid heat exchanger 23 and the suction port 41a of the hot water supply compressor 41 via the heat source side heat exchanger 44 for hot water supply. It is the refrigerant | coolant branch circuit for hot water supply which joins in the.

第2の給湯用冷媒分岐回路48は、給湯用冷媒タンク46から、分岐点Kと給湯用熱源側熱交換器45との間の位置にある分岐点Mまでを冷媒配管で繋いで形成された給湯用冷媒分岐回路48である。この第2の給湯用冷媒回路48が給湯用バイパス配管である。また、分岐点Mには三方弁が設けられている。なお、給湯用利用側熱交換器42の出口の近傍の位置には二方弁が、三流体熱交換器23の出口の近傍位置にはそれぞれ二方弁が設けられ、また、給湯用利用側熱交換器44の入口及び出口の近傍位置にはそれぞれ二方弁が、分岐点Lと圧縮機41の間の位置には二方弁が、それぞれ設けられている。   The second hot water supply refrigerant branch circuit 48 is formed by connecting the hot water supply refrigerant tank 46 to the branch point M located between the branch point K and the hot water supply heat source side heat exchanger 45 with a refrigerant pipe. This is a hot water supply refrigerant branch circuit 48. The second hot water supply refrigerant circuit 48 is a hot water supply bypass pipe. Further, a three-way valve is provided at the branch point M. A two-way valve is provided at a position near the outlet of the hot water use side heat exchanger 42, and a two way valve is provided at a position near the outlet of the three-fluid heat exchanger 23. A two-way valve is provided at a position near the inlet and outlet of the heat exchanger 44, and a two-way valve is provided at a position between the branch point L and the compressor 41.

給湯用圧縮機41は、空調用圧縮機21と同様にインバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。給湯用利用側熱交換器42は、給湯用冷媒伝熱管と、給湯用水伝熱管とが接触するように構成されている。給湯用膨張弁43は、弁の開度を調整することにより、給湯用冷媒の圧力を減圧するとともに、給湯用冷媒を三流体熱交換器23と給湯用熱源側熱交換器44とに流れる給湯用冷媒の流量比率の調整を行うことができるようになっている。給湯用冷媒回路6を循環する給湯用冷媒としては、例えば、R134a,HFO1234yf,HFO1234zeを用いることができる。   The hot water supply compressor 41 can perform capacity control by inverter control similarly to the air conditioning compressor 21, and the rotation speed is variable from low speed to high speed. The hot water use side heat exchanger 42 is configured so that the hot water supply refrigerant heat transfer tube and the hot water supply water heat transfer tube are in contact with each other. The hot water supply expansion valve 43 adjusts the opening degree of the valve to reduce the pressure of the hot water supply refrigerant, and the hot water supply refrigerant flows through the three-fluid heat exchanger 23 and the hot water supply heat source side heat exchanger 44. The flow rate ratio of the refrigerant can be adjusted. As the hot water supply refrigerant circulating in the hot water supply refrigerant circuit 6, for example, R134a, HFO1234yf, and HFO1234ze can be used.

次に、給湯回路9は、貯湯タンク70の下部と給湯用利用側熱交換器42の一端とを給湯用配管72で接続し、給湯用利用側熱交換器42の他端と貯湯タンク70の上部とを給湯用配管73で接続して、環状に形成された回路である。給湯用配管72には、給湯用循環ポンプ71と、給湯回路9内を流れる水の流量を検知する給湯用流量センサ(図示せず)とが組み込まれている。貯湯タンク70内の水は、給湯用循環ポンプ71を駆動することにより、給湯用利用側熱交換器42へと流れていき、この給湯用利用側熱交換器42にて給湯用冷媒と熱交換を行って温水となり、貯湯タンク70へ戻っていく。なお、給湯用利用側熱交換器42において、給湯用冷媒の流れと水の流れは対向流となっている。   Next, the hot water supply circuit 9 connects the lower part of the hot water storage tank 70 and one end of the hot water use side heat exchanger 42 by a hot water supply pipe 72, and connects the other end of the hot water use side heat exchanger 42 and the hot water storage tank 70. It is a circuit formed in an annular shape by connecting the upper part with a hot water supply pipe 73. The hot water supply pipe 72 incorporates a hot water supply circulation pump 71 and a hot water supply flow rate sensor (not shown) for detecting the flow rate of water flowing in the hot water supply circuit 9. The water in the hot water storage tank 70 flows into the hot water use side heat exchanger 42 by driving the hot water supply circulation pump 71, and the hot water use side heat exchanger 42 exchanges heat with the hot water supply refrigerant. To warm water and return to the hot water storage tank 70. In addition, in the hot water use side heat exchanger 42, the flow of the hot water supply refrigerant and the flow of water are counterflows.

次に、太陽熱集熱用熱媒体循環回路10は、太陽熱集熱器4と太陽熱用熱交換器91とを太陽熱集熱用配管82,83で接続して環状に形成された回路である。太陽熱集熱用配管82には、太陽熱集熱用熱媒体を循環させるための太陽熱集熱用循環ポンプ85が組み込まれている。太陽熱集熱器4で加熱された熱媒体は、太陽熱集熱用循環ポンプ85を駆動することにより、太陽熱集熱用熱媒体循環回路10内を循環し、太陽熱用熱交換器91を流れる間に、給湯余熱温水循環回路12と熱交換を行う。   Next, the solar heat collecting heat medium circulation circuit 10 is a circuit formed in an annular shape by connecting the solar heat collector 4 and the solar heat exchanger 91 with solar heat collecting pipes 82 and 83. The solar heat collection pipe 82 incorporates a solar heat collection circulation pump 85 for circulating a solar heat collection heat medium. The heat medium heated by the solar heat collector 4 circulates in the solar heat collection heat medium circulation circuit 10 by driving the solar heat collection circulation pump 85 and flows through the solar heat exchanger 91. Then, heat exchange is performed with the hot water hot water circulation circuit 12.

次に、中間温水循環回路(熱媒体回路)7は、蓄熱タンク50の下部と三流体熱交換器23の一端とを中間温水用配管52で接続し、三流体熱交換器23の他端と蓄熱タンク50とを中間温水用配管53で接続して、環状に形成された回路である。中間温水用配管52には、中間温水用循環ポンプ51が組み込まれている。中間温水循環回路7内の水は、中間温水用循環ポンプ51を駆動することにより、三流体熱交換器23へと流れていき、この三流体熱交換器23で空調用冷媒回路5および給湯用冷媒回路6と熱交換を行いながら、蓄熱タンク50へと戻っていく。蓄熱タンク50には、蓄熱材が充填されており、三流体熱交換器23から得た温熱または冷熱は、この蓄熱タンク50で蓄熱される。なお、蓄熱タンク50には、水道水を蓄熱タンク50に供給するための水道水供給配管78が接続されている。   Next, the intermediate hot water circulation circuit (heat medium circuit) 7 connects the lower part of the heat storage tank 50 and one end of the three-fluid heat exchanger 23 with an intermediate hot water pipe 52, and the other end of the three-fluid heat exchanger 23 This is a circuit formed in an annular shape by connecting the heat storage tank 50 with an intermediate hot water pipe 53. An intermediate hot water circulation pump 51 is incorporated in the intermediate hot water pipe 52. The water in the intermediate hot water circulation circuit 7 flows into the three-fluid heat exchanger 23 by driving the intermediate hot water circulation pump 51, and the air-conditioning refrigerant circuit 5 and the hot water supply are supplied by the three-fluid heat exchanger 23. While exchanging heat with the refrigerant circuit 6, the heat storage tank 50 is returned to. The heat storage tank 50 is filled with a heat storage material, and the hot or cold energy obtained from the three-fluid heat exchanger 23 is stored in the heat storage tank 50. The heat storage tank 50 is connected to a tap water supply pipe 78 for supplying tap water to the heat storage tank 50.

次に、給湯余熱温水循環回路12は、蓄熱タンク50の下部と太陽熱用熱交換器91の一端とを給湯余熱温水用配管94で接続し、太陽熱用熱交換器91の他端と、ヒートポンプユニット1に組み込まれて空調用冷温水循環回路8と熱交換を行う給湯余熱熱交換器92の一端と、を給湯余熱温水用配管95で接続し、給湯余熱熱交換器92の他端と蓄熱タンク50の上部とを配管96で接続して、環状に形成された回路である。給湯余熱温水用配管94には、給湯余熱温水用循環ポンプ93が組み込まれている。蓄熱タンク50内の水は、給湯余熱温水用循環ポンプ93を駆動することにより、太陽熱用熱交換器91で太陽熱集熱用熱媒体循環回路10と熱交換を行い、さらに、給湯余熱熱交換器92で空調用液循環回路7と熱交換を行いながら流れていき、蓄熱タンク50へ戻っていく。   Next, the hot water remaining heat / hot water circulation circuit 12 connects the lower part of the heat storage tank 50 and one end of the solar heat exchanger 91 with a hot water remaining heat / hot water pipe 94, the other end of the solar heat exchanger 91, and a heat pump unit. 1 is connected to one end of a hot-water remaining heat heat exchanger 92 that is incorporated in the air-conditioning cold / hot water circulation circuit 8 and exchanges heat with the hot-water remaining heat / hot water pipe 95, and the other end of the hot water remaining heat heat exchanger 92 is connected to the heat storage tank 50. This is a circuit formed in an annular shape by connecting the upper part thereof with a pipe 96. A circulating hot water supply hot water circulating pump 93 is incorporated in the hot water supply hot water hot water pipe 94. The water in the heat storage tank 50 exchanges heat with the solar heat collecting heat medium circulation circuit 10 in the solar heat exchanger 91 by driving the hot water hot water hot water circulation pump 93, and further the hot water hot water heat exchanger. At 92, the air flows while exchanging heat with the air-conditioning liquid circulation circuit 7, and returns to the heat storage tank 50.

なお、太陽熱用熱交換器91における太陽熱用熱交換器91を流れる2つの流体の流れ方向は対向流であり、給湯余熱熱交換器92を流れる2つの流体も、同様に流れ方向は対向流である。   Note that the flow directions of the two fluids flowing through the solar heat exchanger 91 in the solar heat exchanger 91 are counterflows, and the two fluids flowing through the hot water residual heat exchanger 92 are also counterflowing in the same way. is there.

次に、出湯経路11は、貯湯タンク70内に貯湯されている温水を利用者に供給するための温水供給経路74と、蓄熱タンク50に蓄熱されている中間温水を利用者に供給するための中間温水供給経路75と、水道水を貯湯タンク70、蓄熱タンク50および利用者に供給するための水道水供給経路76と、の3つの経路を有している。   Next, the hot water supply path 11 is used for supplying the user with hot water supply path 74 for supplying hot water stored in the hot water storage tank 70 to the user, and for supplying intermediate hot water stored in the heat storage tank 50 to the user. There are three paths: an intermediate hot water supply path 75 and a tap water supply path 76 for supplying tap water to the hot water storage tank 70, the heat storage tank 50, and the user.

温水供給経路74は、貯湯タンク70に一端が接続され、他端が温水供給口79に接続された温水供給配管74aと、貯湯タンク70に一端が接続され他端が温水供給配管74aの途中に接続された温水供給配管74bとを備え、温水供給配管74aと温水供給配管74bとが合流する部分に三方弁77を設けた構成となっている。中間温水供給経路75は、蓄熱タンク50に一端が接続され他端が温水供給配管74aの途中に接続された中間温水供給配管75aと、蓄熱タンク50に一端が接続され、他端が中間温水供給配管75aの途中に接続された中間温水供給配管75bとを備え、中間温水供給配管75aと温水供給配管74aとが合流する部分に三方弁77を設けた構成となっている。水道水供給経路76は、水道水が供給される水道水供給口78から貯湯タンク70に接続される水道水供給配管76aと、この水道水供給配管76aの途中から分岐して蓄熱タンク50に接続された水道水供給配管76bと、水道水供給配管76aの途中から分岐して温水供給配管74aの途中に接続された水道水供給配管76cとを備え、水道水供給配管76cと温水供給配管74aとが合流する部分に三方弁77を設けた構成となっている。   The hot water supply path 74 has one end connected to the hot water storage tank 70 and the other end connected to the hot water supply port 79, and one end connected to the hot water storage tank 70 and the other end in the middle of the hot water supply pipe 74a. The hot water supply pipe 74b is connected, and a three-way valve 77 is provided at a portion where the hot water supply pipe 74a and the hot water supply pipe 74b merge. The intermediate hot water supply path 75 has one end connected to the heat storage tank 50 and the other end connected in the middle of the hot water supply pipe 74a, one end connected to the heat storage tank 50, and the other end supplied with the intermediate hot water supply. An intermediate hot water supply pipe 75b connected in the middle of the pipe 75a is provided, and a three-way valve 77 is provided at a portion where the intermediate hot water supply pipe 75a and the hot water supply pipe 74a merge. The tap water supply path 76 is connected to the heat storage tank 50 by branching from a tap water supply pipe 76a connected to the hot water storage tank 70 from a tap water supply port 78 to which tap water is supplied, and from the middle of the tap water supply pipe 76a. A tap water supply pipe 76b and a tap water supply pipe 76c branched from the middle of the tap water supply pipe 76a and connected in the middle of the hot water supply pipe 74a. It is the structure which provided the three-way valve 77 in the part which joins.

このように構成された出湯経路11によれば、それぞれの三方弁77を適宜開閉操作することにより、温水供給口79から、水道水、蓄熱タンク50で蓄熱された中間温水、貯湯タンク70に貯湯された温水をそれぞれ利用者に供給するだけでなく、水道水、中間温水および温水のうち少なくとも2種類の水を混合させた状態で温水供給口79から利用者に供給することが可能である。   According to the hot water supply path 11 configured as described above, hot water is stored in the hot water storage tank 70 from the hot water supply port 79 through the hot water supply port 79 by appropriately opening and closing each of the three-way valves 77. In addition to supplying the warm water to the user, it is possible to supply the user from the warm water supply port 79 in a state where at least two kinds of tap water, intermediate warm water, and warm water are mixed.

制御装置1aは、図示しないリモコンと、本実施形態に係る空調給湯システムの各部位に設けられた温度センサの信号とを入力し、これらの信号に基づいて、空調用圧縮機21と、給湯用圧縮機41と、四方弁22と、膨張弁27,43と、循環ポンプ51,67,71,85,93と、に対して制御を行う。   The control device 1a inputs a remote controller (not shown) and signals from temperature sensors provided in each part of the air conditioning and hot water supply system according to the present embodiment, and based on these signals, the air conditioning compressor 21 and the hot water supply Control is performed on the compressor 41, the four-way valve 22, the expansion valves 27 and 43, and the circulation pumps 51, 67, 71, 85, and 93.

以上、主として運転モードの説明で述べたように、本実施形態に係る空調給湯システムは、上述の三流体熱交換器を用いることにより、空調・給湯負荷の大小にかかわらず、空調機と給湯機を高いエネルギ効率で任意に同時運転可能なシステムである。また、空調や給湯の熱源として、太陽熱や地熱等の自然エネルギを利用することができるため、空調給湯システムの省エネ性をさらに高めることができる。   As described above, mainly as described in the description of the operation mode, the air conditioning and hot water supply system according to the present embodiment uses the above-described three-fluid heat exchanger, so that the air conditioner and the hot water supply machine can be used regardless of the size of the air conditioning / hot water supply load. Is a system that can arbitrarily operate simultaneously with high energy efficiency. Further, since natural energy such as solar heat and geothermal heat can be used as a heat source for air conditioning and hot water supply, the energy saving performance of the air conditioning and hot water supply system can be further enhanced.

引き続いて、本発明の実施形態に係る三流体熱交換器について、図2〜図9を参照しながら以下説明する。図2は本発明の実施形態に係る三流体熱交換器に関する第1実施例の内管曲げ構造と外管構造を示す平面図である。図3は本実施形態に係る三流体熱交換器に関する第1実施例の内管及び外管の直行部分の管軸方向に対する垂直な面から見た断面図である。図4は本実施形態に係る三流体熱交換器に関する第1実施例の内管及び外管の曲げ部分の管軸方向に対する垂直な面から見た断面図である。図5は本実施形態に係る三流体熱交換器に関する第1実施例の内管の曲げ部分、外管(外殻)、仕切板の全体構造を示す見取図である。   Subsequently, a three-fluid heat exchanger according to an embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is a plan view showing the inner tube bending structure and the outer tube structure of the first example relating to the three-fluid heat exchanger according to the embodiment of the present invention. FIG. 3 is a cross-sectional view seen from a plane perpendicular to the tube axis direction of the straight part of the inner tube and the outer tube of the first example of the three-fluid heat exchanger according to the present embodiment. FIG. 4 is a cross-sectional view of the bent portion of the inner tube and the outer tube of the first example relating to the three-fluid heat exchanger according to the present embodiment as viewed from a plane perpendicular to the tube axis direction. FIG. 5 is a sketch showing the entire structure of the bent portion of the inner tube, the outer tube (outer shell), and the partition plate of the first example relating to the three-fluid heat exchanger according to the present embodiment.

また、図6は本実施形態に係る三流体熱交換器において外殻を形成する箱型外殻内に2本の内管を上下にロウ付け接合で重ね合わせた第2実施例を示す断面図である。図7は本実施形態に係る三流体熱交換器において外殻を形成する箱型外殻内に2本の内管を平面状にロウ付け接合で組み合わせた第3実施例を示す断面図である。図8は本実施形態に係る三流体熱交換器において外管を形成する樹脂製外殻の端部における湾曲構造と樹脂製外殻内の内管曲げ構造を示す第4実施例の平面図である。図9は本実施形態に係る三流体熱交換器に関する第4実施例の内管及び外管(樹脂製外殻)の直行部分の管軸方向に対する垂直な面から見た断面図である。   FIG. 6 is a cross-sectional view showing a second example in which two inner pipes are superposed on each other by brazing in a box-shaped outer shell forming an outer shell in the three-fluid heat exchanger according to the present embodiment. It is. FIG. 7 is a cross-sectional view showing a third example in which two inner pipes are combined by plane brazing in a box-shaped outer shell forming an outer shell in the three-fluid heat exchanger according to the present embodiment. . FIG. 8 is a plan view of a fourth example showing a curved structure at the end of the resin outer shell forming the outer pipe and an inner pipe bending structure in the resin outer shell in the three-fluid heat exchanger according to the present embodiment. is there. FIG. 9 is a cross-sectional view seen from a plane perpendicular to the tube axis direction of the direct part of the inner tube and outer tube (resin outer shell) of the fourth example of the three-fluid heat exchanger according to the present embodiment.

また、図2〜図9において、101は空調用内管、102は給湯用内管、103は外殻(箱型の外管)、104は仕切板、105は整流板、107は空調用冷媒流路、108は給湯用冷媒流路、110は温水入口、111は温水出口、113は内管直行部分温水流路、114は内管曲げ部分温水流路、115は大径、116は小径、117は断熱材、118は熱交換器入口側、119は熱交換器出口側、121は内管接合部、122は内管・仕切板接合部、123は内管高さ保持用ガイド、130は樹脂製外殻、135は樹脂製外殻湾曲部、136は樹脂製外殻上下平面部、137は樹脂製外殻角曲面部、をそれぞれ表す。   2 to 9, 101 is an air conditioning inner pipe, 102 is a hot water supply inner pipe, 103 is an outer shell (box-type outer pipe), 104 is a partition plate, 105 is a rectifying plate, and 107 is an air conditioning refrigerant. Flow path, 108 is a hot water supply refrigerant path, 110 is a hot water inlet, 111 is a hot water outlet, 113 is an inner pipe direct partial hot water flow path, 114 is an inner pipe bent partial hot water flow path, 115 is a large diameter, 116 is a small diameter, 117 is a heat insulating material, 118 is a heat exchanger inlet side, 119 is a heat exchanger outlet side, 121 is an inner pipe joint, 122 is an inner pipe / partition plate joint, 123 is an inner pipe height holding guide, and 130 is A resin outer shell, 135 is a resin outer shell curved portion, 136 is a resin outer shell upper and lower flat surface portion, and 137 is a resin outer shell angular curved surface portion.

「第1実施例」
本発明の実施形態に係る第1実施例について、図2〜図4を参照しながら以下説明する。図2は本実施形態に係る三流体熱交換器に関する第1実施例の内管曲げ構造と外管構造を示す平面図である。図3は本実施形態に係る三流体熱交換器に関する第1実施例の内管及び外管の直行部分の管軸方向に対する垂直な面から見た断面図である。図4は本実施形態に係る三流体熱交換器に関する第1実施例の内管及び外管の曲げ部分の管軸方向に対する垂直な面から見た断面図である。
“First Example”
A first example according to the embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is a plan view showing the inner tube bending structure and the outer tube structure of the first example relating to the three-fluid heat exchanger according to the present embodiment. FIG. 3 is a cross-sectional view seen from a plane perpendicular to the tube axis direction of the straight part of the inner tube and the outer tube of the first example of the three-fluid heat exchanger according to the present embodiment. FIG. 4 is a cross-sectional view of the bent portion of the inner tube and the outer tube of the first example relating to the three-fluid heat exchanger according to the present embodiment as viewed from a plane perpendicular to the tube axis direction.

ステンレス製の箱型の外殻103に蛇行形状の銅製の空調用及び給湯用内管101,102が4本収納されている。ここで、蛇行形状について説明すると、図2に示す内管101,102の図示構造から分かるように、内管101,102は直行部分と曲げ部分とからなる往復経路を形成しており、この往復経路の形状を蛇行形状と称し、以下同様な意味で用いる。上記の直行部分は必ずしも直線形状のみに限定されるものではなくて、若干の非直線形状を持つものも含む。さらに、内管の往路と復路とが厳密な意味で平行路に限定されるものでもない。そして、この内管の蛇行形状の曲げ部分は大径115と小径116とを組み合わせた形状である。空調用内管101と給湯用内管102は、図3の図示例によると互いにロウ付け121で接合され、互いに熱伝導し易くなるように収納されている。すなわち、空調用内管101又は給湯用内管102は各々対角線上に配置されていて、隣接する内管同士すなわち内管101と102同士がロウ付け接合121されている。なお、内管101,102同士を固定する方法として、ロウ付け接合121の外に、束ねた内管の最外周をバンドを巻き付けて固定してもよい。   Four stainless steel air-conditioning and hot-water supply inner pipes 101 and 102 are housed in a stainless steel box-shaped outer shell 103. Here, the meandering shape will be described. As can be seen from the illustrated structure of the inner pipes 101 and 102 shown in FIG. 2, the inner pipes 101 and 102 form a reciprocating path composed of a straight part and a bent part. The shape of the path is referred to as a meandering shape and is used in the same meaning hereinafter. The above-mentioned perpendicular portion is not necessarily limited to only a linear shape, and includes a portion having a slight non-linear shape. Further, the forward path and the return path of the inner pipe are not limited to parallel paths in a strict sense. The meandering bent portion of the inner tube has a shape in which the large diameter 115 and the small diameter 116 are combined. The air conditioning inner pipe 101 and the hot water supply inner pipe 102 are joined together by brazing 121 according to the illustrated example of FIG. That is, the air conditioning inner pipe 101 or the hot water supply inner pipe 102 is arranged on a diagonal line, and adjacent inner pipes, that is, the inner pipes 101 and 102 are brazed and joined 121. As a method of fixing the inner pipes 101 and 102 to each other, the outermost circumference of the bundled inner pipes may be fixed around the brazed joint 121 by winding a band.

内管の内で2本が空調用内管101、残りの2本が給湯用内管102であり、それぞれの内管では空調用冷媒と給湯用冷媒の流路107,108となっている。異なる冷媒が流れる内管101,102同士は蛇行形状に加工された後に、内管101,102の直行部分においては、図3に示すように、内管101と内管102同士がロウ付け接合121されている。さらに、内管101,102の曲げ部分においては、小径116の曲げ部分の外側に大径115の曲げ部分の内側が接するように(図4を参照)、ロウ付け接合121されている。2本の内管101,102は同一内径の円管である。   Two of the inner pipes are the air conditioning inner pipe 101 and the remaining two are the hot water supply inner pipes 102, and the respective inner pipes are flow paths 107 and 108 for the air conditioning refrigerant and the hot water supply refrigerant. After the inner pipes 101 and 102 in which different refrigerants flow are processed into a meandering shape, the inner pipe 101 and the inner pipes 102 are brazed and joined 121 in a direct portion of the inner pipes 101 and 102 as shown in FIG. Has been. Further, the bent portions of the inner pipes 101 and 102 are brazed and joined 121 so that the inside of the bent portion of the large diameter 115 is in contact with the outside of the bent portion of the small diameter 116 (see FIG. 4). The two inner pipes 101 and 102 are circular pipes having the same inner diameter.

ステンレス製の箱型外殻103は自然エネルギの温水回路(中間温水冷媒回路7)となっている(図1を参照)。外殻103には仕切板104と整流板105が設けられている。整流板105は、外殻103に流れる温水冷媒の流れ113の方向が逆転する外殻103の角部(図2の図示例で左右端)に設けられ、温水冷媒の流れを内管の曲げ部分に沿うように誘導している。整流板105は外殻103の両端部にそれぞれ設けられていて、温水冷媒の流れ乱れを抑制している。図3に示す断面図からも分かるように、仕切板104は外殻103の上壁部と下壁部に当接して温水流路113に沿って左右端間に設けられ、さらに、図4に示すように、内管の曲げ部分の箇所において、仕切り板104は、内管101,102が貫通する空間と温水流路114が形成される空間とからなる穴開き部が設けられている。   The stainless steel box-shaped outer shell 103 is a natural energy hot water circuit (intermediate hot water refrigerant circuit 7) (see FIG. 1). The outer shell 103 is provided with a partition plate 104 and a rectifying plate 105. The rectifying plate 105 is provided at corners (left and right ends in the illustrated example of FIG. 2) of the outer shell 103 where the direction of the flow 113 of the hot water refrigerant flowing through the outer shell 103 is reversed, and the flow of the hot water refrigerant is Is guided along. The rectifying plates 105 are provided at both ends of the outer shell 103, respectively, to suppress the turbulent flow of the hot water refrigerant. As can be seen from the cross-sectional view shown in FIG. 3, the partition plate 104 is provided between the left and right ends along the hot water flow path 113 in contact with the upper wall portion and the lower wall portion of the outer shell 103. As shown, the partition plate 104 is provided with a perforated portion including a space through which the inner pipes 101 and 102 penetrate and a space in which the hot water flow path 114 is formed at the bent portion of the inner pipe.

箱型の外殻103の内部空間に仕切板104を内管101,102の直行部分に並行して設けたことによって、外殻103を流れる自然エネルギの温水回路は、空調用内管101と給湯用内管102内にそれぞれ形成される冷媒回路の外周囲を流れるように流路が形成される。すなわち、図1に示すように、内管直行部分温水流路113と内管曲げ部分温水流路114が形成される。
図4に示すように、仕切板104は、外殻103の内部を流れる温水の流路が内管直行部分温水流路113と内管曲げ部分温水流路114を形成するように、外殻103の内部を仕切った空間を形成する矩形状の板から成り立っている。仕切板104の端部はそれぞれ外殻103に固定されている。仕切板104が形成する空間には内管101,102が挿入されている。内管101,102の曲げ部分が貫通する仕切板104の穴開き部の壁面(図4の図示例で穴開き部の左端側の上下側面)と、内管101,102の曲げ部分の一部とは、ロウ付けにより接合されて、内管・仕切板接合部122が形成されている。さらに、図4において、仕切板104の穴開き部を仕切板104の上下中央部分に設けることによって、内管高さ保持用ガイド123が形成され、内管101,102を外殻103の高さ方向で略中央部分に配置することができる。また、内管101,102は三流体熱交換器の入口側118と出口側119においても外殻103と接合している。このようにして、内管101,102は、外殻103と仕切板104に固定されることで、熱交換器内で安定して固定されている。
By providing the partition plate 104 in the internal space of the box-shaped outer shell 103 in parallel with the direct part of the inner pipes 101 and 102, the hot water circuit of natural energy flowing through the outer shell 103 is connected to the inner pipe 101 for air conditioning and the hot water supply. The flow paths are formed so as to flow around the outer periphery of the refrigerant circuit respectively formed in the inner pipe 102. That is, as shown in FIG. 1, the inner pipe direct partial hot water flow path 113 and the inner pipe bent partial hot water flow path 114 are formed.
As shown in FIG. 4, the partition plate 104 has an outer shell 103 such that a flow path of hot water flowing inside the outer shell 103 forms a partial hot water flow path 113 and an inner pipe bent partial hot water flow path 114. It consists of a rectangular plate that forms a space that partitions the interior of the. Each end of the partition plate 104 is fixed to the outer shell 103. Inner tubes 101 and 102 are inserted into the space formed by the partition plate 104. The wall surface of the perforated portion of the partition plate 104 through which the bent portion of the inner pipes 101 and 102 passes (upper and lower side surfaces on the left end side of the perforated portion in the example shown in FIG. 4), and a part of the bent portion of the inner tubes 101 and 102 Are joined by brazing to form an inner tube / partition plate joint 122. Further, in FIG. 4, the inner tube height holding guide 123 is formed by providing the holed portion of the partition plate 104 at the upper and lower central portions of the partition plate 104, and the inner tubes 101 and 102 are arranged at the height of the outer shell 103. It can be arranged in a substantially central part in the direction. The inner pipes 101 and 102 are also joined to the outer shell 103 on the inlet side 118 and the outlet side 119 of the three-fluid heat exchanger. In this way, the inner pipes 101 and 102 are stably fixed in the heat exchanger by being fixed to the outer shell 103 and the partition plate 104.

図5において、外殻103の温水入口110から入り込んだ温水冷媒は、外殻103の内部を仕切る仕切板104によって区切られた空間中を内管101,102の管軸方向に沿って流路113を形成する。内管101,102は区切られた空間中の略中央部分に配置されているので、温水冷媒は内管に対して均等な熱伝達性能を果たすことになる。温水冷媒は外殻103内を複数回流路の流れ方向を逆転して温水出口から出て行く。外殻103は、外気との熱移動を抑制するため、図3に示すように断熱材117で囲まれている。   In FIG. 5, the hot water refrigerant that has entered from the hot water inlet 110 of the outer shell 103 flows through the space partitioned by the partition plate 104 that partitions the inside of the outer shell 103 along the tube axis direction of the inner tubes 101 and 102. Form. Since the inner pipes 101 and 102 are disposed at a substantially central portion in the partitioned space, the hot water refrigerant achieves a uniform heat transfer performance with respect to the inner pipe. The hot water refrigerant goes out from the hot water outlet through the outer shell 103 by reversing the flow direction of the flow path a plurality of times. The outer shell 103 is surrounded by a heat insulating material 117 as shown in FIG. 3 in order to suppress heat transfer with the outside air.

以上説明したように、本実施形態に関する第1実施例は、箱型の外管103と蛇行した内管101,102とで多重管式の三流体熱交換器を構成しているため、伝熱性能を維持しつつ、熱交換器を小型化することができる。また、内管101,102を曲げ加工した後に内管接合部121を形成しているので、内管の曲げ半径を小さくでき小型化に寄与できる。また、内管101,102は、その曲げ部分で仕切仮104と接合していることにより、外殻103内の中央部で固定配置させることができるので、内管101,102の全周囲にむら無く外殻内の流体が流れるため、伝熱性能がよい。また、整流板105を設けたことで、流れ方向が大きく変化する曲げ部分の部位においても流体の流れを乱れにくくする効果がある。   As described above, in the first example of this embodiment, the box-shaped outer tube 103 and the meandering inner tubes 101 and 102 constitute a multi-tube three-fluid heat exchanger. The heat exchanger can be downsized while maintaining the performance. Further, since the inner pipe joint portion 121 is formed after the inner pipes 101 and 102 are bent, the bending radius of the inner pipe can be reduced, which contributes to downsizing. Further, since the inner pipes 101 and 102 are joined to the partition provisional 104 at their bent portions, they can be fixedly arranged at the center in the outer shell 103, so that the inner pipes 101 and 102 are unevenly distributed around the entire circumference. Heat transfer performance is good because the fluid in the outer shell flows. Further, the provision of the rectifying plate 105 has an effect of making it difficult to disturb the flow of the fluid even in the bent portion where the flow direction changes greatly.

「第2実施例」
本発明の実施形態に係る第2実施例について、図6を参照しながら以下説明する。図6は本実施形態に係る三流体熱交換器において外殻を形成する箱型外殻内に2本の内管を上下にロウ付け接合で重ね合わせた第2実施例を示す断面図である。
"Second Example"
A second example according to the embodiment of the present invention will be described below with reference to FIG. FIG. 6 is a cross-sectional view showing a second example in which two inner pipes are superposed on each other by brazing in a box-shaped outer shell forming an outer shell in the three-fluid heat exchanger according to the present embodiment. .

ステンレス製の箱型の外殻103に蛇行状に湾曲した銅製の内管101,102が2本上下に収納されている。図示例では、上に空調用内管101、下に給湯用内管102が配置されているが、各内管の上下配置は逆であってもよい。内管の2本とも同型であり、内管の曲がり径は各内管101,102が上下配置のために、すべて同じである。すなわち、内管101と102は上下の重ね配置であるのでその曲げ部分において曲げの小径と大径(図2の大径115と小径116を参照)が生じない。   Two copper inner pipes 101 and 102 curved in a meandering manner are accommodated in a stainless box-like outer shell 103 vertically. In the illustrated example, the air conditioning inner pipe 101 is disposed on the upper side, and the hot water supply inner pipe 102 is disposed on the lower side. However, the upper and lower arrangements of the inner pipes may be reversed. The two inner pipes are the same type, and the bending diameters of the inner pipes are all the same because the inner pipes 101 and 102 are vertically arranged. That is, since the inner pipes 101 and 102 are arranged one above the other, a small diameter and a large diameter (see the large diameter 115 and the small diameter 116 in FIG. 2) do not occur at the bent portion.

内管のうちの1本が空調用、残りの1本が給湯用の流路となっていて、異なる冷媒が流れる内管同士は上下に重ねられロウ付けで接合121されている。外殻103は自然エネルギの温水回路(図1に示す中間温水冷媒回路7)となっている。外殻103は外気との熱移動を抑制するために断熱材117で囲まれている。2本の内管101,102は同一内径の円管である。内管の101,102の曲げ部分の曲げ加工をした後に、ロウ付け接合121すると、曲げ部分の曲げ半径を小径にすることができ、さらに、内管が上下配置であるので内管101と102とで曲げ径を異にすることが無く、加工が容易である。   One of the inner pipes is a flow path for air conditioning and the remaining one is a flow path for hot water supply, and the inner pipes through which different refrigerants flow are overlapped and joined 121 by brazing. The outer shell 103 is a natural energy hot water circuit (intermediate hot water refrigerant circuit 7 shown in FIG. 1). The outer shell 103 is surrounded by a heat insulating material 117 to suppress heat transfer with the outside air. The two inner pipes 101 and 102 are circular pipes having the same inner diameter. When the bent portions of the inner pipes 101 and 102 are bent and then brazed and joined 121, the bending radius of the bent portions can be reduced, and the inner pipes are arranged vertically, so that the inner pipes 101 and 102 are arranged. And the bending diameter is not different, and the processing is easy.

第2実施例の構成を用いると、内管の形状が同じで構成が単純であるため、安価で簡易に三流体熱交換器を製作できる。また、内管の本数が少ないため、内管を内包する外殻(外管)の寸法を縮小することが可能であり、三流体熱交換器のコンパクト化を図ることができる。   When the configuration of the second embodiment is used, since the configuration of the inner tube is the same and the configuration is simple, a three-fluid heat exchanger can be easily manufactured at low cost. In addition, since the number of inner pipes is small, the size of the outer shell (outer pipe) that encloses the inner pipe can be reduced, and the three-fluid heat exchanger can be made compact.

なお、第2実施例では、2本の内管が同一内径の円管として説明したが、それぞれの内管に流れる冷媒の種類、特性によって各内管の径を異ならせても良く、この場合には、径が大きい方の内管の曲げ径によって内管全体の曲げ部分の曲げ径が決まり、径が小さい方の内管は当該決まった曲げ径に合わせて曲げればよい。   In the second embodiment, the two inner pipes are described as circular pipes having the same inner diameter. However, the diameters of the inner pipes may be different depending on the type and characteristics of the refrigerant flowing in each inner pipe. In this case, the bending diameter of the bent portion of the entire inner tube is determined by the bending diameter of the inner tube having the larger diameter, and the inner tube having the smaller diameter may be bent in accordance with the determined bending diameter.

「第3実施例」
本発明の実施形態に係る第3実施例について、図7を参照しながら以下説明する。図7は本実施形態に係る三流体熱交換器において外殻を形成する箱型外殻内に2本の内管を平面状にロウ付け接合で重ね合わせた第3実施例を示す断面図である。
ステンレス製の箱型の外殻103に蛇行状に湾曲した銅製の内管101,102が2本収納されている。内管101,102の蛇行形状は、図2で説明した内管の直行部分と、大径115と小径116からなる曲げ部分と、を組み合わせた形状である。内管のうちのいずれか1木が空調用、残りの1本が給湯用の流路であり、内管の曲げ部分において、内管101,102同士は、小径116の曲げ部分の外側に大径115の曲げ部分の内側が接するように構成されて、互いにロウ付けで接合121されて平面板形状となっている。ここで、内管の曲げ部分の曲げ加工をした後に、ロウ付け接合121をすると、曲げ径を小さくでき、三流体熱交換器の小型化に寄与できる。外殻103は自然エネルギの温水回路(図1に示す中間温水冷媒回路7)となっている。2本の内管101,102は同一内径の円管である。
“Third Example”
A third example according to the embodiment of the present invention will be described below with reference to FIG. FIG. 7 is a cross-sectional view showing a third example in which two inner tubes are overlapped in a planar shape by brazing in a box-shaped outer shell forming an outer shell in the three-fluid heat exchanger according to the present embodiment. is there.
Two stainless steel inner pipes 101 and 102 curved in a meandering manner are accommodated in a stainless steel box-shaped outer shell 103. The meandering shape of the inner pipes 101 and 102 is a combination of the straight part of the inner pipe described in FIG. 2 and the bent part composed of the large diameter 115 and the small diameter 116. One of the inner pipes is a flow path for air conditioning and the remaining one is a flow path for hot water supply. In the bent part of the inner pipe, the inner pipes 101 and 102 are large outside the bent part of the small diameter 116. The inner side of the bent portion of the diameter 115 is in contact with each other, and is joined to each other by brazing 121 to form a flat plate shape. Here, if the brazed joint 121 is performed after the bending portion of the inner pipe is bent, the bending diameter can be reduced, and the three-fluid heat exchanger can be reduced in size. The outer shell 103 is a natural energy hot water circuit (intermediate hot water refrigerant circuit 7 shown in FIG. 1). The two inner pipes 101 and 102 are circular pipes having the same inner diameter.

第3実施例を用いると、内管の形状が同じで構成が単純であるため、安価で簡易に三流体熱交換器を製作できる。内管の本数が少ないため、内管を内包する外殻(外管)の寸法を締小することが可能であり、三流体熱交換器のコンパクト化を図ることができる。また、内管を平面状に配置しているために三流体熱交換器の高さを抑制することができ、さらにコンパクト化を図ることができる。   When the third embodiment is used, since the shape of the inner tube is the same and the configuration is simple, a three-fluid heat exchanger can be easily manufactured at low cost. Since the number of inner pipes is small, the size of the outer shell (outer pipe) that encloses the inner pipe can be reduced, and the three-fluid heat exchanger can be made compact. Further, since the inner pipe is arranged in a planar shape, the height of the three-fluid heat exchanger can be suppressed, and further downsizing can be achieved.

なお、第3実施例では、2本の内管が同一内径の円管として説明したが、それぞれの内管に流れる冷媒の種類、特性によって各内管の径を異ならせても良く、この場合には、径が大きい方の内管の曲げ径によって内管全体の曲げ部分の曲げ径が決まり、径が小さい方の内管は当該決まった曲げ径に合わせて曲げればよい。   In the third embodiment, the two inner pipes are described as circular pipes having the same inner diameter. However, the diameters of the inner pipes may be varied depending on the type and characteristics of the refrigerant flowing in each inner pipe. In this case, the bending diameter of the bent portion of the entire inner tube is determined by the bending diameter of the inner tube having the larger diameter, and the inner tube having the smaller diameter may be bent in accordance with the determined bending diameter.

「第4実施例」
本発明の実施形態に係る第4実施例について、図8と図9を参照しながら以下説明する。図8は本実施形態に係る三流体熱交換器において外管を形成する樹脂製外殻130の端部における湾曲構造135と樹脂製外殻130内の内管曲げ構造を示す第4実施例の平面図である。図9は本実施形態に係る三流体熱交換器に関する第4実施例の内管101,102及び外管(樹脂製外殻130)の直行部分の管軸方向に対する垂直な面から見た断面図である。
“Fourth Example”
A fourth example according to the embodiment of the present invention will be described below with reference to FIGS. 8 and 9. FIG. 8 shows a curved structure 135 at the end of the resin outer shell 130 forming the outer tube in the three-fluid heat exchanger according to this embodiment, and an inner tube bending structure in the resin outer shell 130 of the fourth example. It is a top view. FIG. 9 is a cross-sectional view as viewed from a plane perpendicular to the tube axis direction of the orthogonal portions of the inner pipes 101 and 102 and the outer pipe (resin outer shell 130) of the fourth example of the three-fluid heat exchanger according to the present embodiment. It is.

図示例では、蛇行形状を有した銅製の内管101,102が樹脂製の外殻130に4本収納されている。内管101,102は、図2と同様に直行部分と曲げ部分とからなる蛇行形状であり、外殻130と仕切板104とは一体成形されている。内菅101,102は、曲げ部分において、小径116の内管の外側に大径115の内管の内側が対面するように構成されている。そして、異なる冷媒が流れる内管101,102同士はその曲げ部分で曲げ加工された後に、小径116の曲げ部分の外側に大径115の曲げ部分の内側が接するようにロウ付けで接合121される。内管101,102のうちで2本が空調用の流路107、残りの2本が給湯用の流路108となっている。   In the illustrated example, four copper inner pipes 101 and 102 having a meandering shape are accommodated in an outer shell 130 made of resin. The inner pipes 101 and 102 have a meandering shape composed of a straight part and a bent part as in FIG. 2, and the outer shell 130 and the partition plate 104 are integrally formed. The inner rods 101 and 102 are configured such that the inner side of the inner tube with the large diameter 115 faces the outer side of the inner tube with the small diameter 116 at the bent portion. The inner pipes 101 and 102 through which different refrigerants flow are bent at the bent portions, and then joined 121 by brazing so that the inside of the bent portion of the large diameter 115 is in contact with the outside of the bent portion of the small diameter 116. . Of the inner pipes 101 and 102, two are air conditioning channels 107, and the remaining two are hot water channels 108.

本実施例の特徴の1つである樹脂外殻130の構成について述べると、図8の図示例において、樹脂製外殻130の左右端部が樹脂製外殻湾曲部135を形成しており、さらに、外殻130の左右端部間の直行部分の断面は、図8に図示するように、外殻の上下面に形成される上下平面部136と、上下平面部136に繋がる外殻角曲面部137と、を形成している。   The structure of the resin outer shell 130, which is one of the features of the present embodiment, will be described. In the illustrated example of FIG. 8, the left and right ends of the resin outer shell 130 form a resin outer shell curved portion 135. Further, as shown in FIG. 8, the cross section of the perpendicular portion between the left and right end portions of the outer shell 130 includes an upper and lower flat surface portion 136 formed on the upper and lower surfaces of the outer shell, and an outer shell angular curved surface connected to the upper and lower flat surface portion 136. Part 137.

空調用内管101と給湯用内管102からなる2本の内管は同一内径の円管である。内管の曲げ部分における内管の小径部116は、図4と同様に仕切板104に固着部材により固着されており、さらに、樹脂製外殻130の入口側118と出口側119において内管101,102はシール部材により固着されていて、これらの固着によって、内管101,102は流路113を形成している温水によって均等に熱伝達される。樹脂製外殻130は、自然エネルギの温水回路となっていて、内管直行部分温水流路113と内管曲げ部分温水流路114を形成している。   Two inner pipes composed of the air conditioning inner pipe 101 and the hot water supply inner pipe 102 are circular pipes having the same inner diameter. The small diameter portion 116 of the inner tube at the bent portion of the inner tube is fixed to the partition plate 104 by a fixing member as in FIG. 4, and the inner tube 101 is further formed at the inlet side 118 and the outlet side 119 of the resin outer shell 130. , 102 are fixed by a sealing member, and the inner pipes 101, 102 are evenly transferred by the hot water forming the flow path 113 by the fixing. The resin outer shell 130 is a natural energy hot water circuit, and forms an inner pipe direct partial hot water flow path 113 and an inner pipe bent partial hot water flow path 114.

本実施例の外殻130は、外殻130が樹脂で成形されることにより、外気との断熱性に優れた熱交換器とすることができる。また、樹脂成形することにより外殻の形状がより自由に設計できる。すなわち、外殻が箱型の場合、内管の直行部分の両端部における角部で温水流れに乱れが生じ易いため、整流板を設けていたが(図2における整流板105を参照)、外殻130を樹脂成形することにより、両端部を内管の曲げ形状に沿った形状とすることが可能であり、整流板を設けなくとも外殻を流れる流体の流れの乱れが抑制可能となる。また、外殻130における内管の直行部分の断面が、上下平面部136と角曲面部137を構成し、概ね円管状になっているため、耐圧性が高い。外殻130と仕切板104を一体成形していることで、部品数が減り、安価に製造することが可能である。また、第4実施例においても、内管の曲げ部分で曲げ加工された後に、内管同士をロウ付け接合121することで、曲げ径を小さくでき、三流体熱交換器の小型化に繋がる。   The outer shell 130 of the present embodiment can be a heat exchanger that is excellent in heat insulation from the outside air by molding the outer shell 130 with resin. Moreover, the shape of the outer shell can be designed more freely by resin molding. That is, when the outer shell is box-shaped, a rectifying plate is provided because the hot water flow is likely to be disturbed at the corners at both ends of the direct portion of the inner pipe (see the rectifying plate 105 in FIG. 2). By molding the shell 130 with resin, both end portions can be shaped along the bent shape of the inner tube, and turbulence of the flow of fluid flowing through the outer shell can be suppressed without providing a rectifying plate. In addition, since the cross section of the straight portion of the inner tube in the outer shell 130 constitutes the upper and lower flat surface portions 136 and the angular curved surface portion 137 and is substantially circular, the pressure resistance is high. Since the outer shell 130 and the partition plate 104 are integrally formed, the number of parts can be reduced, and it can be manufactured at low cost. Also in the fourth embodiment, after the inner pipe is bent at the bent portion, the inner pipes are brazed and joined 121, whereby the bending diameter can be reduced and the three-fluid heat exchanger can be reduced in size.

なお、第4実施例では、2本の内管が同一内径の円管として説明したが、それぞれの内管に流れる冷媒の種類、特性によって各内管の径を異ならせても良く、この場合には、径が大きい方の内管の曲げ径によって内管全体の曲げ部分の曲げ径が決まり、径が小さい方の内管は当該決まった曲げ径に合わせて曲げればよい。   In the fourth embodiment, the two inner tubes are described as circular tubes having the same inner diameter. However, the diameters of the inner tubes may be different depending on the type and characteristics of the refrigerant flowing in each inner tube. In this case, the bending diameter of the bent portion of the entire inner tube is determined by the bending diameter of the inner tube having the larger diameter, and the inner tube having the smaller diameter may be bent in accordance with the determined bending diameter.

「第5実施例」
本発明の実施形態に係る第5実施例は、上述の第1実施例〜第4実施例として挙げた三流体熱交換器の何れかを、図1に示す空調給湯システムの三流体熱交換器に適用した構成である。
"5th Example"
5th Example which concerns on embodiment of this invention is a three-fluid heat exchanger of the air-conditioning hot-water supply system which shows either of the three-fluid heat exchanger mentioned as the above-mentioned 1st Example-4th Example in FIG. It is the configuration applied to.

図1において、三流体熱交換器23には、中間温水冷媒回路7に流れる中間温水と、空調用冷媒回路5に流れる冷媒と、給湯用冷媒回路6に流れる冷媒と、の3つの流体が流れて、それぞれの流体間で熱交換が行われる。換言すると、空調用冷媒回路と、給湯用冷媒回路と、空調用冷媒回路及び給湯用冷媒回路内を循環するそれぞれの冷媒に対し三流体熱交換器において熱交換を行って蓄熱する熱媒体回路(中間温水冷媒回路)と、を備えた空調給湯システムにおいて、種々の運転パターンに応じて三流体熱交換器23内でそれぞれの流体間で効率的な熱交換が行われる。   In FIG. 1, three fluids flow through the three-fluid heat exchanger 23, the intermediate hot water flowing through the intermediate hot water refrigerant circuit 7, the refrigerant flowing through the air conditioning refrigerant circuit 5, and the refrigerant flowing through the hot water supply refrigerant circuit 6. Thus, heat exchange is performed between the fluids. In other words, an air conditioning refrigerant circuit, a hot water supply refrigerant circuit, and a heat medium circuit that stores heat by exchanging heat in each of the refrigerant circulating in the air conditioning refrigerant circuit and the hot water supply refrigerant circuit in a three-fluid heat exchanger ( In an air-conditioning hot-water supply system provided with an intermediate hot water refrigerant circuit), efficient heat exchange is performed between the fluids in the three-fluid heat exchanger 23 according to various operation patterns.

図1のシステム構成によると、中間温水冷媒回路7の中間温水は三流体熱交換器23において常に同方向に流れることになるが、中間温水冷媒回路7に三方弁を用いて入力側と出力側にたすき掛け回路を設ければ、中間温水の三流体熱交換器23での流れ方向を制御指令で逆にすることができ、また、三流体熱交換器23の入口と出口の接続を逆にするように回路構成してもよい。なお、入口と出口を逆接続することで、三流体熱交換器23内を流れるいずれの流体に対しても、その流体の流れ方向を逆にすることができる。   According to the system configuration of FIG. 1, the intermediate hot water in the intermediate hot water refrigerant circuit 7 always flows in the same direction in the three-fluid heat exchanger 23, but the intermediate hot water refrigerant circuit 7 uses a three-way valve to input and output sides. If the crossing circuit is provided, the flow direction of the intermediate hot water in the three-fluid heat exchanger 23 can be reversed by a control command, and the connection between the inlet and the outlet of the three-fluid heat exchanger 23 is reversed. The circuit may be configured as described above. In addition, by reversely connecting the inlet and the outlet, the flow direction of the fluid can be reversed for any fluid flowing in the three-fluid heat exchanger 23.

そして、三流体熱交換器23内の流体の流れを次のように設定することによって熱交換性能を向上させることができる。すなわち、空調用冷媒回路5の高圧側冷媒と、給湯用冷媒回路6の低圧側冷媒とが熱交換を行う場合(例.冷房・給湯運転)に、空調用冷媒と給湯用冷媒とを対向流とする。また、空調用冷媒回路5の低圧側冷媒と、給湯用冷媒回路6の低圧側冷媒と、中間温水冷媒回路7の自然エネルギの中間温水とで熱交換を行う場合(例.暖房・給湯運転)に、自然エネルギの中間温水に対して、空調用冷媒と給湯用冷媒とを対向流とする。   And the heat exchange performance can be improved by setting the flow of the fluid in the three-fluid heat exchanger 23 as follows. That is, when heat exchange is performed between the high-pressure side refrigerant of the air-conditioning refrigerant circuit 5 and the low-pressure side refrigerant of the hot water supply refrigerant circuit 6 (eg, cooling / hot water supply operation), the air conditioning refrigerant and the hot water supply refrigerant are counterflowed. And When heat exchange is performed between the low-pressure side refrigerant of the air conditioning refrigerant circuit 5, the low-pressure side refrigerant of the hot water supply refrigerant circuit 6, and the intermediate hot water of natural energy in the intermediate hot water refrigerant circuit 7 (eg, heating / hot water supply operation). In addition, the air conditioning refrigerant and the hot water supply refrigerant are made to counter flow with respect to the intermediate hot water of natural energy.

1 ヒートポンプユニット
1a 制御装置
2 室内ユニット
3 給湯・蓄熱タンクユニット
4 太陽熱集熱器
5 空調用冷媒回路
6 給湯用冷媒回路
7 中間温水冷媒回路
8 室内空調用冷温水循環回路
9 給湯回路
10 太陽熱集熱用熱媒体循環回路
11 外部出湯回路
12 給湯余熱温水循環回路
21 空調用圧縮機
22 四方弁
23 三流体熱交換器(熱回収用熱交換器)
23a 空調用配管
23b 給湯用配管
23c 蓄熱中間温水配管
26 冷媒タンク
27 膨張弁
28 空調用利用側熱交換器
28a 第1の空調用利用側分割熱交換器
28b 第2の空調用利用側分割熱交換器
29 空調用冷媒バイパス配管
34 三方弁
35 開閉弁
41 給湯用圧縮機
42 給湯用利用側熱交換器
43 給湯用膨張弁
44 給湯用熱源側熱交換器
45 ファン
46 給湯用冷媒タンク
47 三方弁
48 給湯用冷媒分岐回路
50 蓄熱タンク
52 中間温水用配管
53 中間温水用配管
60 住宅
61 室内熱交換器
62 三方弁
63 余熱用冷温水バイパス配管
64 二方弁
65 空調用冷温水配管
66 空調用冷温水バイパス配管
67 室内空調用冷温水循環ポンプ
70 貯湯タンク
71 給湯用循環ポンプ
72 給湯用配管
73 給湯用配管
74 温水供給経路
75 中間温水供給経路
76 水道水供給経路
77 三方弁
78 水道水供給口
79 温水供給口
81 太陽熱集熱用循環ポンプ
82 太陽熱集熱用配管
83 太陽熱集熱用配管
91 太陽熱用熱交換器
92 給湯余熱熱交換器
93 給湯余熱温水用循環ポンプ
94 給湯余熱温水用配管
95 給湯余熱温水用配管
101 空調用内管
102 給湯用内管
103 外殻(箱型の外管)
104 仕切板
105 整流板
107 空調用冷媒流路
108 給湯用冷媒流路
110 温水入口
111 温水出口
113 内管直行部分温水流路
114 内管曲げ部分温水流路
115 大径
116 小径
117 断熱材
118 熱交換器入口側
119 熱交換器出口側
121 内管接合部
122 内管・仕切板接合部
123 内管高さ保持用ガイド
130 樹脂製外殻
135 樹脂製外殻湾曲部
136 樹脂製外殻上下平面部
137 樹脂製外殻角曲面部
DESCRIPTION OF SYMBOLS 1 Heat pump unit 1a Control device 2 Indoor unit 3 Hot water supply / heat storage tank unit 4 Solar heat collector 5 Air conditioning refrigerant circuit 6 Refrigerant circuit for hot water supply 7 Intermediate hot water refrigerant circuit 8 Cold / hot water circulation circuit for indoor air conditioning 9 Hot water supply circuit 10 For solar heat collection Heat medium circulation circuit 11 External hot water circuit 12 Hot water supply hot water circulation circuit 21 Air conditioning compressor 22 Four-way valve 23 Three-fluid heat exchanger (heat recovery heat exchanger)
23a Air-conditioning pipe 23b Hot-water supply pipe 23c Heat storage intermediate hot water pipe 26 Refrigerant tank 27 Expansion valve 28 Air-conditioning use-side heat exchanger 28a First air-conditioning use-side divided heat exchanger 28b Second air-conditioning use-side divided heat exchange Heater 29 Air-conditioning refrigerant bypass pipe 34 Three-way valve 35 On-off valve 41 Hot water supply compressor 42 Hot water use side heat exchanger 43 Hot water supply expansion valve 44 Hot water supply heat source side heat exchanger 45 Fan 46 Hot water supply refrigerant tank 47 Three way valve 48 Refrigerant branch circuit for hot water supply 50 Heat storage tank 52 Pipe for intermediate hot water 53 Pipe for intermediate hot water 60 Housing 61 Indoor heat exchanger 62 Three-way valve 63 Hot water hot / cold water bypass pipe 64 Two-way valve 65 Air conditioning cold / hot water pipe 66 Air conditioning cold / hot water Bypass piping 67 Cold / hot water circulation pump for indoor air conditioning 70 Hot water storage tank 71 Hot water supply circulation pump 72 Hot water supply piping 73 Hot water supply distribution Pipe 74 Hot water supply path 75 Intermediate hot water supply path 76 Tap water supply path 77 Three-way valve 78 Tap water supply port 79 Hot water supply port 81 Solar heat collecting circulation pump 82 Solar heat collecting pipe 83 Solar heat collecting pipe 91 Solar heat heat Exchanger 92 Hot water hot water heat exchanger 93 Hot water hot water hot water circulating pump 94 Hot water hot water hot pipe 95 Hot water hot water hot pipe
101 Inner pipe for air conditioning 102 Inner pipe for hot water supply 103 Outer shell (box-shaped outer pipe)
104 Partition plate 105 Rectifier plate 107 Air conditioning refrigerant flow path 108 Hot water supply refrigerant flow path 110 Hot water inlet 111 Hot water outlet 113 Inner pipe direct partial hot water flow path 114 Inner pipe bending partial hot water flow path 115 Large diameter 116 Small diameter 117 Heat insulating material 118 Heat Exchanger inlet side 119 Heat exchanger outlet side 121 Inner tube joint portion 122 Inner tube / partition plate joint portion 123 Inner tube height holding guide 130 Resin outer shell 135 Resin outer shell curved portion 136 Resin outer shell top and bottom plane Part 137 Plastic outer shell corner curved surface

Claims (15)

空調サイクル、給湯サイクル及び自然エネルギサイクルで用いる三流体の内の第1の流体が循環する第1の冷媒回路、前記三流体の内の第2の流体が循環する第2の冷媒回路、前記三流体の内の自然エネルギを利用して蓄熱された第3の流体が循環する第3の冷媒回路、のそれぞれの冷媒回路に流れる、前記第1の流体と、前記第2の流体と、前記第3の流体との間で熱交換を行う三流体熱交換器であって、
前記三流体熱交換器は、前記第1の流体と前記第2の流体がそれぞれ流れる複数の内管と、前記複数の内管を内包し且つ前記第3の流体が流れる外殻と、から形成され、
異なる流体が流れていて接合された内管同士は、前記外殻内で直行部分と曲げ部分とからなる平面状の蛇行形状を形成し、
前記内管における前記蛇行形状の各直行部分を仕切る仕切板は、前記内管の直行部分に並行して前記外殻内に配置されているとともに、前記内管の曲げ部分貫通している穴開き部を有し、
前記第1の流体と前記第2の流体がそれぞれ流れる複数の前記内管は各々対角線上に配置され、隣接する前記内管同士が接合されている
ことを特徴とする三流体熱交換器。
A first refrigerant circuit in which a first fluid among the three fluids used in an air conditioning cycle, a hot water supply cycle, and a natural energy cycle circulates, a second refrigerant circuit in which a second fluid among the three fluids circulates , and the three The first fluid , the second fluid, and the second fluid flowing in the respective refrigerant circuits of the third refrigerant circuit in which the third fluid stored using the natural energy of the fluid circulates . A three-fluid heat exchanger that exchanges heat with three fluids ,
The three-fluid heat exchanger is formed of a plurality of inner pipes through which the first fluid and the second fluid respectively flow, and an outer shell containing the plurality of inner pipes and through which the third fluid flows. And
Inner pipes joined by different fluids flowing form a planar meandering shape consisting of a straight part and a bent part in the outer shell,
A partition plate partitioning the respective orthogonal portions of the serpentine shape of the inner tube, both the parallel to straight portions of the inner tube is disposed in the outer inner shell, bent portion of the inner tube extends through Having a perforated part ,
The three-fluid heat exchanger, wherein the plurality of inner pipes through which the first fluid and the second fluid respectively flow are arranged diagonally, and the adjacent inner pipes are joined to each other .
請求項1において、
前記内管の曲げ部分は、曲げ径の小さい内管の外側に対して曲げ径の大きな内管の内側をロウ付け接合した形状であることを特徴とする三流体熱交換器。
In claim 1,
3. The three-fluid heat exchanger according to claim 1, wherein the bent portion of the inner tube has a shape in which the inner side of the inner tube having a larger bending diameter is brazed to the outer side of the inner tube having a smaller bending diameter .
請求項1または2において、
前記外殻に流れる温水冷媒の流れ方向が逆転する前記外殻の角部に、前記温水冷媒の流れを前記内管の曲げ部分に沿うように誘導する整流板を設けることを特徴とする三流体熱交換器。
In claim 1 or 2 ,
A three-fluid characterized in that a rectifying plate for guiding the flow of the hot water refrigerant along the bent portion of the inner pipe is provided at a corner of the outer shell where the flow direction of the hot water refrigerant flowing in the outer shell is reversed. Heat exchanger.
請求項1または2において、
前記仕切板の穴開き部は、前記矩形部の縦方向に前記内管を貫通させる寸法分だけ開口が略中央部分に設けられ、
前記内管は、前記穴開き部の内側縁部と接合固定されるとともに、前記内管の通る前記外殻の入口側と出口側の縦方向の略中央部分で固定配置される
ことを特徴とする三流体熱交換器。
In claim 1 or 2,
The opening portion of the partition plate is provided with an opening in a substantially central portion by a dimension that allows the inner tube to penetrate in the longitudinal direction of the rectangular portion,
The inner pipe is fixedly connected to the inner edge portion of the perforated portion, and is fixedly disposed at a substantially central portion in the vertical direction on the inlet side and outlet side of the outer shell through which the inner pipe passes. Three-fluid heat exchanger.
請求項1または2において、
前記内管は、その曲げ部分を曲げた後に内管同士をロウ付け接合又はバンド固定して前記外殻に装填したものであることを特徴とする三流体熱交換器。
In claim 1 or 2,
3. The three-fluid heat exchanger according to claim 1, wherein the inner pipe is bent and bent and the inner pipes are brazed or band-fixed and loaded into the outer shell.
請求項1または2において、
前記仕切板における矩形部の各四辺端部は前記外殻に当接した構造であることを特徴とする三流体熱交換器。
In claim 1 or 2,
The three-fluid heat exchanger, wherein each of the four sides of the rectangular portion of the partition plate is in contact with the outer shell.
請求項1または2において、
前記第1の流体と前記第2の流体がそれぞれ流れる複数の内管は、2本の内管から形成され、前記2本の内管は上下に重ね合わされて接合されていることを特徴とする三流体熱交換器。
In claim 1 or 2,
The plurality of inner pipes through which the first fluid and the second fluid respectively flow are formed from two inner pipes, and the two inner pipes are overlapped and joined together. Three fluid heat exchanger.
請求項1または2において、
前記第1の流体と前記第2の流体がそれぞれ流れる複数の内管は、2本の内管から形成され、前記2本の内管は水平面上に配置されて接合され、前記内管の曲げ部分において、曲げ径の小さい内管の外側に対して曲げ径の大きな内管の内側を接合したものであることを特徴とする三流体熱交換器。
In claim 1 or 2,
The plurality of inner pipes through which the first fluid and the second fluid respectively flow are formed from two inner pipes, and the two inner pipes are arranged and joined on a horizontal plane, and the inner pipe is bent. The three-fluid heat exchanger characterized in that, in the portion, the inside of the inner tube having a large bending diameter is joined to the outside of the inner tube having a small bending diameter.
請求項1ないし8のいずれか1つの請求項において、
前記外殻はステンレス製の箱型を形成し、前記仕切板で仕切られた外殻内を前記内管の軸方向に沿って前記第3の流体が流れることを特徴とする三流体熱交換器。
In any one of claims 1 to 8,
The three-fluid heat exchanger characterized in that the outer shell forms a stainless steel box and the third fluid flows along the axial direction of the inner pipe in the outer shell partitioned by the partition plate. .
請求項1において、
前記外殻は樹脂製の湾曲した構造であり、
前記湾曲した構造は、前記外殻に流れる前記第3の流体の流れ方向が逆転する前記外殻の両端部に形成されて、前記第3の流体の流れを前記内管の曲げ部分に沿うように誘導することを特徴とする三流体熱交換器。
In claim 1,
The outer shell has a curved structure made of resin,
The curved structure is formed at both ends of the outer shell where the flow direction of the third fluid flowing in the outer shell is reversed, so that the flow of the third fluid follows the bent portion of the inner tube. A three-fluid heat exchanger characterized by directing to
請求項10において、
前記湾曲した構造は、前記内管の直行部分の軸方向に垂直な前記外殻の断面が略円管状を形成されていることを特徴とする三流体熱交換器。
In claim 10,
The three-fluid heat exchanger is characterized in that, in the curved structure, a cross section of the outer shell perpendicular to the axial direction of an orthogonal portion of the inner tube is formed in a substantially circular tube shape.
請求項10または11において、
前記外殻と前記仕切板は、樹脂で一体成形されたものであることを特徴とする三流体熱交換器。
In claim 10 or 11,
The three-fluid heat exchanger, wherein the outer shell and the partition plate are integrally formed of resin.
請求項1ないし12のいずれか1つの請求項において、
前記第1の冷媒回路の高圧側冷媒と、前記第2の冷媒回路の低圧側冷媒とが熱交換するときに、前記第1の流体と前記第2の流体とが対向流となることを特徴とする三流体熱交換器。
In any one of claims 1 to 12,
When the high-pressure side refrigerant of the first refrigerant circuit and the low-pressure side refrigerant of the second refrigerant circuit exchange heat, the first fluid and the second fluid are counterflowed. A three-fluid heat exchanger.
請求項1ないし12のいずれか1つの請求項において、
前記第1の冷媒回路の低圧側冷媒と、前記第2の冷媒回路の低圧側冷媒と、前記第3の冷媒回路第3の流体とが熱交換するときに、前記第3の流体と、前記第1の流体及び前記第2の流体とが対向流となることを特徴とする三流体熱交換器。
In any one of claims 1 to 12,
When the low pressure side refrigerant of the first refrigerant circuit, the low pressure side refrigerant of the second refrigerant circuit , and the third fluid of the third refrigerant circuit exchange heat, the third fluid , The three-fluid heat exchanger, wherein the first fluid and the second fluid are counterflows.
請求項1ないし14のいずれか1つの請求項に記載された三流体熱交換器がそれぞれ用いられた、空調用冷媒回路を有する空調システムと、給湯用冷媒回路を有する給湯システムと、温水冷媒回路を有する自然エネルギ利用の蓄熱システムと、を備えた空調給湯システム。 Three fluid heat exchanger according to any one of claims 1 to 14 were used, respectively, and the air conditioning system having an air conditioning refrigerant circuit, a hot water supply system having a hot water supply refrigerant circuit, the hot water refrigerant circuit An air-conditioning hot-water supply system comprising a heat storage system using natural energy.
JP2012501606A 2010-02-26 2010-02-26 Three-fluid heat exchanger and air-conditioning hot-water supply system using the same Expired - Fee Related JP5509311B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053141 WO2011104878A1 (en) 2010-02-26 2010-02-26 Three-fluid heat exchanger and air-conditioning/water-heating system using same

Publications (2)

Publication Number Publication Date
JPWO2011104878A1 JPWO2011104878A1 (en) 2013-06-17
JP5509311B2 true JP5509311B2 (en) 2014-06-04

Family

ID=44506321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012501606A Expired - Fee Related JP5509311B2 (en) 2010-02-26 2010-02-26 Three-fluid heat exchanger and air-conditioning hot-water supply system using the same

Country Status (4)

Country Link
EP (1) EP2541171A1 (en)
JP (1) JP5509311B2 (en)
CN (1) CN102762934B (en)
WO (1) WO2011104878A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061473A1 (en) * 2011-10-28 2013-05-02 株式会社日立製作所 Hot-water supply and air-conditioning device
EP3070976B1 (en) 2012-09-10 2017-05-17 Fujitsu Limited User equipment, base station and corresponding handover method
CN103017425B (en) * 2012-12-25 2015-04-29 克莱门特捷联制冷设备(上海)有限公司 Refrigerant pipeline and heat exchanger provided with same
GB201300737D0 (en) * 2013-01-15 2013-02-27 Savard Gilles Air-liquid heat exchanger
JP6196481B2 (en) 2013-06-24 2017-09-13 株式会社荏原製作所 Exhaust gas treatment equipment
JP6168973B2 (en) * 2013-11-26 2017-07-26 シャープ株式会社 Heat exchanger
CN103940262A (en) * 2014-04-10 2014-07-23 东南大学 Tubular heat exchanger
WO2015172285A1 (en) * 2014-05-12 2015-11-19 林圣梁 Heat exchange apparatus and water heater using same
JP6258802B2 (en) * 2014-07-15 2018-01-10 株式会社コロナ Combined heat source heat pump device
WO2016024334A1 (en) * 2014-08-12 2016-02-18 株式会社荏原製作所 Exhaust gas processing device
CN104266510B (en) * 2014-09-26 2016-08-31 苏州巨浪热水器有限公司 A kind of quickly heat exchanging water storage tank
JP2016214387A (en) * 2015-05-15 2016-12-22 ホシザキ株式会社 washing machine
CN104913666A (en) * 2015-06-17 2015-09-16 高金建 Novel heat exchanger
CN104930884B (en) * 2015-07-03 2017-08-04 山东利能换热器有限公司 A kind of box-type heat exchanger of plurality of plates permutation and combination
KR102125025B1 (en) * 2018-05-08 2020-06-19 김봉석 Heat exahanging device
CN109489453B (en) * 2018-12-11 2023-12-19 河南龙成煤高效技术应用有限公司 Heat exchange unit, heat exchanger and heat exchange equipment
US11454450B2 (en) 2018-12-19 2022-09-27 Honeywell International Inc. Three-way heat exchanger system for auxiliary power unit
CN109682233B (en) * 2018-12-28 2021-11-23 贵州鼎丰盛贸机械设备有限公司 High-efficient heat transfer device of accurate dispersion pipeline

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248965A (en) * 1984-05-23 1985-12-09 三菱電機株式会社 Heat pump type air-conditioning hot-water supply machine
JPS60248963A (en) * 1984-05-23 1985-12-09 三菱電機株式会社 Heat pump type air-conditioning hot-water supply machine
JPS6361667U (en) * 1986-10-03 1988-04-23
JP2005069620A (en) * 2003-08-27 2005-03-17 Toyo Radiator Co Ltd Heat exchanger
JP2006234254A (en) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply device using the same
JP2007232282A (en) * 2006-03-01 2007-09-13 Sharp Corp Heat pump type water heater
JP2009264686A (en) * 2008-04-28 2009-11-12 Sharp Corp Heat exchanger and heat pump type heating device
JP2010071583A (en) * 2008-09-19 2010-04-02 Mitsubishi Electric Corp Heat exchanger and water heater including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248965A (en) * 1984-05-23 1985-12-09 三菱電機株式会社 Heat pump type air-conditioning hot-water supply machine
JPS60248963A (en) * 1984-05-23 1985-12-09 三菱電機株式会社 Heat pump type air-conditioning hot-water supply machine
JPS6361667U (en) * 1986-10-03 1988-04-23
JP2005069620A (en) * 2003-08-27 2005-03-17 Toyo Radiator Co Ltd Heat exchanger
JP2006234254A (en) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply device using the same
JP2007232282A (en) * 2006-03-01 2007-09-13 Sharp Corp Heat pump type water heater
JP2009264686A (en) * 2008-04-28 2009-11-12 Sharp Corp Heat exchanger and heat pump type heating device
JP2010071583A (en) * 2008-09-19 2010-04-02 Mitsubishi Electric Corp Heat exchanger and water heater including the same

Also Published As

Publication number Publication date
EP2541171A1 (en) 2013-01-02
CN102762934A (en) 2012-10-31
JPWO2011104878A1 (en) 2013-06-17
WO2011104878A1 (en) 2011-09-01
CN102762934B (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5509311B2 (en) Three-fluid heat exchanger and air-conditioning hot-water supply system using the same
JP5474483B2 (en) Intermediate heat exchanger and air-conditioning hot water supply system using the same
JP5395950B2 (en) Air conditioner and air conditioning hot water supply system
JP5373964B2 (en) Air conditioning and hot water supply system
CN106338112B (en) Air conditioner heat recovery system
JP5455521B2 (en) Air conditioning and hot water supply system
WO2011052031A1 (en) Heat pump
WO2013161011A1 (en) Air-conditioning/hot-water supply system
CN105940276A (en) Heat pump apparatus
JP5335131B2 (en) Air conditioning and hot water supply system
JP2011033290A (en) Heat exchanger, air conditioner and heat pump system
CN103175262A (en) Solar air conditioner
JP2014020696A (en) Air conditioner
CN103958987A (en) Regenerative air-conditioning apparatus
WO2014199484A1 (en) Coolant distribution unit and air conditioning device using same
CN103940009B (en) Air source heat pump air-conditioning system capable of providing domestic hot water
CN104697245A (en) Coupled heat pump system
JP5499153B2 (en) Air conditioner
CN100535553C (en) Air source cold-hot energy machine set
JP2008190777A (en) Water-refrigerant heat exchanger
KR101286699B1 (en) heating and cooling system and using a heat pump
JP2010210206A (en) Hot water supply heating system
JP6565538B2 (en) Heat pump heat source machine
KR101178821B1 (en) An air conditioning system with non- defroster
KR101374912B1 (en) A system for heating water which can operates air conditioning

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5509311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees