JP5506732B2 - High strength aluminum alloy fin material for heat exchanger - Google Patents

High strength aluminum alloy fin material for heat exchanger Download PDF

Info

Publication number
JP5506732B2
JP5506732B2 JP2011087668A JP2011087668A JP5506732B2 JP 5506732 B2 JP5506732 B2 JP 5506732B2 JP 2011087668 A JP2011087668 A JP 2011087668A JP 2011087668 A JP2011087668 A JP 2011087668A JP 5506732 B2 JP5506732 B2 JP 5506732B2
Authority
JP
Japan
Prior art keywords
brazing
fin material
aluminum alloy
less
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011087668A
Other languages
Japanese (ja)
Other versions
JP2011190538A (en
Inventor
秀紀 鈴木
義人 沖
智浩 佐々木
まさ江 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2011087668A priority Critical patent/JP5506732B2/en
Publication of JP2011190538A publication Critical patent/JP2011190538A/en
Application granted granted Critical
Publication of JP5506732B2 publication Critical patent/JP5506732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Description

本発明は、ろう付け性に優れた熱交換器用アルミニウム合金フィン材およびその製造方法に関し、詳しくは、ラジエータ、カーヒータ、カーエアコンなどのようにフィンと作動流体通路構成材料とがろう付けにより接合される熱交換器に用いられるアルミニウム合金フィン材であって、ろう付け前の強度が適度であるためフィン成形が容易で、つまりろう付け前の強度が高すぎてフィン成形が困難となることが無く、しかも、ろう付け後の強度が高く、且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用高強度アルミニウム合金フィン材に関する。   TECHNICAL FIELD The present invention relates to an aluminum alloy fin material for a heat exchanger excellent in brazing and a method for manufacturing the same, and more specifically, a fin and a working fluid passage component material are joined by brazing, such as a radiator, a car heater, and a car air conditioner. Aluminum alloy fin material used in heat exchangers that have a moderate strength before brazing, so fin forming is easy, that is, the strength before brazing is too high and fin forming is not difficult. Moreover, the present invention relates to a high-strength aluminum alloy fin material for a heat exchanger that has high strength after brazing and is excellent in heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance.

自動車のラジエータ、エアコン、インタークーラー、オイルクーラーなどの熱交換器は、Al−Cu系合金、Al−Mn系合金、Al−Mn−Cu系合金などからなる作動流体通路構成材料と、Al−Mn系合金などからなるフィンとをろう付けすることにより組立てられる。フィン材には、作動流体通路構成材料を防食するために犠牲陽極効果が要求されるとともに、ろう付け時の高温加熱により変形したり、ろうが浸透したりしないように優れた耐サグ性、耐エロージョン性が要求される。   Heat exchangers for automobile radiators, air conditioners, intercoolers, oil coolers, etc. are composed of working fluid passage materials composed of Al-Cu alloys, Al-Mn alloys, Al-Mn-Cu alloys, and Al-Mn alloys. It is assembled by brazing a fin made of an alloy or the like. The fin material is required to have a sacrificial anode effect in order to prevent the working fluid passage constituent material from being corroded, and has excellent sag resistance and resistance to prevent deformation due to high temperature heating during brazing and penetration of the braze. Erosion is required.

フィン材としてJIS 3003、JIS 3203などのAl−Mn系アルミニウム合金が使用されるのは、Mnがろう付け時の変形やろうの浸食を防ぐために有効に作用するためである。Al−Mn系合金フィン材に犠牲陽極効果を付与するためには、この合金にZn、Sn、Inなどを添加して電気化学的に卑にする方法(特許文献1(特開昭62−120455号公報))などがあり、耐高温座屈性(耐サグ性)をさらに向上させるためには、Al−Mn系合金にCr、Ti、Zrなどを含有させる方法(特許文献2(特開昭50−118919号公報))などがある。   The reason why Al-Mn aluminum alloys such as JIS 3003 and JIS 3203 are used as the fin material is that Mn acts effectively to prevent deformation during brazing and erosion of the brazing. In order to impart the sacrificial anode effect to the Al—Mn alloy fin material, a method of adding Zn, Sn, In, or the like to this alloy to make it electrochemically base (Patent Document 1 (Japanese Patent Laid-Open No. 62-120455)). In order to further improve the high temperature buckling resistance (sag resistance), a method in which an Al—Mn based alloy contains Cr, Ti, Zr, etc. No. 50-118919))).

しかし、最近では、熱交換器の軽量化、コスト低減がますます強く要求され、作動流体通路構成材料、フィン材などの熱交換器構成材料をさらに薄肉化することが必要となってきている。しかし、例えばフィンを薄肉化すると伝熱断面積が小さくなるために熱交換性能が低下し、製品としての熱交換器の強度、耐久性にも問題が生じるところから、一層高い伝熱性能とろう付け後の強度、耐サグ性、耐エロージョン性、自己耐食性が望まれている。   Recently, however, there is an increasing demand for weight reduction and cost reduction of heat exchangers, and it is necessary to further reduce the thickness of heat exchanger constituent materials such as working fluid passage constituent materials and fin materials. However, for example, if the fins are made thinner, the heat transfer cross-sectional area becomes smaller and the heat exchange performance deteriorates, causing problems with the strength and durability of the heat exchanger as a product. The strength, sag resistance, erosion resistance and self-corrosion resistance after application are desired.

従来のAl−Mn系合金では、ろう付け時の加熱によりMnが固溶するため、熱伝導率が低下するという問題点がある。この難点を解決するフィン材として、Mn含有量を0.8wt%以下に制限し、Zr:0.02〜0.2wt%およびSi:0.1〜0.8wt%を含むアルミニウム合金が提案されている(特許文献3(特公昭63−23260号公報))。この合金は改善された熱伝導率を有するが、Mnが少ないためろう付け後の強度が不十分で、熱交換器として使用中にフィン倒れや変形が生じ易く、また電位が十分に卑でないために犠牲陽極効果が小さいという欠点がある。   A conventional Al-Mn alloy has a problem that thermal conductivity is lowered because Mn is dissolved by heating during brazing. As a fin material that solves this problem, an aluminum alloy that limits the Mn content to 0.8 wt% or less and contains Zr: 0.02 to 0.2 wt% and Si: 0.1 to 0.8 wt% has been proposed. (Patent Document 3 (Japanese Patent Publication No. 63-23260)). This alloy has improved thermal conductivity, but because Mn is low, the strength after brazing is insufficient, fins are liable to collapse and deform during use as a heat exchanger, and the potential is not sufficiently low. However, the sacrificial anode effect is small.

一方、アルミニウム合金溶湯を注湯してスラブを鋳造する際の冷却速度を速くすることで、Si、Mn含有量などを0.05〜1.5質量%としてもスラブの段階で晶出している金属間化合物のサイズを最大値5μm以下と小さくすることが可能となり、このようなスラブから圧延工程を経ることで、フィン材の疲労特性を向上させる提案もなされている(特許文献4(特開2001−226730号公報))。しかし、当該発明は疲労寿命を向上させることが目的であり、又スラブを鋳造する際の冷却速度を速くする手段については鋳造スラブを薄くするなどの記載はあるものの、実操業規模における双ベルト鋳造機による薄スラブ連続鋳造などの具体的な開示は見られない。   On the other hand, by increasing the cooling rate when casting the slab by pouring molten aluminum alloy, the crystallization of the slab crystallizes even if the Si, Mn content, etc. is 0.05-1.5 mass%. It has become possible to reduce the size of the intermetallic compound to a maximum value of 5 μm or less, and a proposal has been made to improve the fatigue characteristics of the fin material by performing a rolling process from such a slab (Patent Document 4 (Japanese Patent Laid-Open No. 2003-32083). 2001-226730 gazette)). However, the present invention is intended to improve the fatigue life, and although there is a description of thinning the casting slab as a means for increasing the cooling rate when casting the slab, it is a twin belt casting on an actual operation scale. There is no specific disclosure of thin slab continuous casting by machine.

特開昭62−120455号公報Japanese Patent Laid-Open No. Sho 62-120455 特開昭50−118919号公報JP 50-118919 A 特公昭63−23260号公報Japanese Patent Publication No. 63-23260 特開2001−226730号公報JP 2001-226730 A

本発明の目的は、フィン成形が容易な適度のろう付け前強度を有し、しかもろう付け後には高い強度を有し、且つ耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材を提供することである。   The object of the present invention is to have a moderate strength before brazing that allows easy fin molding, and a high strength after brazing, and is excellent in sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. An aluminum alloy fin material for a heat exchanger is provided.

上記の目的を達成するために、本発明の熱交換器用高強度アルミニウム合金フィン材は、Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなる化学組成を有し、ろう付け前の金属組織がファイバーな結晶粒組織であり、ろう付前の抗張力が240MPa以下、ろう付後の抗張力が150MPa以上であり、且つろう付け後の再結晶粒径が500μm以上であることを特徴とする。   In order to achieve the above object, the high-strength aluminum alloy fin material for a heat exchanger of the present invention has Si: 0.8 to 1.4 wt%, Fe: 0.15 to 0.7 wt%, Mn: 1.5 -3.0wt%, Zn: 0.5-2.5wt%, Mg as impurities is limited to 0.05wt% or less, and the balance has a chemical composition consisting of ordinary impurities and Al. The metal structure before brazing is a fiber crystal grain structure, the tensile strength before brazing is 240 MPa or less, the tensile strength after brazing is 150 MPa or more, and the recrystallized grain size after brazing is 500 μm or more. Features.

上記本発明の熱交換器用高強度アルミニウム合金フィン材を製造する第1の方法は、上記フィン材の化学組成を有する溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造してロールに巻き取った後、板厚1.0〜6.0mmに冷間圧延し、200〜350°Cで第1次中間焼鈍を施し、更に冷間圧延を行って、板厚0.05〜0.4mmに冷間圧延し、360〜450℃での第2次中間焼鈍を施し、最終冷延率10〜50%未満の冷間圧延を行って最終板厚40〜200μmとすることを特徴とする。   The first method for producing the high-strength aluminum alloy fin material for a heat exchanger according to the present invention is to pour a molten metal having the chemical composition of the fin material, and to form a thin film having a thickness of 5 to 10 mm by a twin belt casting machine. After the slab is continuously cast and wound on a roll, it is cold-rolled to a thickness of 1.0 to 6.0 mm, subjected to first intermediate annealing at 200 to 350 ° C., and further cold-rolled. The steel sheet is cold-rolled to a thickness of 0.05 to 0.4 mm, subjected to secondary intermediate annealing at 360 to 450 ° C., and subjected to cold rolling with a final cold rolling rate of less than 10 to 50% to obtain a final thickness. It is characterized by being 40-200 μm.

上記本発明の熱交換器用高強度アルミニウム合金フィン材を製造する第2の方法は、上記フィン材の化学組成を有する溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造してロールに巻き取った後、板厚1.0〜6.0mmに冷間圧延し、200〜450°Cで第1次中間焼鈍を施し、更に冷間圧延を行って、板厚0.08〜2.0mmに冷間圧延し、360〜450℃での第2次中間焼鈍を施し、冷延率50〜96%の冷間圧延を行って最終板厚40〜200μmとして200〜400℃で最終焼鈍を施すことを特徴とする。   The second method for producing the high-strength aluminum alloy fin material for a heat exchanger according to the present invention is to pour a molten metal having the chemical composition of the fin material, and to form a thin film having a thickness of 5 to 10 mm by a twin belt casting machine. After the slab is continuously cast and wound on a roll, it is cold-rolled to a thickness of 1.0 to 6.0 mm, subjected to first intermediate annealing at 200 to 450 ° C., and further cold-rolled. The steel sheet is cold-rolled to a thickness of 0.08 to 2.0 mm, subjected to secondary intermediate annealing at 360 to 450 ° C., and cold-rolled at a cold rolling rate of 50 to 96% to obtain a final thickness of 40 to The final annealing is performed at 200 to 400 ° C. as 200 μm.

上記第1および第2の方法において、前記第1次中間焼鈍を、連続焼鈍炉により昇温速度100°C/min以上、且つ保持温度400〜500℃で保持時間5分以内で行うことが望ましい。   In the first and second methods, it is preferable that the first intermediate annealing is performed by a continuous annealing furnace at a temperature increase rate of 100 ° C./min or more and a holding temperature of 400 to 500 ° C. within a holding time of 5 minutes. .

上記第1および第2の方法において、前記第1次中間焼鈍後、第2次中間焼鈍後、最終焼鈍後(ろう付け前)の何れの段階においても、金属組織がファイバーな結晶粒組織であることが望ましい。   In the first and second methods, the metal structure is a fiber crystal grain structure at any stage after the first intermediate annealing, after the second intermediate annealing, and after the final annealing (before brazing). It is desirable.

本発明によれば、上記のように化学組成と、ろう付け前後の結晶粒組織および抗張力を限定したことにより、高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性に優れた熱交換器用高強度アルミニウム合金フィン材が得られる。
このアルミニウム合金フィン材は上記第1および第2の方法により製造できる。
According to the present invention, by limiting the chemical composition, the crystal grain structure before and after brazing, and the tensile strength as described above, high strength and heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self A high-strength aluminum alloy fin material for heat exchangers excellent in corrosion resistance can be obtained.
This aluminum alloy fin material can be manufactured by the first and second methods.

本発明者は、熱交換器用フィン材に対する薄肉化の要求を満足するアルミニウム合金フィン材を開発するために、強度特性、伝熱性能、耐サグ性、耐エロージョン性、自己耐食性および犠牲陽極効果について、従来のDCスラブ鋳造からの圧延材と双ベルト式連続鋳造からの圧延材の比較を行いつつ、その組成、中間焼鈍条件、圧下率、最終焼鈍との関係について種々の検討を行った結果、本発明を完成した。   In order to develop an aluminum alloy fin material that satisfies the requirements for thinning the heat exchanger fin material, the present inventor is concerned with strength characteristics, heat transfer performance, sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. As a result of performing various studies on the relationship between the composition, intermediate annealing conditions, rolling reduction, and final annealing, while comparing the rolling material from the conventional DC slab casting and the rolling material from the twin belt type continuous casting, The present invention has been completed.

本発明の熱交換器用アルミニウム合金フィン材における合金成分の意義および限定理由を以下に説明する。   The significance and reasons for limitation of the alloy components in the aluminum alloy fin material for heat exchangers of the present invention will be described below.

〔Si:0.8〜1.4wt%〕 Siは、Fe、Mnと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させ、同時にMnの固溶量を減少させて熱伝導率を向上させる。Siの含有量が0.8wt%未満ではその効果が十分でなく、1.4wt%を超えると、ろう付け時にフィン材の溶融を生じるおそれがある。従って、好ましい含有範囲は0.8〜1.4wt%である。Siのさらに好ましい含有量は0.9〜1.4wt%の範囲である。 [Si: 0.8 to 1.4 wt%] Si coexists with Fe and Mn to produce a sub-micron level Al- (Fe.Mn) -Si based compound at the time of brazing, thereby improving the strength. At the same time, the thermal conductivity is improved by reducing the solid solution amount of Mn. If the Si content is less than 0.8 wt%, the effect is not sufficient. If it exceeds 1.4 wt%, the fin material may be melted during brazing. Therefore, a preferable content range is 0.8 to 1.4 wt%. A more preferable content of Si is in the range of 0.9 to 1.4 wt%.

〔Fe:0.15〜0.7wt%〕 Feは、Mn、Siと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させるとともに、Mnの固溶量を減少させて熱伝導率を向上させる。Feの含有量が0.15wt%未満では高純度の地金を必要とするため製造コストが高くなり好ましくない。0.7wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となる。従って、好ましい含有範囲は0.15〜0.7wt%である。Feのさらに好ましい含有量は0.17〜0.6wt%の範囲である。 [Fe: 0.15 to 0.7 wt%] Fe coexists with Mn and Si to produce submicron-level Al- (Fe.Mn) -Si compounds during brazing and improve strength. The thermal conductivity is improved by reducing the solid solution amount of Mn. If the Fe content is less than 0.15 wt%, a high-purity metal is required, which is not preferable because the production cost increases. If it exceeds 0.7 wt%, coarse Al- (Fe.Mn) -Si-based crystallized products are produced during casting of the alloy, making it difficult to produce a plate material. Therefore, a preferable content range is 0.15-0.7 wt%. A more preferable content of Fe is in the range of 0.17 to 0.6 wt%.

〔Mn:1.5〜3.0wt%〕 Mnは、Fe、Siと共存させることによりろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系化合物として高密度に析出して、ろう付け後の合金材の強度を向上させる。また、サブミクロンレベルのAl−(Fe・Mn)−Si系析出物は強い再結晶阻止作用を有するため再結晶粒が500μm以上と粗大になり、耐サグ性と耐エロージョン性が向上する。Mnが1.5wt%未満ではその効果が十分でなく、3.0wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となるとともに、Mnの固溶量が増加して熱伝導率が低下する。従って、好ましい含有範囲は1.5〜3.0wt%である。Mnのさらに好ましい含有量は1.6−2.8wt%である。 [Mn: 1.5 to 3.0 wt%] Mn precipitates at a high density as a submicron-level Al- (Fe.Mn) -Si compound at the time of brazing by coexisting with Fe and Si. Improves the strength of the alloy material after application. Further, since the submicron level Al- (Fe.Mn) -Si-based precipitate has a strong recrystallization inhibiting action, the recrystallized grains become coarser to 500 μm or more, and the sag resistance and erosion resistance are improved. If Mn is less than 1.5 wt%, the effect is not sufficient, and if it exceeds 3.0 wt%, coarse Al- (Fe · Mn) -Si-based crystallized products are produced during casting of the alloy, making it difficult to produce a plate material. At the same time, the solid solution amount of Mn increases and the thermal conductivity decreases. Therefore, a preferable content range is 1.5 to 3.0 wt%. A more preferable content of Mn is 1.6 to 2.8 wt%.

〔Zn:0.5〜2.5wt%〕 Znは、フィン材の電位を卑にし、犠牲陽極効果を与える。含有量が0.5wt%未満ではその効果が十分でなく、2.5wt%を超えると材料の自己耐食性が劣化し、また、Znの固溶によって熱伝導率が低下する。従って、好ましい含有範囲は0.5〜2.5wt%である。Znのさらに好ましい含有量は1.0〜2.0wt%の範囲である。 [Zn: 0.5 to 2.5 wt%] Zn lowers the potential of the fin material and provides a sacrificial anode effect. If the content is less than 0.5 wt%, the effect is not sufficient, and if it exceeds 2.5 wt%, the self-corrosion resistance of the material is deteriorated, and the thermal conductivity is lowered by solid solution of Zn. Therefore, a preferable content range is 0.5 to 2.5 wt%. A more preferable content of Zn is in the range of 1.0 to 2.0 wt%.

〔Mg:0.05wt%以下〕 Mgは、ろう付け性に影響し、含有量が0.05wt%を超えるとろう付け性を害するおそれがある。とくにフッ化物系フラックスろう付けの場合、フラックスの成分であるフッ素(F)と合金中のMgとが反応し易くなり、MgF2 などの化合物が生成することに起因してろう付け時に有効に作用するフラックスの絶対量が不足し、ろう付け不良が生じ易くなる。従って、不純物としてのMgの含有量は0.05wt%以下に限定する。 [Mg: 0.05 wt% or less] Mg affects the brazing property, and if the content exceeds 0.05 wt%, the brazing property may be impaired. Particularly in the case of fluoride-based flux brazing, fluorine (F), which is a component of the flux, easily reacts with Mg in the alloy, and works effectively during brazing due to the formation of compounds such as MgF 2. The absolute amount of flux to be used is insufficient, and brazing defects are likely to occur. Therefore, the content of Mg as an impurity is limited to 0.05 wt% or less.

Mg以外の不純物成分については、Cuは材料の電位を貴にするため0.2wt%以下に制限するのが好ましく、Cr、Zr、Ti、Vは、微量でも材料の熱伝導率を著しく低下させるので、これらの元素の合計含有量は0.20wt%以下に限定するのが好ましい。   For impurity components other than Mg, Cu is preferably limited to 0.2 wt% or less in order to make the potential of the material noble, and Cr, Zr, Ti, and V significantly reduce the thermal conductivity of the material even in a small amount. Therefore, the total content of these elements is preferably limited to 0.20 wt% or less.

次に、本発明における薄スラブの鋳造条件、中間焼鈍条件、最終冷延率、最終焼鈍条件の意義および限定理由を以下に説明する。   Next, the significance of the casting conditions, the intermediate annealing conditions, the final cold rolling rate, and the final annealing conditions of the thin slab in the present invention and the reasons for limitation will be described below.

〔薄スラブの鋳造条件〕 双ベルト鋳造法は、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。
本発明においては、鋳造するスラブの厚さは5〜10mmが好ましい。この厚さであると板厚中央部の凝固速度も速く、均一組織でしかも本発明範囲の組成であると粗大な化合物の少ない、およびろう付け後において結晶粒径の大きい優れた諸性質を有するフィン材とすることができる。
[Casting conditions for thin slabs] In the double belt casting method, the molten metal is poured between rotating belts facing each other up and down, and the molten metal is solidified by cooling from the belt surface to form a slab. This is a continuous casting method in which the slab is continuously drawn out from the side and wound into a coil shape.
In the present invention, the thickness of the cast slab is preferably 5 to 10 mm. With this thickness, the solidification rate in the central part of the plate thickness is fast, and with a uniform structure and with a composition within the range of the present invention, there are few coarse compounds and excellent properties with a large crystal grain size after brazing. It can be a fin material.

双ベルト式鋳造機による薄スラブ厚さが5mm未満であると、単位時間当たりに鋳造機を通過するアルミニウム量が小さくなりすぎて、鋳造が困難になる。逆に厚さが10mmを超えると、ロールによる巻取りができなくなるため、スラブ厚さの範囲を5〜10mmとするのが好ましい。   When the thickness of the thin slab by the twin belt type casting machine is less than 5 mm, the amount of aluminum passing through the casting machine per unit time becomes too small and casting becomes difficult. On the other hand, if the thickness exceeds 10 mm, winding with a roll cannot be performed, so the slab thickness range is preferably 5 to 10 mm.

なお、溶湯の凝固時の鋳造速度は5〜15m/min であることが好ましく、ベルト内で凝固が完了することが望ましい。鋳造速度が5m/min 未満の場合、鋳造に時間が掛かりすぎて生産性が低下するため、好ましくない。鋳造速度が15m/min を超える場合、アルミニウム溶湯の供給が追いつかず、所定の形状の薄スラブを得ることが困難となる。   In addition, it is preferable that the casting speed at the time of solidification of a molten metal is 5-15 m / min, and it is desirable that solidification is completed within a belt. A casting speed of less than 5 m / min is not preferable because it takes too much time for casting and decreases productivity. When the casting speed exceeds 15 m / min, the supply of the molten aluminum cannot catch up, and it becomes difficult to obtain a thin slab having a predetermined shape.

〔第1次中間焼鈍条件〕 製品の強度を低く抑えるために最終冷延率を10−50%未満と低くする場合(第2実施形態)において、第1次中間焼鈍の保持温度は200〜350°Cが好ましい。第1次中間焼鈍の保持温度が200°C未満の場合、十分な軟化状態を得ることができない。第1次中間焼鈍の保持温度が350°Cを超えると、マトリックス中の固溶Mnが高温での中間焼鈍時にAl−(Fe・Mn)−Si系化合物として析出してしまうため、第2次中間焼鈍時に再結晶してしまい,その後の10−50%未満と低い最終冷間圧延率では,ろう付時に未再結晶状態のままとなってしまい、ろう付け時の耐サグ性と耐エロージョン性が低下する。 [First Intermediate Annealing Conditions] In the case where the final cold rolling rate is lowered to less than 10-50% in order to keep the strength of the product low (second embodiment), the holding temperature of the first intermediate annealing is 200 to 350. ° C is preferred. When the holding temperature of the first intermediate annealing is less than 200 ° C., a sufficient softened state cannot be obtained. If the holding temperature of the first intermediate annealing exceeds 350 ° C., the solid solution Mn in the matrix is precipitated as an Al— (Fe · Mn) —Si compound during the intermediate annealing at a high temperature. Recrystallization occurs during the intermediate annealing, and at the subsequent cold rolling reduction of less than 10-50%, it remains in an unrecrystallized state during brazing, and sag and erosion resistance during brazing. Decreases.

最終冷延率が50〜96%と高い場合は,最終焼鈍を施すことによって製品の強度を低く抑えることが肝要である。この場合(第3実施形態)において、第1次中間焼鈍の保持温度は200〜450℃が好ましい。第1次中間焼鈍の保持温度が200°C未満の場合、十分な軟化状態を得ることができない。第1次中間焼鈍の保持温度が350°Cを超えると、マトリックス中の固溶Mnが高温での中間焼鈍時にAl−(Fe・Mn)−Si系化合物として析出してしまうが、最終冷間圧延率が高いということは、第2次中間焼鈍処理前の冷延率が低いため転位密度が低く、第2次中間焼鈍時に再結晶が起こらない。しかし、第1次中間焼鈍の保持温度が450°Cを超えると、マトリックス中の固溶Mnが高温での中間焼鈍時にAl−(Fe・Mn)−Si系化合物として多量且つ粗大に析出してしまうため、第2次中間焼鈍時に最再結晶するばかりか,ろう付け時の再結晶阻止作用が弱まって、再結晶粒径が500μm未満となり、ろう付け時の耐サグ性と耐エロージョン性が低下する。   When the final cold rolling rate is as high as 50 to 96%, it is important to keep the strength of the product low by performing final annealing. In this case (third embodiment), the holding temperature of the first intermediate annealing is preferably 200 to 450 ° C. When the holding temperature of the first intermediate annealing is less than 200 ° C., a sufficient softened state cannot be obtained. When the holding temperature of the first intermediate annealing exceeds 350 ° C., the solid solution Mn in the matrix is precipitated as an Al— (Fe · Mn) —Si compound during intermediate annealing at a high temperature. A high rolling ratio means that the dislocation density is low because the cold rolling ratio before the second intermediate annealing treatment is low, and recrystallization does not occur during the second intermediate annealing. However, when the holding temperature of the first intermediate annealing exceeds 450 ° C, the solid solution Mn in the matrix precipitates in a large amount and coarsely as an Al- (Fe · Mn) -Si-based compound during the intermediate annealing at a high temperature. Therefore, not only the recrystallization at the second intermediate annealing, but also the recrystallization prevention action at the time of brazing is weakened, the recrystallized grain size becomes less than 500μm, and the sag resistance and erosion resistance at the time of brazing are lowered. To do.

第1次中間焼鈍の保持時間は特に限定する必要はないが、1〜5時間の範囲とすることが好ましい。第1次中間焼鈍の保持時間が1時間未満では、コイル全体の温度が不均一なままで、板中における均一な再結晶組織の得られない可能性があるので好ましくない。第1次中間焼鈍の保持時間が5時間を超えると、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利になるばかりでなく、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。   The holding time of the first intermediate annealing is not particularly limited, but is preferably in the range of 1 to 5 hours. If the holding time of the first intermediate annealing is less than 1 hour, the temperature of the entire coil remains non-uniform, and a uniform recrystallized structure in the plate may not be obtained. If the holding time of the first intermediate annealing exceeds 5 hours, the precipitation of the solid solution Mn proceeds, which is not only disadvantageous in securing a recrystallized grain size of 500 μm or more after brazing, but also processing. This is not preferable because it takes too much time to reduce productivity.

第1次中間焼鈍処理時の昇温速度および冷却速度は特に限定する必要はないが、30°C/時間以上とすることが好ましい。第1次中間焼鈍処理時の昇温速度および冷却速度が30°C/時間未満の場合、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利であるばかりでなく、処理に時間が掛かりすぎて生産性が低下するので、好ましくない。   The temperature increase rate and the cooling rate during the first intermediate annealing treatment are not particularly limited, but are preferably 30 ° C./hour or more. When the heating rate and cooling rate during the first intermediate annealing treatment are less than 30 ° C./hour, precipitation of solute Mn proceeds to stably secure a recrystallized grain size of 500 μm or more after brazing. In addition to being disadvantageous, it takes too much time for processing, and productivity is lowered, which is not preferable.

連続焼鈍炉による第1中間焼鈍の温度は400〜500℃が好ましい。400℃未満の場合、十分な軟化状態を得ることができない。しかし、保持温度が500℃を超えると、マトリックス中の固溶Mnが高温での中間焼鈍時にAl−(Fe・Mn)−Si系化合物として粗大に析出してしまうため、第2次中間焼鈍時或いはろう付け時の再結晶阻止作用が弱まって、再結晶粒径が500μm未満となり、ろう付け時の耐サグ性と耐エロージョン性が低下する。 Temperature of the primary intermediate annealing by the continuous annealing furnace is preferably 400 to 500 ° C.. When the temperature is lower than 400 ° C., a sufficient softened state cannot be obtained. However, when the holding temperature exceeds 500 ° C., the solid solution Mn in the matrix is coarsely precipitated as an Al— (Fe · Mn) —Si-based compound during intermediate annealing at a high temperature. Or the recrystallization inhibitory action at the time of brazing becomes weak, the recrystallized grain size becomes less than 500 μm, and the sag resistance and erosion resistance at the time of brazing deteriorate.

連続焼鈍の保持時間は5分以内とすることが好ましい。連続焼鈍の保持時間が5分以内を超えると、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利になるばかりでなく、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。   The holding time for continuous annealing is preferably within 5 minutes. When the holding time of continuous annealing exceeds 5 minutes, not only is the solid solution Mn precipitating progressing, but it is disadvantageous in securing a recrystallized grain size of 500 μm or more after brazing, and it takes time for processing. This is not preferable because the productivity is lowered due to excessive application.

連続焼鈍処理時の昇温速度および冷却速度は、昇温速度については100°C/min以上とすることが好ましい。連続焼鈍処理時の昇温速度が100°C/min未満の場合、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。   The heating rate and cooling rate during the continuous annealing treatment are preferably 100 ° C./min or higher for the heating rate. When the rate of temperature increase during the continuous annealing process is less than 100 ° C./min, the process takes too much time and productivity is lowered, which is not preferable.

〔第2次中間焼鈍条件〕 第2次中間焼鈍の保持温度は360〜450°Cが好ましい。第2次中間焼鈍の保持温度が360°C未満の場合、十分な軟化状態を得ることができない。しかし、第2次中間焼鈍の保持温度が450°Cを超えると、マトリックス中の固溶Mnが高温での中間焼鈍時にAl−(Fe・Mn)−Si系化合物として粗大に析出してしまうため、および再結晶組織となってしまうため、ろう付け時の再結晶阻止作用が弱まって、再結晶粒径が500μm未満となり、ろう付け時の耐サグ性と耐エロージョン性が低下する。 [Secondary intermediate annealing conditions] The holding temperature of the second intermediate annealing is preferably 360 to 450 ° C. When the holding temperature of the second intermediate annealing is less than 360 ° C., a sufficient softened state cannot be obtained. However, if the holding temperature of the second intermediate annealing exceeds 450 ° C., the solid solution Mn in the matrix is coarsely precipitated as an Al— (Fe · Mn) —Si based compound at the intermediate annealing at a high temperature. And the recrystallized structure weakens the recrystallization inhibiting action during brazing, resulting in a recrystallized grain size of less than 500 μm, which decreases sag resistance and erosion resistance during brazing.

第2次中間焼鈍の保持時間は特に限定する必要はないが、1〜5時間の範囲とすることが好ましい。第2次中間焼鈍の保持時間が1時間未満では、コイル全体の温度が不均一なままで、板中における均一な再結晶組織の得られない可能性があるので好ましくない。第2次中間焼鈍の保持時間が5時間を超えると、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利になるばかりでなく、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。   The holding time of the second intermediate annealing is not particularly limited, but is preferably in the range of 1 to 5 hours. If the holding time of the second intermediate annealing is less than 1 hour, the temperature of the entire coil remains non-uniform, and a uniform recrystallized structure in the plate may not be obtained. If the holding time of the second intermediate annealing exceeds 5 hours, the precipitation of the solid solution Mn progresses, which is not only disadvantageous in securing a recrystallized grain size of 500 μm or more after brazing but also processing. This is not preferable because it takes too much time to reduce productivity.

第2次中間焼鈍処理時の昇温速度および冷却速度は特に限定する必要はないが、30°C/時間以上とすることが好ましい。第2次中間焼鈍処理時の昇温速度および冷却速度が30°C/時間未満の場合、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利であるばかりでなく、処理に時間が掛かりすぎて生産性が低下するので、好ましくない。   The temperature increase rate and the cooling rate during the second intermediate annealing treatment are not particularly limited, but are preferably 30 ° C./hour or more. When the heating rate and cooling rate during the second intermediate annealing treatment are less than 30 ° C./hour, precipitation of solute Mn proceeds to stably secure a recrystallized grain size of 500 μm or more after brazing. In addition to being disadvantageous, it takes too much time for processing, and productivity is lowered, which is not preferable.

〔ファイバーな結晶粒組織〕 前記第1次中間焼鈍後、第2次中間焼鈍後、最終焼鈍後(ろう付け前)の何れの段階においても、金属組織がファイバーな結晶粒組織であるとは、何れの段階においても、金属組織が200μm以上の結晶粒組織を含まないファイバーな結晶粒組織であることを意味する。 [Fiber crystal grain structure] The metal structure is a fiber crystal grain structure at any stage after the first intermediate annealing, after the second intermediate annealing, and after the final annealing (before brazing). In any stage, it means that the metal structure is a fiber crystal grain structure not containing a crystal grain structure of 200 μm or more.

〔最終冷延率〕 最終冷延率は10〜96%が好ましい。最終冷延率が10%未満の場合、冷間圧延で蓄積される歪エネルギーが少なく、ろう付け時の昇温過程で再結晶が完了しないため、耐サグ性と耐エロージョン性が低下する。最終冷延率が96%を超えると圧延時の耳割れが顕著になり歩留まりが低下する。最終焼鈍を行わない場合,最終冷間圧延率が50%を超えると,製品強度が高くなりすぎて,フィン材成形において所定のフィン形状を得る事が困難になる。一方、最終冷延率が50%以上の場合、組成によっては製品強度が高くなり過ぎて、フィン成形において所定のフィン形状を得ることが困難になるが、このときには、最終冷延板に保持温度200〜400°Cで1〜3時間程度の最終焼鈍(軟化処理)を行っても諸特性を損なうことはない。特に連続焼鈍炉により第1次中間焼鈍を施した後、最終冷間圧延された板に、更に保持温度200〜400°Cで1〜3時間程度の最終焼鈍(軟化処理)を施したフィン材は、フィン成形性に優れており、しかもろう付け後の強度も高く、耐サグ性に優れている。 [Final cold rolling rate] The final cold rolling rate is preferably 10 to 96%. When the final cold rolling rate is less than 10%, the strain energy accumulated by cold rolling is small, and recrystallization is not completed in the temperature rising process during brazing, so the sag resistance and erosion resistance are lowered. When the final cold rolling rate exceeds 96%, the ear cracks at the time of rolling become remarkable and the yield decreases. When final annealing is not performed, if the final cold rolling rate exceeds 50%, the product strength becomes too high, and it becomes difficult to obtain a predetermined fin shape in fin material molding. On the other hand, when the final cold rolling rate is 50% or more, depending on the composition, the product strength becomes too high, and it becomes difficult to obtain a predetermined fin shape in the fin forming. Even if final annealing (softening treatment) is performed at 200 to 400 ° C. for about 1 to 3 hours, various characteristics are not impaired. In particular, after first intermediate annealing is performed by a continuous annealing furnace, the final cold-rolled plate is further subjected to final annealing (softening treatment) for about 1 to 3 hours at a holding temperature of 200 to 400 ° C. Is excellent in fin moldability, has high strength after brazing, and has excellent sag resistance.

本発明のフィン材は、所定幅にスリッティングした後コルゲート加工して、作動流体通路用材料、例えば、ろう材を被覆した3003合金などからなるクラッド板からなる偏平管と交互に積層し、ろう付け接合することにより熱交換器ユニットとする。   The fin material of the present invention is subjected to corrugation after slitting to a predetermined width, and alternately laminated with flat tubes made of a clad plate made of a working fluid passage material, for example, a 3003 alloy coated with a brazing material. A heat exchanger unit is obtained by jointing.

本発明の方法によれば、双ベルト式鋳造機による薄スラブ鋳造時、スラブ中にAl−(Fe・Mn)−Si系化合物が均一かつ微細に晶出するとともに、母相Al中に過飽和に固溶したMnとSiが、ろう付け時の高温加熱によってサブミクロンレベルのAl−(Fe・Mn)−Si相として高密度に析出する。これにより熱伝導性を大きく低下させるマトリックス中の固溶Mn量が少なくなるため、ろう付け後の電気伝導率は高くなり、優れた熱伝導性を示す。また、同様の理由により、微細に晶出したAl−(Fe・Mn)−Si系化合物、および高密度に析出したサブミクロンレベルのAl−(Fe・Mn)−Si相が塑性変形時の転位の動きを妨げるため、ろう付け後の最終板の抗張力は高い値を示す。また、ろう付け時に析出するサブミクロンレベルのAl−(Fe・Mn)−Si相は強い再結晶阻止作用を有するため、ろう付け後の再結晶粒径が500μm以上となるため耐サグ性が良好となり、同様の理由から、ろう付け後にも優れた耐エロージョン性を示すようになる。また、本発明においてMnの含有量を1.5wt%以上に限定したことから、ろう付け後の再結晶粒の平均粒径が3000μmを超えても抗張力が低下することはない。   According to the method of the present invention, at the time of thin slab casting by a twin belt type casting machine, Al- (Fe · Mn) -Si compound is crystallized uniformly and finely in the slab and supersaturated in the matrix Al. The solid solution Mn and Si are deposited at a high density as a sub-micron level Al- (Fe.Mn) -Si phase by high-temperature heating during brazing. As a result, the amount of solid solution Mn in the matrix that greatly lowers the thermal conductivity is reduced, so that the electrical conductivity after brazing is increased and excellent thermal conductivity is exhibited. For the same reason, the Al- (Fe · Mn) -Si compound finely crystallized and the submicron-level Al- (Fe · Mn) -Si phase precipitated at high density are dislocations during plastic deformation. The tensile strength of the final plate after brazing shows a high value. In addition, the sub-micron-level Al- (Fe.Mn) -Si phase that precipitates during brazing has a strong recrystallization-inhibiting action, so that the recrystallized grain size after brazing is 500 μm or more, thus providing good sag resistance. Thus, for the same reason, it exhibits excellent erosion resistance even after brazing. In the present invention, since the Mn content is limited to 1.5 wt% or more, the tensile strength does not decrease even if the average grain size of the recrystallized grains after brazing exceeds 3000 μm.

さらに、双ベルト式鋳造機は溶湯の凝固速度が速く、薄スラブ中に晶出するAl−(Fe・Mn)−Si系化合物は均一で微細なものとなる。そのため最終のフィン材において、粗大な晶出物起因の円相当径で5μm以上の第二相粒子が存在しなくなり、優れた自己耐食性を発現するようになる。   Further, the twin-belt casting machine has a high solidification rate of the molten metal, and the Al— (Fe · Mn) —Si compound crystallized in the thin slab becomes uniform and fine. Therefore, in the final fin material, second phase particles having a circle-equivalent diameter of 5 μm or more due to coarse crystals are not present, and excellent self-corrosion resistance is exhibited.

このように双ベルト式連続鋳造法により薄スラブを鋳造することにより、スラブ鋳塊におけるAl−(Fe・Mn)−Si化合物を均一かつ微細とし、ろう付け後のサブミクロンレベルのAl−(Fe・Mn)−Si相析出物を高密度にするとともに、ろう付け後の結晶粒径を500μm以上と粗くすることで、ろう付け後の強度、熱伝導率、耐サグ性、耐エロージョン性、自己腐食性を高め、同時にZnを含有させることによって材料の電位を卑にして犠牲陽極効果を優れたものとし、耐久性の優れた熱交換器用アルミニウム合金フィン材とすることができる。   Thus, by casting the thin slab by the twin belt type continuous casting method, the Al— (Fe · Mn) —Si compound in the slab ingot is made uniform and fine, and the submicron level Al— (Fe・ Mn) -Si phase precipitates are densified and the grain size after brazing is coarsened to 500 μm or more, so that strength after brazing, thermal conductivity, sag resistance, erosion resistance, self By increasing the corrosivity and simultaneously containing Zn, the potential of the material can be reduced, the sacrificial anode effect can be improved, and the aluminum alloy fin material for a heat exchanger having excellent durability can be obtained.

以下、本発明の実施例を比較例と対比して説明する。
本発明例および比較例として、表1に示した合金番号1から12の組成の合金溶湯を溶製し、セラミックス製フィルターを通過させて双ベルト鋳造鋳型に注湯し、鋳造速度8m/min で、厚さ7mmのスラブを連続鋳造した。溶湯の凝固時冷却速度は50°C/sec であった。該薄スラブを表2〜4に示す板厚(I/A1板厚)まで冷間圧延した。その後、試料をアニーラーに挿入し、昇温速度50°C/hrで昇温して、表2〜4に示す各温度で2hr保持した後、冷却速度50°C/hrで100°Cまで冷却するか、又は試料を450℃のソルト浴に15sec保持後、水焼入れをする第1次中間焼鈍処理を施した。次いで試料を表2〜4に示す板厚(I/A2板厚)まで冷間圧延した後、アニーラーに挿入し、昇温速度50°C/hrで昇温して、表2〜4に示す各温度で2hr保持した後、冷却速度50°C/hrで100°Cまで冷却する第2中間焼鈍処理を施した。次いで表2〜4に示す最終冷延率で冷間圧延を施し、厚さ60μmのフィン材とした。これら試料のうち一部については、更に試料をアニーラーに挿入し、昇温速度50°C/hrで昇温して、表4に示す各温度で2hr保持した後、冷却速度50°C/hrで100°Cまで冷却する最終焼鈍処理を施した。
Examples of the present invention will be described below in comparison with comparative examples.
As an example of the present invention and a comparative example, a molten alloy having the composition of alloy numbers 1 to 12 shown in Table 1 was melted, passed through a ceramic filter, poured into a twin belt casting mold, and cast at a casting speed of 8 m / min. A 7 mm thick slab was continuously cast. The cooling rate during solidification of the molten metal was 50 ° C / sec. The thin slab was cold-rolled to a plate thickness (I / A1 plate thickness) shown in Tables 2-4. Thereafter, the sample was inserted into an annealer, heated at a heating rate of 50 ° C./hr, held at each temperature shown in Tables 2 to 2 for 2 hr, and then cooled to 100 ° C. at a cooling rate of 50 ° C./hr. Alternatively, the sample was kept in a 450 ° C. salt bath for 15 seconds, and then subjected to a first intermediate annealing treatment in which water quenching was performed. Next, the sample was cold-rolled to the thickness shown in Tables 2 to 4 (I / A2 thickness), then inserted into an annealer, heated at a temperature increase rate of 50 ° C./hr, and shown in Tables 2 to 4 After holding at each temperature for 2 hr, a second intermediate annealing treatment was performed to cool to 100 ° C. at a cooling rate of 50 ° C./hr. Subsequently, it cold-rolled with the final cold rolling rate shown in Tables 2-4, and was set as the 60-micrometer-thick fin material. For some of these samples, the sample was further inserted into an annealer, heated at a temperature rising rate of 50 ° C./hr, held at each temperature shown in Table 4 for 2 hr, and then cooled at a rate of 50 ° C./hr. The final annealing process which cools to 100 degreeC was performed.

Figure 0005506732
Figure 0005506732

Figure 0005506732
Figure 0005506732

Figure 0005506732
Figure 0005506732

Figure 0005506732
Figure 0005506732

比較例として、表1に示した合金番号13、14の組成の合金溶湯を溶製し、常法のDC鋳造(厚さ500mm、凝固時冷却速度約1°C/sec )、面削、均熱処理、熱間圧延、冷間圧延(厚さ100μm)、中間焼鈍(400°C×2hr)、冷間圧延により厚さ60μmのフィン材を製造した。
得られた本発明例および比較例のフィン材について下記(1)〜(3)の測定を行なった。
As a comparative example, a molten alloy having the composition of Alloy Nos. 13 and 14 shown in Table 1 was melted, and the conventional DC casting (thickness: 500 mm, cooling rate at solidification: about 1 ° C / sec), face grinding, leveling, A fin material having a thickness of 60 μm was manufactured by heat treatment, hot rolling, cold rolling (thickness 100 μm), intermediate annealing (400 ° C. × 2 hr), and cold rolling.
The following measurements (1) to (3) were performed on the fin materials of the present invention examples and comparative examples.

(1)得られたフィン材の抗張力(MPa ) (2)ろう付け温度を想定して600〜605°C×3.5min加熱し、冷却後下記項目を測定した。
[1] 抗張力(MPa ) [2] 表面を電解研磨してバーカー法で結晶粒組織を現出後、切断法で圧延方向に平行な結晶粒径(μm) [3] 銀塩化銀電極を照合電極として、5%食塩水中で60min浸漬後の自然電位(mV) [4] 銀塩化銀電極を照合電極として、5%食塩水中で電位掃引速度20mV/minで行ったカソード分極より求めた腐食電流密度(μA/cm2 ) [5] JIS−H0505記載の導電性試験法で導電率[%IACS]
(1) Tensile strength (MPa) of the obtained fin material (2) Heating was performed at 600 to 605 ° C. for 3.5 minutes assuming a brazing temperature, and the following items were measured after cooling.
[1] Tensile strength (MPa) [2] Electrolytic polishing of the surface and revealing the grain structure by Barker method, then crystal grain size (μm) parallel to rolling direction by cutting method [3] Silver silver chloride electrode is verified Natural potential (mV) after immersion for 60 min in 5% saline as an electrode [4] Corrosion current obtained from cathodic polarization performed at a potential sweep rate of 20 mV / min in 5% saline using a silver-silver chloride electrode as a reference electrode Density (μA / cm 2 ) [5] Conductivity [% IACS] according to the conductivity test method described in JIS-H0505

(3)LWS T 8801記載のサグ試験方法で、突き出し長さ50mmとしたサグ量(mm) (4)コルゲート状に加工したフィン材を非腐食性弗化物系フラックスを塗布した厚さ0.25mmのブレージングシート(ろう材4045合金クラッド率8%)のろう材面上に載置(負荷荷重324g)し、昇温速度50°C/min で605°Cまで加熱して5min保持した。冷却後、ろう付け断面を観察し、フィン材結晶粒界のエロージョンが軽微なものを良(○印)とし、エロージョンが激しくフィン材の溶融が顕著なものを不良(×印)とした。なおコルゲート形状は下記のとおりとした。
コルゲート形状:高さ2.3mm×幅21mm×ピッチ3.4mm、10山 結果を表5〜7に示す。
(3) Sag amount (mm) with a protruding length of 50 mm by the sag test method described in LWS T 8801 (4) Thickness of 0.25 mm with noncorrosive fluoride flux applied to corrugated fin material Was placed on the brazing material surface of the brazing sheet (brazing material 4045 alloy clad rate 8%) (load load 324 g), heated to 605 ° C. at a heating rate of 50 ° C./min and held for 5 min. After cooling, the brazed cross section was observed, and a slight erosion of the fin material crystal grain boundary was judged as good (◯ mark), and a erosion was severe and the fin material melted markedly as poor (x mark). The corrugated shape was as follows.
Corrugated shape: height 2.3 mm × width 21 mm × pitch 3.4 mm, 10 peaks The results are shown in Tables 5-7.

Figure 0005506732
Figure 0005506732

Figure 0005506732
Figure 0005506732

Figure 0005506732
Figure 0005506732

表5の結果から、本発明によるフィン材(フィン材番号1〜5)は、ろう付け後の抗張力、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性のいずれも良好であることが判る。比較例のフィン材番号6は、Mn含有量が低く、ろう付け後抗張力が低い。
比較例のフィン材番号7は、Mn含有量が多く、鋳造時に巨大晶出物が生成し、冷間圧延中に割れを生じフィン材が得られなかった。比較例のフィン材番号8は、Si含有量が低く、ろう付け後抗張力が低い。比較例のフィン材番号9は、Si含有量が多く、耐エロージョン性が劣った。比較例のフィン材番号10は、Fe含有量が多く、鋳造時に巨大晶出物が生成し、冷間圧延中に割れを生じフィン材が得られなかった。
From the results of Table 5, it can be seen that the fin materials (fin material numbers 1 to 5) according to the present invention have good tensile strength, erosion resistance, sag resistance, sacrificial anode effect and self-corrosion resistance after brazing. . Fin material number 6 of the comparative example has a low Mn content and a low tensile strength after brazing.
The fin material No. 7 of the comparative example had a large Mn content, a large crystallized product was generated during casting, cracking occurred during cold rolling, and a fin material was not obtained. Fin material number 8 of the comparative example has a low Si content and a low tensile strength after brazing. Fin material number 9 of the comparative example had a large Si content and was inferior in erosion resistance. The fin material No. 10 of the comparative example had a large Fe content, a large crystallized product was generated during casting, cracks occurred during cold rolling, and a fin material was not obtained.

比較例のフィン材番号11は、Zn含有量が低く、自然電位が貴であり、犠牲陽極効果が劣った。比較例のフィン材番号12は、Zn含有量が多く、自己耐食性が劣っており、耐エロージョン性も劣った。常法のDC鋳造(厚さ500mm、凝固時冷却速度約1°C/sec )、面削、均熱処理、熱間圧延、冷間圧延(厚さ100μm)、中間焼鈍(400°C×2hr)、冷間圧延により得られたMn含有量の低い比較例のフィン材番号13およびSi、Mn含有量の低い比較例のフィン材番号14は、ろう付け後の抗張力が低く、ろう付け後の結晶粒径が小さく、耐サグ性、耐エロージョン性ともに劣った。   Fin material number 11 of the comparative example had a low Zn content, a natural potential was noble, and the sacrificial anode effect was inferior. Fin material number 12 of the comparative example had a large Zn content, inferior self-corrosion resistance, and inferior in erosion resistance. Conventional DC casting (thickness: 500 mm, solidification cooling rate: approx. 1 ° C / sec), chamfering, soaking, hot rolling, cold rolling (thickness: 100 μm), intermediate annealing (400 ° C x 2 hr) The fin material number 13 of the comparative example with a low Mn content obtained by cold rolling and the fin material number 14 of the comparative example with a low Mn content are low in tensile strength after brazing and have a crystal after brazing. The particle size was small, and both sag resistance and erosion resistance were poor.

表6の結果から、本発明によるフィン材(フィン材番号1、15、16)は、ろう付け前の抗張力が240MPa以下であり成形性に優れ、ろう付け後の抗張力、耐エロージョン性、耐サグ性のいずれも良好であることが判る。比較例のフィン材番号17は、最終冷延率が60%であるため、ろう付け前の抗張力が高く成形性が劣った。比較例のフィン材番号18、19は、第1次中間焼鈍処理の温度が高いため、ろう付け後の組織が再結晶せず、耐サグ性、耐エロージョン性が劣った。比較例のフィン材番号20は、最終冷延率が60%であるため、ろう付け加熱前の抗張力が高く、耐エロージョン性が劣る。比較例のフィン材番号21、22は、第2次中間焼鈍処理の温度が低いため、ろう付け加熱前の抗張力が高く成形性が劣った。比較例のフィン材番号23、25は、第2次焼鈍処理の温度が低いため、ろう付け加熱前の抗張力が高く成形性が劣った。比較例のフィン材番号24は、第2中間焼鈍処理の温度が高いため、再結晶が起こってしまい耐エロージョン性が劣った。   From the results shown in Table 6, the fin materials according to the present invention (fin material numbers 1, 15, and 16) have a tensile strength before brazing of 240 MPa or less and excellent moldability, and have a tensile strength, erosion resistance, and sag resistance after brazing. It turns out that all of sex is favorable. The fin material number 17 of the comparative example had a final cold rolling rate of 60%, and therefore had high tensile strength before brazing and poor moldability. Since the fin material numbers 18 and 19 of the comparative examples had a high temperature in the first intermediate annealing treatment, the structure after brazing was not recrystallized, and the sag resistance and the erosion resistance were inferior. The fin material number 20 of the comparative example has a final cold rolling rate of 60%, and thus has a high tensile strength before brazing heating and is inferior in erosion resistance. The fin material numbers 21 and 22 of the comparative examples had a high tensile strength before brazing heating and a poor moldability because the temperature of the second intermediate annealing treatment was low. The fin material numbers 23 and 25 of the comparative examples had a low tensile strength before brazing heating because the temperature of the secondary annealing treatment was low, and the moldability was poor. Since the fin material number 24 of the comparative example had a high temperature for the second intermediate annealing treatment, recrystallization occurred and the erosion resistance was inferior.

表7の結果から、本発明によるフィン材(フィン材番号26〜29)は、ろう付け前の抗張力が240MPa以下であり成形性に優れ、ろう付け後の抗張力、耐エロージョン性、耐サグ性のいずれも良好であることが判る。比較例のフィン材番号30は、最終焼鈍処理の温度が高いため、再結晶が起こってしまい耐エロージョン性が劣った。比較例のフィン材番号31は、最終焼鈍処理の温度が低いため、ろう付け加熱前の抗張力が高く成形性が劣った。   From the results of Table 7, the fin material according to the present invention (fin material numbers 26 to 29) has a tensile strength before brazing of 240 MPa or less and excellent moldability, and has a high tensile strength, erosion resistance and sag resistance after brazing. It turns out that all are good. The fin material No. 30 of the comparative example was inferior in erosion resistance because recrystallization occurred because the temperature of the final annealing treatment was high. The fin material No. 31 of the comparative example has a low tensile strength before brazing heating because the temperature of the final annealing treatment is low, and the moldability is poor.

本発明によれば、フィン成形が容易な適度なろう付け前の抗張力、およびろう付け後において高い強度を有し、伝熱特性、耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材が提供される。   According to the present invention, it has an appropriate tensile strength before brazing that facilitates fin molding and high strength after brazing, and is excellent in heat transfer characteristics, sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. An aluminum alloy fin material for a heat exchanger is provided.

Claims (2)

Si:0.8〜1.4wt%、Fe:0.45〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、不純物としてのCuを0.02wt%以下に制限し、残部が通常の不純物とAlからなる化学組成を有するアルミニウム合金のみからなる熱交換器用高強度アルミニウム合金フィン材であって、
ろう付け前の金属組織が圧延組織であり、ろう付前の抗張力が240MPa以下であり、さらに
加熱温度600〜605℃で3.5分保持し、冷却した後の抗張力が150MPa以上であり、且つ加熱温度600〜605℃で3.5分保持し、冷却した後の圧延方向に平行な平均再結晶粒径が6700μmであることを特徴とする熱交換器用高強度アルミニウム合金フィン材。
Si: 0.8-1.4 wt%, Fe: 0.45-0.7 wt%, Mn: 1.5-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities High-strength aluminum alloy for heat exchangers with Mg limited to 0.05 wt% or less, Cu as impurities limited to 0.02 wt% or less, and the balance consisting only of an aluminum alloy having a chemical composition of ordinary impurities and Al A fin material,
The metal structure before brazing is a rolled structure, the tensile strength before brazing is 240 MPa or less, and the tensile strength after cooling at a heating temperature of 600 to 605 ° C. for 3.5 minutes is 150 MPa or more, and A high-strength aluminum alloy fin material for heat exchangers characterized in that the average recrystallized grain size parallel to the rolling direction after being held at a heating temperature of 600 to 605 ° C. for 3.5 minutes and cooled is 6700 μm.
Si:0.8〜1.4wt%、Fe:0.45〜0.7wt%、Mn:2.1〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、不純物としてのCuを0.2wt%以下に制限し、残部が通常の不純物とAlからなる化学組成を有するアルミニウム合金のみからなる熱交換器用高強度アルミニウム合金フィン材であって、
ろう付け前の金属組織が圧延組織であり、ろう付前の抗張力が240MPa以下であり、さらに
加熱温度600〜605℃で3.5分保持し、冷却した後の抗張力が150MPa以上であり、且つ加熱温度600〜605℃で3.5分保持し、冷却した後の圧延方向に平行な平均再結晶粒径が6700μmであることを特徴とする熱交換器用高強度アルミニウム合金フィン材。
Si: 0.8-1.4 wt%, Fe: 0.45-0.7 wt%, Mn: 2.1-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities High-strength aluminum alloy for heat exchangers with Mg limited to 0.05 wt% or less, Cu as impurities limited to 0.2 wt% or less, and the balance consisting only of an aluminum alloy having a chemical composition of ordinary impurities and Al A fin material,
The metal structure before brazing is a rolled structure, the tensile strength before brazing is 240 MPa or less, and the tensile strength after cooling at a heating temperature of 600 to 605 ° C. for 3.5 minutes is 150 MPa or more, and A high-strength aluminum alloy fin material for heat exchangers characterized in that the average recrystallized grain size parallel to the rolling direction after being held at a heating temperature of 600 to 605 ° C. for 3.5 minutes and cooled is 6700 μm.
JP2011087668A 2011-04-11 2011-04-11 High strength aluminum alloy fin material for heat exchanger Expired - Fee Related JP5506732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087668A JP5506732B2 (en) 2011-04-11 2011-04-11 High strength aluminum alloy fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087668A JP5506732B2 (en) 2011-04-11 2011-04-11 High strength aluminum alloy fin material for heat exchanger

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005216987A Division JP5371173B2 (en) 2005-07-27 2005-07-27 Manufacturing method of high strength aluminum alloy fin material

Publications (2)

Publication Number Publication Date
JP2011190538A JP2011190538A (en) 2011-09-29
JP5506732B2 true JP5506732B2 (en) 2014-05-28

Family

ID=44795742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087668A Expired - Fee Related JP5506732B2 (en) 2011-04-11 2011-04-11 High strength aluminum alloy fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JP5506732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206322B2 (en) * 2014-05-14 2017-10-04 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger excellent in brazing and sag resistance and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247542A (en) * 1988-03-29 1989-10-03 Furukawa Alum Co Ltd Sagging-resistant aluminum alloy fin material for heat exchanger
JP3396523B2 (en) * 1993-12-01 2003-04-14 三菱アルミニウム株式会社 Al alloy fin material with excellent post-brazing strength and brazing properties
JPH07106445B2 (en) * 1993-12-02 1995-11-15 第一メテコ株式会社 Aluminum alloy heat exchanger and method of manufacturing the same
JP3802695B2 (en) * 1998-11-12 2006-07-26 株式会社神戸製鋼所 Aluminum alloy plate with excellent press formability and hemmability
JP3847077B2 (en) * 2000-11-17 2006-11-15 住友軽金属工業株式会社 Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP3967669B2 (en) * 2002-11-25 2007-08-29 三菱アルミニウム株式会社 High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same
JP2005060790A (en) * 2003-08-18 2005-03-10 Sumitomo Light Metal Ind Ltd Aluminum alloy brazing fin material for heat exchanger
JP4725019B2 (en) * 2004-02-03 2011-07-13 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
JP5371173B2 (en) * 2005-07-27 2013-12-18 日本軽金属株式会社 Manufacturing method of high strength aluminum alloy fin material

Also Published As

Publication number Publication date
JP2011190538A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP4725019B2 (en) Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
JP5055881B2 (en) Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material
JP5854954B2 (en) High-strength aluminum alloy fin material and manufacturing method thereof
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
CA2856488C (en) Aluminium fin alloy and method of making the same
JP4123059B2 (en) Manufacturing method of high strength aluminum alloy fin material for heat exchanger
JP5762387B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP5506732B2 (en) High strength aluminum alloy fin material for heat exchanger
JP5447593B2 (en) Aluminum alloy fin material for heat exchanger
MX2008000955A (en) High strength aluminum alloy fin material and method of production of same.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees