JP5500676B2 - Heat-resistant alloy film forming method and composite powder used therefor - Google Patents

Heat-resistant alloy film forming method and composite powder used therefor Download PDF

Info

Publication number
JP5500676B2
JP5500676B2 JP2009291701A JP2009291701A JP5500676B2 JP 5500676 B2 JP5500676 B2 JP 5500676B2 JP 2009291701 A JP2009291701 A JP 2009291701A JP 2009291701 A JP2009291701 A JP 2009291701A JP 5500676 B2 JP5500676 B2 JP 5500676B2
Authority
JP
Japan
Prior art keywords
heat
resistant alloy
forming
metal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009291701A
Other languages
Japanese (ja)
Other versions
JP2011132565A (en
Inventor
秀行 有川
輝 目幡
慶享 児島
国弘 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009291701A priority Critical patent/JP5500676B2/en
Publication of JP2011132565A publication Critical patent/JP2011132565A/en
Application granted granted Critical
Publication of JP5500676B2 publication Critical patent/JP5500676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐熱部材の製造,補修のために、金属基体の表面上に耐熱合金皮膜を形成する方法と、それに用いる複合粉末に関する。   The present invention relates to a method for forming a heat-resistant alloy film on the surface of a metal substrate for manufacturing and repairing heat-resistant members, and a composite powder used therefor.

高温の燃焼ガスに曝されるガスタービンの耐熱部材(動翼,静翼,燃焼器等)には、主に高温強度に優れたニッケル基やコバルト基の各種耐熱合金が材料として用いられている。さらに、これら耐熱部材の表面には、高温での耐酸化性,耐食性を付与する目的から、MCrAlX合金(Mはニッケル,コバルト,鉄の何れか、及びその組合せ。XはM,Cr,Al以外の元素)がコーティングとして用いられている。中でも、ニッケル,コバルトのいずれか、または、両方を含むMCrAlX合金が多用されている。このMCrAlX合金のコーティング製造方法としては、主に減圧プラズマ溶射法(LPPS),大気プラズマ溶射法(APS),高速フレーム溶射法(HVOF)が用いられている。   Various heat-resistant alloys such as nickel-base and cobalt-base that are excellent in high-temperature strength are mainly used for heat-resistant members (moving blades, stationary blades, combustors, etc.) of gas turbines exposed to high-temperature combustion gas. . Further, for the purpose of imparting oxidation resistance and corrosion resistance at high temperatures to the surfaces of these heat-resistant members, MCrAlX alloy (M is any of nickel, cobalt, iron and a combination thereof. X is other than M, Cr, Al) Elements) are used as coatings. Among these, MCrAlX alloys containing either nickel or cobalt or both are frequently used. As the MCrAlX alloy coating manufacturing method, a low pressure plasma spraying method (LPPS), an atmospheric plasma spraying method (APS), and a high-speed flame spraying method (HVOF) are mainly used.

これら溶射法では、プラズマジェット(LPPS,APS),燃焼ガス(HVOF)といった非常に高温の熱源に粉末材料を投入して加熱し、溶融、または半溶融状態にして基材に吹き付け、堆積させることでコーティングを形成する。このため、基材の溶融や過熱を避けるために、熱源である溶射ガンと基材の距離をある程度離す必要があり、粉末の付着効率が低いという課題がある。   In these thermal spraying methods, a powder material is put into a very high-temperature heat source such as plasma jet (LPPS, APS) or combustion gas (HVOF), heated, melted or semi-molten, sprayed onto the substrate, and deposited. To form a coating. For this reason, in order to avoid melting and overheating of the base material, it is necessary to increase the distance between the thermal spray gun, which is a heat source, and the base material to some extent, and there is a problem that the adhesion efficiency of the powder is low.

一方、これらガスタービンの耐熱部材は、運転中において、高温高圧の燃焼ガスへの曝露と、高い熱応力や遠心応力が作用するため、運転時間の経過に伴い劣化・損傷が避けられない。従って、これらの耐熱部材は点検と補修を繰り返しながら使用される。この中で、亀裂,摩耗,酸化腐食減肉等の補修には、母材と同系の合金を肉盛溶接する方法が用いられている。   On the other hand, since the heat-resistant members of these gas turbines are exposed to high-temperature and high-pressure combustion gas and are subjected to high thermal stress and centrifugal stress during operation, deterioration and damage are inevitable with the passage of operation time. Therefore, these heat resistant members are used while repeating inspection and repair. Among them, a method of overlay welding an alloy similar to the base material is used for repairing cracks, wear, oxidation corrosion thinning, and the like.

しかし、ガスタービンの耐熱部材に用いられるニッケル基,コバルト基の耐熱合金は難溶接性であり、溶接肉盛補修では、溶接入熱の影響による、溶接金属や母材熱影響部の高温割れ,部材の熱変形等が問題となりやすい。このため、ティグ溶接法,プラズマ粉体溶接法,レーザー溶接法等の比較的低入熱の溶接方法が用いられるが、より低入熱で高信頼,低コストの肉盛補修技術の開発が望まれている。   However, nickel-base and cobalt-base heat-resistant alloys used for heat-resistant parts of gas turbines are difficult to weld, and in weld overlay repair, the weld metal and the base metal heat-affected zone are hot cracked due to the influence of welding heat input, Thermal deformation of the member tends to be a problem. For this reason, relatively low heat input welding methods such as TIG welding, plasma powder welding, and laser welding are used. However, development of overlay repair technology with lower heat input, high reliability, and low cost is desired. It is rare.

このように、ガスタービンの耐熱部材を製造,補修する際にはニッケル基やコバルト基の合金を、溶射や溶接といった高温熱源を利用して堆積させる方法が多く用いられているが、いずれも入熱の大きいことが問題となっている。これを改善する方法として、コールドスプレー法を用いてMCrAlX合金をコーティングする方法が提案されている(特許文献1参照)。   As described above, when manufacturing and repairing heat-resistant members for gas turbines, nickel-based and cobalt-based alloys are often deposited using a high-temperature heat source such as thermal spraying or welding. High heat is a problem. As a method for improving this, a method of coating an MCrAlX alloy using a cold spray method has been proposed (see Patent Document 1).

コールドスプレー法は、合金粒子の融点より低い温度に粒子温度を保つことが可能なガス流温度を有する超音速ガス流を用い、粒子を超音速に加速して基材に衝突させ付着させる方法である。このため、基材への入熱が溶射法に比べて非常に低く、基材との距離を溶射法に比べ大幅に短縮することが可能で、一般に粉末の付着効率が高い。   The cold spray method uses a supersonic gas flow having a gas flow temperature that can maintain the particle temperature at a temperature lower than the melting point of the alloy particles, and accelerates the particles to a supersonic speed to cause them to collide with and adhere to the substrate. is there. For this reason, the heat input to the base material is very low as compared with the thermal spraying method, and the distance from the base material can be greatly shortened as compared with the thermal spraying method, and generally, the adhesion efficiency of the powder is high.

例えば、非特許文献1には、純銅,純ニッケルでは約80%という非常に高い付着効率が得られることが示されている。一方で、非特許文献1には、純ニッケルで約80%の付着効率が得られる成膜条件で、MCrAlX合金やニッケル基合金では約20%の付着効率しか得られず、気孔率も増加して膜質も低下することが示されている。   For example, Non-Patent Document 1 shows that very high adhesion efficiency of about 80% can be obtained with pure copper and pure nickel. On the other hand, in Non-Patent Document 1, only about 20% of deposition efficiency can be obtained with MCrAlX alloy and nickel-based alloy under the film forming conditions that can achieve about 80% of deposition efficiency with pure nickel, and the porosity also increases. It has been shown that the film quality also decreases.

コールドスプレー法の成膜原理については未解明の部分も多く、現時点でこの原因を特定することは困難であるが、コールドスプレー法では粒子を高速で基材に衝突させた際の塑性流動が成膜に寄与するため、塑性流動を生じやすい純ニッケルに対し、ニッケル基合金では合金化による固溶強化や析出強化が図られることで塑性流動が生じ難くなり、成膜に必要な粒子速度が上昇したと考えられる。   There are many unexplained parts about the film formation principle of the cold spray method, and it is difficult to determine the cause at this time. However, the cold spray method causes plastic flow when particles collide with the substrate at high speed. In contrast to pure nickel, which tends to cause plastic flow because it contributes to the film, the nickel-base alloy makes it difficult for plastic flow to occur due to solid solution strengthening and precipitation strengthening by alloying, and the particle velocity required for film formation increases. It is thought that.

従って、ニッケル基やコバルト基合金を効率良くコールドスプレーするためには、より高い粒子速度が必要となり、コールドスプレーの作動ガスとして最も高速が得られるヘリウムガスを用いることが必要となる。   Accordingly, in order to efficiently cold spray nickel-based and cobalt-based alloys, higher particle velocities are required, and it is necessary to use helium gas that provides the highest speed as the working gas for cold spray.

しかし、ヘリウムガスは高価であり、大量の作動ガスを消費するコールドスプレー法ではコストが非常に高くなってしまうという課題がある。   However, helium gas is expensive, and the cold spray method that consumes a large amount of working gas has a problem that the cost becomes very high.

特開2004−76157号公報JP 2004-76157 A

F.Raletz他、「Characterization of cold-sprayed nickel-base coatings」、Proceedings of the International Thermal Spray Conference、2004、pp323−328.F. Raletz et al., “Characterization of cold-sprayed nickel-base coatings”, Proceedings of the International Thermal Spray Conference, 2004, pp 323-328.

本発明の目的は、ニッケル、およびコバルト基の耐熱合金をコールドスプレーによって高効率,低コストで成膜でき、低入熱,低コストの耐熱部材の製造及び補修が可能な耐熱合金皮膜の形成方法と、それに用いる複合粉末を提供することにある。   An object of the present invention is to form a heat-resistant alloy film that can form a heat-resistant nickel- and cobalt-based heat-resistant alloy with high efficiency and low cost by cold spraying, and can manufacture and repair a heat-resistant member with low heat input and low cost. And providing a composite powder used therefor.

本発明の耐熱合金皮膜の形成方法は、ニッケル、または、コバルト基の耐熱合金皮膜を金属基体の表面上に形成する方法であって、(a)前記耐熱合金を構成する元素の内から選択された組成を有し、かつ、その総和が前記耐熱合金の組成となるよう選択された、複数種類の金属粉末を選択する工程と、(b)前記複数種類の金属粉末粒子が溶融しない温度に保たれた超音速ガス流を形成し、この超音速ガス流中に前記複数種類の金属粉末を投入し、粉末粒子を基体に超音速で衝突させて、金属基体上に、前記複数種類の金属粉末からなる混合皮膜を形成する工程と、(c)前記複数種類の金属粉末からなる混合皮膜を形成した金属基体に熱処理を施し、混合皮膜を均質化,合金化して、前記耐熱合金の皮膜を得ると共に、金属基体と耐熱合金の皮膜との間で拡散を生じさせて、両者の密着を強固にする工程と、を有することを特徴とする。   The method for forming a heat-resistant alloy film of the present invention is a method of forming a nickel- or cobalt-based heat-resistant alloy film on the surface of a metal substrate, and is selected from (a) elements constituting the heat-resistant alloy. And a step of selecting a plurality of types of metal powders, the total of which is selected so as to be the composition of the heat-resistant alloy, and (b) a temperature at which the plurality of types of metal powder particles are not melted. A supersonic gas flow is formed, and the plurality of types of metal powders are introduced into the supersonic gas flow, and the powder particles are caused to collide with the substrate at a supersonic speed. (C) heat-treating the metal substrate on which the mixed film made of the plurality of types of metal powders is formed, and homogenizing and alloying the mixed film to obtain the heat-resistant alloy film Together with the metal substrate And cause diffusion between the coating, and having a step to strengthen both the adhesion of the.

本発明の耐熱合金皮膜の形成方法によれば、目的の耐熱合金を構成する元素の内から選択された組成を有する、複数の金属粉末を選択する工程で、コールドスプレーにおける成膜の容易な組成の粉末と、その他の合金組成を有する粉末に分離することが可能となる。   According to the method for forming a heat-resistant alloy film of the present invention, a composition that allows easy film formation in cold spray in a step of selecting a plurality of metal powders having a composition selected from elements constituting the target heat-resistant alloy. And powders having other alloy compositions can be separated.

そして、これらの粉末を同時にコールドスプレーで成膜することで、成膜が容易な粉末が結合材として機能し、成膜が困難な粉末粒子の堆積を支援する。このため、従来の均一な耐熱合金粉末を単独でコールドスプレーにて成膜する場合に比べて成膜が容易となり、高価なヘリウムガスを使用せずに、安価な窒素ガスや空気でも耐熱合金の成膜が可能となるという利点がある。コールドスプレーのままの皮膜は、複数種類の粉末粒子の混合皮膜であるが、これを熱処理によって、均質化,合金化することで、実質的に目的の耐熱合金の皮膜を得ることができる。   Then, these powders are simultaneously formed by cold spray, whereby the powder that is easy to form functions as a binder, and assists the deposition of powder particles that are difficult to form. For this reason, film formation becomes easier compared to the case where conventional uniform heat-resistant alloy powder is formed by cold spray alone, and it is possible to use heat-resistant alloy with inexpensive nitrogen gas or air without using expensive helium gas. There is an advantage that a film can be formed. The film as a cold spray is a mixed film of a plurality of types of powder particles. By homogenizing and alloying this by heat treatment, a film of the intended heat resistant alloy can be obtained substantially.

本発明の被覆による耐熱合金複合粉末の断面模式図である。It is a cross-sectional schematic diagram of the heat-resistant alloy composite powder by the coating | coated of this invention. 本発明の造粒による耐熱合金複合粉末の断面模式図である。It is a cross-sectional schematic diagram of the heat-resistant alloy composite powder by granulation of this invention. 本発明の方法による耐熱合金堆積物の熱処理前の断面模式図である。It is a cross-sectional schematic diagram before heat processing of the heat-resistant alloy deposit by the method of this invention. 本発明の方法による耐熱合金堆積物の熱処理後の断面模式図である。It is a cross-sectional schematic diagram after heat processing of the heat-resistant alloy deposit by the method of this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の耐熱合金皮膜の形成方法は、目的の耐熱合金を構成する元素の内から選択された組成を有し、かつ、その総和が目的の耐熱合金の組成となるよう選択された、複数種類の金属粉末を選択する工程と、前記複数種類の金属粉末粒子が溶融しない温度に保たれた超音速ガス流を形成し、このガス流中に前記複数種類の金属粉末を投入し、粉末粒子を基体に超音速で衝突させて、金属基体上に、前記複数種類の金属粉末からなる混合皮膜を形成する、いわゆるコールドスプレーの工程と、前記複数種類の金属粉末からなる混合皮膜を形成した金属基体に熱処理を施し、混合皮膜を均質化,合金化して、実質的に目的の耐熱合金皮膜を得ると共に、金属基体と耐熱合金皮膜との間で拡散を生じさせて、両者の密着を強固にする、熱処理の工程とを有することを最も主要な特徴とする。   The heat-resistant alloy film forming method of the present invention has a composition selected from among the elements constituting the target heat-resistant alloy, and a plurality of types selected so that the sum thereof becomes the composition of the target heat-resistant alloy Forming a supersonic gas flow maintained at a temperature at which the plurality of types of metal powder particles do not melt, and injecting the plurality of types of metal powder into the gas flow, A so-called cold spray process in which a mixed film made of the plurality of types of metal powder is formed on the metal substrate by colliding with the substrate at supersonic speed, and a metal substrate in which the mixed film made of the plurality of types of metal powder is formed. Heat treatment to homogenize and alloy the mixed film to obtain the desired heat-resistant alloy film, and also cause diffusion between the metal substrate and the heat-resistant alloy film to strengthen the adhesion between the two. , Heat treatment process The most important feature to have.

すなわち、本発明は、ニッケル、または、コバルト基の耐熱合金皮膜を金属基体の表面上に形成する方法であって、
(a)前記耐熱合金を構成する元素の内から選択された組成を有し、かつ、その総和が前記耐熱合金の組成となるよう選択された、複数種類の金属粉末を選択する工程と、
(b)前記複数種類の金属粉末粒子が溶融しない温度に保たれた超音速ガス流を形成し、この超音速ガス流中に前記複数種類の金属粉末を投入し、粉末粒子を基体に超音速で衝突させて、金属基体上に、前記複数種類の金属粉末からなる混合皮膜を形成する工程と、
(c)前記複数種類の金属粉末からなる混合皮膜を形成した金属基体に熱処理を施し、混合皮膜を均質化,合金化して、前記耐熱合金皮膜を得ると共に、金属基体と耐熱合金の皮膜との間で拡散を生じさせて、両者の密着を強固にする工程と、を有する。
That is, the present invention is a method of forming a nickel or cobalt-based heat-resistant alloy film on the surface of a metal substrate,
(A) selecting a plurality of types of metal powders having a composition selected from the elements constituting the heat-resistant alloy, and the sum of which is selected to be the composition of the heat-resistant alloy;
(B) forming a supersonic gas flow maintained at a temperature at which the plurality of types of metal powder particles do not melt, introducing the plurality of types of metal powders into the supersonic gas flow, and superposing the powder particles on a substrate; And forming a mixed film made of the plurality of types of metal powders on the metal substrate,
(C) A heat treatment is performed on the metal substrate on which the mixed film composed of the plurality of types of metal powders is formed, and the mixed film is homogenized and alloyed to obtain the heat-resistant alloy film, and between the metal substrate and the heat-resistant alloy film A step of causing diffusion between the two and strengthening the adhesion between them.

本発明に用いる、複数種類の金属粉末の少なくとも一つは、純金属のニッケルまたはコバルトであることが好ましい。純金属では、合金に比べ強化機構が作用しないため、比較的コールドスプレーによる成膜が容易な場合が多いためである。ニッケル基またはコバルト基の耐熱合金の場合は、母相であるニッケルまたはコバルトが50%以上を占めることが多く、純金属として純ニッケル、または、純コバルトを選択することが好ましい。これら母相以外の元素を純金属として選択した場合、その含有率が小さいため、ほとんどの合金では堆積物の組成を目的の合金組成となるように、粉末の比率を調整することが困難になる。   At least one of the plurality of types of metal powders used in the present invention is preferably pure metal nickel or cobalt. This is because a pure metal does not act as a strengthening mechanism compared to an alloy, and film formation by cold spray is relatively easy in many cases. In the case of a nickel-based or cobalt-based heat-resistant alloy, nickel or cobalt as a parent phase often occupies 50% or more, and it is preferable to select pure nickel or pure cobalt as a pure metal. When an element other than the parent phase is selected as a pure metal, the content ratio is small, so it is difficult to adjust the powder ratio so that the composition of the deposit becomes the target alloy composition in most alloys. .

また、これら金属,合金粉末の平均粒径は30μm以下であることが好ましい。平均粒径が30μmを超えると、コールドスプレーの際に超音速ガス流中における粉末の粒子速度が十分に得られず、成膜が困難になるためである。   The average particle diameter of these metal and alloy powders is preferably 30 μm or less. When the average particle size exceeds 30 μm, the particle velocity of the powder in the supersonic gas flow cannot be sufficiently obtained during the cold spray, and film formation becomes difficult.

本発明で、コールドスプレーの際に用いる超音速ガス流を形成するガスには、窒素または空気を用いることができる。ただし、目的の合金組成や成膜条件によっては、窒素ガスまたは空気では十分な粒子速度が得られない場合が生じる場合がある。このような場合は、窒素または空気にヘリウムを必要量加えた混合ガスを用いることも可能である。   In the present invention, nitrogen or air can be used as the gas forming the supersonic gas flow used in the cold spray. However, depending on the target alloy composition and film formation conditions, there may be a case where a sufficient particle velocity cannot be obtained with nitrogen gas or air. In such a case, it is also possible to use a mixed gas obtained by adding a necessary amount of helium to nitrogen or air.

なお、超音速ガス流を形成するガス温度は300℃〜600℃の範囲が好ましい。この範囲より低い温度では、ガスの膨張によるガス流速度の上昇が不十分となり、成膜に必要な粒子速度が得られない。また、この範囲より高い温度では、粒子温度が上昇することで成膜は容易になるが、600℃を超える高温を実現するためには非常に強力なヒーターを準備するか、ガスの圧力を下げてガス流量を下げなければならず、効率的には不利となる。また、粉末粒子の酸化による、皮膜内への酸化物の混入も生じやすくなる。   In addition, the gas temperature which forms a supersonic gas flow has the preferable range of 300 to 600 degreeC. If the temperature is lower than this range, the increase in gas flow rate due to gas expansion is insufficient, and the particle velocity required for film formation cannot be obtained. If the temperature is higher than this range, film formation is facilitated by increasing the particle temperature, but in order to achieve a high temperature exceeding 600 ° C, a very powerful heater is prepared or the gas pressure is lowered. Therefore, the gas flow rate must be reduced, which is disadvantageous in terms of efficiency. In addition, oxides are easily mixed into the film due to oxidation of the powder particles.

さらに本発明では、コールドスプレーの際に超音速ガス流中に投入する金属粉末粒子の比率を、金属基体に超音速で衝突させて形成される混合皮膜の組成が所定の合金組成となるように選択することを特徴とする。この比率は、目的とする合金組成、選択した金属粉末組成のみならず、粉末の粒径分布、成膜条件等に依存するため予備成膜試験を行い決定することが好ましい。なお、超音速ガス流中に投入する複数の金属粉末は、混合皮膜中に偏在を生じないように十分に混合して投入することが好ましい。さらに、この目的には、予め、被覆,造粒等の方法によって、複合化された粉末粒子を用いることが最も好ましい。   Furthermore, in the present invention, the ratio of the metal powder particles introduced into the supersonic gas flow during the cold spray is set so that the composition of the mixed film formed by colliding with the metal substrate at the supersonic speed becomes a predetermined alloy composition. It is characterized by selecting. This ratio depends on not only the desired alloy composition and the selected metal powder composition, but also the particle size distribution of the powder, film formation conditions, etc., and therefore it is preferable to determine this ratio by conducting a preliminary film formation test. In addition, it is preferable that the plurality of metal powders introduced into the supersonic gas flow are sufficiently mixed and introduced so as not to cause uneven distribution in the mixed film. Furthermore, for this purpose, it is most preferable to use powder particles that have been combined in advance by a method such as coating or granulation.

図1に本発明の被覆による耐熱合金複合粉末の断面模式図を示す。これは、合金粉末粒子1の表面に、純金属被覆層2が形成された複合粉末で、純金属被覆層2は、めっき,蒸着等の適当な方法によって形成することが可能である。   FIG. 1 shows a schematic cross-sectional view of a heat resistant alloy composite powder according to the coating of the present invention. This is a composite powder in which the pure metal coating layer 2 is formed on the surface of the alloy powder particles 1, and the pure metal coating layer 2 can be formed by an appropriate method such as plating or vapor deposition.

図2に本発明の造粒による耐熱合金複合粉末の断面模式図を示す。これは、合金粉末粒子1の表面に、純金属粒子2を付着させた形態の複合粉末である。複合化の形態については、ここに示した形態以外の複合粉末を用いることも可能である。   FIG. 2 shows a schematic cross-sectional view of the heat-resistant alloy composite powder obtained by granulation according to the present invention. This is a composite powder in which pure metal particles 2 are adhered to the surface of alloy powder particles 1. As for the composite form, composite powders other than those shown here can be used.

図3に本発明の方法に従って形成された、コールドスプレー法による耐熱合金皮膜の熱処理前の断面模式図を示す。耐熱合金基体11上に、コールドスプレー法による皮膜12が形成されている。熱処理前の段階において、皮膜12は純金属粉末粒子13と合金粉末粒子14の混合皮膜であり、比較的、コールドスプレーにおける付着性が良い純金属粉末粒子13がマトリックス(母相)となり、このマトリックス中に合金粉末粒子14が分散した組織を呈する。単独でコールドスプレーした場合には付着性が悪い合金粉末粒子14も、本発明の方法においては、純金属粉末粒子13によるマトリックスが結合材として機能するため付着性が向上する。このようにして得られた皮膜12は、この状態では未だ、純金属13と合金14の混合皮膜であるので、これを熱処理によって均質化,合金化する。   FIG. 3 shows a schematic cross-sectional view of the heat-resistant alloy film formed according to the method of the present invention before the heat treatment by the cold spray method. A coating 12 is formed on the heat-resistant alloy substrate 11 by a cold spray method. In the stage before the heat treatment, the coating 12 is a mixed coating of pure metal powder particles 13 and alloy powder particles 14, and the pure metal powder particles 13 having relatively good adhesion in cold spray become a matrix (matrix). It presents a structure in which the alloy powder particles 14 are dispersed. In the method of the present invention, the alloy powder particles 14 having poor adhesion when cold sprayed alone are also improved in adhesion because the matrix of the pure metal powder particles 13 functions as a binder. Since the film 12 thus obtained is still a mixed film of the pure metal 13 and the alloy 14 in this state, it is homogenized and alloyed by heat treatment.

この結果、図4に示すように、基体11上に目的の耐熱合金組成を有する皮膜15を形成することができる。この熱処理は、純金属13と合金14間の固相拡散が十分に進行し、均質化,合金化が達成される条件で行う。望ましくは、真空中、1000℃以上の温度で1h以上、熱処理を行うことが好ましい。また、基体耐熱合金の溶体化熱処理,時効熱処理と合わせて行うことも可能である。   As a result, as shown in FIG. 4, a film 15 having a target heat-resistant alloy composition can be formed on the substrate 11. This heat treatment is performed under the condition that the solid phase diffusion between the pure metal 13 and the alloy 14 proceeds sufficiently to achieve homogenization and alloying. Desirably, heat treatment is preferably performed in a vacuum at a temperature of 1000 ° C. or higher for 1 hour or longer. Further, it can be performed together with the solution heat treatment and aging heat treatment of the base heat-resistant alloy.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

原料粉末として、平均粒径15μmの、純ニッケル粉末と合金粉末(42%Cr−22%Co−9%Ti−9%Al−7%W−4.5%Mo−4.5%Ta−2.3%Nb−0.3%C−0.1%Zr−0.03%B、重量%)を準備した。これらの粉末を、重量比で純ニッケル粉末7に対し、合金粉末3の割合で配合し、Vミキサーを用いて十分混合した。この混合粉末を、コールドスプレー装置を用い、ニッケル耐熱合金IN738(16%Cr−8.5%Co−3.4%Ti−3.4%Al−2.6%W−1.7%Mo−1.7%Ta−0.9%Nb−0.1%C−0.05%Zr−0.01%B−残部Ni、重量%)製の基体上に成膜した。成膜条件は、作動ガスに窒素ガスを用い、ガス圧力が2MPa、ガス温度が5
00℃、粉末供給量が10g/min、成膜距離が20mmを用いた。堆積層の厚さが約1mm
まで成膜を実施した。
As raw material powder, pure nickel powder and alloy powder (42% Cr-22% Co-9% Ti-9% Al-7% W-4.5% Mo-4.5% Ta-2 with an average particle size of 15 μm) 0.3% Nb-0.3% C-0.1% Zr-0.03% B, wt%). These powders were blended in a ratio by weight of the alloy powder 3 with respect to the pure nickel powder 7 in a weight ratio and sufficiently mixed using a V mixer. This mixed powder was mixed with a nickel heat resistant alloy IN738 (16% Cr-8.5% Co-3.4% Ti-3.4% Al-2.6% W-1.7% Mo- The film was formed on a substrate made of 1.7% Ta-0.9% Nb-0.1% C-0.05% Zr-0.01% B-balance Ni, wt%). The film formation conditions were as follows: nitrogen gas was used as the working gas, the gas pressure was 2 MPa, and the gas temperature was 5
A temperature of 00 ° C., a powder supply amount of 10 g / min, and a film formation distance of 20 mm were used. The thickness of the deposited layer is about 1mm
Film formation was carried out.

コールドスプレーにて堆積層を形成した後、試験片を真空中で、1120℃×2hの熱処理を実施した。熱処理後、堆積層は強固に基体と密着し、緻密な堆積層が得られた。堆積層の成分を分析したところ、ほぼニッケル基耐熱合金IN738と同等の組成が得られた。また、大気中1000℃にて1000hの酸化試験を実施したところ、基体とほぼ同等の耐酸化性を示した。このように、作動ガスに窒素ガスを用いたコールドスプレー法で、実質的にニッケル基耐熱合金IN738に相当する堆積層が得られた。   After forming the deposited layer by cold spraying, the test piece was heat-treated at 1120 ° C. for 2 hours in vacuum. After the heat treatment, the deposited layer was firmly adhered to the substrate, and a dense deposited layer was obtained. When the components of the deposited layer were analyzed, a composition almost equivalent to that of the nickel-base heat-resistant alloy IN738 was obtained. Further, when an oxidation test for 1000 hours was performed at 1000 ° C. in the atmosphere, the oxidation resistance was almost the same as that of the substrate. As described above, a deposited layer substantially corresponding to the nickel-based heat-resistant alloy IN738 was obtained by the cold spray method using nitrogen gas as the working gas.

原料粉末として、平均粒径15μmの、純コバルト粉末と合金粉末(53%Ni−35%Cr−13%Al−0.8%Y、重量%)を準備した。これらの粉末を、重量比で純コバルト粉末4に対し、合金粉末6の割合で配合し、Vミキサーを用いて十分混合した。この混合粉末を、コールドスプレー装置を用い、ニッケル耐熱合金IN738(16%Cr−8.5%Co−3.4%Ti−3.4%Al−2.6%W−1.7%Mo−1.7%Ta−0.9%Nb−0.1%C−0.05%Zr−0.01%B−残部Ni、重量%)製の基体上に成膜した。成膜条件は、作動ガスに窒素ガスを用い、ガス圧力が2MPa、ガス温度が3
00℃、粉末供給量が10g/min、成膜距離が20mmを用いた。堆積層の厚さが0.3mm
まで成膜を実施した。
Pure cobalt powder and alloy powder (53% Ni-35% Cr-13% Al-0.8% Y, wt%) having an average particle size of 15 μm were prepared as raw material powders. These powders were blended at a weight ratio of the alloy powder 6 with respect to the pure cobalt powder 4 and sufficiently mixed using a V mixer. This mixed powder was mixed with a nickel heat resistant alloy IN738 (16% Cr-8.5% Co-3.4% Ti-3.4% Al-2.6% W-1.7% Mo- The film was formed on a substrate made of 1.7% Ta-0.9% Nb-0.1% C-0.05% Zr-0.01% B-balance Ni, wt%). The film formation conditions were as follows: nitrogen gas was used as the working gas, the gas pressure was 2 MPa, and the gas temperature was 3
A temperature of 00 ° C., a powder supply amount of 10 g / min, and a film formation distance of 20 mm were used. The thickness of the deposited layer is 0.3mm
Film formation was carried out.

コールドスプレーにて堆積層を形成した後、試験片を真空中で、1120℃×2hの熱処理を実施した。熱処理後、堆積層は強固に基体と密着し、緻密な堆積層が得られた。また、堆積層の成分を分析したところ、ほぼCoNiCrAlY合金(32%Ni−21%Cr−8%Al−0.5%Y―残部Co、重量%)の組成が得られた。また、大気中1000℃にて1000hの酸化試験を実施したところ、HVOF溶射法にて成膜した試験片とほぼ同等の耐酸化性を示した。このように、作動ガスに窒素ガスを用いたコールドスプレー法で、実質的にCoNiCrAlY合金に相当する堆積層が得られた。   After forming the deposited layer by cold spraying, the test piece was heat-treated at 1120 ° C. for 2 hours in vacuum. After the heat treatment, the deposited layer was firmly adhered to the substrate, and a dense deposited layer was obtained. Further, when the components of the deposited layer were analyzed, a composition of a CoNiCrAlY alloy (32% Ni-21% Cr-8% Al-0.5% Y—balance Co, wt%) was obtained. Further, when an oxidation test was performed for 1000 hours at 1000 ° C. in the atmosphere, the oxidation resistance was almost equal to that of a test piece formed by HVOF spraying. Thus, a deposited layer substantially corresponding to the CoNiCrAlY alloy was obtained by the cold spray method using nitrogen gas as the working gas.

原料粉末として、平均粒径15μmの合金粉末(42%Cr−22%Co−9%Ti−9%Al−7%W−4.5%Mo−4.5%Ta−2.3%Nb−0.3%C−0.1%Zr−0.03%B、重量%)に、ニッケル被覆層を厚さ約5μm形成した複合粉末を準備し
た。コールドスプレー装置を用いて、この複合粉末をニッケル耐熱合金IN738(16%Cr−8.5%Co−3.4%Ti−3.4%Al−2.6%W−1.7%Mo−1.7%Ta−0.9%Nb−0.1%C−0.05%Zr−0.01%B−残部Ni、重量%)製の基
体上に成膜した。成膜条件は、作動ガスに窒素ガスを用い、ガス圧力が2.5MPa、ガス温度が400℃、粉末供給量が10g/min、成膜距離が20mmを用いた。皮膜の厚さが約1mmまで成膜を実施した。
Alloy powder having an average particle size of 15 μm (42% Cr-22% Co-9% Ti-9% Al-7% W-4.5% Mo-4.5% Ta-2.3% Nb- 0.3% C-0.1% Zr-0.03% B, wt%) was prepared as a composite powder having a nickel coating layer with a thickness of about 5 μm. Using a cold spray apparatus, this composite powder was mixed with nickel heat-resistant alloy IN738 (16% Cr-8.5% Co-3.4% Ti-3.4% Al-2.6% W-1.7% Mo- The film was formed on a substrate made of 1.7% Ta-0.9% Nb-0.1% C-0.05% Zr-0.01% B-balance Ni, wt%). The film formation conditions were as follows. Nitrogen gas was used as the working gas, the gas pressure was 2.5 MPa, the gas temperature was 400 ° C., the powder supply amount was 10 g / min, and the film formation distance was 20 mm. Film formation was carried out until the film thickness was about 1 mm.

コールドスプレーにて皮膜を形成した後、試験片を真空中で、1120℃×2hの熱処理を実施した。熱処理後、皮膜は強固に基体と密着し、緻密な皮膜が得られた。皮膜の成分を分析したところ、ほぼニッケル基耐熱合金IN738と同等の組成が得られた。また、大気中1000℃にて1000hの酸化試験を実施したところ、基体とほぼ同等の耐酸化性を示した。このように、作動ガスに窒素ガスを用いたコールドスプレー法で、実質的にニッケル基耐熱合金IN738に相当する皮膜が得られた。   After forming a film by cold spraying, the test piece was heat-treated at 1120 ° C. for 2 hours in vacuum. After the heat treatment, the film firmly adhered to the substrate, and a dense film was obtained. When the components of the film were analyzed, a composition almost equivalent to that of the nickel-base heat-resistant alloy IN738 was obtained. Further, when an oxidation test for 1000 hours was performed at 1000 ° C. in the atmosphere, the oxidation resistance was almost the same as that of the substrate. Thus, a film substantially corresponding to the nickel-based heat-resistant alloy IN738 was obtained by the cold spray method using nitrogen gas as the working gas.

原料粉末として、平均粒径15μmの合金粉末(53%Ni−35%Cr−13%Al−0.8%Y、重量%)の表面に平均粒径3μmのコバルト粉末を、重量比でコバルト粉末4に対し、合金粉末6の割合で、造粒して付着させた複合粉末を準備した。この複合粉末を、コールドスプレー装置を用い、ニッケル耐熱合金IN738(16%Cr−8.5%Co−3.4%Ti−3.4%Al−2.6%W−1.7%Mo−1.7%Ta−0.9%Nb−0.1%C−0.05%Zr−0.01%B−残部Ni、重量%)製の基体上に成膜し
た。成膜条件は、作動ガスに窒素ガスを用い、ガス圧力が3MPa、ガス温度が400℃、粉末供給量が10g/min、成膜距離が20mmを用いた。皮膜の厚さが0.3mmまで成膜
を実施した。
As a raw material powder, an alloy powder (53% Ni-35% Cr-13% Al-0.8% Y, wt%) having an average particle diameter of 15 μm is coated with a cobalt powder having an average particle diameter of 3 μm on the surface and cobalt powder in a weight ratio. 4, a composite powder was prepared by granulating and adhering at a ratio of alloy powder 6. Using a cold spray apparatus, this composite powder was heated to a nickel heat resistant alloy IN738 (16% Cr-8.5% Co-3.4% Ti-3.4% Al-2.6% W-1.7% Mo- The film was formed on a substrate made of 1.7% Ta-0.9% Nb-0.1% C-0.05% Zr-0.01% B-balance Ni, wt%). As the film forming conditions, nitrogen gas was used as the working gas, the gas pressure was 3 MPa, the gas temperature was 400 ° C., the powder supply amount was 10 g / min, and the film forming distance was 20 mm. Film formation was performed until the film thickness was 0.3 mm.

コールドスプレーにて皮膜を形成した後、試験片を真空中で、1120℃×2hの熱処理を実施した。熱処理後、皮膜は強固に基体と密着し、緻密な皮膜が得られた。また、皮膜の成分を分析したところ、ほぼCoNiCrAlY合金(32%Ni−21%Cr−8%Al−0.5%Y―残部Co、重量%)の組成が得られた。また、大気中1000℃にて1000hの酸化試験を実施したところ、HVOF溶射法にて成膜した試験片とほぼ同等の耐酸化性を示した。このように、作動ガスに窒素ガスを用いたコールドスプレー法で、実質的にCoNiCrAlY合金に相当する皮膜が得られた。   After forming a film by cold spraying, the test piece was heat-treated at 1120 ° C. for 2 hours in vacuum. After the heat treatment, the film firmly adhered to the substrate, and a dense film was obtained. Further, when the components of the film were analyzed, a composition of a CoNiCrAlY alloy (32% Ni-21% Cr-8% Al-0.5% Y—balance Co, wt%) was obtained. Further, when an oxidation test was performed for 1000 hours at 1000 ° C. in the atmosphere, the oxidation resistance was almost equal to that of a test piece formed by HVOF spraying. Thus, a film substantially corresponding to the CoNiCrAlY alloy was obtained by the cold spray method using nitrogen gas as the working gas.

本発明は、ガスタービン耐熱部材へのMCrAlX合金のコーティング、あるいは、ニッケル基,コバルト基耐熱合金の肉盛補修に応用可能である。また、これら合金系に限らず、熱処理による合金化が可能な合金系にも適用可能で、ガスタービン以外にも、蒸気タービン,ボイラ,自動車エンジン等の耐熱部材に利用可能である。   The present invention can be applied to MCrAlX alloy coating on a gas turbine heat-resistant member or build-up repair of nickel-based and cobalt-based heat resistant alloys. Further, the present invention can be applied not only to these alloy systems but also to alloy systems that can be alloyed by heat treatment, and can be used for heat-resistant members such as steam turbines, boilers, and automobile engines in addition to gas turbines.

また、本発明は、コールドスプレー法を用いるため、施工時の入熱が従来の溶射法,溶接法に比べ極めて小さく、作業性,信頼性に優れる。また、粉末の付着効率が高いため、経済性にも優れる。   In addition, since the present invention uses a cold spray method, heat input during construction is extremely small compared to conventional thermal spraying and welding methods, and is excellent in workability and reliability. Moreover, since the adhesion efficiency of powder is high, it is excellent also in economical efficiency.

1 合金粒子
2 純金属被覆層
3 純金属粒子
11 基体
12 混合皮膜
13 純金属
14 合金
15 耐熱合金皮膜
DESCRIPTION OF SYMBOLS 1 Alloy particle 2 Pure metal coating layer 3 Pure metal particle 11 Base body 12 Mixed film 13 Pure metal 14 Alloy 15 Heat-resistant alloy film

Claims (11)

ニッケル、または、コバルト基の耐熱合金皮膜を金属基体の表面上に形成する方法であって、
(a)前記耐熱合金を構成する元素の内から選択された組成を有し、かつ、その総和が前記耐熱合金の組成となるよう選択された、複数種類の金属粉末を選択する工程と、
(b)前記複数種類の金属粉末が溶融しない温度に保たれた超音速ガス流を形成し、この超音速ガス流中に前記複数種類の金属粉末を投入し、前記複数種類の金属粉末を基体に超音速で衝突させて、金属基体上に、前記複数種類の金属粉末からなる混合皮膜を形成する工程と、
(c)前記複数種類の金属粉末からなる混合皮膜を形成した金属基体に熱処理を施し、混合皮膜を均質化,合金化して、前記耐熱合金の皮膜を得ると共に、金属基体と耐熱合金の皮膜との間で拡散を生じさせて、両者の密着を強固にする工程と、
を有し、
前記複数種類の金属粉末は、金属単体と合金を含み、
前記金属単体はニッケル、または、コバルトであることを特徴とする耐熱合金皮膜の形成方法。
A method of forming a nickel- or cobalt-based heat-resistant alloy film on a surface of a metal substrate,
(A) selecting a plurality of types of metal powders having a composition selected from the elements constituting the heat-resistant alloy, and the sum of which is selected to be the composition of the heat-resistant alloy;
(B) forming a supersonic gas flow maintained at a temperature at which the plurality of types of metal powders are not melted, charging the plurality of types of metal powders into the supersonic gas flow, and applying the plurality of types of metal powders to a substrate; Forming a mixed film composed of the plurality of types of metal powders on the metal substrate,
(C) A heat treatment is performed on the metal substrate on which the mixed film composed of the plurality of types of metal powders is formed, and the mixed film is homogenized and alloyed to obtain the heat-resistant alloy film, and the metal substrate and the heat-resistant alloy film Producing a diffusion between the two, strengthening the adhesion between the two,
I have a,
The plurality of types of metal powders include a simple metal and an alloy,
The method for forming a heat-resistant alloy film, wherein the metal simple substance is nickel or cobalt .
前記金属粉末の平均粒径が30μm以下であることを特徴とする請求項1記載の耐熱合金皮膜の形成方法。   The method for forming a heat-resistant alloy film according to claim 1, wherein an average particle size of the metal powder is 30 µm or less. 前記超音速ガス流を形成するガスが窒素または空気であることを特徴とする請求項1記載の耐熱合金皮膜の形成方法。   2. The method for forming a heat-resistant alloy film according to claim 1, wherein the gas forming the supersonic gas flow is nitrogen or air. 前記超音速ガス流を形成するガス温度が300℃〜600℃であることを特徴とする請求項1記載の耐熱合金皮膜の形成方法。   The method for forming a heat-resistant alloy film according to claim 1, wherein a gas temperature for forming the supersonic gas flow is 300 ° C to 600 ° C. 前記金属粉末粒子を金属基体に超音速で衝突させて形成される堆積物の組成が所定の合金組成となるように、超音速ガス流中に投入する複数の金属粉末の混合比を選択することを特徴とする請求項1記載の耐熱合金皮膜の形成方法。   Selecting a mixing ratio of a plurality of metal powders to be introduced into a supersonic gas flow so that a composition of a deposit formed by colliding the metal powder particles with a metal substrate at a supersonic speed becomes a predetermined alloy composition; The method for forming a heat-resistant alloy film according to claim 1. 前記超音速ガス流中に投入する複数種類の金属粉末が、造粒により前記合金の表面に前記金属単体の粒子が付着された金属粉末、または被覆により前記合金の表面に前記金属単体の被覆層が形成された金属粉末であることを特徴とする請求項1記載の耐熱合金皮膜の形成方法。 A plurality of types of metal powder introduced into the supersonic gas flow is a metal powder in which particles of the metal simple substance are attached to the surface of the alloy by granulation, or a coating layer of the metal simple substance on the surface of the alloy by coating. The method for forming a heat-resistant alloy film according to claim 1 , wherein the metal powder is formed. 混合皮膜の組成がニッケル基耐熱合金であることを特徴とする請求項1記載の耐熱合金皮膜の形成方法。   The method of forming a heat-resistant alloy film according to claim 1, wherein the composition of the mixed film is a nickel-based heat-resistant alloy. 混合皮膜の組成がコバルト基耐熱合金であることを特徴とする請求項1記載の耐熱合金皮膜の形成方法。   The method for forming a heat-resistant alloy film according to claim 1, wherein the composition of the mixed film is a cobalt-based heat-resistant alloy. 混合皮膜の組成がMCrAlX合金(Mはニッケル,コバルト,鉄の何れか、及びその組合せであり、XはM,Cr,Al以外の元素)であることを特徴とする請求項1記載の耐熱合金皮膜の形成方法。   2. The heat-resistant alloy according to claim 1, wherein the composition of the mixed film is MCrAlX alloy (M is any one of nickel, cobalt, iron, and a combination thereof, and X is an element other than M, Cr, Al). Method for forming a film. 金属単体と合金を含む複数種類の金属粉末が溶融しない温度に保たれた超音速ガス流を形成し、この超音速ガス流中に前記複数種類の金属粉末を投入し、前記複数種類の金属粉末を基体に超音速で衝突させて、基体表面に堆積させる成膜方法に用いる耐熱合金皮膜形成用金属粉末において、
少なくともニッケル,コバルト,クロム,アルミニウムのいずれかを含む合金の表面に、ニッケルまたはコバルトの粒子が付着した、またはニッケルまたはコバルトの被覆層を形成したことを特徴とする耐熱合金皮膜形成用金属粉末。
Forming a supersonic gas flow maintained at a temperature at which a plurality of types of metal powder including a simple metal and an alloy are not melted, and injecting the plurality of types of metal powder into the supersonic gas flow, the plurality of types of metal powder In a metal powder for forming a heat-resistant alloy film used in a film forming method in which a substrate is made to collide with a substrate at supersonic speed and deposited on the substrate surface,
A metal powder for forming a heat-resistant alloy film, characterized in that nickel or cobalt particles adhere to the surface of an alloy containing at least one of nickel, cobalt, chromium, and aluminum , or a coating layer of nickel or cobalt is formed .
均粒径が30μm以下であることを特徴とする請求項10記載の耐熱合金皮膜形成用金属粉末。 Heat-resistant alloy film forming metal powder according to claim 10, wherein the flat Hitoshitsubu diameter of 30μm or less.
JP2009291701A 2009-12-24 2009-12-24 Heat-resistant alloy film forming method and composite powder used therefor Active JP5500676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291701A JP5500676B2 (en) 2009-12-24 2009-12-24 Heat-resistant alloy film forming method and composite powder used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291701A JP5500676B2 (en) 2009-12-24 2009-12-24 Heat-resistant alloy film forming method and composite powder used therefor

Publications (2)

Publication Number Publication Date
JP2011132565A JP2011132565A (en) 2011-07-07
JP5500676B2 true JP5500676B2 (en) 2014-05-21

Family

ID=44345617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291701A Active JP5500676B2 (en) 2009-12-24 2009-12-24 Heat-resistant alloy film forming method and composite powder used therefor

Country Status (1)

Country Link
JP (1) JP5500676B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872844B2 (en) * 2011-10-26 2016-03-01 日本発條株式会社 Method for producing composite material and composite material
KR20160099567A (en) 2013-12-20 2016-08-22 플란제 에스이 Coating material containing chromium
WO2017003427A1 (en) * 2015-06-29 2017-01-05 Oerlikon Metco (Us) Inc. Cold gas spray coating methods and compositions
US10364844B2 (en) 2015-08-06 2019-07-30 Nissan Motor Co., Ltd. Sliding member and manufacturing method therefor
JPWO2017104234A1 (en) * 2015-12-14 2018-10-04 コニカミノルタ株式会社 Powder material, manufacturing method of three-dimensional structure, and three-dimensional structure apparatus
EP3585924A1 (en) * 2017-02-27 2020-01-01 Arconic Inc. Multi-component alloy products and the methods of making thereof
CN114395326A (en) * 2022-01-14 2022-04-26 严平 Super-hydrophobic heat-resistant coating for aluminum alloy and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853748A (en) * 1994-08-09 1996-02-27 Toshiba Corp Production of thermal spraying-coated superalloy member
CA2433613A1 (en) * 2002-08-13 2004-02-13 Russel J. Ruprecht, Jr. Spray method for mcralx coating
US20060093736A1 (en) * 2004-10-29 2006-05-04 Derek Raybould Aluminum articles with wear-resistant coatings and methods for applying the coatings onto the articles

Also Published As

Publication number Publication date
JP2011132565A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5500676B2 (en) Heat-resistant alloy film forming method and composite powder used therefor
US7479299B2 (en) Methods of forming high strength coatings
CN103160769B (en) The cold spraying of nickel-base alloy
US8597724B2 (en) Corrosion protective coating through cold spray
US9023423B2 (en) Method of deposition of metallic coatings using atomized spray
US10315218B2 (en) Method for repairing turbine component by application of thick cold spray coating
US20060222776A1 (en) Environment-resistant platinum aluminide coatings, and methods of applying the same onto turbine components
Bonadei et al. Cold sprayed MCrAlY+ X coating for gas turbine blades and vanes
US20060219329A1 (en) Repair nickel-based superalloy and methods for refurbishment of gas turbine components
EP1877598B1 (en) Magnesium repair and build up
JP2004076157A (en) THERMAL SPRAYING METHOD FOR MCrAlX COATING
US20070116890A1 (en) Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
JP2006265732A (en) Applying bond coat to engine components using cold spray
JP2007231422A (en) Coating process and coated article
Okazaki High-temperature strength of Ni-base superalloy coatings
US20030033702A1 (en) Restoration of thickness to load-bearing gas turbine engine components
JPH0447018B2 (en)
WO2017220996A1 (en) Method of coating or repairing substrates
US20130323069A1 (en) Turbine Blade for Industrial Gas Turbine and Industrial Gas Turbine
US20070098913A1 (en) Method for coating turbine engine components with metal alloys using high velocity mixed elemental metals
US20070181714A1 (en) Apparatus for applying cold-spray to small diameter bores
US11692273B2 (en) Method for applying a titanium aluminide alloy, titanium aluminide alloy and substrate comprising a titanium aluminide alloy
JP2015096709A (en) Heat-resistant alloy member and gas turbine using the same
JP2014198902A (en) Bond coat system and coated component
JP4643546B2 (en) Method for applying bonding coat and heat insulation film on aluminide surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5500676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250