JP5505268B2 - Cooling pipe, cylinder head, and manufacturing method of cooling pipe - Google Patents

Cooling pipe, cylinder head, and manufacturing method of cooling pipe Download PDF

Info

Publication number
JP5505268B2
JP5505268B2 JP2010251916A JP2010251916A JP5505268B2 JP 5505268 B2 JP5505268 B2 JP 5505268B2 JP 2010251916 A JP2010251916 A JP 2010251916A JP 2010251916 A JP2010251916 A JP 2010251916A JP 5505268 B2 JP5505268 B2 JP 5505268B2
Authority
JP
Japan
Prior art keywords
surface portion
portions
members
cooling pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010251916A
Other languages
Japanese (ja)
Other versions
JP2012102672A (en
Inventor
昌彦 浅野
稔章 蛤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010251916A priority Critical patent/JP5505268B2/en
Publication of JP2012102672A publication Critical patent/JP2012102672A/en
Application granted granted Critical
Publication of JP5505268B2 publication Critical patent/JP5505268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、冷却通路に関し、詳しくは、冷却通路を低コストで製造する技術に関する。   The present invention relates to a cooling passage, and more particularly to a technique for manufacturing a cooling passage at a low cost.

従来、例えばエンジンのシリンダヘッドに適用されるEGR装置(排気再循環装置)におけるEGRガスの冷却通路のように、両端に開口端部を有する複数の冷却パイプを並行な状態で接合し、冷却装置として用いる技術が知られている。そのような冷却パイプ同士の接合においては、接合する部材よりも融点の低いニッケル等の合金(ろう剤)を溶かして一種の接着剤として用いる、いわゆる「ろう付け」が用いられることがある(例えば、特許文献1及び特許文献2を参照)。   2. Description of the Related Art Conventionally, a plurality of cooling pipes having open ends at both ends are joined in parallel as in an EGR gas cooling passage in an EGR device (exhaust gas recirculation device) applied to a cylinder head of an engine, for example. The technique used as is known. In joining such cooling pipes, so-called “brazing” is sometimes used in which an alloy (brazing agent) such as nickel having a melting point lower than that of a member to be joined is used as a kind of adhesive (for example, , See Patent Document 1 and Patent Document 2).

一方で、異なる部材である金属を接合させる技術としては、接合対象となる部材にレーザー光を集光した状態で照射し、金属を局部的に溶融・凝固させることによって接合するレーザー接合が用いられることもある(例えば、特許文献3を参照)。   On the other hand, as a technique for joining metals, which are different members, laser joining is performed by irradiating a member to be joined with a laser beam condensed and locally melting and solidifying the metal. (For example, refer to Patent Document 3).

特開2004−335846号公報JP 2004-335846 A 特開2008−39322号公報JP 2008-39322 A 特開平7−178584号公報Japanese Unexamined Patent Publication No. 7-178484

前記特許文献1及び特許文献2に記載するようなろう付け処理においては、高温の真空状態で処理を行う必要があるため、処理設備が大掛かりとなり、設備コストが嵩むという問題があった。また、ニッケル等のろう剤に配合される素材についても、そのコストを低減させることが求められていた。   In the brazing process described in Patent Document 1 and Patent Document 2, since it is necessary to perform the process in a high-temperature vacuum state, there is a problem that the processing equipment becomes large and the equipment cost increases. Moreover, about the raw material mix | blended with brazing agents, such as nickel, it was calculated | required to reduce the cost.

一方、特許文献3に記載するようなレーザー接合においては、大掛かりな設備を必要とせず、素材費も不要である上に、高速での接合処理が可能となることから、全体的なコストを低減させることが可能となる。   On the other hand, laser bonding as described in Patent Document 3 does not require large-scale equipment, does not require material costs, and enables high-speed bonding processing, thus reducing the overall cost. It becomes possible to make it.

ここで、前記冷却パイプはその性質上、薄肉の場合が多く(例えば、金属板の厚さ1mm以下等)、また、周囲に冷却水が流通する場合はその水圧に耐える必要があるため、破損を防止するために一定の接合強度が求められる。   Here, the cooling pipe is often thin due to its nature (for example, a metal plate having a thickness of 1 mm or less, etc.), and it is necessary to withstand the water pressure when cooling water flows around it. In order to prevent this, a certain bonding strength is required.

このため、前記レーザー接合を用いて冷却パイプを接合しようとしても、筒状の接合部(冷却パイプの開口端部付近)を通じて冷却パイプの奥深くにまでレーザーを照射することが困難であり、また、仮に照射した場合でも適切な角度でレーザーを照射できないため、充分な接合面積を確保することは困難であった。つまり、冷却パイプ同士の接合強度が低くなるため、レーザー接合を冷却パイプの接合に用いることができなかったのである。   For this reason, even if it is going to join a cooling pipe using the said laser joining, it is difficult to irradiate a laser deeply into a cooling pipe through a cylindrical joined part (near the opening end part of a cooling pipe), Even if irradiated temporarily, it is difficult to ensure a sufficient bonding area because the laser cannot be irradiated at an appropriate angle. That is, since the joining strength between the cooling pipes becomes low, laser joining cannot be used for joining the cooling pipes.

そこで本発明は、上記現状に鑑み、レーザー接合を用いることにより、その製造にあたっての全体的なコストを低減させることが可能となる、冷却管、シリンダヘッド、及び、冷却管の製造方法を提供するものである。   In view of the above, the present invention provides a cooling pipe, a cylinder head, and a manufacturing method of the cooling pipe, which can reduce the overall cost of manufacturing by using laser bonding. Is.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備える二個の第一部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第一部材の側から、第一部材の長手方向における両端部をレーザー溶接により接合して、外側管部材を形成し、長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備え、その短手方向の外幅が前記第一部材の短手方向の内幅と略同一に形成された、二個の第二部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第二部材の側から、第二部材の長手方向における両端部をレーザー溶接により接合して、内側管部材を形成し、一の第二部材を一の第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接するように、前記内側管部材と前記外側管部材とを交互に組合せて、また、各第一部材の底面部に対して垂直な方向における端部に位置する第一部材又は第二部材に対して、それぞれ対応する第二部材又は第一部材を、第二部材を第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接するように組合せた後に、それぞれ重なった側面部をレーザー溶接により接合することにより、それぞれの第二部材において対向する側面部の間に冷却通路を形成したものである。   That is, in claim 1, the bottom surface portion formed in a long rectangular shape, and two side surface portions that are erected opposite each other perpendicular to the bottom surface portion along the long side of the bottom surface portion. And the two first members comprising the first member and the second member in the longitudinal direction of the first member from the side of the first member Both end portions are joined by laser welding to form an outer tube member, and the bottom surface portion formed in a long rectangular shape is opposed to each other perpendicular to the bottom surface portion along the long side of the bottom surface portion. Two second members, each having two lateral members, each having an outer width in the short direction formed substantially the same as an inner width in the short direction of the first member, From the side of one second member, after butting the surface opposite the side where the side surface portion is formed in the bottom surface portion of Both end portions in the longitudinal direction of the two members are joined by laser welding to form an inner tube member, and while the second member is accommodated in the first member, the respective side portions overlap, The inner tube member and the outer tube member are alternately combined so that the front end side of the side surface portion is in contact with the bottom surface portion of the first member, and in a direction perpendicular to the bottom surface portion of each first member. While accommodating the second member or the first member corresponding to the first member or the second member located at the end, respectively, while the second member is accommodated in the first member, the respective side portions overlap, and the second member After the front end sides of the side surfaces of the first member are combined so as to contact the bottom surface of the first member, the overlapping side surfaces are joined by laser welding, thereby cooling between the opposing side surfaces of each second member. Also formed a passage It is.

請求項2においては、前記底面部の長手方向における両端部以外の部分を、前記両端部に対して側面部が形成された側に突出させて、前記第一部材及び第二部材を形成することにより、それぞれの前記外側管部材及び内側管部材における第一部材と第一部材、及び、第二部材と第二部材の間に流通経路を形成したものである。   In Claim 2, parts other than the both ends in the longitudinal direction of the said bottom face part are made to protrude in the side in which the side part was formed with respect to the said both ends, and said 1st member and 2nd member are formed. Thus, a flow path is formed between the first member and the first member, and the second member and the second member in each of the outer tube member and the inner tube member.

請求項3においては、前記第一部材の側面部の長手方向両端部における先端辺を、その収容する前記第二部材の底面部における側面部が形成された側と反対側の面まで延出して形成したものである。   In Claim 3, the front end side in the longitudinal direction both ends of the side surface part of said 1st member is extended to the surface on the opposite side to the side in which the side surface part in the bottom face part of the said 2nd member accommodated was formed. Formed.

請求項4においては、請求項1から請求項3の何れか1項に記載の冷却管を、EGRクーラーにおけるEGRガスの冷却部として備えるものである。   According to a fourth aspect of the present invention, the cooling pipe according to any one of the first to third aspects is provided as an EGR gas cooling unit in an EGR cooler.

請求項5においては、長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備え、前記底面部の長手方向における両端部以外の部分を側面部が形成された側に突出させた、二個の第一部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第一部材の側から、第一部材の長手方向における両端部をレーザー溶接により接合して、二個の第一部材の間に流通経路を備える外側管部材を形成する、第一の工程と、長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備え、その短手方向の外幅が前記第一部材の短手方向の内幅と略同一に形成され、前記底面部の長手方向における両端部以外の部分を側面部が形成された側に突出させた、二個の第二部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第二部材の側から、第二部材の長手方向における両端部をレーザー溶接により接合して、二個の第二部材の間に流通経路を備える内側管部材を形成する、第二の工程と、一の第二部材を一の第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接し、前記第一部材の両端の側面部における先端辺を、その収容する前記第二部材の側面部が形成された側と反対側の底面部まで延出するように、前記内側管部材と前記外側管部材とを交互に組合せて、また、各第一部材の底面部に対して垂直な方向における端部に位置する第一部材又は第二部材に対して、それぞれ対応する第二部材又は第一部材を、第二部材を第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接し、第一部材の両端の側面部における先端辺を、その収容する前記第二部材の底面部における側面部が形成された側と反対側の面まで延出するように組合せた後に、それぞれ重なった側面部をレーザー溶接により接合して形成することにより、それぞれの第二部材において対向する側面部の間に冷却通路を形成する、第三の工程と、を備えるものである。   In claim 5, the bottom portion formed in a long rectangular shape, and two side portions that stand vertically opposite each other along the long side of the bottom portion, The two first members are made to protrude from the side where the side surface portion is formed, except for both ends in the longitudinal direction of the bottom surface portion, opposite to the side where the side surface portion is formed on each bottom surface portion. After abutting the side surfaces, the outer tube member is provided with a flow path between the two first members by joining both ends in the longitudinal direction of the first member by laser welding from the side of one of the first members. Forming a first step, a bottom rectangular portion formed in a long rectangular shape, and two sheets standing vertically opposite each other along the long side of the bottom surface portion And an outer width in the short direction formed substantially the same as an inner width in the short direction of the first member. The two second members are formed on the side opposite to the side where the side surface portion is formed on each of the bottom surface portions. After the two surfaces are abutted, from the side of one of the second members, both ends in the longitudinal direction of the second member are joined by laser welding, and an inner tube member having a flow path between the two second members is provided. While the second step to be formed and one second member are accommodated in one first member, the side surfaces overlap each other, and the tip side of the side surface of the second member abuts the bottom surface of the first member. The inner tube member and the inner pipe member so as to extend to the bottom surface portion opposite to the side where the side surface portion of the second member to be accommodated is formed. In combination with the outer tube member alternately, the bottom surface of each first member Then, with respect to the first member or the second member positioned at the end in the vertical direction, the corresponding second member or first member is accommodated in the first member, while the second member is accommodated in the first member. The tip side of the side surface portion of the second member is in contact with the bottom surface portion of the first member, the tip side of the side surface portion of both ends of the first member is After being combined so as to extend to the surface opposite to the formed side, the overlapping side portions are joined by laser welding to form a cooling between the opposing side portions in each second member. And a third step of forming a passage.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

本発明により、レーザー接合を用いることにより、冷却管の製造における全体的なコストを低減させることが可能となる。   By using laser bonding according to the present invention, it is possible to reduce the overall cost of manufacturing the cooling tube.

本実施形態に係る冷却管を示した斜視図。The perspective view which showed the cooling pipe which concerns on this embodiment. (a)は同じく冷却管の端部における断面図、(b)は同じく冷却管の中央部における断面図。(A) is sectional drawing in the edge part of a cooling pipe similarly, (b) is sectional drawing in the center part of a cooling pipe similarly. 外側管部材を形成する途中の状態を示した斜視図。The perspective view which showed the state in the middle of forming an outer side tube member. 外側管部材の斜視図。The perspective view of an outer side tube member. 外側管部材と内側管部材とを組合せる途中の状態を示した斜視図。The perspective view which showed the state in the middle of combining an outer tube member and an inner tube member. 外側管部材と内側管部材とを組合せた状態を示した斜視図。The perspective view which showed the state which combined the outer side tube member and the inner side tube member. 本実施形態に係る冷却管を、EGRクーラーにおけるEGRガスの冷却部としてシリンダヘッドに備えた内燃機関の概略図。1 is a schematic view of an internal combustion engine provided with a cooling pipe according to the present embodiment in a cylinder head as a cooling part for EGR gas in an EGR cooler.

次に、発明の実施の形態を説明する。
なお、本発明の技術的範囲は以下の実施例に限定されるものではなく、本明細書及び図面に記載した事項から明らかになる本発明が真に意図する技術的思想の範囲全体に、広く及ぶものである。
Next, embodiments of the invention will be described.
It should be noted that the technical scope of the present invention is not limited to the following examples, but broadly covers the entire scope of the technical idea that the present invention truly intends, as will be apparent from the matters described in the present specification and drawings. It extends.

[冷却管40の構成]
まず、本実施形態に係る冷却管40の概略について、図1及び図2を用いて説明する。図2(a)は冷却管40の前端部において、前後方向に対して垂直な面で切断した場合の断面図、図2(b)は同じく冷却管40の前後方向の略中央部において、前後方向に対して垂直な面で切断した場合の断面図である。なお、本明細書においては説明の便宜上、各図における矢印で方向を示すことにより、冷却管40の上方、左側方、後方を規定する。
[Configuration of Cooling Pipe 40]
First, the outline of the cooling pipe 40 according to the present embodiment will be described with reference to FIGS. 1 and 2. 2A is a cross-sectional view of the front end portion of the cooling pipe 40 taken along a plane perpendicular to the front-rear direction, and FIG. It is sectional drawing at the time of cut | disconnecting in a surface perpendicular | vertical with respect to a direction. In the present specification, for convenience of explanation, the direction of the cooling pipe 40 is defined by indicating the direction with arrows in the drawings.

冷却管40は、冷却装置に配設され、冷却対象を冷却するための部材であって、図1に示す如く、前後に長手方向を有する長尺部材である。冷却管40の内部には、例えば冷却される対象である高温のガス等が流通する、管状の冷却通路42・42・・が前後方向に形成されている。また、それぞれの冷却通路42・42・・の間には、例えば冷却水が流通する、流通経路45・46が左右方向に形成されている。つまり、冷却管40は流通経路45・46に対して左右方向(図1及び図2(b)中の矢印Fの方向)に冷却水を流通させながら、冷却通路42・42・・に対して前後方向に冷却対象を流通させることにより、冷却対象を冷却する構成としている。
このように、冷却管40においては、冷却対象の流通路である複数の冷却通路42・42・・が長手方向に形成されるとともに、各冷却通路42・42・・間に、冷却対象の流通方向と直交する方向に冷却水が流通する流通経路45・46が形成されている。
The cooling pipe 40 is a member that is disposed in the cooling device and cools the object to be cooled, and is a long member having a longitudinal direction in the front-rear direction as shown in FIG. Inside the cooling pipe 40, for example, tubular cooling passages 42, 42,... Are formed in the front-rear direction through which high-temperature gas to be cooled flows. Between the respective cooling passages 42, 42,..., For example, circulation passages 45, 46 through which cooling water flows are formed in the left-right direction. That is, the cooling pipe 40 is circulated with respect to the cooling passages 42, 42,... While flowing the cooling water in the left-right direction (the direction of arrow F in FIGS. The cooling target is cooled by circulating the cooling target in the front-rear direction.
In this way, in the cooling pipe 40, a plurality of cooling passages 42, 42,... That are the flow passages to be cooled are formed in the longitudinal direction, and the circulation of the cooling target is between each cooling passage 42, 42,. Distribution channels 45 and 46 through which cooling water flows in a direction orthogonal to the direction are formed.

図1及び図2(a)に示す如く、冷却管40はその両端部が短筒状の嵌合部材19a・19bに嵌合される。そして、冷却管40を冷却装置に配設する際には、これらの嵌合部材19a・19bを冷却装置に配設してから、両端部を嵌合部材19a・19bに嵌合するのである(図7を参照)。   As shown in FIGS. 1 and 2 (a), both ends of the cooling pipe 40 are fitted into short tubular fitting members 19a and 19b. And when arrange | positioning the cooling pipe 40 in a cooling device, after arrange | positioning these fitting members 19a and 19b in a cooling device, both ends are fitted to fitting members 19a and 19b ( (See FIG. 7).

冷却管40は図1及び図2に示す如く、第一部材51・51・・と、第二部材61・61・・との二種類の部材を組合せて構成される。具体的には図3から図5に示す如く、二個の第一部材51・51を組合せて外側管部材50を形成し、二個の第二部材61・61を組合せて内側管部材60を形成する。そして、図1、図2及び図6に示す如く、これらの外側管部材50や内側管部材60と、単体の第一部材51や第二部材61を組合せて冷却管40を構成するのである。以下、図3から図6を用いて冷却管40の製造方法について詳細に説明する。   As shown in FIGS. 1 and 2, the cooling pipe 40 is configured by combining two types of members: first members 51, 51, and second members 61, 61, and so on. Specifically, as shown in FIGS. 3 to 5, the two first members 51 and 51 are combined to form the outer tube member 50, and the two second members 61 and 61 are combined to form the inner tube member 60. Form. As shown in FIGS. 1, 2, and 6, the outer pipe member 50 and the inner pipe member 60, and the single first member 51 and the second member 61 are combined to form the cooling pipe 40. Hereinafter, the manufacturing method of the cooling pipe 40 will be described in detail with reference to FIGS.

図3及び図4に示す如く、外側管部材50は二個の第一部材51・51を上下に組合せて形成される。以下、上側の第一部材51を上側第一部材51a、下側の第一部材51を下側第一部材51bとして説明する。なお、下側第一部材51bは上側第一部材51aと同一の形状をしており、上側第一部材51aと組合せる際に図3及び図4に示す如く上下逆に反転させるに過ぎないものであるため、その説明は省略する。   As shown in FIGS. 3 and 4, the outer tube member 50 is formed by combining two first members 51, 51 vertically. Hereinafter, the upper first member 51 will be described as an upper first member 51a, and the lower first member 51 will be described as a lower first member 51b. The lower first member 51b has the same shape as the upper first member 51a, and is merely reversed upside down as shown in FIGS. 3 and 4 when combined with the upper first member 51a. Therefore, the description thereof is omitted.

上側第一部材51aは、長尺の長方形状に形成される平板部材である底面部52aと、底面部52aの長辺に沿って底面部52aに対して垂直に、互いに対向して立設する平板部材である二枚の側面部53a・53aと、を備える。また、底面部52aの長手方向における両端には端部54a・54aが形成されており、上側第一部材51aは端部54a・54a以外の部分を、端部54a・54aに対して側面部53a・53aが形成された側に突出させて形成されている。換言すれば、端部54a・54aは底面部52aから下方に突出するように形成されているのである。これにより、側面部53a・53aは図3に示す如く、側面視において端部54a・54aに対応する部分では上下方向に拡幅して形成されている。   The upper first member 51a is erected so as to face each other perpendicularly to the bottom surface portion 52a along the long side of the bottom surface portion 52a and the bottom surface portion 52a which is a flat plate member formed in a long rectangular shape. And two side portions 53a and 53a which are flat plate members. Further, end portions 54a and 54a are formed at both ends in the longitudinal direction of the bottom surface portion 52a, and the upper first member 51a has a side portion 53a other than the end portions 54a and 54a with respect to the end portions 54a and 54a. -It is formed to project to the side on which 53a is formed. In other words, the end portions 54a and 54a are formed so as to protrude downward from the bottom surface portion 52a. Thereby, as shown in FIG. 3, the side surface portions 53a and 53a are formed to be widened in the vertical direction at portions corresponding to the end portions 54a and 54a in a side view.

このように形成された上側第一部材51aと下側第一部材51bとを、それぞれの底面部52a・52bにおける、側面部53a・53a・53b・53bが形成された側と反対側の面、即ち、側面部53a・53aが底面部52aから上側に延出する姿勢に配置された上側第一部材51aの下面と、側面部53b・53bが底面部52aから下側に延出する姿勢に配置された下側第一部材51bの上面とを対向させて、図3中に示す矢印Aの如く近接させる。そして、図4に示す如く、上側第一部材51aの下面と下側第一部材51bの上面とを突き合わせるのである。   The upper first member 51a and the lower first member 51b formed in this way are the surfaces on the opposite sides of the side surfaces 53a, 53a, 53b, 53b in the respective bottom surfaces 52a, 52b, In other words, the lower surface of the upper first member 51a is disposed in such a posture that the side surface portions 53a and 53a extend upward from the bottom surface portion 52a, and the side surface portions 53b and 53b are disposed in a posture that extends downward from the bottom surface portion 52a. The upper surface of the lower first member 51b thus made is opposed to each other and brought close to each other as indicated by an arrow A shown in FIG. Then, as shown in FIG. 4, the lower surface of the upper first member 51a and the upper surface of the lower first member 51b are brought into contact with each other.

この際、上側第一部材51aにおける底面部52aの両端は端部54a・54aが下方に突出して形成されており、下側第一部材51bにおける底面部52bの両端は端部54b・54bが上方に突出して形成されている。このため、上側第一部材51aの端部54a・54aと下側第一部材51bの端部54b・54bとが突き合うこととなる。これにより、底面部52aと底面部52bとのそれぞれの長手方向中途部の間には間隙が形成され、この間隙が、冷却水等が流通する流通経路45となる。   At this time, both ends of the bottom surface portion 52a of the upper first member 51a are formed so that the end portions 54a and 54a protrude downward, and both ends of the bottom surface portion 52b of the lower first member 51b are end portions of the end portions 54b and 54b. Is formed to protrude. For this reason, end part 54a * 54a of the upper side 1st member 51a and end part 54b * 54b of the lower side 1st member 51b will face | abut. As a result, a gap is formed between the middle portions in the longitudinal direction of the bottom surface portion 52a and the bottom surface portion 52b, and this gap becomes a flow path 45 through which cooling water or the like flows.

その後、図4に示す如く、上側第一部材51aの側である上方から、レーザー照射器70によりレーザー光Lを照射して、上側第一部材51a及び下側第一部材51bの長手方向における端部54a・54a及び端部54b・54bを、レーザー溶接により接合する。この際、端部54a・54a及び端部54b・54bのそれぞれにおいて、長手方向に並列する三本のビードBが現れるようにレーザー溶接を行うことにより、上側第一部材51aと下側第一部材51bとの接合面積を確保している。   After that, as shown in FIG. 4, the laser beam L is irradiated from the upper side which is the upper first member 51a side by the laser irradiator 70, and the ends of the upper first member 51a and the lower first member 51b in the longitudinal direction. The parts 54a and 54a and the end parts 54b and 54b are joined by laser welding. At this time, the upper first member 51a and the lower first member are formed by performing laser welding so that three beads B juxtaposed in the longitudinal direction appear in each of the end portions 54a and 54a and the end portions 54b and 54b. The junction area with 51b is secured.

なお、前記接合面積とはビードBの1本あたりの面積とビードBの本数との積である。この接合面積は、冷却水が流通経路45を流通した時に端部54a及び端部54bを離間させようとする引張り加重を疲労応力で割った値よりも大きくなることが必要である。つまり、この接合面積に関する条件を満たしていれば、レーザー溶接におけるビードBの本数は何本でも差し支えない。
このようにして、上側第一部材51aと下側第一部材51bとを組合せることにより、外側管部材50を形成するのである。
The bonding area is the product of the area per bead B and the number of beads B. This bonding area needs to be larger than the value obtained by dividing the tensile load for separating the end portion 54a and the end portion 54b by the fatigue stress when the cooling water flows through the flow path 45. That is, the number of beads B in laser welding can be any number as long as the condition regarding the bonding area is satisfied.
In this way, the outer tube member 50 is formed by combining the upper first member 51a and the lower first member 51b.

一方、図5に示す如く、内側管部材60についても外側管部材50と同様に、二個の第一部材61・61を上下に組合せて形成されるが、以下、上側の第一部材61を上側第一部材61a、下側の第一部材61を下側第一部材61bとする。ここで、上側第二部材61a及び下側第二部材61bは、基本的に第一部材51と同じ形状に形成されている。   On the other hand, as shown in FIG. 5, the inner pipe member 60 is formed by combining two first members 61 and 61 in the same manner as the outer pipe member 50. The upper first member 61a and the lower first member 61 are referred to as a lower first member 61b. Here, the upper second member 61 a and the lower second member 61 b are basically formed in the same shape as the first member 51.

第二部材61が第一部材51と異なる部分は、その左右方向幅(短手方向幅)が第一部材51に対して短い点であり、第二部材61の短手方向である左右方向の外幅は第一部材51の短手方向の内幅と略同一に形成されている(図5中の一点鎖線を参照)。
また、図5に示す如く、第一部材51では、端部54a・54a部分における側面部53a・53aが、他部における側面部53a・53aに対して、端部54a・54aの底面部52aに対する突出する方向、および側面部53a・53aの底面部52aからの延出方向、即ち図5における下方および上方の両方に拡幅して形成されているが、第二部材61では、端部64a・64a部分における側面部63a・63aが、他部における側面部63a・63aに対して、端部64a・64aの底面部62aに対する突出する方向にのみ、即ち上側第一部材61aでは下方にのみ、下側第一部材61bでは上方にのみ拡幅して形成されている。
The part where the second member 61 is different from the first member 51 is that the left-right width (short-side width) is shorter than the first member 51, and the left-right direction is the short direction of the second member 61. The outer width is formed substantially the same as the inner width in the short direction of the first member 51 (see the alternate long and short dash line in FIG. 5).
Further, as shown in FIG. 5, in the first member 51, the side surface portions 53a and 53a in the end portions 54a and 54a portions are opposite to the side surface portions 53a and 53a in the other portions with respect to the bottom surface portion 52a of the end portions 54a and 54a. In the second member 61, the end portions 64a and 64a are widened in the protruding direction and in the extending direction from the bottom surface portion 52a of the side surface portions 53a and 53a, that is, both downward and upward in FIG. The side surfaces 63a and 63a in the portion are lower than the side surfaces 63a and 63a in the other portions only in the direction in which the end portions 64a and 64a protrude with respect to the bottom surface portion 62a, that is, in the upper first member 61a only in the lower direction. The first member 61b is formed to widen only upward.

このように形成され、側面部63a・63aが底面部62aから上側に延出する姿勢に配置された上側第二部材61aの下面と、側面部63b・63bが底面部62aから下側に延出する姿勢に配置された下側第二部材61bの上面とを突き合わせ、外側管部材50と同様にそれぞれの端部をレーザー溶接により接合することにより、内側管部材60を形成するのである。これにより、上側第二部材61aと下側第二部材61bにおける長手方向中途部の間には間隙が形成され、この間隙が、冷却水等が流通する流通経路46となる。   The bottom surface of the upper second member 61a, which is formed in this manner and arranged in such a posture that the side surface portions 63a and 63a extend upward from the bottom surface portion 62a, and the side surface portions 63b and 63b extend downward from the bottom surface portion 62a. The inner pipe member 60 is formed by abutting the upper surface of the lower second member 61b arranged in a posture to be joined and joining the respective end portions by laser welding in the same manner as the outer pipe member 50. As a result, a gap is formed between the middle part in the longitudinal direction of the upper second member 61a and the lower second member 61b, and this gap becomes a flow path 46 through which cooling water or the like flows.

そして、図5及び図6に示す如く、上側第二部材61aを下側第一部材51bに収容しながら、側面部53b・53bと側面部63a・63aとが重なり、上側第二部材61aの側面部63a・63aにおける上側先端辺が下側第一部材51bの底面部52bに当接するように、図5中に示す矢印Bのように内側管部材60と外側管部材50とを交互に組合せる。
なお、本実施形態では内側管部材60の上に外側管部材50を組合せる状態について説明をしたが、内側管部材60と外側管部材50とは交互に配設されるため、その位置関係は反対となることもある。本実施形態においては図1及び図2に示す如く、1個の外側管部材50の上下それぞれに1個ずつ、合計2個の内側管部材60を組合せた構成としている。これらの外側管部材50と内側管部材60との個数も、適宜変更することが可能である。
5 and 6, while the upper second member 61a is accommodated in the lower first member 51b, the side surface portions 53b and 53b and the side surface portions 63a and 63a overlap, and the side surface of the upper second member 61a. The inner tube member 60 and the outer tube member 50 are alternately combined as indicated by an arrow B shown in FIG. 5 so that the upper end sides of the portions 63a and 63a are in contact with the bottom surface portion 52b of the lower first member 51b. .
In this embodiment, the state in which the outer tube member 50 is combined on the inner tube member 60 has been described. However, since the inner tube member 60 and the outer tube member 50 are alternately arranged, the positional relationship is It may be the opposite. In the present embodiment, as shown in FIGS. 1 and 2, a total of two inner tube members 60 are combined, one on each of the upper and lower sides of one outer tube member 50. The numbers of the outer tube member 50 and the inner tube member 60 can also be changed as appropriate.

その後、図6に示す如く、側方からレーザー照射器70によりレーザー光Lを照射して、それぞれ重なった側面部53b・53bと側面部63a・63aとをレーザー溶接により接合する。このようにして、外側管部材50と内側管部材60とを交互に組合せることにより、図1及び図2に示す如く、それぞれの第二部材61において対向する側面部63・63の間、即ち第一部材51と第二部材61との間に形成される空間に冷却通路42が形成されるのである。   Thereafter, as shown in FIG. 6, the laser beam L is irradiated from the side by the laser irradiator 70, and the overlapped side surface portions 53b and 53b and the side surface portions 63a and 63a are joined by laser welding. In this manner, by alternately combining the outer tube member 50 and the inner tube member 60, as shown in FIGS. 1 and 2, between the opposing side surface portions 63 and 63 in each second member 61, that is, A cooling passage 42 is formed in a space formed between the first member 51 and the second member 61.

また、図1及び図2に示す如く、上側第一部材51aの底面部52aに対して垂直な方向、即ち上下方向における端部に位置する2個の第二部材61・61に対して、それぞれ対応する第一部材51・51を、第二部材61を第一部材51に収容しながら、それぞれの側面部53・63が重なり、第二部材61の側面部63における先端辺が第一部材51の底面部52に当接するように組合せる。そして、側方からレーザー照射器70よりレーザー光Lを照射して、それぞれ重なった側面部53と側面部63とをレーザー溶接により接合することにより、図1に示す如く冷却管40を形成するのである。   Further, as shown in FIGS. 1 and 2, for the two second members 61 and 61 positioned at the end in the direction perpendicular to the bottom surface portion 52a of the upper first member 51a, that is, the vertical direction, respectively. While the corresponding first members 51 and 51 are accommodated in the first member 51, the side surface portions 53 and 63 are overlapped, and the tip side of the side surface portion 63 of the second member 61 is the first member 51. Are combined so as to abut against the bottom surface portion 52. Then, the cooling pipe 40 is formed as shown in FIG. 1 by irradiating the laser beam L from the side with the laser beam L and joining the overlapped side surface portion 53 and side surface portion 63 by laser welding. is there.

なお、本実施形態においては、外側管部材50と内側管部材60とを組合せた際に、上下方向における端部には第二部材61・61が位置するため、対応する第一部材51・51を組合せる構成としたが、その逆となることもある。即ち、外側管部材50と内側管部材60とを組合せた結果、外側管部材50が上下方向の端部に位置した場合は、上下方向における端部には第一部材51・51が位置するため、対応する第二部材61・61を組合せることになる。   In the present embodiment, when the outer tube member 50 and the inner tube member 60 are combined, the second members 61 and 61 are located at the end portions in the vertical direction, so that the corresponding first members 51 and 51 correspond. However, there is a case in which the opposite is also true. That is, as a result of combining the outer tube member 50 and the inner tube member 60, when the outer tube member 50 is positioned at the end in the vertical direction, the first members 51 and 51 are positioned at the end in the vertical direction. The corresponding second members 61 and 61 are combined.

本実施形態においては上記の如く、冷却管40の製造に際してレーザー接合を用いることにより、ろう付け処理を用いた場合と比較して、大掛かりな設備が不要となり、素材費を低減させることができる。また、高速での接合処理が可能となることから、全体的なコストを低減させることが可能となる。   In the present embodiment, as described above, by using laser bonding in manufacturing the cooling tube 40, a large-scale facility is not required and material costs can be reduced as compared with the case where brazing processing is used. In addition, since a high-speed joining process can be performed, the overall cost can be reduced.

また、二個の第一部材51・51を組合せてレーザー接合することにより外側管部材50を形成し、二個の第二部材61・61を組合せてレーザー接合することにより内側管部材60を形成している。そして、外側管部材50と内側管部材60とを交互に組合せてレーザー接合することにより冷却管40を構成している。このように構成することにより、適切な角度でレーザーを照射して、充分な接合面積を確保することが可能となる。つまり、冷却通路42が管状に形成される前の段階でレーザー接合を用いることにより、複数本のビードBを形成してレーザー接合することが可能となるのである。このため、冷却管40を形成する各部材同士の接合強度を高めることができるのである。   Also, the outer tube member 50 is formed by laser joining the two first members 51 and 51, and the inner tube member 60 is formed by laser joining the two second members 61 and 61 in combination. doing. And the cooling pipe 40 is comprised by carrying out laser joining by combining the outer side pipe member 50 and the inner side pipe member 60 alternately. With such a configuration, it is possible to ensure a sufficient bonding area by irradiating a laser at an appropriate angle. That is, by using laser bonding before the cooling passage 42 is formed into a tubular shape, it is possible to form a plurality of beads B and perform laser bonding. For this reason, the joint strength between the members forming the cooling pipe 40 can be increased.

また、本実施形態においては、第一部材51及び第二部材61における底面部52・62の両端を、端部54・54及び端部64・64が突出するように形成し、第一部材51同士及び第二部材61同士におけるそれぞれの中途部の間に、冷却水等が流通する流通経路45・46を形成している。このように構成することにより、冷却通路42・42・・の間に流通経路45・46が形成され、この流通経路45・46に冷却水を流通させることができるため、ガス等の冷却対象を効率良く冷却させることが可能となる。   In the present embodiment, both ends of the bottom surface portions 52 and 62 of the first member 51 and the second member 61 are formed so that the end portions 54 and 54 and the end portions 64 and 64 protrude, and the first member 51 Between the middle parts of the members and the second members 61, circulation channels 45 and 46 through which cooling water and the like circulate are formed. By configuring in this way, the circulation passages 45, 46 are formed between the cooling passages 42, 42, and cooling water can be circulated through the circulation passages 45, 46. It becomes possible to cool efficiently.

また、本実施形態においては、第一部材51は、その側面部53・53の長手方向両端部における先端辺(側面部53・53の底面部62からの延出方向の先端辺)を、その収容する第二部材61の底面部62における、側面部63・63が形成された側と反対側の面、即ち、図6に示す如く第二部材61・61が当接する面まで延出して形成されている。このように構成することにより、冷却管40を形成した際に、対向する第一部材51の側面部53・53の長手方向両端における先端辺の間に隙間が発生しない。つまり、図2(a)に示す如く、冷却管40の端部を嵌合部材19bに嵌合させた際に、嵌合部材19bとの間に隙間が発生しないのである。これにより、冷却管40と嵌合部材19bとの間におけるシール性を向上させることができ、冷却水が漏れることを防止できるのである。   Further, in the present embodiment, the first member 51 has the tip sides at the both ends in the longitudinal direction of the side surface portions 53 and 53 (tip sides in the extending direction from the bottom surface portion 62 of the side surface portions 53 and 53). The bottom surface 62 of the second member 61 to be accommodated is formed so as to extend to the surface opposite to the side on which the side surfaces 63 and 63 are formed, that is, the surface where the second members 61 and 61 abut as shown in FIG. Has been. With this configuration, when the cooling pipe 40 is formed, no gap is generated between the front end sides of the opposite side surfaces 53 of the first member 51 in the longitudinal direction. That is, as shown in FIG. 2A, when the end of the cooling pipe 40 is fitted to the fitting member 19b, no gap is generated between the fitting member 19b. Thereby, the sealing performance between the cooling pipe 40 and the fitting member 19b can be improved, and the leakage of cooling water can be prevented.

[内燃機関10]
次に、本実施形態に係る冷却管40を、EGRクーラーにおけるEGRガスの冷却部としてシリンダヘッド11に備えた内燃機関10の概略について、図7を用いて説明する。
[Internal combustion engine 10]
Next, an outline of the internal combustion engine 10 provided with the cylinder head 11 as the cooling part for the EGR gas in the EGR cooler will be described with reference to FIG. 7.

図7に示す如く、内燃機関10はシリンダブロック21の上面にシリンダヘッド11が配設されて構成される。そして、シリンダヘッド11には、スロットルバルブ22aを備える吸気管22、及び、排気管23が接続されている。
シリンダブロック21には、上面に開口部を有する円筒形状のシリンダ21aが形成されており、シリンダ21aの内部には図示しないピストンがシリンダ21aの軸心方向に往復して摺動可能に収容されている。
As shown in FIG. 7, the internal combustion engine 10 is configured with a cylinder head 11 disposed on an upper surface of a cylinder block 21. The cylinder head 11 is connected to an intake pipe 22 having a throttle valve 22a and an exhaust pipe 23.
The cylinder block 21 is formed with a cylindrical cylinder 21a having an opening on the upper surface. A piston (not shown) is slidably accommodated in the cylinder 21a so as to reciprocate in the axial direction of the cylinder 21a. Yes.

シリンダヘッド11の内部には燃焼室14が形成されており、シリンダヘッド11がシリンダブロック21に配設された際には、燃焼室14はシリンダブロック21のシリンダ21aと連通される。また、燃焼室14には図示しない点火プラグが配設される。
シリンダヘッド11の内部には、吸気管22と燃焼室14とを連通する吸気ポート12が形成されており、吸気ポート12の燃焼室14を挟んだ反対側の位置には、排気管23と燃焼室14とを連通する排気ポート13が形成されている。吸気ポート12及び排気ポート13には、燃焼室14に対して開閉するための図示しない排気弁及び吸気弁がそれぞれ設けられる。
A combustion chamber 14 is formed inside the cylinder head 11, and when the cylinder head 11 is disposed in the cylinder block 21, the combustion chamber 14 communicates with the cylinder 21 a of the cylinder block 21. The combustion chamber 14 is provided with a spark plug (not shown).
An intake port 12 that communicates the intake pipe 22 and the combustion chamber 14 is formed inside the cylinder head 11, and the exhaust pipe 23 and the combustion are located on the opposite side of the intake port 12 across the combustion chamber 14. An exhaust port 13 communicating with the chamber 14 is formed. The intake port 12 and the exhaust port 13 are respectively provided with an exhaust valve and an intake valve (not shown) for opening and closing the combustion chamber 14.

また、シリンダヘッド11の内部には排気ポート13等を冷却するために、中空状のウォータージャケット15が形成されている。ウォータージャケット15の内部には冷却水が満たされており、シリンダヘッド11の外部において図示しない冷却ポンプやラジエータと接続されている。そして、冷却ポンプを駆動させることによって、ウォータージャケット15の内部を冷却水が流通し、シリンダヘッド11の内部を冷却するように構成されている。本実施形態においては、冷却水はウォータージャケット15の内部を前側から後側に向かって(図7における紙面奥行方向に向かって)流れるように構成されている。   A hollow water jacket 15 is formed in the cylinder head 11 to cool the exhaust port 13 and the like. The water jacket 15 is filled with cooling water, and is connected to a cooling pump and a radiator (not shown) outside the cylinder head 11. And it is comprised so that a cooling water may distribute | circulate through the inside of the water jacket 15 and drive the inside of the cylinder head 11 by driving a cooling pump. In the present embodiment, the cooling water is configured to flow in the water jacket 15 from the front side toward the rear side (in the depth direction of the paper surface in FIG. 7).

内燃機関10は、EGRパイプ31、EGRクーラーにおけるEGRガスの冷却部である冷却管40、及び、EGRバルブ32で構成されるシリンダヘッドの排気再循環装置を備える。冷却管40は、その中途部が偏平状に形成された複数のパイプが並行に組合されることにより、冷却通路42・42・・が形成されている。そして、冷却管40は、シリンダヘッド11におけるウォータージャケット15の内部に配設された嵌合部材19a・19bにその両端部が嵌合されており、その内部は冷却管40の両端部を介して外部と連通される。   The internal combustion engine 10 includes an EGR pipe 31, a cooling pipe 40 that is a cooling unit for EGR gas in the EGR cooler, and an exhaust recirculation device for a cylinder head that includes an EGR valve 32. The cooling pipe 40 is formed with cooling passages 42, 42, and the like by combining a plurality of pipes whose middle portions are formed in a flat shape in parallel. And both ends of the cooling pipe 40 are fitted into fitting members 19 a and 19 b arranged inside the water jacket 15 in the cylinder head 11, and the inside thereof is connected to both ends of the cooling pipe 40. Communicate with the outside.

EGRパイプ31は、シリンダヘッド11の排気ポート13の配設側、つまり冷却管40の上流側に配設され、排気管23と冷却管40の上流側とを連通している。また、EGRバルブ32は、シリンダヘッド11の吸気ポート12の配設側、つまり冷却管40の下流側に配設され、冷却管40の下流側と吸気管22の間に介装されて両者を連通している。換言すれば、冷却管40は、シリンダヘッド11の内部に配置されて、EGRパイプ31とEGRバルブ32とを連通するのである。   The EGR pipe 31 is disposed on the side of the cylinder head 11 where the exhaust port 13 is disposed, that is, on the upstream side of the cooling pipe 40, and communicates the exhaust pipe 23 and the upstream side of the cooling pipe 40. The EGR valve 32 is disposed on the side of the cylinder head 11 where the intake port 12 is disposed, that is, on the downstream side of the cooling pipe 40, and is interposed between the downstream side of the cooling pipe 40 and the intake pipe 22 to Communicate. In other words, the cooling pipe 40 is disposed inside the cylinder head 11 and communicates the EGR pipe 31 and the EGR valve 32.

上記の如く構成された内燃機関10においては、スロットルバルブ22aが開かれることにより、図7中の矢印Aに示す如く吸気管22に空気が流入する。そして、図7中の矢印Bの如く吸気ポート12を通じてシリンダヘッド11に空気が流入し、燃料とともに燃焼室14で燃焼する。その後、排気ガスが図7中の矢印Cの如くシリンダヘッド11から排気ポート13を通じて流出し、さらに図7中の矢印Dの如く排気管23を通じて外気に排出されるのである。   In the internal combustion engine 10 configured as described above, when the throttle valve 22a is opened, air flows into the intake pipe 22 as shown by an arrow A in FIG. Then, as shown by an arrow B in FIG. 7, air flows into the cylinder head 11 through the intake port 12 and burns in the combustion chamber 14 together with the fuel. Thereafter, the exhaust gas flows out from the cylinder head 11 through the exhaust port 13 as indicated by arrow C in FIG. 7, and is further discharged to the outside air through the exhaust pipe 23 as indicated by arrow D in FIG.

内燃機関10の駆動中にEGRバルブ32が開かれると、排気ガスの一部(EGRガス)が図7中の矢印Eの如くEGRパイプ31に流入する。そして、EGRガスは図7中の矢印Fの如く冷却管40へと導かれ、冷却管40を流通する際にウォータージャケット15の内部を流れる冷却水によって冷却される。その後、EGRガスは図7中の矢印Gの如く、EGRバルブ32を介して吸気管22へと還流されるのである。   When the EGR valve 32 is opened while the internal combustion engine 10 is being driven, a part of the exhaust gas (EGR gas) flows into the EGR pipe 31 as indicated by an arrow E in FIG. Then, the EGR gas is guided to the cooling pipe 40 as indicated by an arrow F in FIG. 7 and is cooled by the cooling water flowing through the water jacket 15 when flowing through the cooling pipe 40. Thereafter, the EGR gas is recirculated to the intake pipe 22 via the EGR valve 32 as indicated by an arrow G in FIG.

内燃機関10においては上記の如く、本実施形態に係るシリンダヘッドの排気再循環装置を駆動させることにより、不活性な(酸素量の少ない)気体となったEGRガスをシリンダヘッド11の排気管23から冷却管40を通過させて冷却してから吸気管22に再び環流して、吸入空気と混合させている。これにより、燃焼室14の内部の燃焼温度を低下させることで窒素酸化物の低減化を図っているのである。   In the internal combustion engine 10, as described above, the exhaust gas recirculation device for the cylinder head according to the present embodiment is driven to convert EGR gas that has become an inert (low oxygen amount) gas into the exhaust pipe 23 of the cylinder head 11. Then, after cooling through the cooling pipe 40, it is recirculated to the intake pipe 22 and mixed with the intake air. Thereby, the nitrogen oxide is reduced by lowering the combustion temperature inside the combustion chamber 14.

40 冷却管
42 冷却通路
45 流通経路
46 流通経路
50 外側管部材
51 第一部材
60 内側管部材
61 第二部材
40 cooling pipe 42 cooling passage 45 distribution path 46 distribution path 50 outer pipe member 51 first member 60 inner pipe member 61 second member

Claims (5)

長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備える二個の第一部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第一部材の側から、第一部材の長手方向における両端部をレーザー溶接により接合して、外側管部材を形成し、
長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備え、その短手方向の外幅が前記第一部材の短手方向の内幅と略同一に形成された、二個の第二部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第二部材の側から、第二部材の長手方向における両端部をレーザー溶接により接合して、内側管部材を形成し、
一の第二部材を一の第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接するように、前記内側管部材と前記外側管部材とを交互に組合せて、また、各第一部材の底面部に対して垂直な方向における端部に位置する第一部材又は第二部材に対して、それぞれ対応する第二部材又は第一部材を、第二部材を第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接するように組合せた後に、
それぞれ重なった側面部をレーザー溶接により接合することにより、それぞれの第二部材において対向する側面部の間に冷却通路を形成した、
ことを特徴とする、冷却管。
Two first side surfaces each having a bottom surface portion formed in a long rectangular shape and two side surface portions standing vertically opposite each other along the long side of the bottom surface portion. After a single member is abutted against the surface of the bottom surface on the side opposite to the side where the side surface portion is formed, both ends in the longitudinal direction of the first member are joined by laser welding from the side of the first member. Forming an outer tube member,
A bottom surface portion formed in a long rectangular shape, and two side surface portions erected perpendicularly to the bottom surface portion along the long side of the bottom surface portion. Two second members having an outer width in the direction substantially the same as the inner width in the short direction of the first member, and a surface opposite to the side where the side surface portion is formed in each bottom surface portion. After the butting, from both sides of the second member, joining both ends in the longitudinal direction of the second member by laser welding to form an inner tube member,
While accommodating one second member in one first member, the inner tube member and the inner tube member are arranged such that the respective side surface portions overlap and the tip side of the side surface portion of the second member contacts the bottom surface portion of the first member. The second member or the second member corresponding to the first member or the second member, which are alternately combined with the outer tube members and located at the end in the direction perpendicular to the bottom surface of each first member, respectively. After combining the first member so that the side surfaces overlap while the second member is accommodated in the first member and the tip side of the side surface of the second member contacts the bottom surface of the first member,
By joining the overlapping side portions by laser welding, a cooling passage was formed between the opposing side portions in each second member,
A cooling pipe characterized by that.
前記底面部の長手方向における両端部以外の部分を、前記両端部に対して側面部が形成された側に突出させて、前記第一部材及び第二部材を形成することにより、それぞれの前記外側管部材及び内側管部材における第一部材と第一部材、及び、第二部材と第二部材の間に流通経路を形成した、
ことを特徴とする、請求項1に記載の冷却管。
By forming the first member and the second member by projecting the portions other than both end portions in the longitudinal direction of the bottom surface portion to the side on which the side surface portion is formed with respect to the both end portions, The flow path was formed between the first member and the first member in the tube member and the inner tube member, and the second member and the second member,
The cooling pipe according to claim 1, wherein:
前記第一部材の側面部の長手方向両端部における先端辺を、その収容する前記第二部材の底面部における側面部が形成された側と反対側の面まで延出して形成した、
ことを特徴とする、請求項1又は請求項2に記載の冷却管。
The tip side in the longitudinal direction both ends of the side surface portion of the first member is formed to extend to the surface opposite to the side on which the side surface portion is formed in the bottom surface portion of the second member to be accommodated.
The cooling pipe according to claim 1 or 2, characterized by the above.
請求項1から請求項3の何れか1項に記載の冷却管を、EGRクーラーにおけるEGRガスの冷却部として備える、
ことを特徴とする、シリンダヘッド。
The cooling pipe according to any one of claims 1 to 3 is provided as a cooling part for EGR gas in an EGR cooler.
A cylinder head characterized by that.
長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備え、前記底面部の長手方向における両端部以外の部分を側面部が形成された側に突出させた、二個の第一部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第一部材の側から、第一部材の長手方向における両端部をレーザー溶接により接合して、二個の第一部材の間に流通経路を備える外側管部材を形成する、第一の工程と、
長尺の長方形状に形成される底面部と、該底面部の長辺に沿って底面部に対して垂直に、互いに対向して立設する二枚の側面部と、を備え、その短手方向の外幅が前記第一部材の短手方向の内幅と略同一に形成され、前記底面部の長手方向における両端部以外の部分を側面部が形成された側に突出させた、二個の第二部材を、それぞれの底面部における側面部が形成された側と反対側の面を突き合わせた後に、一方の第二部材の側から、第二部材の長手方向における両端部をレーザー溶接により接合して、二個の第二部材の間に流通経路を備える内側管部材を形成する、第二の工程と、
一の第二部材を一の第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接し、前記第一部材の両端の側面部における先端辺を、その収容する前記第二部材の側面部が形成された側と反対側の底面部まで延出するように、前記内側管部材と前記外側管部材とを交互に組合せて、また、各第一部材の底面部に対して垂直な方向における端部に位置する第一部材又は第二部材に対して、それぞれ対応する第二部材又は第一部材を、第二部材を第一部材に収容しながら、それぞれの側面部が重なり、第二部材の側面部における先端辺が第一部材の底面部に当接し、第一部材の両端の側面部における先端辺を、その収容する前記第二部材の底面部における側面部が形成された側と反対側の面まで延出するように組合せた後に、それぞれ重なった側面部をレーザー溶接により接合して形成することにより、それぞれの第二部材において対向する側面部の間に冷却通路を形成する、第三の工程と、を備える、
ことを特徴とする、冷却管の製造方法。
A bottom surface portion formed in a long rectangular shape, and two side surface portions erected perpendicularly to the bottom surface portion along the long side of the bottom surface portion, the bottom surface portion, The two first members, in which the portions other than both end portions in the longitudinal direction of each of the two first members are protruded to the side on which the side surface portion is formed, face each other on the side opposite to the side on which the side surface portion is formed. Later, from the side of one first member, both ends in the longitudinal direction of the first member are joined by laser welding to form an outer tube member having a flow path between the two first members. And the process of
A bottom surface portion formed in a long rectangular shape, and two side surface portions erected perpendicularly to the bottom surface portion along the long side of the bottom surface portion. Two of which the outer width in the direction is formed substantially the same as the inner width in the short direction of the first member, and the portions other than both end portions in the longitudinal direction of the bottom surface portion are protruded to the side on which the side surface portion is formed. After the second member is abutted with the surface opposite to the side where the side surface portion is formed on each bottom surface portion, both end portions in the longitudinal direction of the second member are laser-welded from one second member side. A second step of joining and forming an inner tube member having a flow path between the two second members;
While accommodating one second member in one first member, the respective side surface portions overlap, the tip side of the side surface portion of the second member abuts against the bottom surface portion of the first member, The inner tube member and the outer tube member are alternately combined so that the front end side of the side surface portion extends to the bottom surface portion opposite to the side on which the side surface portion of the second member to be accommodated is formed. Also, the second member or the first member corresponding to the first member or the second member positioned at the end in the direction perpendicular to the bottom surface of each first member is the second member. While being accommodated in one member, the respective side surface portions overlap, the front end side in the side surface portion of the second member abuts on the bottom surface portion of the first member, and the front end sides in the side surface portions at both ends of the first member are accommodated. The surface opposite to the side on which the side surface portion is formed in the bottom surface portion of the second member. A third step of forming a cooling passage between the opposing side surface portions of each second member by joining the overlapping side surface portions by laser welding and combining the two side members with each other. And comprising
The manufacturing method of the cooling pipe characterized by the above-mentioned.
JP2010251916A 2010-11-10 2010-11-10 Cooling pipe, cylinder head, and manufacturing method of cooling pipe Expired - Fee Related JP5505268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251916A JP5505268B2 (en) 2010-11-10 2010-11-10 Cooling pipe, cylinder head, and manufacturing method of cooling pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251916A JP5505268B2 (en) 2010-11-10 2010-11-10 Cooling pipe, cylinder head, and manufacturing method of cooling pipe

Publications (2)

Publication Number Publication Date
JP2012102672A JP2012102672A (en) 2012-05-31
JP5505268B2 true JP5505268B2 (en) 2014-05-28

Family

ID=46393346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251916A Expired - Fee Related JP5505268B2 (en) 2010-11-10 2010-11-10 Cooling pipe, cylinder head, and manufacturing method of cooling pipe

Country Status (1)

Country Link
JP (1) JP5505268B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685462B1 (en) * 1991-12-23 1999-02-05 Andre Peze WELDED PLATE HEAT EXCHANGER AND METHOD FOR MANUFACTURING PLATE MODULES FOR OBTAINING SUCH EXCHANGERS.
JP2004028469A (en) * 2002-06-26 2004-01-29 Toyo Radiator Co Ltd Heat exchanger core
JP2008116102A (en) * 2006-11-02 2008-05-22 Denso Corp Heat exchanger for cooling
JP2010053811A (en) * 2008-08-29 2010-03-11 Maruyasu Industries Co Ltd Exhaust gas heat-exchanger

Also Published As

Publication number Publication date
JP2012102672A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
KR101682845B1 (en) Hollow curved plate, method for manufacturing same, and burner for gas turbine
JP5442916B1 (en) Aircraft engine heat exchanger
CN102227550B (en) Plate-shaped bodies, manufacturing method therefor, gas turbine combustor, and gas turbine
US8261815B2 (en) Heat exchanger, in particular charge air cooler or exhaust gas cooler for an internal combustion engine of a motor vehicle and method for manufacturing it
EP3026386B1 (en) Plate heat exchanger and method of manufacture
US10180287B2 (en) Exhaust gas cooler
JP5937801B2 (en) Manufacturing method of cooler
JP4331679B2 (en) Exhaust gas heat transfer body and method for forming the same
US20170152816A1 (en) Fin - shaped - plate (fsp) egr cooler
US20100175861A1 (en) Laser-welded heat exchanger tube assembly
US20120273161A1 (en) Heat Exchanger
US20210356209A1 (en) Heat exchanger, tank for heat exchanger, and method of making the same
US20190346211A1 (en) Heat exchanger
WO2012138833A2 (en) Cooling assembly and method of control
JP5505268B2 (en) Cooling pipe, cylinder head, and manufacturing method of cooling pipe
JP4224768B2 (en) EGR cooler and manufacturing method thereof
JP2016070655A (en) Heat exchanger
KR20150100308A (en) Egr cooler for vehicles
WO2013050393A1 (en) Plate for heat exchanger and heat exchanger equipped with such plates
JP6651345B2 (en) Intake manifold and manufacturing method thereof
US11939935B2 (en) Multi-part fluid chamber and method of manufacturing
US20170336148A1 (en) Heat exchanger
JPWO2018216436A1 (en) Heat exchanger
JP2000054916A (en) Egr gas cooling device
JP2012241595A (en) Egr passage, method for manufacturing the same, and cylinder head with built-in egr passage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5505268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees