JP5502667B2 - Chromatic dispersion stress generator and chromatic dispersion stress generation method - Google Patents

Chromatic dispersion stress generator and chromatic dispersion stress generation method Download PDF

Info

Publication number
JP5502667B2
JP5502667B2 JP2010201247A JP2010201247A JP5502667B2 JP 5502667 B2 JP5502667 B2 JP 5502667B2 JP 2010201247 A JP2010201247 A JP 2010201247A JP 2010201247 A JP2010201247 A JP 2010201247A JP 5502667 B2 JP5502667 B2 JP 5502667B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
parallel
reflector
chromatic dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010201247A
Other languages
Japanese (ja)
Other versions
JP2012058474A (en
Inventor
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010201247A priority Critical patent/JP5502667B2/en
Publication of JP2012058474A publication Critical patent/JP2012058474A/en
Application granted granted Critical
Publication of JP5502667B2 publication Critical patent/JP5502667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、超高速光通信システムや光部品の波長分散(CD:Chromatic Dispersion)トレランスを評価するための波長分散ストレス発生装置及び波長分散ストレス発生方法に関する。   The present invention relates to a chromatic dispersion stress generator and a chromatic dispersion stress generation method for evaluating the chromatic dispersion (CD) tolerance of an ultra-high-speed optical communication system and optical components.

光通信の大容量化に伴い、伝送速度は高速化し、現在実用化されている強度変調方式に代わり、位相変調方式やコヒーレント変調方式の研究も進められている。これらの超高速光通信システムにおいては、波長分散やPMD(Polarization Mode Dispersion)などの分散性ストレスを加えてジッタやBER(Bit Error Rate)を測定する分散トレランスの試験が重要となる。ここで、波長分散とは波長によって光ファイバを伝搬する伝送時間差を生じ、波形劣化を引き起こす現象をいう。   Along with the increase in capacity of optical communication, the transmission speed has been increased, and research on a phase modulation system and a coherent modulation system is being promoted instead of the intensity modulation system currently in practical use. In these ultra high-speed optical communication systems, it is important to conduct a dispersion tolerance test for measuring jitter and BER (Bit Error Rate) by applying dispersive stress such as chromatic dispersion and PMD (Polarization Mode Dispersion). Here, chromatic dispersion refers to a phenomenon in which a transmission time difference that propagates through an optical fiber is generated depending on the wavelength, thereby causing waveform deterioration.

従来、光通信システムのトレランス試験としては、伝送信号のアイ波形を評価するジッタトレランス、OSNR(Optical Signal to Noise Ratio)を変化させBERを評価するOSNRトレランス、CDを加えたCDトレランスの評価が行われている(例えば、特許文献1参照)。波長分散の発生は、波長分散補償器として用いられているVIPA(Virtually Imaged Phased Array)や分散補償ファイバグレーティングを用いて行われている。   Conventionally, as a tolerance test of an optical communication system, a jitter tolerance for evaluating an eye waveform of a transmission signal, an OSNR tolerance for changing BER by changing an OSNR (Optical Signal to Noise Ratio), and a CD tolerance including a CD are evaluated. (For example, refer to Patent Document 1). The generation of chromatic dispersion is performed using a VIPA (Virtually Imaged Phased Array) or a dispersion compensating fiber grating used as a chromatic dispersion compensator.

特開2006−86955号公報JP 2006-86955 A

しかしながら、波長分散補償器の可変できる波長分散値は−200〜+2000ps/nm程度と波長分散値が小さい。デジタルコヒーレント技術においては、波長分散や偏波モード分散等の線形歪みに対して極めて強く、従来のOn/Off Keyingに比べ10倍以上の分散値(10000ps/nm以上)の波長分散ストレスを与えて試験することが必要となってきた。   However, the chromatic dispersion value that can be varied by the chromatic dispersion compensator is as low as about −200 to +2000 ps / nm. Digital coherent technology is extremely resistant to linear distortions such as chromatic dispersion and polarization mode dispersion, and gives a chromatic dispersion stress of 10 times or more dispersion value (10000 ps / nm or more) compared to conventional On / Off Keying. It has become necessary to test.

そこで、本発明は、極めて大きな波長分散ストレスを発生させることができ、かつ小型で安価な波長分散ストレス発生装置及び波長分散ストレス発生方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a chromatic dispersion stress generating apparatus and a chromatic dispersion stress generating method that can generate extremely large chromatic dispersion stress and that are small and inexpensive.

上記目的を達成するために、本願発明の波長分散ストレス発生装置は、平行光を受けて波長ごとに異なる回折角で回折する回折格子(20)と、前記回折格子からの回折光を受けて再び前記回折格子に反射する平行光反射器にして、前記回折格子からの回折光のうちの任意の波長の光が前記回折格子で前記平行光と平行な方向に回折されるように、前記回折格子の刻線方向と平行な直線を中心に回転可能な当該平行光反射器(40)と、前記回折格子の刻線方向と平行な直線を中心に回転可能であり、前記平行光反射器で反射された反射光が前記回折格子で回折され二重回折光として入射窓から入射され、前記二重回折光を互いに平行に配置された第1反射面(11)及び第2反射面(12)で多重反射し、多重反射後の多重反射光を前記入射窓とは異なる出射窓から出射する多重反射器(10−1)と、前記多重反射器の前記出射窓から出射される多重反射光を、前記二重回折光と平行にして前記回折格子の格子面に入射させる多重反射光反射器(30)と、を備え、前記多重反射光反射器で前記回折格子に入射された前記多重反射光は、前記多重反射器まで辿った経路とは逆の経路を辿って前記回折格子まで戻り、当該回折格子から平行光で出射されるIn order to achieve the above object, the chromatic dispersion stress generator according to the present invention receives a diffraction grating (20) that receives parallel light and diffracts at different diffraction angles for each wavelength, and receives diffraction light from the diffraction grating again. wherein in the parallel light reflector that reflects the diffraction grating, so that light of an arbitrary wavelength of the diffracted light from the diffraction grating is diffracted in a direction parallel to the parallel light by the diffraction grating, before Symbol diffraction The parallel light reflector (40) that can rotate around a straight line parallel to the engraving direction of the grating, and a rotation that can rotate around a straight line parallel to the engraving direction of the diffraction grating, reflected reflected light is diffracted by the diffraction grating is incident from the incident window as a double diffraction light, the first reflecting surface of the double diffracted light are arranged parallel to each other (11) and a second reflecting surface (12 ), And multiple reflected light after multiple reflection Multiple reflector emitted from different exit window and Imad and (10-1), the multiple reflected light which is emitted from the exit window of the multiple reflector, of the diffraction grating in the parallel to the double diffracted beam A multiple reflection light reflector (30) that is incident on the grating surface, and the multiple reflection light that is incident on the diffraction grating by the multiple reflection light reflector is opposite to a path traced to the multiple reflector. Following the path, it returns to the diffraction grating and is emitted from the diffraction grating as parallel light .

回折格子で回折された二重回折光を波長によって異なる位置から多重反射器に入射させるため、多重反射器で多重反射された光には波長によって異なる遅延が与えられる。これにより、多重反射器から出射される多重反射光に波長分散ストレスを発生させることができる。ここで、多重反射器は回折格子の刻線方向と平行な直線を中心に回転可能であるため、多重反射器における多重反射回数を可変することができる。このように、多重反射を用いて波長分散ストレスを発生させるため、極めて大きな波長分散ストレスを発生させることができるとともに、装置構成を小型で安価にすることができる。また、平行光反射器を回転させることによって、任意の波長における波長分散ストレスを発生させることができる。したがって、極めて大きな波長分散ストレスを発生させることができ、かつ小型で安価な波長分散ストレス発生装置を提供することができる。   Since the double diffracted light diffracted by the diffraction grating is incident on the multiple reflector from different positions depending on the wavelength, the light reflected by the multiple reflector is given different delays depending on the wavelength. Thereby, chromatic dispersion stress can be generated in the multiple reflected light emitted from the multiple reflector. Here, since the multiple reflector can rotate around a straight line parallel to the engraving direction of the diffraction grating, the number of multiple reflections in the multiple reflector can be varied. Thus, since chromatic dispersion stress is generated using multiple reflections, extremely large chromatic dispersion stress can be generated, and the apparatus configuration can be made small and inexpensive. In addition, chromatic dispersion stress at an arbitrary wavelength can be generated by rotating the parallel light reflector. Therefore, it is possible to provide a small and inexpensive chromatic dispersion stress generator that can generate extremely large chromatic dispersion stress.

本願発明の波長分散ストレス発生装置では、前記多重反射器及び前記多重反射光反射器は、前記二重回折光と平行な直線上で移動可能であってもよい。
多重反射器と回折格子との距離を可変することで、多重反射器に入射させる二重回折光の位置を可変することができる。これにより、本願発明の波長分散ストレス発生装置は、さらに広い範囲で波長分散値を可変することができる。
In the chromatic dispersion stress generator of the present invention, the multiple reflector and the multiple reflected light reflector may be movable on a straight line parallel to the double diffracted light.
By changing the distance between the multiple reflector and the diffraction grating, the position of the double diffracted light incident on the multiple reflector can be changed. Thereby, the chromatic dispersion stress generator of the present invention can vary the chromatic dispersion value in a wider range.

本願発明の波長分散ストレス発生装置では、前記多重反射器は、前記入射窓の一部を通る直線を中心に回転可能であってもよい。
入射窓を中心に回転するため、多重反射器の回転に拠らず二重回折光の入射位置を一定にすることができる。これにより、装置構成を簡単にすることができる。
In the chromatic dispersion stress generator of the present invention, the multiple reflector may be rotatable about a straight line passing through a part of the incident window.
Since it rotates around the incident window, the incident position of the double diffracted light can be made constant regardless of the rotation of the multiple reflectors. Thereby, the apparatus configuration can be simplified.

本願発明の波長分散ストレス発生装置では、前記多重反射器は、前記任意の波長の長波長側及び短波長側の両方に前記出射窓を備え、前記多重反射光反射器を前記出射窓ごとに備えてもよい。
長波長側及び短波長側の両方に出射窓を備えるため、多重反射器は、短波長側の遅延を大きくして長波長側の遅延を小さくすることも、長波長側の遅延を大きくして短波長側の遅延を小さくすることもできる。
In the chromatic dispersion stress generator of the present invention, the multiple reflector includes the emission window on both the long wavelength side and the short wavelength side of the arbitrary wavelength, and the multiple reflection light reflector is provided for each of the emission windows. May be.
Since multiple exit windows are provided on both the long wavelength side and the short wavelength side, the multiple reflector can increase the delay on the short wavelength side to increase the delay on the long wavelength side. The delay on the short wavelength side can be reduced.

上記目的を達成するために、本願発明の波長分散ストレス発生方法は、平行光を波長ごとに異なる回折角で回折する回折格子(20)に入射する平行光入射手順(S101)と、前記回折格子からの回折光のうちの任意の波長の光が前記回折格子で前記平行光と平行な方向に回折されるように、前記回折格子からの回折光を反射する回折光反射手順(S102)と、前記回折光反射手順で反射した回折光が前記回折格子の格子面で回折された二重回折光を前記回折格子の刻線方向と平行な直線を中心に回転可能な多重反射器(10−1)の入射窓に入射し、前記二重回折光を互いに平行に配置された第1反射面(11)及び第2反射面(12)で多重反射し、多重反射後の多重反射光を前記入射窓とは異なる出射窓から出射する多重反射手順(S103)と、前記多重反射器の前記出射窓から出射される多重反射光を、前記二重回折光と平行にして前記回折格子の格子面に入射する多重反射光反射手順(S104)と、前記多重反射光反射手順において前記回折格子で回折後の平行光を取り出す平行光出射手順(S105)と、を順に有する。 In order to achieve the above object, the chromatic dispersion stress generation method of the present invention includes a parallel light incident procedure (S101) for entering parallel light into a diffraction grating (20) that diffracts parallel light at different diffraction angles for each wavelength, and the diffraction grating. A diffracted light reflecting procedure (S102) for reflecting the diffracted light from the diffraction grating so that light of an arbitrary wavelength among the diffracted light from the light is diffracted by the diffraction grating in a direction parallel to the parallel light; Multiple reflectors (10-1) capable of rotating double diffracted light, which is diffracted light reflected by the diffracted light reflection procedure, at the grating surface of the diffraction grating, around a straight line parallel to the engraving direction of the diffraction grating ) Is incident on the first reflection surface (11) and the second reflection surface (12) arranged in parallel to each other, and the multiple reflection light after multiple reflection is incident on the incident window. Multiple reflection procedure for exiting from a different exit window And S103), the multiple reflected light which is emitted from the exit window of the multiple reflector, wherein the multiple reflected light reflected procedure that enters in parallel with the double diffracted light grating surface of the diffraction grating (S104), the In the multiple reflected light reflecting procedure, a parallel light emitting procedure (S105) for extracting parallel light after being diffracted by the diffraction grating is sequentially provided.

回折格子で回折された二重回折光を波長によって異なる位置から多重反射器に入射させるため、多重反射器で多重反射された光には波長によって異なる遅延が与えられる。これにより、多重反射器から出射される多重反射光に波長分散ストレスを発生させることができる。ここで、多重反射器は回折格子の刻線方向と平行な直線を中心に回転可能であるため、多重反射器における多重反射回数を可変することができる。このように、多重反射を用いて波長分散ストレスを発生させるため、極めて大きな波長分散ストレスを発生させることができるとともに、装置構成を小型で安価にすることができる。したがって、極めて大きな波長分散ストレスを発生させることができ、かつ小型で安価な波長分散ストレス発生方法を提供することができる。   Since the double diffracted light diffracted by the diffraction grating is incident on the multiple reflector from different positions depending on the wavelength, the light reflected by the multiple reflector is given different delays depending on the wavelength. Thereby, chromatic dispersion stress can be generated in the multiple reflected light emitted from the multiple reflector. Here, since the multiple reflector can rotate around a straight line parallel to the engraving direction of the diffraction grating, the number of multiple reflections in the multiple reflector can be varied. Thus, since chromatic dispersion stress is generated using multiple reflections, extremely large chromatic dispersion stress can be generated, and the apparatus configuration can be made small and inexpensive. Therefore, an extremely large chromatic dispersion stress can be generated, and a small and inexpensive chromatic dispersion stress generation method can be provided.

本願発明の波長分散ストレス発生方法では、前記多重反射器と前記回折格子との距離を、前記平行光と平行な直線上で可変する波長分散調整手順(S106)を、前記平行光入射手順の前にさらに有してもよい。
さらに、前記多重反射手順においては、前記多重反射器を、前記入射窓の一部を通る直線を中心に回転させることにより多重反射回数を可変してもよい。
多重反射器と回折格子との距離を可変することで、多重反射器に入射させる二重回折光の位置を可変することができる。これにより、本願発明の波長分散ストレス発生装置は、さらに広い範囲で波長分散値を可変することができる。
さらに、入射窓を中心に回転することで、多重反射器の回転に拠らず二重回折光の入射位置を一定にすることができる。これにより、装置構成を簡単にすることができる。
In the chromatic dispersion stress generation method of the present invention, the chromatic dispersion adjustment procedure (S106) for changing the distance between the multiple reflector and the diffraction grating on a straight line parallel to the parallel light is performed before the parallel light incidence procedure. You may have further.
Further, in the multiple reflection procedure, the number of multiple reflections may be varied by rotating the multiple reflector around a straight line passing through a part of the incident window.
By changing the distance between the multiple reflector and the diffraction grating, the position of the double diffracted light incident on the multiple reflector can be changed. Thereby, the chromatic dispersion stress generator of the present invention can vary the chromatic dispersion value in a wider range.
Furthermore, by rotating around the incident window, the incident position of the double diffracted light can be made constant regardless of the rotation of the multiple reflectors. Thereby, the apparatus configuration can be simplified.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、極めて大きな波長分散ストレスを発生させることができ、かつ小型で安価な波長分散ストレス発生装置及び波長分散ストレス発生方法を提供することができる。   According to the present invention, it is possible to provide a chromatic dispersion stress generator and a chromatic dispersion stress generation method that can generate extremely large chromatic dispersion stress and that are small and inexpensive.

実施形態1に係る波長分散ストレス発生装置の一例を示す。1 shows an example of a chromatic dispersion stress generator according to Embodiment 1. 実施形態1に係る多重反射器の光路の第1例を示す。1 shows a first example of an optical path of a multiple reflector according to a first embodiment. 実施形態1に係る波長分散ストレス発生方法の一例を示す。2 shows an example of a chromatic dispersion stress generation method according to the first embodiment. 実施形態1に係る多重反射器の光路の第2例を示す。2 shows a second example of an optical path of a multiple reflector according to the first embodiment. 実施形態2に係る波長分散ストレス発生装置の一例を示す。An example of the chromatic dispersion stress generator which concerns on Embodiment 2 is shown. 実施形態2に係る多重反射器の光路の一例を示す。An example of the optical path of the multiple reflector which concerns on Embodiment 2 is shown. 実施形態3に係る波長分散ストレス発生装置の一例を示す。An example of the chromatic dispersion stress generator which concerns on Embodiment 3 is shown. 実施形態3に係る多重反射器の光路の一例を示す。An example of the optical path of the multiple reflector which concerns on Embodiment 3 is shown. 実施形態3に係る波長分散ストレス発生方法の一例を示す。An example of the chromatic dispersion stress generating method according to the third embodiment will be described. 実施形態4に係る波長分散ストレス発生装置の一例を示す。An example of the wavelength dispersion stress generator which concerns on Embodiment 4 is shown. 実施形態4に係る多重反射器の光路の一例を示す。An example of the optical path of the multiple reflector which concerns on Embodiment 4 is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1に、実施形態1に係る波長分散ストレス発生装置の一例を示す。実施形態1に係る波長分散ストレス発生装置は、光入力部51と、コリメータレンズ54と、回折格子20と、平行光反射器40と、多重反射器10−1と、多重反射光反射器30と、コリメータレンズ55と、光出力部52と、を備える。
(Embodiment 1)
FIG. 1 shows an example of a chromatic dispersion stress generator according to the first embodiment. The chromatic dispersion stress generator according to the first embodiment includes an optical input unit 51, a collimator lens 54, a diffraction grating 20, a parallel light reflector 40, a multiple reflector 10-1, and a multiple reflected light reflector 30. A collimator lens 55 and a light output unit 52.

図2に、実施形態1に係る多重反射器の光路の第1例を示す。回折格子20は、平行光Lを波長ごとに異なる回折角で回折する。平行光反射器40は、回折格子20からの回折光Lのうちの任意の波長の光が回折格子20で平行光Lと平行な方向に回折されるように、回折格子20の刻線方向と平行な直線を中心に回転して回折格子20からの回折光Lを反射する。多重反射器10−1は、回折格子20の刻線方向と平行な直線を中心に回転可能であり、平行光反射器40で反射された反射光Lが回折格子20で回折された二重回折光Lが入射窓13から入射され、二重回折光Lを互いに平行に配置された第1反射面11及び第2反射面12で多重反射し、多重反射後の多重反射光Lを入射窓13とは異なる出射窓14から出射する。多重反射器10−1の入射窓13及び出射窓14は、二重回折光L及び多重反射光Lの損失を小さくするために、低反射率であることが好ましい。 FIG. 2 shows a first example of the optical path of the multiple reflector according to the first embodiment. Diffraction grating 20 is diffracted at different diffraction angles parallel light L 1 for each wavelength. Parallel light reflector 40, as any of the wavelengths of the diffracted light L 2 from the diffraction grating 20 is diffracted in a direction parallel to the parallel light L 1 by the diffraction grating 20, rulings of the diffraction grating 20 rotated about the direction and a straight line parallel to the reflected diffracted light L 2 from the diffraction grating 20. The multi-reflector 10-1 can rotate around a straight line parallel to the engraving direction of the diffraction grating 20, and the reflected light L 3 reflected by the parallel light reflector 40 is diffracted by the diffraction grating 20. The diffracted light L 4 enters from the incident window 13, and the double diffracted light L 4 is multiple-reflected by the first reflecting surface 11 and the second reflecting surface 12 arranged in parallel with each other, and the multiple reflected light L 5 after the multiple reflection is obtained. Is emitted from an exit window 14 different from the entrance window 13. Entrance window 13 and exit window 14 of the multi-reflector 10-1, in order to reduce the loss of the double diffracted light L 4 and multiple reflected light L 5, it is preferably a low reflectivity.

多重反射光反射器30は、多重反射器10−1の出射窓14から出射される多重反射光Lを二重回折光Lと平行にして、多重反射光Lを回折格子20の格子面に入射させる。多重反射光反射器30は、多重反射光反射器30の表面で多重反射光Lを反射するコーナーミラーであってもよいし、多重反射光反射器30の媒質中で多重反射光Lを反射するコーナーキューブであってもよい。 Multiple reflected light reflector 30, the multiple reflected light L 5 emitted from the emission window 14 of the multi-reflector 10-1 in parallel to the double diffracted light L 4, the multiple reflected light L 6 of the diffraction grating 20 grating Incident on the surface. Multiple reflected light reflector 30 may be a corner mirror for reflecting the multiple reflected light L 5 on the surface of the multiple reflected light reflector 30, the multiple reflected light L 5 in a medium of multiple reflected light reflector 30 It may be a corner cube that reflects.

図3に、実施形態1に係る波長分散ストレス発生方法の一例を示す。実施形態1に係る波長分散ストレス発生方法は、平行光入射手順S101と、回折光反射手順S102と、多重反射手順S103と、多重反射光反射手順S104と、平行光出射手順S105と、を順に有する。   FIG. 3 shows an example of the chromatic dispersion stress generation method according to the first embodiment. The chromatic dispersion stress generation method according to the first embodiment includes a parallel light incident procedure S101, a diffracted light reflection procedure S102, a multiple reflection procedure S103, a multiple reflection light reflection procedure S104, and a parallel light emission procedure S105 in this order. .

平行光入射手順S101では、回折格子20に平行光Lを入射する。そして、回折格子20は、平行光Lを波長ごとに異なる回折角で回折する。例えば、光入力部51に、入力光Lが入力される。入力光Lはコリメータレンズ54に入射され、コリメータレンズ54から平行光Lが出射される。平行光Lは、回折格子20に入射される。これにより、回折格子20からの回折光Lが、波長ごとに異なる回折角で出射する。 In parallel light incident steps S101, incident parallel light L 1 to the diffraction grating 20. Then, the diffraction grating 20 is diffracted at different diffraction angles parallel light L 1 for each wavelength. For example, the input light L 0 is input to the light input unit 51. The input light L 0 is incident on the collimator lens 54, and the parallel light L 1 is emitted from the collimator lens 54. The parallel light L 1 is incident on the diffraction grating 20. Thus, the diffracted light L 3 from the diffraction grating 20, is emitted at different diffraction angles for each wavelength.

回折光反射手順S102では、回折格子20からの回折光Lを平行光反射器40で反射して、回折格子20からの回折光Lのうちの任意の波長の回折光Lを回折格子20の格子面に向けて反射する。ここで、平行光反射器40は回折格子20の刻線方向と平行な回転軸で回転が可能である。このため、平行光反射器40を回転させることで、波長分散を発生させる波長λを選択することができる。 In the diffracted light reflected steps S102, reflects the diffracted light L 2 from the diffraction grating 20 in parallel light reflector 40, the diffracted light L 3 of an arbitrary wavelength of the diffracted light L 2 from the diffraction grating 20 grating Reflects toward 20 lattice planes. Here, the parallel light reflector 40 can be rotated on a rotation axis parallel to the direction of the marking line of the diffraction grating 20. Therefore, by rotating the parallel light reflector 40, the wavelength λ that generates chromatic dispersion can be selected.

多重反射手順S103では、回折光反射手順S102で反射した回折光Lが回折格子20の格子面で回折された二重回折光Lを多重反射器10−1の入射窓13に入射し、二重回折光Lを第1反射面11及び第2反射面12で多重反射し、多重反射後の多重反射光Lを入射窓13とは異なる出射窓14から出射する。 In multiple reflection procedure S103, the incident diffracted light reflected steps S102 double diffracted light L 4 of the diffracted light L 3 reflected diffracted by the grating surface of the diffraction grating 20 at the entrance window 13 of the multiple reflection 10-1, The double diffracted light L 4 is multiple-reflected by the first reflecting surface 11 and the second reflecting surface 12, and the multiple reflected light L 5 after the multiple reflection is emitted from the exit window 14 different from the entrance window 13.

ここで、多重反射器10−1に入力する二重回折光Lは、波長によって入射位置が異なるため、入射位置の距離差分で発生する多重反射回数の差異は波長差間の遅延を与えることになる。例えば、図2の例では、出射窓14が短波長側に設けられており、入射位置の距離差分で発生する多重反射回数は短波長側が少なくなる。このため、短波長側の遅延を小さくすることができる。 Here, the dual diffracted light L 4 to be input to the multiplex reflector 10-1, the incident position by the different wavelengths, the difference of the multiple number of reflections that occur in the distance difference between the incident position is to provide a delay between the wavelength difference become. For example, in the example of FIG. 2, the exit window 14 is provided on the short wavelength side, and the number of multiple reflections that occurs due to the distance difference between the incident positions is reduced on the short wavelength side. For this reason, the delay on the short wavelength side can be reduced.

図4に、実施形態1に係る多重反射器の光路の第2例を示す。出射窓14が長波長側に設けられており、入射位置の距離差分で発生する多重反射回数は短波長側が多くなる。このため、短波長側の遅延を大きくすることができる。   FIG. 4 shows a second example of the optical path of the multiple reflector according to the first embodiment. The exit window 14 is provided on the long wavelength side, and the number of multiple reflections generated by the difference in the distance between the incident positions increases on the short wavelength side. For this reason, the delay on the short wavelength side can be increased.

また、図1及び図2に示す多重反射器10−1は、回転軸15を中心に回転可能である。回転軸15は、入射窓13の一部を通りかつ回折格子20の刻線方向と平行な直線である。多重反射器10−1を回転すると、入射位置の距離差分で発生する多重反射の回数を変化させることができ、遅延量を可変することができる。これにより、波長分散値を可変することができる。   Further, the multiple reflector 10-1 shown in FIGS. 1 and 2 can rotate around the rotation shaft 15. The rotation axis 15 is a straight line that passes through a part of the incident window 13 and is parallel to the direction of the marking line of the diffraction grating 20. When the multiple reflector 10-1 is rotated, the number of multiple reflections generated by the distance difference between the incident positions can be changed, and the delay amount can be varied. Thereby, the chromatic dispersion value can be varied.

多重反射光反射手順S104では、多重反射光反射器30が、多重反射器10−1の出射窓14から出射される多重反射光Lを平行光Lと平行にする。これにより、多重反射光反射器30は平行光Lと平行な多重反射光Lを回折格子20の格子面に入射する。多重反射光Lは回折格子20で回折される。多重反射光Lが回折格子20で回折された回折光Lは、平行光反射器40に入射される。 In multiple reflected light reflected steps S104, multiple reflected light reflector 30, is parallel to the parallel light L 1 a multiple reflected light L 5 emitted from the emission window 14 of the multi-reflector 10-1. Thereby, the multiple reflection light reflector 30 makes the multiple reflection light L 6 parallel to the parallel light L 1 incident on the grating surface of the diffraction grating 20. The multiple reflected light L 6 is diffracted by the diffraction grating 20. The diffracted light L 7 obtained by diffracting the multiple reflected light L 6 by the diffraction grating 20 enters the parallel light reflector 40.

平行光出射手順S105では、多重反射光反射手順S104において回折格子20で回折後の回折光Lを取り出す。例えば、平行光反射器40は、回折光Lを回折格子20の格子面に向けて反射する。これにより、反射光Lが回折格子20の格子面に入射される。回折格子20の格子面に入射された反射光Lは回折される。このとき、平行光Lから回折光Lに回折されたときと同じ角度で反射光Lを回折格子20に入射する。これにより、反射光Lが回折格子20の格子面で回折された後の平行光Lは、平行光Lと平行な平行光となる。平行光Lは、コリメータレンズ55に入射されて光出力部52に集光される。そして光出力部52から光L10が出力される。 In the parallel light emitted procedure S105, taking out diffracted light L 7 after diffraction by the diffraction grating 20 in the multiple reflection light reflected steps S104. For example, the parallel light reflector 40 reflects the diffracted light L 7 toward the grating surface of the diffraction grating 20. As a result, the reflected light L 8 is incident on the grating surface of the diffraction grating 20. The reflected light L 8 incident on the grating surface of the diffraction grating 20 is diffracted. At this time, the reflected light L 8 is incident on the diffraction grating 20 at the same angle as when the light is diffracted from the parallel light L 1 to the diffracted light L 2 . Thereby, the parallel light L 9 after the reflected light L 8 is diffracted by the grating surface of the diffraction grating 20 becomes parallel light parallel to the parallel light L 1 . The parallel light L 9 enters the collimator lens 55 and is condensed on the light output unit 52. Then, the light L 10 is output from the light output unit 52.

各波長において、二重回折光Lと多重反射光Lは平行で逆方向の光であり、すなわち回折光Lから二重回折光Lへの回折角と多重反射光Lから回折光Lへの回折角は等しいため、波長によって分散した光は光出力部52では1点に集光される。 At each wavelength, the double diffracted light L 4 and the multiple reflected light L 6 are parallel and reverse light, that is, the diffraction angle from the diffracted light L 3 to the double diffracted light L 4 and the diffracted light from the multiple reflected light L 6. Since the diffraction angles to the light L 7 are equal, the light dispersed according to the wavelength is collected at one point in the light output unit 52.

本願の波長分散ストレス発生装置の原理は、多重反射器10−1に入力される二重回折光Lが波長によって入射位置が異なるため、その空間的な入射位置の距離差分で発生する多重反射による遅延差から、波長により異なる遅延を発生する。したがって、波長によって異なる空間的な入射位置の差を変化させるか、波長によって異なる空間的な入射位置の差で発生する多重反射の回数を変化させることによって、波長間の遅延量を変化させることができる。実際には、空間的な入射位置の差以外の波長による多重反射器内での光線角度の差分も遅延量に加味される。 The principle of wavelength dispersion stress generating apparatus of the present application, multiple reflection dual diffracted light L 4, which is input to the multi-reflector 10-1 is the incident position by the different wavelengths, generated by the distance difference of the spatial incidence position Due to the delay difference due to, a different delay is generated depending on the wavelength. Therefore, the amount of delay between wavelengths can be changed by changing the difference in spatial incident position that varies depending on the wavelength, or by changing the number of multiple reflections caused by the difference in spatial incident position that varies depending on the wavelength. it can. In practice, the difference in the light beam angle in the multiple reflector due to the wavelength other than the difference in spatial incident position is also added to the delay amount.

回折光Lは式(1)で表され、二重回折光Lは式(2)で表される。

Figure 0005502667
ただし、mは回折格子の回折次数、λは波長、dは格子定数、α1は平行光Lの入射角、β1は回折光Lの回折角、α2は反射光Lの入射角、β2は二重回折光Lの回折角である。 Diffracted light L 2 is represented by the formula (1), the double diffracted light L 4 are represented by the formula (2).
Figure 0005502667
However, m the diffraction order of the diffraction grating, lambda is the wavelength, d is the lattice constant, [alpha] 1 is the incident angle of the parallel light L 1, the diffraction angle of the diffracted light L 2 is .beta.1, [alpha] 2 is the angle of incidence of the reflected light L 8, .beta.2 is the diffraction angle of the double diffracted light L 4.

λを(λ+Δλ)とした場合の回折角の変化量を求める。
式(1)をλで微分すると、

Figure 0005502667
式(2)をλで微分すると、
Figure 0005502667
The amount of change in diffraction angle when λ is (λ + Δλ) is obtained.
Differentiating equation (1) by λ,
Figure 0005502667
Differentiating equation (2) by λ,
Figure 0005502667

したがって、1回目の回折光Lの角分散は、式(3)より式(5)で表される。

Figure 0005502667
Therefore, the angular dispersion of the first diffracted light L 2 is expressed by the equation (5) from the equation (3).
Figure 0005502667

ここで、本光学系では加分散配列となり、Δα2/Δλ=−Δβ/Δλである。このため、式(4)は以下のように表される。

Figure 0005502667
Here, in the present optical system, a dispersive arrangement is obtained, and Δα2 / Δλ = −Δβ / Δλ. For this reason, Formula (4) is represented as follows.
Figure 0005502667

(6)式に(5)式のΔβ1/Δλを代入することにより、2回目の二重回折光Lの角分散は、式(7)で表される。

Figure 0005502667
(6) formula (5) by substituting the .DELTA..beta.1 / [Delta] [lambda] of the formula, the angular dispersion of the second double diffracted light L 4 are, represented by the formula (7).
Figure 0005502667

例えば、波長λを1550nm、回折格子20の刻線数を1250groves/mm、1回目の回折格子20への平行光Lの入射角α1を85degとすると、1回目の回折光Lの回折角β1は70.27deg、2回目の回折格子20への回折光Lの入射角α2は70.27deg、2回目の二重回折光Lの回折角β2は85degとなる。この場合、波長1nm当たりの角分散は、式(7)より、1.034deg/nmとなり、波長差1nmの2つの光は、回折格子20から500nm離れた位置では9mm程度分離される。 For example, if the wavelength lambda 1550 nm, the angle of incidence α1 of the parallel light L 1 of the groove density of the grating 20 to 1250groves / mm, 1 st diffraction grating 20 and 85Deg, 1 time the diffraction angle of the diffracted light L 2 of β1 is 70.27Deg, incident angle α2 of the diffracted light L 3 of the second diffraction grating 20 is 70.27Deg, the diffraction angle β2 of the second double diffracted light L 4 are the 85Deg. In this case, the angular dispersion per wavelength of 1 nm is 1.034 deg / nm from Equation (7), and the two lights having a wavelength difference of 1 nm are separated by about 9 mm at a position 500 nm away from the diffraction grating 20.

この9mmの多重反射器10−1への入射位置において、第1反射面11と第2反射面12の間隔が50mm(屈折率は1.5とする)の多重反射器10−1で6往復の多重反射をさせると、光路長900mm(50mm×1.5×2×6=900mm)相当の遅延が発生する。すなわち、上記の条件では波長差1nm離れた2つの光は3nsec/nmの遅延時間が発生し、波長分散3nsec/nmが得られる。   At the incident position on the 9 mm multiple reflector 10-1, the multi-reflector 10-1 having an interval between the first reflecting surface 11 and the second reflecting surface 12 of 50 mm (with a refractive index of 1.5) makes six round trips. When multiple reflection is performed, a delay corresponding to an optical path length of 900 mm (50 mm × 1.5 × 2 × 6 = 900 mm) occurs. That is, under the above conditions, a delay time of 3 nsec / nm is generated for two lights having a wavelength difference of 1 nm, and a chromatic dispersion of 3 nsec / nm is obtained.

波長分散値(波長あたりの遅延時間)は、多重反射器10−1の第1反射面11と第2反射面12の間隔を大きくすれば大きくなり、多重反射器10−1への入射角を小さくして多重反射回数を多くすれば大きくなり、多重反射器10−1と回折格子20間の距離を大きくすれば大きくすることができる。   The chromatic dispersion value (delay time per wavelength) increases as the distance between the first reflecting surface 11 and the second reflecting surface 12 of the multiple reflector 10-1 is increased, and the incident angle to the multiple reflector 10-1 is increased. It can be increased by decreasing the number of multiple reflections and increasing the number of reflections, and can be increased by increasing the distance between the multiple reflectors 10-1 and the diffraction grating 20.

多重反射器10−1を回転して多重反射器10−1への入射角を変化させることにより、波長分散値を変化させることができる。多重反射を用いて波長分散を生じさせるため、装置構成を小型で安価にすることができる。したがって、極めて大きな波長分散ストレスを発生させることができ、かつ小型で安価な波長分散ストレス発生装置及び波長分散ストレス発生方法を提供することができる。   The wavelength dispersion value can be changed by rotating the multiple reflector 10-1 to change the incident angle to the multiple reflector 10-1. Since chromatic dispersion is generated using multiple reflections, the apparatus configuration can be made small and inexpensive. Therefore, an extremely large chromatic dispersion stress can be generated, and a small and inexpensive chromatic dispersion stress generating apparatus and chromatic dispersion stress generating method can be provided.

なお、ビームの広がりがあるため光学配置によってビーム内にビーム内遅延差が発生するが、全体の遅延量に対してこのビーム内遅延差が小さければ問題ない。   In addition, since the beam spreads, an intra-beam delay difference is generated in the beam due to the optical arrangement, but there is no problem if the intra-beam delay difference is small with respect to the entire delay amount.

(実施形態2)
図5に、実施形態2に係る波長分散ストレス発生装置の一例を示す。図6に、実施形態2に係る多重反射器の光路の一例を示す。実施形態2に係る波長分散ストレス発生装置は、実施形態1に係る多重反射器10−1に代えて多重反射器10−2を備え、実施形態1に係る多重反射光反射器30に代えて多重反射光反射器30L及び多重反射光反射器30Hを備える。これらの構成によって、実施形態2に係る波長分散ストレス発生装置は、短波長側の遅延を小さくも大きくもできる。
(Embodiment 2)
FIG. 5 shows an example of a chromatic dispersion stress generator according to the second embodiment. FIG. 6 shows an example of the optical path of the multiple reflector according to the second embodiment. The chromatic dispersion stress generating apparatus according to the second embodiment includes a multiple reflector 10-2 instead of the multiple reflector 10-1 according to the first embodiment, and performs multiplexing instead of the multiple reflected light reflector 30 according to the first embodiment. A reflected light reflector 30L and a multiple reflected light reflector 30H are provided. With these configurations, the chromatic dispersion stress generator according to Embodiment 2 can reduce or increase the delay on the short wavelength side.

具体的には、多重反射器10−2は、2つの出射窓14H及び出射窓14Lを備える。出射窓14H及び出射窓14Lは、第2反射面12の両端に配置される。出射窓14Hは任意の波長λの長波長側に設けられる。出射窓14Lは任意の波長λの短波長側に設けられる。   Specifically, the multiple reflector 10-2 includes two exit windows 14H and an exit window 14L. The exit window 14 </ b> H and the exit window 14 </ b> L are disposed at both ends of the second reflecting surface 12. The exit window 14H is provided on the long wavelength side of an arbitrary wavelength λ. The exit window 14L is provided on the short wavelength side of an arbitrary wavelength λ.

例えば、図6に示すように、多重反射器10−2が回転されることによって、多重反射器10−2に入射された二重回折光Lが出射窓14Hから出射される場合を考える。この場合、図3に示す多重反射光反射手順S104において、多重反射光反射器30Hは、出射窓14Hから出射される多重反射光Lを平行光Lと平行にして回折格子20の格子面に入射させる。そして、平行光出射手順S105では、平行光Lは、コリメータレンズ55Hに入射されて光出力部52Hに集光される。そして光出力部52Hから光L10が出力される。 For example, as shown in FIG. 6, by the multiple reflector 10-2 is rotated, the case where dual diffracted light L 4, which is incident on the multiple reflector 10-2 is emitted from the exit window 14H. In this case, the multiple reflected light reflected steps S104 shown in FIG. 3, the multiple reflection optical reflector 30H, the lattice plane of the diffraction grating 20 into parallel multiple reflection light L 5 emitted from the emission window 14H parallel light L 1 To enter. Then, the parallel light emitted procedure S105, the parallel light L 9 is incident on the collimator lens 55H and are focused on the light output portion 52H. Then, the light L 10 is outputted from the light output section 52H.

一方、多重反射器10−2が回転されることによって、多重反射器10−2に入射された二重回折光Lが出射窓14Lから出射される場合を考える。この場合、図3に示す多重反射光反射手順S104において、多重反射光反射器30Lは、出射窓14Lから出射される多重反射光Lを、平行光Lと平行にして回折格子20の格子面に入射させる。そして、平行光出射手順S105では、平行光Lは、コリメータレンズ55Lに入射されて光出力部52Lに集光される。そして光出力部52Lから光L10が出力される。 On the other hand, by multiplexing reflector 10-2 is rotated, the case where dual diffracted light L 4, which is incident on the multiple reflector 10-2 is emitted from the exit window 14L. In this case, the multiple reflected light reflected steps S104 shown in FIG. 3, the multiple reflection optical reflector 30L is a multiple reflected light L 5 emitted from the exit window 14L, the diffraction grating 20 in parallel to the parallel light L 1 grid Incident on the surface. Then, the parallel light emitted procedure S105, the parallel light L 9 is incident on the collimator lens 55L and is converged on the light output portion 52L. Then, the light L 10 is outputted from the light output unit 52L.

実施形態2に係る波長分散ストレス発生装置は、長波長側及び短波長側の両方に出射窓を備えるため、多重反射器10−2は、短波長側の遅延を大きくして長波長側の遅延を小さくすることも、長波長側の遅延を大きくして短波長側の遅延を小さくすることもできる。したがって、任意の特性の波長分散ストレスを発生させることができる。   Since the chromatic dispersion stress generator according to the second embodiment includes the emission windows on both the long wavelength side and the short wavelength side, the multiple reflector 10-2 increases the delay on the short wavelength side by increasing the delay on the short wavelength side. The delay on the long wavelength side can be increased to reduce the delay on the short wavelength side. Therefore, chromatic dispersion stress having an arbitrary characteristic can be generated.

(実施形態3)
図7に、実施形態3に係る波長分散ストレス発生装置の一例を示す。図8に、実施形態3に係る多重反射器の光路の一例を示す。実施形態3に係る波長分散ストレス発生装置では、実施形態1に係る多重反射器10−1及び多重反射光反射器30が、二重回折光Lと平行な直線上で移動可能である。
(Embodiment 3)
FIG. 7 shows an example of a chromatic dispersion stress generator according to the third embodiment. FIG. 8 shows an example of the optical path of the multiple reflector according to the third embodiment. In the wavelength dispersion stress generating apparatus according to the third embodiment, multiple reflectors 10-1 and multiple reflected light reflector 30 according to the first embodiment is movable on a straight line parallel with the double diffracted light L 4.

図9に、実施形態3に係る波長分散ストレス発生方法の一例を示す。実施形態3に係る波長分散ストレス発生方法では、波長分散調整手順S106を、平行光入射手順S101の前にさらに有する。波長分散調整手順S106では、多重反射器10−1と回折格子20との距離を可変する。例えば、多重反射器10−1及び多重反射光反射器30を搭載し、二重回折光Lの光軸と平行な直線上で移動可能な移動台35を備える。そして、平行光入射手順S101の実行前に移動台35を二重回折光Lの光軸と平行な直線上で移動させて、多重反射器10−1と回折格子20との距離を可変する。これにより、波長分散値を可変することができる。 FIG. 9 shows an example of a chromatic dispersion stress generation method according to the third embodiment. In the chromatic dispersion stress generation method according to the third embodiment, the chromatic dispersion adjustment procedure S106 is further provided before the parallel light incident procedure S101. In the chromatic dispersion adjustment procedure S106, the distance between the multiple reflector 10-1 and the diffraction grating 20 is varied. For example, it equipped with multiple reflectors 10-1 and multiple reflected light reflector 30, a movable table 35 which is movable in double diffracted light L 4 of the optical axis and parallel to a straight line. Then, by moving the moving table 35 in double diffracted light L 4 of the optical axis and parallel to a straight line before execution of the parallel light incident steps S101, to vary the distance between the multiple reflector 10-1 and the diffraction grating 20 . Thereby, the chromatic dispersion value can be varied.

実施形態3に係る波長分散ストレス発生装置及び波長分散ストレス発生方法は、多重反射器10−1の回転に加えてさらに多重反射器10−1と回折格子20との距離を可変することができるため、より広い範囲で波長分散ストレスを発生させることができる。   In the chromatic dispersion stress generation apparatus and the chromatic dispersion stress generation method according to the third embodiment, in addition to the rotation of the multiple reflector 10-1, the distance between the multiple reflector 10-1 and the diffraction grating 20 can be further varied. It is possible to generate chromatic dispersion stress in a wider range.

(実施形態4)
図10に、実施形態4に係る波長分散ストレス発生装置の一例を示す。図11に、実施形態4に係る多重反射器の光路の一例を示す。実施形態4に係る波長分散ストレス発生装置は、実施形態2に係る多重反射器10−2及び多重反射光反射器30L及び多重反射光反射器30Hが、二重回折光Lの光軸と平行な直線上で移動可能である。
(Embodiment 4)
FIG. 10 shows an example of a chromatic dispersion stress generator according to the fourth embodiment. FIG. 11 shows an example of the optical path of the multiple reflector according to the fourth embodiment. Wavelength dispersion stress generating apparatus according to the fourth embodiment, multiple reflectors 10-2 and multiple reflected light reflectors 30L and multiple reflected light reflector 30H according to the second embodiment is, parallel to the optical axis of the double diffracted light L 4 It can move on a straight line.

実施形態4に係る波長分散ストレス発生方法では、図9に示すように、波長分散調整手順S106を、平行光入射手順S101の前にさらに有する。波長分散調整手順S106では、多重反射器10−2と回折格子20との距離を、二重回折光Lと平行な直線上で可変する。例えば、多重反射器10−2及び多重反射光反射器30L及び多重反射光反射器30Hを搭載し、二重回折光Lの光軸と平行な直線上で移動可能な移動台36を備える。そして、平行光入射手順S101の実行前に移動台36を二重回折光Lの光軸と平行な直線上で移動させて、多重反射器10−2と回折格子20との距離を可変する。これにより、波長分散値を可変することができる。 In the chromatic dispersion stress generation method according to the fourth embodiment, as shown in FIG. 9, the chromatic dispersion adjustment procedure S106 is further provided before the parallel light incidence procedure S101. In the wavelength dispersion adjustment procedure S106, the distance between the multiple reflector 10-2 and the diffraction grating 20, it is variable on a line parallel with the double diffracted light L 4. For example, a multi-reflector 10-2 and equipped with a multiple reflected light reflectors 30L and multiple reflected light reflector 30H, movable carriage 36 which is movable in double diffracted light L 4 parallel to the optical axis straight line. Then, by moving the moving table 36 in double diffracted light L 4 of the optical axis and parallel to a straight line before execution of the parallel light incident steps S101, to vary the distance between the multiple reflector 10-2 and the diffraction grating 20 . Thereby, the chromatic dispersion value can be varied.

実施形態4に係る波長分散ストレス発生装置及び波長分散ストレス発生方法は、多重反射器10−2の回転に加えてさらに多重反射器10−2と回折格子20との距離を可変することができるため、より広い範囲で波長分散ストレスを発生させることができる。   In the chromatic dispersion stress generation apparatus and the chromatic dispersion stress generation method according to the fourth embodiment, in addition to the rotation of the multiple reflector 10-2, the distance between the multiple reflector 10-2 and the diffraction grating 20 can be changed. It is possible to generate chromatic dispersion stress in a wider range.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

10−1、10−2:多重反射器
11:第1反射面
12:第2反射面
13:入射窓
14、14H、14L:出射窓
15:回転軸
20:回折格子
30、30H、30L:多重反射光反射器
35、36:移動台
40:平行光反射器
51:光入力部
52、52L、52H:光出力部
54、55、55L、55H:コリメータレンズ
10-1, 10-2: Multiple reflectors 11: First reflecting surface 12: Second reflecting surface 13: Entrance windows 14, 14H, 14L: Exit window 15: Rotating shaft 20: Diffraction gratings 30, 30H, 30L: Multiple Reflected light reflectors 35, 36: moving table 40: parallel light reflector 51: light input units 52, 52L, 52H: light output units 54, 55, 55L, 55H: collimator lenses

Claims (7)

平行光を受けて波長ごとに異なる回折角で回折する回折格子(20)と、
前記回折格子からの回折光を受けて再び前記回折格子に反射する平行光反射器にして、前記回折格子からの回折光のうちの任意の波長の光が前記回折格子で前記平行光と平行な方向に回折されるように、前記回折格子の刻線方向と平行な直線を中心に回転可能な当該平行光反射器(40)と、
前記回折格子の刻線方向と平行な直線を中心に回転可能であり、前記平行光反射器で反射された反射光が前記回折格子で回折され二重回折光として入射窓から入射され、前記二重回折光を互いに平行に配置された第1反射面(11)及び第2反射面(12)で多重反射し、多重反射後の多重反射光を前記入射窓とは異なる出射窓から出射する多重反射器(10−1)と、
前記多重反射器の前記出射窓から出射される多重反射光を、前記二重回折光と平行にして前記回折格子の格子面に入射させる多重反射光反射器(30)と、
を備え
前記多重反射光反射器で前記回折格子に入射された前記多重反射光は、前記多重反射器まで辿った経路とは逆の経路を辿って前記回折格子まで戻り、当該回折格子から平行光で出射される波長分散ストレス発生装置。
A diffraction grating (20) that receives parallel light and diffracts at different diffraction angles for each wavelength;
A parallel light reflector that receives the diffracted light from the diffraction grating and reflects it back to the diffraction grating is formed, and light having an arbitrary wavelength out of the diffracted light from the diffraction grating is parallel to the parallel light by the diffraction grating. as is diffracted in the direction, before Symbol rotatable the parallel light reflector about the score line parallel to the direction straight diffraction grating (40),
Said rotatable about a score line parallel to the direction straight diffraction grating, the reflection light reflected by the parallel light reflector is incident from the incident window as a double diffracted light is diffracted by the diffraction grating, the The double diffracted light is multiple-reflected by the first reflecting surface (11) and the second reflecting surface (12) arranged in parallel to each other, and the multiple reflected light after the multiple reflection is emitted from an exit window different from the entrance window. Multiple reflectors (10-1);
A multiple reflection light reflector (30) for causing the multiple reflection light emitted from the emission window of the multiple reflector to enter the grating surface of the diffraction grating in parallel with the double diffracted light ;
Equipped with a,
The multi-reflected light incident on the diffraction grating by the multi-reflecting light reflector returns to the diffraction grating through a path opposite to the path traced to the multi-reflector, and is emitted as parallel light from the diffraction grating. wavelength dispersion stress generator being.
前記多重反射器及び前記多重反射光反射器は、前記二重回折光と平行な直線上で移動可能であることを特徴とする請求項1に記載の波長分散ストレス発生装置。   The chromatic dispersion stress generator according to claim 1, wherein the multiple reflector and the multiple reflected light reflector are movable on a straight line parallel to the double diffracted light. 前記多重反射器は、前記入射窓の一部を通る直線を中心に回転可能であることを特徴とする請求項1又は2に記載の波長分散ストレス発生装置。   3. The chromatic dispersion stress generator according to claim 1, wherein the multiple reflector is rotatable around a straight line passing through a part of the incident window. 前記多重反射器は、前記任意の波長の長波長側及び短波長側の両方に前記出射窓を備え、
前記多重反射光反射器を前記出射窓ごとに備える
ことを特徴とする請求項3に記載の波長分散ストレス発生装置。
The multiple reflector includes the exit window on both the long wavelength side and the short wavelength side of the arbitrary wavelength,
The chromatic dispersion stress generator according to claim 3, wherein the multiple reflection light reflector is provided for each exit window.
平行光を波長ごとに異なる回折角で回折する回折格子(20)に入射する平行光入射手順(S101)と、
前記回折格子からの回折光のうちの任意の波長の光が前記回折格子で前記平行光と平行な方向に回折されるように、前記回折格子からの回折光を反射する回折光反射手順(S102)と、
前記回折光反射手順で反射した回折光が前記回折格子の格子面で回折された二重回折光を前記回折格子の刻線方向と平行な直線を中心に回転可能な多重反射器(10−1)の入射窓に入射し、前記二重回折光を互いに平行に配置された第1反射面(11)及び第2反射面(12)で多重反射し、多重反射後の多重反射光を前記入射窓とは異なる出射窓から出射する多重反射手順(S103)と、
前記多重反射器の前記出射窓から出射される多重反射光を、前記二重回折光と平行にして前記回折格子の格子面に入射する多重反射光反射手順(S104)と、
前記多重反射光反射手順において前記回折格子で回折後の平行光を取り出す平行光出射手順(S105)と、
を順に有する波長分散ストレス発生方法。
A parallel light incident procedure (S101) for entering the diffraction grating (20) that diffracts the parallel light at different diffraction angles for each wavelength;
A diffracted light reflection procedure for reflecting diffracted light from the diffraction grating so that light of an arbitrary wavelength out of diffracted light from the diffraction grating is diffracted by the diffraction grating in a direction parallel to the parallel light (S102). )When,
Multiple reflectors (10-1) capable of rotating double diffracted light, which is diffracted light reflected by the diffracted light reflection procedure, at the grating surface of the diffraction grating, around a straight line parallel to the engraving direction of the diffraction grating ) Is incident on the first reflection surface (11) and the second reflection surface (12) arranged in parallel to each other, and the multiple reflection light after multiple reflection is incident on the incident window. Multiple reflection procedure for emitting from an exit window different from the window (S103);
Multiple reflected light reflection procedure (S104), in which multiple reflected light emitted from the exit window of the multiple reflector is incident on the grating surface of the diffraction grating in parallel with the double diffracted light ;
A parallel light emitting procedure (S105) for extracting parallel light after being diffracted by the diffraction grating in the multiple reflected light reflecting procedure;
A method for generating chromatic dispersion stress having:
前記多重反射器と前記回折格子との距離を、前記平行光と平行な直線上で可変する波長分散調整手順(S106)を、前記平行光入射手順の前にさらに有することを特徴とする請求項5に記載の波長分散ストレス発生方法。   The wavelength dispersion adjustment procedure (S106) for changing the distance between the multiple reflector and the diffraction grating on a straight line parallel to the parallel light is further provided before the parallel light incidence procedure. 5. The method for generating chromatic dispersion stress according to 5. 前記多重反射手順において、前記多重反射器を、前記入射窓の一部を通る直線を中心に回転させることを特徴とする請求項5又は6に記載の波長分散ストレス発生方法。   The chromatic dispersion stress generation method according to claim 5 or 6, wherein, in the multiple reflection procedure, the multiple reflector is rotated around a straight line passing through a part of the incident window.
JP2010201247A 2010-09-08 2010-09-08 Chromatic dispersion stress generator and chromatic dispersion stress generation method Expired - Fee Related JP5502667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201247A JP5502667B2 (en) 2010-09-08 2010-09-08 Chromatic dispersion stress generator and chromatic dispersion stress generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201247A JP5502667B2 (en) 2010-09-08 2010-09-08 Chromatic dispersion stress generator and chromatic dispersion stress generation method

Publications (2)

Publication Number Publication Date
JP2012058474A JP2012058474A (en) 2012-03-22
JP5502667B2 true JP5502667B2 (en) 2014-05-28

Family

ID=46055640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201247A Expired - Fee Related JP5502667B2 (en) 2010-09-08 2010-09-08 Chromatic dispersion stress generator and chromatic dispersion stress generation method

Country Status (1)

Country Link
JP (1) JP5502667B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930045A (en) * 1995-07-26 1999-07-27 Fujitsu, Ltd. Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
JP4518825B2 (en) * 2004-03-31 2010-08-04 富士通株式会社 Variable wavelength dispersion compensator

Also Published As

Publication number Publication date
JP2012058474A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US6301048B1 (en) Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
JP3516165B2 (en) Optical device using virtual image phase array to generate chromatic dispersion
JP3883816B2 (en) Device that can vary chromatic dispersion and chromatic dispersion slope
US5973838A (en) Apparatus which includes a virtually imaged phased array (VIPA) in combination with a wavelength splitter to demultiplex wavelength division multiplexed (WDM) light
EP1841102A2 (en) Spectral apparatus and wavelength dispersion control apparatus
US6343866B1 (en) Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US20050174653A1 (en) Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
JP4545023B2 (en) Chromatic dispersion and dispersion slope compensator
US6956700B1 (en) Wavelength dispersion compensating apparatus
WO2001095540A2 (en) Device and method for optical performance monitoring in an optical communications network
JP2003114402A (en) Optical multiplexer/demultiplexer and its adjusting method
JP4152836B2 (en) Optical component with wavelength division function and wavelength dispersion compensator
KR100566853B1 (en) Apparatus which includes a virtually images phased array (vipa) in combination with a wavelength splitter to demultiplex a wavelength division multiplexed (wdm) light
JP4898484B2 (en) Optical variable filter
US6900940B2 (en) Optical apparatus and device
JP2010008487A (en) Optical module and dispersion compensator
JP5502667B2 (en) Chromatic dispersion stress generator and chromatic dispersion stress generation method
US6169630B1 (en) Virtually imaged phased array (VIPA) having lenses arranged to provide a wide beam width
US6714705B1 (en) Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array and a rotating grating
JP4540520B2 (en) Dispersion slope compensator
JP2004271743A (en) Optical device
JP4193518B2 (en) Demultiplexer and wavelength division multiplexing optical transmission module
EP1734391A1 (en) Variable dispersion compensator
US11821791B1 (en) Techniques for reducing optical ghosts in a gratings-based optical spectrum analyzer (OSA)
JP3611842B2 (en) Manufacturing method of wavelength demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees