JP5494165B2 - Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element - Google Patents

Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element Download PDF

Info

Publication number
JP5494165B2
JP5494165B2 JP2010093133A JP2010093133A JP5494165B2 JP 5494165 B2 JP5494165 B2 JP 5494165B2 JP 2010093133 A JP2010093133 A JP 2010093133A JP 2010093133 A JP2010093133 A JP 2010093133A JP 5494165 B2 JP5494165 B2 JP 5494165B2
Authority
JP
Japan
Prior art keywords
overcurrent
temperature
resistance heating
lead
thermal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010093133A
Other languages
Japanese (ja)
Other versions
JP2011223830A (en
Inventor
達哉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2010093133A priority Critical patent/JP5494165B2/en
Publication of JP2011223830A publication Critical patent/JP2011223830A/en
Application granted granted Critical
Publication of JP5494165B2 publication Critical patent/JP5494165B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、過電流検出用複合素子及び過電流検出用複合素子を備えた過電流遮断装置に関する。   The present invention relates to an overcurrent detection composite element and an overcurrent interruption device including the overcurrent detection composite element.

ハイブリット車や電気自動車等の車両(一般車両も含む)の電源から電線を介して負荷に至る経路に過電流が発生すると、電線の温度が上昇して絶縁被覆から発煙する等の不具合が生じうるため、過電流が発生した場合に電流を遮断する過電流遮断装置が設けられている。
従来、この過電流遮断装置は、可溶体のヒューズが用いられていたが、溶融による交換が必要であるため、メンテナンスフリー等を目的として、ヒューズを用いない過電流遮断装置が提案されている。
If an overcurrent occurs in the path from the power source of a vehicle such as a hybrid vehicle or an electric vehicle (including general vehicles) to the load via the electric wires, the temperature of the electric wires rises, causing problems such as smoke from the insulation coating. For this reason, an overcurrent interrupt device that interrupts the current when an overcurrent occurs is provided.
Conventionally, a fusible fuse has been used for this overcurrent interrupt device, but since it needs to be replaced by melting, an overcurrent interrupt device that does not use a fuse has been proposed for maintenance-free purposes.

具体的には、例えば、特許文献1に示すように、NTCサーミスタを有する温度検知電線を主電源線に巻きつけることで過電流を検出する構成がある。これは、過電流が流れて主電源線の温度が上昇すると、NTCサーミスタの温度が上昇し、NTCサーミスタの抵抗値が変化してNTCサーミスタの両端の電圧が変化するため、この電圧に基づいて車両の異常を検出するようになっている。   Specifically, for example, as shown in Patent Document 1, there is a configuration in which an overcurrent is detected by winding a temperature detection wire having an NTC thermistor around a main power supply line. This is because when the overcurrent flows and the temperature of the main power supply line rises, the temperature of the NTC thermistor rises, the resistance value of the NTC thermistor changes, and the voltage at both ends of the NTC thermistor changes. A vehicle abnormality is detected.

特開平11−64423号公報Japanese Patent Laid-Open No. 11-64423

ところで、過電流を検出するための(温度検知電線以外の)構成は車両においてはECU等の回路に実装されるものであるが、特許文献1のように、温度検知電線を主電源線に直接巻きつけて過電流を検出する場合には、温度検知電線とは離れた位置にあるECU等の回路まで温度検知電線を延出しなければならず、構成が複雑になるという問題がある。
そこで、構成を簡素化するために、電線ではなく、ECU等の回路にNTCサーミスタを実装し、回路の導電路の熱により変化するNTCサーミスタの抵抗値(及び電圧)に基づいて過電流を検出することが考えられる。
しかしながら、このようにNTCサーミスタを回路に実装して過電流を検出しようとする場合には、回路が電線とは離れた位置にあるために、NTCサーミスタが電線とは異なる周囲温度による影響を受けてしまい精度の高い過電流検出や過電流遮断を行えないおそれがある。特に、ECU等に実装された回路にあっては、回路の他の素子等から発生する熱により、周囲温度の影響が生じやすいため問題となる。
By the way, the configuration for detecting the overcurrent (other than the temperature detection wire) is mounted on a circuit such as an ECU in the vehicle. However, as in Patent Document 1, the temperature detection wire is directly connected to the main power supply line. When an overcurrent is detected by winding, there is a problem that the temperature detection wire must be extended to a circuit such as an ECU located at a position away from the temperature detection wire, and the configuration becomes complicated.
Therefore, in order to simplify the configuration, an NTC thermistor is mounted on a circuit such as an ECU instead of an electric wire, and overcurrent is detected based on the resistance value (and voltage) of the NTC thermistor that changes due to the heat of the circuit's conductive path. It is possible to do.
However, when an NTC thermistor is mounted on a circuit in this way to detect overcurrent, the NTC thermistor is affected by an ambient temperature different from that of the electric wire because the circuit is located away from the electric wire. Therefore, there is a possibility that overcurrent detection and overcurrent interruption with high accuracy cannot be performed. In particular, a circuit mounted on an ECU or the like is problematic because heat generated from other elements of the circuit is easily affected by the ambient temperature.

そこで、NTCサーミスタとは別に、外部の熱の影響を補正するための温度補正用感熱素子を設け、外部の温度に応じて過電流遮断すべき電圧値(電流値)を変化させることにより、精度の高い過電流遮断を行うことが考えられる。しかしながら、回路導体及びNTCサーミスタ等と温度補正用感熱素子とを個別に回路基板に実装する場合には、その構成単位の小ささゆえに、回路基板上で安定せず、ふらつきや倒れが生じることが懸念される。特に、回路基板からNTC素子等に伝わる熱による影響を避けるために、接続部の寸法を長くした場合には、更に安定性が損なわれるおそれがある。   Therefore, in addition to the NTC thermistor, a temperature-correcting thermosensitive element for correcting the influence of external heat is provided, and the voltage value (current value) that should be cut off is changed according to the external temperature. It is conceivable to perform a high overcurrent interruption. However, when the circuit conductor, NTC thermistor, etc. and the temperature-correcting thermosensitive element are individually mounted on the circuit board, they are not stable on the circuit board due to the small size of the structural unit, and may be staggered or fallen. Concerned. In particular, in order to avoid the influence of heat transmitted from the circuit board to the NTC element or the like, when the dimension of the connection portion is increased, the stability may be further impaired.

本発明は上記のような事情に基づいて完成されたものであって、回路基板上において安定した姿勢を保つことが可能な過電流検出用複合素子及び過電流検出用複合素子を備えた過電流遮断装置を提供することを目的とする。   The present invention has been completed based on the above situation, and is an overcurrent detection composite element capable of maintaining a stable posture on a circuit board and an overcurrent provided with an overcurrent detection composite element. An object is to provide a shut-off device.

本発明に係る過電流検出用複合素子は、車両の電源から負荷に至る負荷回路の過電流を遮断する過電流遮断装置に用いられる過電流検出用複合素子であって、接続部を備えた一対のリード部を有して前記負荷回路に直列に配される抵抗発熱部と、接続部を備えた一対のリード部を有し前記抵抗発熱部に対して熱伝達可能に設けられて温度に応じて電気的特性を変化させる電流検知用感熱素子と、少なくとも前記各リード部の前記接続部を残して前記抵抗発熱部及び前記電流検知用感熱素子を一体に覆う樹脂成形部と、接続部を備えたリード部を有し雰囲気温度に応じて電気的特性を変化させる温度補正用感熱素子と、前記温度補正用感熱素子を前記抵抗発熱部又は前記電流検知用感熱素子と一体的な連結状態とする樹脂連結枠部と、を備え、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子における前記各リード部の前記回路基板側への延出寸法は、共に、前記回路基板から生じる熱による影響を回避できる所定寸法以上に設定されているところに特徴を有する(手段1)。 An overcurrent detection composite element according to the present invention is an overcurrent detection composite element used in an overcurrent interrupting device for interrupting an overcurrent of a load circuit from a power supply of a vehicle to a load, and includes a pair of connection parts. A resistance heating part arranged in series with the load circuit and a pair of lead parts provided with a connection part, and provided to be able to transfer heat to the resistance heating part, depending on the temperature A current detecting thermosensitive element that changes electrical characteristics, a resin molding part that integrally covers the resistance heating part and the current detecting thermosensitive element, leaving at least the connecting part of each lead part, and a connecting part. and a temperature correcting sensitive element for changing the electrical characteristics depending on the ambient temperature has a lead portion, the temperature correcting sensitive element before Symbol resistance heating unit or the current sensing heat sensitive element integral with coupling state comprising a resin coupling frame to the, In each of the resistance heating part, the current detection thermal element, and the temperature correction thermal element, the extension dimension of each lead part to the circuit board side is not less than a predetermined dimension that can avoid the influence of heat generated from the circuit board. characterized in place that is set to (unit 1).

抵抗発熱部及び電流検知用感熱素子と温度補正用感熱素子とを個別に回路基板に実装する場合には、回路基板上で安定せず、ふらつきや倒れが生じることが懸念される。特に、回路基板から電流検知用感熱素子や温度補正用感熱素子に伝わる熱による影響を避けるために、リード部の寸法を長くした場合には、更に安定性が損なわれやすくなる。
一方、手段1の構成によれば、温度補正用感熱素子を少なくともリード部の接続部を残して抵抗発熱部又は電流検知用感熱素子と一体的な連結状態とする樹脂連結枠部を備えるため、各構成部分がユニット化され、より回路基板上において安定した姿勢を保つことが可能になる。
また、抵抗発熱部及び電流検知用感熱素子が樹脂成形部で覆われているため、樹脂成形部がない場合と比較して、電流検知用感熱素子にて取得される温度−時間特性の熱時定数を、電線に許容される温度−時間特性の熱時定数に近づけることが可能になる。よって、電流変化が過渡的な状況において、電線の許容温度にまだ余裕があるにも関わらず、電流遮断用の素子が動作して電流を遮断することを防止することが可能になるため、精度の高い過電流遮断を行うことができる。
When the resistance heating section, the current detection thermal element, and the temperature correction thermal element are individually mounted on the circuit board, there is a concern that the resistance heating part, the temperature correction thermal element, and the temperature correction thermal element are not stable on the circuit board and may be staggered or fallen. In particular, in order to avoid the influence of heat transmitted from the circuit board to the current detection thermal element or the temperature correction thermal element, the stability is more likely to be lost when the size of the lead portion is increased.
On the other hand, according to the configuration of the means 1, since the temperature correction thermosensitive element is provided with a resin connection frame portion that is integrally connected to the resistance heating portion or the current detection thermosensitive element leaving at least the connection portion of the lead portion, Each component is unitized, and a more stable posture can be maintained on the circuit board.
In addition, since the resistance heating part and the current detection thermal element are covered with the resin molding part, compared with the case where there is no resin molding part, the temperature-time characteristic obtained by the current detection thermal element is hot. The constant can be made close to the thermal time constant of the temperature-time characteristic allowed for the electric wire. Therefore, in a situation where the current change is transient, it is possible to prevent the current interrupting element from operating and interrupting the current even though there is still a margin in the allowable temperature of the wire. High overcurrent interruption can be performed.

手段1の構成に加えて、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子の前記各リード部は、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子のそれぞれの両側から回路基板に沿う方向に突出すると共に前記回路基板側に屈曲されているようにしてもよい(手段2)。
手段2の構成のようにすれば、各リード部の前記回路基板側への延出寸法は、共に、前記回路基板から生じる熱による影響を回避できる所定寸法以上に設定されているため、回路基板の熱が電流検知用感熱素子や温度補正用感熱素子に伝わることにより生じる過電流遮断精度の低下を低減させることができる。
In addition to the configuration of the means 1, each of the lead portions of the resistance heating section, the current detection thermal element, and the temperature correction thermal element is formed of the resistance heating section, the current detection thermal element, and the temperature correction thermal element. from each of two sides with projecting in a direction along the circuit board may be in Tei so that is bent to the circuit board side (unit 2).
According to the configuration of the means 2, the extension dimension of each lead portion to the circuit board side is set to be equal to or larger than a predetermined dimension that can avoid the influence of heat generated from the circuit board. The reduction in overcurrent interruption accuracy caused by the heat transferred to the current detecting thermal element and the temperature correcting thermal element can be reduced.

手段2の構成に加えて、前記樹脂連結枠部は、隣り合う前記各リード部の間を連結しているようにしてもよい(手段3)。
手段3の構成によれば、例えば、樹脂成形部間を連結する場合には、抵抗発熱部から生じた熱が他の抵抗発熱部及び電流検知用感熱素子や温度補正用感熱素子に伝達され、過電流遮断すべき温度に誤差が生じるおそれが懸念されるが、本構成によれば、樹脂連結枠部は、隣り合う各リード部の間を連結しているため、比較的抵抗発熱部から離れた位置にあるリード部間が連結され、伝達される熱による影響を低減させることができる。
In addition to the configuration of the means 2, the resin connection frame portion may connect the adjacent lead portions (means 3).
According to the configuration of the means 3, for example, when the resin molding parts are connected, the heat generated from the resistance heating part is transmitted to the other resistance heating part, the current detecting thermal element and the temperature correcting thermal element, Although there is a concern that an error may occur in the temperature at which the overcurrent should be cut off, according to this configuration, the resin connecting frame portion is connected between the adjacent lead portions, so that it is relatively far from the resistance heating portion. The lead portions located at different positions are connected to each other, and the influence of the transmitted heat can be reduced.

手段1ないし手段3のいずれかの構成に加えて、前記温度補正用感熱素子は、前記抵抗発熱部を備えて構成されているようにしてもよい(手段4)。
手段4の構成によれば、温度補正用感熱素子を雰囲気温度を受けるためではなく、電流検知用感熱素子と同様に過電流の検出のために用いることが可能になる。これにより過電流検出用複合素子を用いて雰囲気温度による熱を受けて補正を行う場合と、過電流検出用複合素子を用いて雰囲気温度による補正を行わず複数の回路の過電流の検出を行う場合とで部品の共通化を図ることができる。
In addition to the configuration of any one of the means 1 to 3, the temperature-correcting thermosensitive element may be configured to include the resistance heating portion (means 4).
According to the configuration of the means 4, the temperature-correcting thermosensitive element can be used not for receiving the ambient temperature but for detecting the overcurrent in the same manner as the current detecting thermosensitive element. As a result, correction is performed by receiving heat due to the ambient temperature using the overcurrent detection composite element, and overcurrent detection is performed for a plurality of circuits without correction based on the ambient temperature using the overcurrent detection composite element. In some cases, parts can be shared.

本発明に係る過電流遮断装置は、車両の電源から負荷に至る負荷回路の過電流を遮断し、過電流検出用複合素子を備える過電流遮断装置であって、前記過電流検出用複合素子は、接続部を備えた一対のリード部を有して前記負荷回路に直列に配される抵抗発熱部と、接続部を備えた一対のリード部を有し前記抵抗発熱部に対して熱伝達可能に設けられて温度に応じて電気的特性を変化させる電流検知用感熱素子と、少なくとも前記各リード部の前記接続部を残して前記抵抗発熱部及び前記電流検知用感熱素子を一体に覆う樹脂成形部と、接続部を備えたリード部を有し雰囲気温度に応じて電気的特性を変化させる温度補正用感熱素子と、前記温度補正用感熱素子を前記抵抗発熱部又は前記電流検知用感熱素子と一体的な連結状態とする樹脂連結枠部と、を備え、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子における前記各リード部の前記回路基板側への延出寸法は、共に、前記回路基板から生じる熱による影響を回避できる所定寸法以上に設定されているところに特徴を有する(手段5)。 An overcurrent interrupt device according to the present invention is an overcurrent interrupt device that interrupts an overcurrent of a load circuit from a power source of a vehicle to a load and includes an overcurrent detection composite element, wherein the overcurrent detection composite element includes: A resistance heating part having a pair of lead parts provided with a connecting part and arranged in series with the load circuit; and a pair of lead parts having a connection part capable of transferring heat to the resistance heating part. And a resin-molding that integrally covers the resistance heating portion and the current-sensing thermosensitive element, leaving at least the connecting portions of the respective lead portions, and changing the electrical characteristics according to temperature. parts and a temperature correcting sensitive element for changing the electrical characteristics depending on the ambient temperature has a lead portion having a connecting portion, the temperature correcting thermal element pre Symbol resistance heating unit or the current detection sensitive element Resin ream that is connected to the unit Includes a frame portion, extending dimension of the resistance heating portion, said at current detecting thermal element and the temperature compensating heat sensitive element to the circuit board side of the lead portion are both due to heat generated from the circuit board It is characterized in that it is set to a predetermined dimension or more that can avoid the influence (means 5).

抵抗発熱部及び電流検知用感熱素子と温度補正用感熱素子とを個別に回路基板に実装する場合には、回路基板上で安定せず、ふらつきや倒れが生じることが懸念される。特に、回路基板から電流検知用感熱素子や温度補正用感熱素子に伝わる熱による影響を避けるために、接続部の寸法を長くした場合には、更に安定性が損なわれやすくなる。
一方、手段5の構成によれば、温度補正用感熱素子を少なくともリード部の前記接続部を残して抵抗発熱部又は電流検知用感熱素子と一体的な連結状態とする樹脂連結枠部を備えるため、各構成部分がユニット化され、より回路基板上において安定した姿勢を保つことが可能になる。
また、抵抗発熱部及び電流検知用感熱素子が樹脂成形部で覆われているため、樹脂成形部がない場合と比較して、電流検知用感熱素子にて取得される温度−時間特性の熱時定数を、電線に許容される温度−時間特性の熱時定数に近づけることが可能になる。よって、電流変化が過渡的な状況において、電線の許容温度にまだ余裕があるにも関わらず、電流遮断用の素子が動作して電流を遮断することを防止することが可能になるため、精度の高い過電流遮断を行うことができる。
When the resistance heating section, the current detection thermal element, and the temperature correction thermal element are individually mounted on the circuit board, there is a concern that the resistance heating part, the temperature correction thermal element, and the temperature correction thermal element are not stable on the circuit board and may be staggered or fallen. In particular, in order to avoid the influence of heat transmitted from the circuit board to the current detecting thermal element or the temperature correcting thermal element, the stability is more easily lost when the dimension of the connection portion is increased.
On the other hand, according to the configuration of the means 5, the temperature correcting thermosensitive element is provided with a resin connecting frame portion that is integrally connected to the resistance heating portion or the current detecting thermosensitive element, leaving at least the connecting portion of the lead portion. Each component is unitized, and a more stable posture can be maintained on the circuit board.
In addition, since the resistance heating part and the current detection thermal element are covered with the resin molding part, compared with the case where there is no resin molding part, the temperature-time characteristic obtained by the current detection thermal element is hot. The constant can be made close to the thermal time constant of the temperature-time characteristic allowed for the electric wire. Therefore, in a situation where the current change is transient, it is possible to prevent the current interrupting element from operating and interrupting the current even though there is still a margin in the allowable temperature of the wire. High overcurrent interruption can be performed.

手段5の構成に加えて、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子の前記各リード部は、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子の両側から回路基板に沿う方向に突出すると共に前記回路基板側に屈曲されているようにしてもよい(手段6)。
手段6の構成のようにすれば、各リード部の前記回路基板側への延出寸法は、共に、回路基板から生じる熱による影響を回避できる所定寸法以上に設定されているため、回路基板の熱が電流検知用感熱素子や温度補正用感熱素子に伝わることにより生じる過電流遮断精度の低下を低減させることができる。
In addition to the configuration of the means 5, each of the lead portions of the resistance heating section, the current detection thermal element, and the temperature correction thermal element includes the resistance heating section, the current detection thermal element, and the temperature correction thermal element. mAY to Tei so that is bent to the circuit board side with projecting from both sides in the direction along the circuit board (unit 6).
According to the configuration of the means 6, since the extension dimension of each lead portion to the circuit board side is set to a predetermined dimension or more that can avoid the influence of heat generated from the circuit board, It is possible to reduce a decrease in overcurrent interruption accuracy caused by heat being transmitted to the current detecting thermal element or the temperature correcting thermal element.

手段6の構成に加えて、前記樹脂連結枠部は、隣り合う前記各リード部の間を連結しているようにしてもよい(手段7)。
例えば、樹脂成形部間を連結する場合には、抵抗発熱部から生じた熱が他の抵抗発熱部及び電流検知用感熱素子や温度補正用感熱素子に伝達され、過電流遮断すべき温度に誤差が生じるおそれが懸念されるが、手段7の構成によれば、樹脂連結枠部は、隣り合う各リード部の間を連結しているため、比較的抵抗発熱部から離れた位置にあるリード部間が連結され、伝達される熱による影響を低減させることができる。
In addition to the configuration of the means 6, the resin connection frame portion may connect between the adjacent lead portions (means 7).
For example, when connecting the resin molding parts, the heat generated from the resistance heating part is transferred to the other resistance heating parts, the current detection thermal element and the temperature correction thermal element, and an error occurs in the temperature at which the overcurrent should be cut off. However, according to the configuration of the means 7, since the resin connecting frame portion connects between the adjacent lead portions, the lead portion located relatively far from the resistance heating portion. It is possible to reduce the influence due to the heat transferred.

手段5ないし手段7のいずれかの構成に加えて、前記温度補正用感熱素子は、前記抵抗発熱部を備えて構成されているようにしてもよい(手段8)。
手段8の構成によれば、温度補正用感熱素子を雰囲気温度を受けるためではなく、電流検知用感熱素子と同様に過電流の検出のために用いることが可能になる。これにより過電流検出用複合素子を用いて雰囲気温度による熱を受けて補正を行う場合と、過電流検出用複合素子を用いて雰囲気温度による補正を行わず複数の回路の過電流の検出を行う場合とで部品の共通化を図ることができる。
In addition to the configuration of any one of the means 5 to 7, the temperature-correcting thermosensitive element may be configured to include the resistance heating portion (means 8).
According to the configuration of the means 8, the temperature-correcting thermosensitive element can be used not for receiving the ambient temperature but for detecting the overcurrent in the same manner as the current detecting thermosensitive element. As a result, correction is performed by receiving heat due to the ambient temperature using the overcurrent detection composite element, and overcurrent detection is performed for a plurality of circuits without correction based on the ambient temperature using the overcurrent detection composite element. In some cases, parts can be shared.

本発明によれば、回路基板上において安定した姿勢を保つことが可能な過電流検出用複合素子及び過電流検出用複合素子を備えた過電流遮断装置を提供することができる。   According to the present invention, it is possible to provide an overcurrent detection composite element capable of maintaining a stable posture on a circuit board and an overcurrent interruption device including the overcurrent detection composite element.

実施形態1に係る過電流検出用複合素子を表す斜視図The perspective view showing the overcurrent detection composite element which concerns on Embodiment 1. FIG. 過電流検出用複合素子を表す平面図Plan view showing composite element for overcurrent detection 過電流検出用複合素子を表す側面図Side view showing composite element for overcurrent detection 過電流検出用複合素子が回路基板に実装された状態を表す図The figure showing the state where the composite element for overcurrent detection is mounted on the circuit board 過電流検出部を表す平面図Plan view showing the overcurrent detector 抵抗発熱部の構成を説明するための図The figure for demonstrating the structure of a resistance heating part 過電流検出部を表す側断面図Side sectional view showing the overcurrent detector 過電流遮断装置の電気的構成を表す図Diagram showing the electrical configuration of the overcurrent interrupt device ヒューズ,電線,感熱部の温度−時間特性を表す図Diagram showing temperature-time characteristics of fuse, electric wire, and heat sensitive part 樹脂体積−熱時定数特性を表す図Diagram showing resin volume-thermal time constant characteristics

<実施形態>
以下、本発明に係る過電流遮断装置10の実施形態を図1〜図10を参照して説明する。
過電流遮断装置10は、例えば電気自動車やハイブリッド自動車等の車両において、図8に示すように、走行用の動力源を構成するバッテリB(本発明の構成である「電源」の一例)から電線を介してモータやヒータ等の負荷A〜Dに至る経路に配され、過電流が生じた場合に各負荷A〜Dに至る経路の電流を遮断するものである。
<Embodiment>
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of an overcurrent interrupt device 10 according to the present invention will be described with reference to FIGS.
As shown in FIG. 8, for example, in an electric vehicle or a hybrid vehicle, the overcurrent interrupting device 10 is connected to a battery B (an example of a “power source” that is a configuration of the present invention) constituting a power source for traveling. Is arranged in a route to loads A to D such as a motor and a heater, and when an overcurrent occurs, the current in the route to each load A to D is cut off.

過電流遮断装置10は、バッテリBから各負荷A〜Dに至る導電路のそれぞれに直列に接続され電流量に応じて発熱する抵抗発熱部22と、温度に応じて抵抗値が変化する(温度によって電気的特性が変化する)電流検知用感熱素子25及び温度補正用感熱素子42と、導電路をオンオフするスイッチング素子12と、スイッチング素子12のオンオフを制御する制御回路13と、雰囲気温度に応じて制御回路13に補正信号を出力する補正回路16とを有する。   The overcurrent interrupt device 10 is connected in series to each of the conductive paths from the battery B to each of the loads A to D, and the resistance heating unit 22 generates heat according to the amount of current, and the resistance value changes according to temperature (temperature) Depending on the ambient temperature), the current detecting thermal element 25 and the temperature correcting thermal element 42, the switching element 12 for turning on / off the conductive path, the control circuit 13 for controlling on / off of the switching element 12, and the ambient temperature. And a correction circuit 16 for outputting a correction signal to the control circuit 13.

電流検知用感熱素子25は、周知のNTCサーミスタであって、抵抗発熱部22に生じた熱が伝達し易いように抵抗発熱部22の近傍に配されており、電流検知用感熱素子25の出力側は、抵抗Rを介して接地されている。
これにより、抵抗発熱部22からの熱を電流検知用感熱素子25が受けると、電流検知用感熱素子25の抵抗値が変化し、電流検知用感熱素子25と抵抗Rとの間の電圧が定まるため、この電圧に基づいて抵抗発熱部22を流れる電流を検知するようになっている。
The current detection thermal element 25 is a well-known NTC thermistor, and is disposed in the vicinity of the resistance heating part 22 so that heat generated in the resistance heating part 22 can be easily transmitted. The side is grounded via a resistor R.
Thus, when the current detection thermal element 25 receives heat from the resistance heating part 22, the resistance value of the current detection thermal element 25 changes, and the voltage between the current detection thermal element 25 and the resistor R is determined. Therefore, the current flowing through the resistance heating part 22 is detected based on this voltage.

スイッチング素子12は、回路基板11に実装される半導体素子であって、本実施形態では、N型のMOSFETが用いられている。この場合、負荷A〜Dに電力を供給する導電路にソース−ドレイン間を接続し、制御回路13からゲートに信号を与えることにより、モータへの電力の供給を遮断することができる。
制御回路13は、過電流時にスイッチング素子12をオフするための閾値を生成する閾値生成回路14と、電流検知用感熱素子25の出力側の電圧値を閾値と比較する比較回路15とを備える。
The switching element 12 is a semiconductor element mounted on the circuit board 11, and an N-type MOSFET is used in this embodiment. In this case, the supply of power to the motor can be cut off by connecting the source and drain to a conductive path that supplies power to the loads A to D and supplying a signal from the control circuit 13 to the gate.
The control circuit 13 includes a threshold value generation circuit 14 that generates a threshold value for turning off the switching element 12 in the event of an overcurrent, and a comparison circuit 15 that compares the voltage value on the output side of the current detection thermal element 25 with the threshold value.

閾値生成回路14は、過電流であるかどうかを判別するための閾値を比較回路15に与えるものであって、予め所定の温度である場合に過電流を遮断すべき基準閾値が設定されており、補正回路16から雰囲気温度に応じた補正信号を受けると、基準閾値を補正した閾値を生成する。具体的には、例えば、図示はしないが、バッテリBに連なる温度補正用感熱素子42に直列に抵抗を接続して接地する。温度補正用感熱素子42と抵抗の間の電圧を比較回路15に入力させる閾値とすればよい。
比較回路15は、電流検知用感熱素子25の出力側の電圧が閾値生成回路14にて生成された閾値を超えている場合には、ゲートへの入力電圧をロウレベルにしてスイッチング素子12をオフ状態とし、電流検知用感熱素子25からの出力電圧が閾値以下である場合には、ゲートへの入力電圧をハイレベルにしてスイッチング素子12をオン状態とする。
補正回路16は、温度補正用感熱素子42の出力側から雰囲気温度に応じた電圧を受けると、雰囲気温度に応じた補正信号を閾値生成回路14に出力する。
The threshold generation circuit 14 gives a threshold for determining whether or not there is an overcurrent to the comparison circuit 15, and a reference threshold for cutting off the overcurrent when the temperature is a predetermined temperature is set in advance. When a correction signal corresponding to the ambient temperature is received from the correction circuit 16, a threshold value obtained by correcting the reference threshold value is generated. Specifically, for example, although not shown, a resistor is connected in series to the temperature correcting thermal element 42 connected to the battery B and grounded. What is necessary is just to set it as the threshold value which inputs the voltage between the thermosensitive element 42 for temperature correction, and resistance to the comparison circuit 15.
When the voltage on the output side of the current detection thermal element 25 exceeds the threshold value generated by the threshold value generation circuit 14, the comparison circuit 15 sets the input voltage to the gate to a low level and turns off the switching element 12. When the output voltage from the current detection thermal element 25 is equal to or lower than the threshold value, the input voltage to the gate is set to the high level to turn on the switching element 12.
When the correction circuit 16 receives a voltage corresponding to the ambient temperature from the output side of the temperature correction thermal element 42, the correction circuit 16 outputs a correction signal corresponding to the ambient temperature to the threshold value generation circuit 14.

ここで、本実施形態では、抵抗発熱部22(41)及び感熱素子25(42)は、図1に示すように、ユニット化された過電流検出用複合素子20となっている。   Here, in the present embodiment, the resistance heating section 22 (41) and the thermal element 25 (42) are unitized overcurrent detection composite elements 20 as shown in FIG.

過電流検出用複合素子20は、図1に示すように、導電路の電流を検出するための4個(複数)の電流検出部21と、これら電流検出部21が検出した値を雰囲気温度に応じて補正するための単数(1個)の温度補正部40と、4個(複数)の電流検出部21と温度補正部40とを一体的な連結状態とする樹脂連結枠部45とを有する。   As shown in FIG. 1, the overcurrent detection composite element 20 includes four (plural) current detection units 21 for detecting the current of the conductive path, and the values detected by these current detection units 21 are set to the ambient temperature. A single (one) temperature correction unit 40 for correcting according to this, and a resin connection frame portion 45 that integrally connects the four (plural) current detection units 21 and the temperature correction unit 40 to each other. .

電流検出部21は、図7に示すように、導電路に直列に接続される抵抗発熱部22と、抵抗発熱部22の近傍に配されて抵抗発熱部22の温度を感知(検知)する電流検知用感熱素子25と、抵抗発熱部22及び電流検知用感熱素子25を導電路に電気的に接続する端子であるリード部28と、抵抗発熱部22及び電流検知用感熱素子25を一体的に覆う樹脂成形部35(樹脂モールド)とを有し、図5に示すように、直方体状の樹脂成形部35から4本のリード部28が外部に露出する形状をなしている。   As shown in FIG. 7, the current detection unit 21 includes a resistance heating unit 22 connected in series to the conductive path, and a current that is disposed near the resistance heating unit 22 and senses (detects) the temperature of the resistance heating unit 22. The detection heat-sensitive element 25, the resistance heating part 22 and the lead part 28 which is a terminal for electrically connecting the current detection heat-sensitive element 25 to the conductive path, the resistance heat generation part 22 and the current detection heat-sensitive element 25 are integrated. As shown in FIG. 5, the four lead portions 28 are exposed to the outside from the rectangular parallelepiped resin molding portion 35.

リード部28は、抵抗発熱部22の両端に連なる一対の発熱側リード部28Aと、発熱側リード部28Aよりも細径であって一方が電流検知用感熱素子25の端部に連なる一対の感熱側リード部28Bとからなり、これら発熱側リード部28Aと感熱側リード部28Bとが平行に配置されている。
これらリード部28は、共に、図4に示すように、その側面がクランク状に屈曲されている。具体的には、樹脂成形部35から外方側に向けて水平(回路基板11の面に沿う方向)に突出するとともに、下方(回路基板11側)にL字状に屈曲され、その先端部に外方側にL字状に屈曲された接続部33が設けられている。この接続部33がハンダHにより回路基板11の表面の導電路に半田付け等で接続される。
The lead portion 28 has a pair of heat generating side lead portions 28A connected to both ends of the resistance heat generating portion 22 and a pair of heat sensitive portions having a diameter smaller than that of the heat generating side lead portion 28A and one connected to the end portion of the current detecting thermal element 25. The heat generating side lead portion 28A and the heat sensitive side lead portion 28B are arranged in parallel.
As shown in FIG. 4, the side surfaces of these lead portions 28 are bent in a crank shape. Specifically, it protrudes horizontally (in the direction along the surface of the circuit board 11) from the resin molding part 35 toward the outer side, and is bent downward (to the circuit board 11 side) in an L shape, and its tip part. A connecting portion 33 bent in an L shape is provided on the outer side. The connecting portion 33 is connected to the conductive path on the surface of the circuit board 11 by soldering or the like by solder H.

ここで、各リード部28の下方(回路基板側)への延出寸法(図4のLAの長さ)は、共に回路基板11から生じる熱による影響を回避できる所定寸法以上に設定されている。この所定寸法は、導電路の電流値(発熱量)や、回路基板の放熱性等を考慮して適切な寸法が設定される。   Here, the extension dimension (the length of LA in FIG. 4) below each lead portion 28 (the circuit board side) is set to a predetermined dimension or more that can avoid the influence of heat generated from the circuit board 11. . The predetermined dimension is set to an appropriate dimension in consideration of the current value (heat generation amount) of the conductive path, the heat dissipation of the circuit board, and the like.

抵抗発熱部22は、バッテリBからモータに電力を供給する経路に直列に接続されることで電流量に応じて発熱するものであり、図6に示すように、この抵抗発熱部22の両側に連なるように発熱側リード部28Aが一体形成されている。
この抵抗発熱部22は、発熱側リード部28Aに連なって発熱側リード部28Aを内側に延出した延出部23と、延出部23の間を迂回して接続する迂回部24とを有する。
延出部23は、その幅寸法(図6の上下方向の寸法)が発熱側リード部28Aの幅寸法に対して段差状に縮径(細径)されている。
The resistance heating unit 22 generates heat according to the amount of current by being connected in series to a path for supplying power from the battery B to the motor, and as shown in FIG. The heating side lead portion 28A is integrally formed so as to be continuous.
The resistance heating part 22 includes an extension part 23 that is connected to the heat generation side lead part 28A and extends the heat generation side lead part 28A inward, and a bypass part 24 that bypasses and connects between the extension parts 23. .
The extending portion 23 has a width dimension (vertical dimension in FIG. 6) that is reduced (thinned) in a step shape with respect to the width dimension of the heat generation side lead portion 28A.

迂回部24は、その幅寸法(断面積)が延出部23と同一であって、延出部23と同一平面上を電流検知用感熱素子25側に迂回しており、同一幅寸法(断面積)で両延出部23間を接続する主導電路24Aと、主導電路24Aから電流検知用感熱素子25側に延出されて電流検知用感熱素子25の一方の電極部26が載置される副導電路24Bとからなる。   The bypass portion 24 has the same width dimension (cross-sectional area) as the extension portion 23, and bypasses the same plane as the extension portion 23 toward the current detection thermal element 25 side. The main conductive path 24A connecting the extending portions 23 in terms of area), and one electrode portion 26 of the current detecting thermal element 25 is placed from the main conductive path 24A to the current detecting thermal element 25 side. It consists of a sub-conductive path 24B.

主導電路24Aは、一方(左方)の延出部23から電流検知用感熱素子25側(図6の上方側)に直角に屈曲し、そこから右方(下流側)のリード部28側に直角に屈曲している。そして、副導電路24Bの右方(下流側)で、後方側(副導電路24Bとは反対側)に向けてクランク状をなしており、その終端が延出部23に連なるように接続されている。
副導電路24Bは、長方形状をなし、その先端は、電流検知用感熱素子25のほぼ全幅(図6の上下方向)を横切る位置まで延出されている。
The main conductive path 24A is bent at a right angle from one (left) extension 23 to the current sensing thermal element 25 side (upper side in FIG. 6), and from there to the right (downstream) lead 28 side. It is bent at a right angle. And it forms a crank shape on the right side (downstream side) of the sub-conductive path 24B toward the rear side (opposite side of the sub-conductive path 24B), and its end is connected to the extended portion 23. ing.
The sub-conductive path 24B has a rectangular shape, and its tip extends to a position that crosses substantially the entire width (vertical direction in FIG. 6) of the current detecting thermal element 25.

このように、抵抗発熱部22の幅寸法(断面積)を発熱側リード部28Aよりも小さくすることにより、抵抗発熱部22の抵抗値を大きくして、発熱しやすいようになっており、抵抗発熱部22を介してモータに電流が供給されると、抵抗発熱部22の抵抗R=抵抗率ρ(長さl/断面積S) に応じて発熱する。したがって、抵抗発熱部22の断面積を定める要素である幅寸法(径)を変えることにより、抵抗発熱部22の抵抗値、即ち、発熱量を任意の値に設定できる。   Thus, by making the width dimension (cross-sectional area) of the resistance heating portion 22 smaller than that of the heating side lead portion 28A, the resistance value of the resistance heating portion 22 is increased, so that heat is easily generated. When a current is supplied to the motor through the heat generating part 22, heat is generated according to the resistance R = resistivity ρ (length 1 / cross-sectional area S) of the resistance heat generating part 22. Therefore, by changing the width dimension (diameter) which is an element that determines the cross-sectional area of the resistance heating portion 22, the resistance value of the resistance heating portion 22, that is, the heat generation amount can be set to an arbitrary value.

樹脂成形部35は、直方体状であって、内部に抵抗発熱部22及び電流検知用感熱素子25の全体を隙間なく覆うように充填された合成樹脂からなり、少なくとも各リード部28の接続部33を残して抵抗発熱部22及び電流検知用感熱素子25を一体に覆っている。
この合成樹脂としては、熱硬化性樹脂(エポキシ樹脂等)や、熱可塑性樹脂(ポリエチレン (PE) ,ポリプロピレン (PP))等の種々の公知の材料を用いることができるが、本実施形態では、樹脂成形部35は、エポキシ樹脂が用いられている。
The resin molding part 35 is a rectangular parallelepiped shape, and is made of a synthetic resin filled so as to cover the entire resistance heating part 22 and the current detection thermal element 25 without a gap, and at least the connection part 33 of each lead part 28. And the resistance heating portion 22 and the current detecting thermal element 25 are integrally covered.
As this synthetic resin, various known materials such as a thermosetting resin (epoxy resin, etc.) and a thermoplastic resin (polyethylene (PE), polypropylene (PP)) can be used. In this embodiment, Epoxy resin is used for the resin molding part 35.

この電流検知用感熱素子25は、幅方向に長い直方体状のNTCサーミスタであって、図7に示すように、積層サーミスタ素地25Aの幅方向の両端部にPb等のメッキで覆われてなる電極部26,26を有している。電極部26,26のうち、一方の電極部26は、抵抗発熱部22の副導電路24Bの上に載置される(当接している)とともに、他方の電極部26が右側(下流側)の感熱側リード部28Bの上に載置されている。
電極部26と抵抗発熱部22(の副導電路24B)及びリード部28との接続は、導電性材料(ハンダ等)を高温で溶かしペースト状にして接続部分に塗布して固化させる(抵抗発熱部22及び電極部26よりも融点の低い合金を溶かして接着剤とする、ろう付けを行う)ことにより、金属結合させている。
This current detecting thermal element 25 is a rectangular parallelepiped NTC thermistor that is long in the width direction, and as shown in FIG. 7, electrodes that are covered with plating such as Pb at both ends in the width direction of the laminated thermistor substrate 25A. Parts 26 and 26. Of the electrode portions 26, 26, one electrode portion 26 is placed (contacted) on the sub-conductive path 24 </ b> B of the resistance heating portion 22, and the other electrode portion 26 is on the right side (downstream side). Is mounted on the heat-sensitive side lead portion 28B.
The electrode part 26 is connected to the resistance heating part 22 (sub-conductive path 24B) and the lead part 28 by melting a conductive material (solder or the like) at a high temperature, applying it in a paste form and solidifying it by applying it to the connection part (resistance heating). The metal bonding is performed by melting an alloy having a melting point lower than that of the portion 22 and the electrode portion 26 to form an adhesive.

このように構成することで、電源から供給された電流は、左側(上流側)の発熱側リード部28Aから抵抗発熱部22を通って右側(下流側)の発熱側リード部28Aに流れるとともに、電流の一部は、抵抗発熱部22から副導電路24B及び電流検知用感熱素子25を通って右側(下流側)の感熱側リード部28Bに至るため、この電流や電圧降下を利用して温度検知が可能となっている。そのため、過電流検出用複合素子20の左側(上流側)の感熱側リード部28Bは、電気的に接続されていない構成になっている。なお、これとは異なる構成として、左側(上流側)の感熱側リード部28Bを回路基板11の導電路に接続し、感熱側リード部28Bを介して電流検知用感熱素子25の電流が与えられるようにしてもよい。   With this configuration, the current supplied from the power source flows from the left side (upstream side) heating side lead part 28A through the resistance heating part 22 to the right side (downstream side) heating side lead part 28A, A part of the current passes from the resistance heating part 22 through the sub-conductive path 24B and the current sensing thermal element 25 to the right side (downstream side) thermal side lead part 28B. Detection is possible. Therefore, the left side (upstream side) heat-sensitive side lead portion 28B of the overcurrent detection composite element 20 is not electrically connected. As a different configuration, the left (upstream) heat-sensitive side lead portion 28B is connected to the conductive path of the circuit board 11, and the current of the current detecting heat-sensitive element 25 is supplied through the heat-sensitive side lead portion 28B. You may do it.

樹脂成形部35の形状は、幅方向の寸法(図7の左右方向)が最も長く、それよりも奥行方向の寸法(図2の左右方向)は短く、上下方向の寸法(図7の上下方向)は、奥行方向の寸法よりも更に短い寸法とされている。
ここで、この樹脂成形部35の体積(又は樹脂量)は、図9に示すように、感熱素子が感知する温度−時間特性の熱時定数τ1(本実施形態では「6.4sec」。τ1={(1−1/e)ΔT})が、例えば、ヒューズの温度−時間特性の熱時定数τhよりも電線の温度−時間特性の熱時定数τ0(本実施形態では「20sec」)に近くなる値が設定されている。
The resin molded portion 35 has the longest dimension in the width direction (left-right direction in FIG. 7), the shorter dimension in the depth direction (left-right direction in FIG. 2), and the vertical dimension (vertical direction in FIG. 7). ) Is a dimension shorter than the dimension in the depth direction.
Here, the volume (or resin amount) of the resin molded portion 35 is, as shown in FIG. 9, a thermal time constant τ1 of temperature-time characteristics sensed by the thermosensitive element (in this embodiment, “6.4 sec”, τ1). = {(1-1 / e) ΔT}) is, for example, a thermal time constant τ0 (“20 sec” in this embodiment) of the temperature-time characteristic of the electric wire rather than a thermal time constant τh of the temperature-time characteristic of the fuse. A close value is set.

その理由について説明すると、まずスイッチング素子12がオンされると、導電路に電流が流れて、モータに電力が供給され、抵抗発熱部22が発熱する。
このとき、電線の温度は、電気抵抗が小さいため、すぐには電流値に応じた温度まで上昇せず、図9に示すような温度−時間特性を有する。
一方、導電路に直列に接続されている抵抗発熱部22の温度は、抵抗値が大きいため導電路の電流量に応じて急激に上昇する。
The reason will be explained. First, when the switching element 12 is turned on, a current flows through the conductive path, power is supplied to the motor, and the resistance heating unit 22 generates heat.
At this time, since the electric wire has a small electric resistance, it does not immediately rise to a temperature corresponding to the current value, and has a temperature-time characteristic as shown in FIG.
On the other hand, the temperature of the resistance heating part 22 connected in series with the conductive path rapidly increases according to the amount of current in the conductive path because of its large resistance value.

ここで、抵抗発熱部22で生じた熱は、電流検知用感熱素子25に伝わる。このとき電流検知用感熱素子25が感知する温度は、樹脂成形部35の体積(抵抗発熱部22、電流検知用感熱素子25、及びリード部28のうち、樹脂成形部35内に埋設された部分を含む体積)に応じた温度−時間特性を有する。
具体的には、図9に示すように、樹脂体積6.1776mm3(2.4×1.8×1.43)では、感熱素子の温度−時間特性(の熱時定数τ2)がヒューズの温度−時間特性(の熱時定数τh)よりも電線の温度−時間特性(の熱時定数τ0)に近づいている。
Here, the heat generated in the resistance heating part 22 is transmitted to the current detecting thermal element 25. At this time, the temperature sensed by the current detection thermal element 25 is the volume of the resin molding part 35 (the portion embedded in the resin molding part 35 of the resistance heating part 22, the current detection thermal element 25, and the lead part 28). Temperature-time characteristics depending on the volume including
Specifically, as shown in FIG. 9, when the resin volume is 6.1776 mm 3 (2.4 × 1.8 × 1.43), the temperature-time characteristic (thermal time constant τ 2) of the thermal element is the temperature of the fuse. -It is closer to the temperature-time characteristic (thermal time constant τ0) of the wire than the time characteristic (thermal time constant τh).

なお、更に、樹脂体積を増やし、樹脂成形部35の体積を70mm3とすると、図9にて更に感熱素子の温度−時間特性(の熱時定数τ1)が電線の温度−時間特性(の熱時定数τ0)に近づく。図10は、樹脂成形部35の体積−熱時定数特性の実験データである。樹脂体積にほぼ比例して、熱時定数τが大きくなっていることが明らかになっている。   If the resin volume is further increased and the volume of the resin molding portion 35 is 70 mm 3, the temperature-time characteristic (thermal time constant τ1) of the thermal element in FIG. It approaches the constant τ0). FIG. 10 is experimental data of volume-thermal time constant characteristics of the resin molded portion 35. It is clear that the thermal time constant τ increases in proportion to the resin volume.

温度補正部40は、電流検知部21と同一構成である。即ち、抵抗発熱部22と同一構成の抵抗発熱部41と(図8参照)、電流検知用感熱素子25と同一構成の温度補正用感熱素子42と、抵抗発熱部41及び電流検知用感熱素子25に連なるリード部43(43A,43B,図1参照)と、抵抗発熱部22及び温度補正用感熱素子42を一体に覆う樹脂成形部44とを備えている。
ここで、この温度補正部40における抵抗発熱部41のリード部43Aについては、図8に示すように、回路基板11の導電路に接続されておらず(負荷回路に接続されておらず)、回路から浮いた存在となっている。
The temperature correction unit 40 has the same configuration as the current detection unit 21. That is, the resistance heating part 41 having the same configuration as the resistance heating part 22 (see FIG. 8), the temperature correcting thermal element 42 having the same configuration as the current detection thermal element 25, the resistance heating part 41, and the current detection thermal element 25. And a resin molding portion 44 that integrally covers the resistance heating portion 22 and the temperature-correcting thermosensitive element 42.
Here, the lead part 43A of the resistance heating part 41 in the temperature correction part 40 is not connected to the conductive path of the circuit board 11 (not connected to the load circuit), as shown in FIG. It has been floating from the circuit.

樹脂連結枠部45は、図1に示すように、並んで配置された4個の電流検出部21及び1個の温度補正部40のうち、樹脂成形部35,44の部分を包囲するように枠形に設けられており、電流検出部21及び温度補正部40における両側に並んで配置されたリード部28,43間を連結する端子間連結部46と、両側の端子間連結部46同士を一体に連結する終端包囲部47とからなる。   As shown in FIG. 1, the resin connection frame portion 45 surrounds the resin molding portions 35 and 44 among the four current detection portions 21 and one temperature correction portion 40 arranged side by side. It is provided in a frame shape, and the inter-terminal connection portion 46 that connects between the lead portions 28 and 43 arranged side by side on both sides of the current detection unit 21 and the temperature correction unit 40, and the inter-terminal connection portions 46 are connected to each other. It consists of the terminal surrounding part 47 connected integrally.

この樹脂連結枠部45は、断面が矩形であって、リード部28,43と一体に形成された部分は、リード部28,43のうち、回路基板11に沿って水平に延出された基端側が樹脂連結枠部45を貫通している。
終端包囲部47は、一番端に配された電流検出部21を過ぎた終端位置で電流検出部21及び温度補正部40(のうちの樹脂成形部35)の全てが樹脂連結枠部45の内側に配されるように設けられる。
これにより、樹脂連結枠部45は、温度補正用感熱素子42を少なくともリード部43の接続部33を残して抵抗発熱部22又は電流検知用感熱素子25のリード部28のうち接続部33を残した部分と一体的な連結状態としている。
The resin connection frame portion 45 has a rectangular cross section, and a portion formed integrally with the lead portions 28 and 43 is a base that extends horizontally along the circuit board 11 of the lead portions 28 and 43. The end side penetrates the resin connection frame portion 45.
The end surrounding portion 47 is a terminal position past the current detecting portion 21 arranged at the end, and the current detecting portion 21 and the temperature correcting portion 40 (of which the resin molding portion 35) are all of the resin connecting frame portion 45. It is provided so that it may be arranged inside.
As a result, the resin connecting frame portion 45 leaves at least the connection portion 33 of the resistance heating portion 22 or the lead portion 28 of the current detection thermal element 25 while leaving at least the connection portion 33 of the lead portion 43 of the temperature correcting thermal element 42. It is connected with the part.

この樹脂連結枠部45の材質は、合成樹脂であって、熱硬化性樹脂(エポキシ樹脂等)や、熱可塑性樹脂(ポリエチレン (PE) ,ポリプロピレン (PP))等の種々の公知の材料を用いることができるが、本実施形態では、樹脂連結枠部45は、樹脂成形部35と同じエポキシ樹脂が用いられている。   The material of the resin connection frame 45 is a synthetic resin, and various known materials such as a thermosetting resin (epoxy resin, etc.) and a thermoplastic resin (polyethylene (PE), polypropylene (PP)) are used. However, in this embodiment, the same epoxy resin as the resin molding part 35 is used for the resin connection frame part 45.

次に、過電流検出用複合素子20の製造方法について説明する。
平板の金属板材にエッチングを施して、打ち抜き加工及び曲げ加工を施して複数(5個)の抵抗発熱部22,41及びリード部28,43を作製する。次に、リード部28,43のうち、温度補正用感熱素子42及び電流検知用感熱素子25を載置する部分にハンダを印刷し、温度補正用感熱素子42及び電流検知用感熱素子25を載置してリフローを行う。
Next, a method for manufacturing the overcurrent detection composite element 20 will be described.
Etching is performed on a flat metal plate material, and punching and bending are performed to produce a plurality (five) of resistance heating portions 22 and 41 and lead portions 28 and 43. Next, solder is printed on portions of the lead portions 28 and 43 where the temperature correction thermal element 42 and the current detection thermal element 25 are placed, and the temperature correction thermal element 42 and the current detection thermal element 25 are mounted. And reflow.

次に、抵抗発熱部22、温度補正用感熱素子42及び電流検知用感熱素子25を取り付けたリード部28,43を金型内に配し、エポキシ樹脂を流し込んで固めることで樹脂成形部35,44(モールド樹脂)及び樹脂連結枠部45を同時に成形する(図1)。次に、リード部28,43の接続部33を回路基板11の導電路にリフロー半田付けにより実装する(図4)。   Next, the lead portions 28 and 43 to which the resistance heating portion 22, the temperature correction thermal element 42 and the current detection thermal element 25 are attached are placed in a mold, and an epoxy resin is poured into the mold to harden the resin molding portion 35, 44 (mold resin) and resin connecting frame 45 are simultaneously formed (FIG. 1). Next, the connecting portions 33 of the lead portions 28 and 43 are mounted on the conductive paths of the circuit board 11 by reflow soldering (FIG. 4).

本実施形態1によれば、以下の効果を奏する。
(1)本実施形態によれば、温度補正用感熱素子42を少なくともリード部28の接続部33を残して抵抗発熱部22又は電流検知用感熱素子25と一体的な連結状態とする樹脂連結枠部45を備えるため、各構成部分がユニット化され、より回路基板11上において安定した姿勢を保つことが可能になる。
また、抵抗発熱部22及び電流検知用感熱素子25が樹脂成形部35で覆われているため、樹脂成形部35がない場合と比較して、電流検知用感熱素子25にて取得される温度−時間特性の熱時定数を、電線に許容される温度−時間特性の熱時定数に近づけることが可能になる。よって、電流変化が過渡的な状況において、電線の許容温度にまだ余裕があるにも関わらず、電流遮断用の素子が動作して電流を遮断することを防止することが可能になるため、精度の高い過電流遮断を行うことができる。
ここで、電線に許容される温度−時間特性の熱時定数に近づけたとしても、電線が配索される場所と、電流検知用感熱素子25が配索される場所では雰囲気温度が異なるため、過電流遮断精度が低下するおそれがある。特に、電流検知用感熱素子25等が回路基板11に実装される場合には、回路基板11の熱を受けて精度が低下するおそれがある。
しかし、本実施形態によれば、電流検知用感熱素子25及び温度補正用感熱素子42がユニット化されることで、電流検知用感熱素子25に近い位置に配された温度補正用感熱素子42により雰囲気温度に基づいて補正することが容易になるため、より精度の高い過電流遮断を行うことができる。
According to the first embodiment, the following effects are obtained.
(1) According to the present embodiment, the temperature correction thermosensitive element 42 is connected to the resistance heating portion 22 or the current detecting thermosensitive element 25 so as to be integrated with at least the connecting portion 33 of the lead portion 28. Since the unit 45 is provided, each component is unitized, and a more stable posture on the circuit board 11 can be maintained.
Further, since the resistance heating part 22 and the current detection thermal element 25 are covered with the resin molding part 35, the temperature acquired by the current detection thermal element 25 as compared with the case where the resin molding part 35 is not provided− The thermal time constant of the time characteristic can be brought close to the thermal time constant of the temperature-time characteristic allowed for the electric wire. Therefore, in a situation where the current change is transient, it is possible to prevent the current interrupting element from operating and interrupting the current even though there is still a margin in the allowable temperature of the wire. High overcurrent interruption can be performed.
Here, even if it approaches the thermal time constant of the temperature-time characteristic allowed for the electric wire, the ambient temperature differs between the place where the electric wire is routed and the place where the current detection thermal element 25 is routed, There is a possibility that the overcurrent interruption accuracy may be lowered. In particular, when the current detection thermal element 25 or the like is mounted on the circuit board 11, there is a possibility that the accuracy may be lowered due to the heat of the circuit board 11.
However, according to the present embodiment, the current detecting thermosensitive element 25 and the temperature correcting thermosensitive element 42 are unitized, so that the temperature correcting thermosensitive element 42 disposed near the current detecting thermosensitive element 25 can be used. Since it becomes easy to correct | amend based on atmospheric temperature, more accurate overcurrent interruption | blocking can be performed.

(2)各リード部28,43の回路基板11側への延出寸法は、共に、回路基板11から生じる熱による影響を回避できる所定寸法以上に設定されているため、回路基板11の熱が電流検知用感熱素子25や温度補正用感熱素子42に伝わることにより生じる過電流遮断精度の低下を低減させることができる。 (2) Since the extension dimensions of the lead portions 28 and 43 toward the circuit board 11 are both set to a predetermined dimension or more that can avoid the influence of heat generated from the circuit board 11, the heat of the circuit board 11 is reduced. It is possible to reduce a decrease in overcurrent interruption accuracy caused by being transmitted to the current detecting thermal element 25 and the temperature correcting thermal element 42.

(3)例えば、樹脂成形部35間を連結する場合には、抵抗発熱部22から生じた熱が他の電流検出部21の電流検知用感熱素子25や温度補正部40の温度補正用感熱素子42に伝達され、過電流遮断精度に誤差が生じるおそれが懸念されるが、本実施形態によれば、樹脂連結枠部45は、隣り合うリード部28間を連結しているため、比較的抵抗発熱部22から離れた位置にあるリード部28間が連結され、伝達される熱による影響を低減させることができる。 (3) For example, when the resin molding parts 35 are connected, the heat generated from the resistance heating part 22 is generated by the current detection thermal element 25 of the other current detection part 21 or the temperature correction thermal element of the temperature correction part 40. However, according to the present embodiment, since the resin connection frame portion 45 connects the adjacent lead portions 28 to each other, the resistance is relatively low. The lead portions 28 located away from the heat generating portion 22 are connected to each other, and the influence of the transmitted heat can be reduced.

(4)温度補正用感熱素子42は、抵抗発熱部22を備えて構成されているため、温度補正用感熱素子42を外部温度を受けるためではなく、抵抗発熱部22及び電流検知用感熱素子25と同様に過電流の検出のために用いることが可能になる。これにより過電流検出用複合素子20を用いて外部温度による熱を受けて補正を行う場合と、過電流検出用複合素子20を用いて外部温度による補正を行わず複数の回路の過電流の検出を行う場合とで部品の共通化を図ることができる。 (4) Since the temperature correction thermal element 42 is configured to include the resistance heating part 22, the resistance correction thermal element 22 and the current detection thermal element 25 are not used to receive the temperature correction thermal element 42 from the external temperature. It becomes possible to use it for the detection of an overcurrent similarly to. As a result, when the overcurrent detection composite element 20 is used to perform correction by receiving heat from the external temperature, and the overcurrent detection composite element 20 is used to detect overcurrent of a plurality of circuits without performing correction using the external temperature. It is possible to share parts in the case of performing.

(5)抵抗発熱部22から生じる熱が、電線に許容される温度−時間特性の時定数に応じた温度−時間特性の時定数を有する熱が電流検知用感熱素子25に与えられるため、電線に許容される温度−時間特性に応じて電流遮断用の素子を動作させて過電流を遮断することができる。よって、より精度の高い過電流遮断を行うことが可能になる。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態1に限定されるものではなく、例えば次のような実施形態1も本発明の技術的範囲に含まれる。
(1)本実施形態1によれば、樹脂成形部35及び樹脂連結枠部45の材料としてはエポキシ樹脂としたが、これに限らず、他の樹脂であってもよい。
(5) Since the heat generated from the resistance heating portion 22 has the temperature-time characteristic time constant according to the temperature-time characteristic time constant allowed for the electric wire, it is given to the current detecting thermal element 25. Overcurrent can be interrupted by operating an element for interrupting current according to the temperature-time characteristics allowed for the current. Therefore, it becomes possible to perform overcurrent interruption with higher accuracy.
<Other embodiments>
The present invention is not limited to the first embodiment described above with reference to the drawings and, for example, the following first embodiment is also included in the technical scope of the present invention.
(1) According to the first embodiment, the material of the resin molding portion 35 and the resin connection frame portion 45 is an epoxy resin, but is not limited to this, and other resins may be used.

(2)感熱素子25,42は、共にNTCサーミスタとしたが、PTCサーミスタ等の他のサーミスタでもよい。また、サーミスタに限らず、ダイオード等の温度により特性の変化する素子を用いて電流値を検知するようにしてもよい。
(3)上記実施形態では、電流検出部21と温度補正部40とは同一構成であるとしたが、これらが異なる構成であってもよい。例えば、温度補正部40において(使用されていない)抵抗発熱部22を有さない構成も可能であるし、温度補正部40において樹脂成形部35を有さず、温度補正用感熱素子42が露出している構成でもよい。
(2) The thermal elements 25 and 42 are both NTC thermistors, but other thermistors such as PTC thermistors may be used. Further, the current value may be detected using an element whose characteristics change depending on the temperature, such as a diode, without being limited to the thermistor.
(3) In the above embodiment, the current detection unit 21 and the temperature correction unit 40 have the same configuration, but they may have different configurations. For example, the temperature correction unit 40 may be configured not to have the resistance heating unit 22 (not used), and the temperature correction unit 40 does not include the resin molding unit 35 and the temperature correction thermal element 42 is exposed. The structure which is carrying out may be sufficient.

(4)上記実施形態1では、リード部28,43は、回路基板11の導電路に接続されるものであったが、これに限らず、リード部28,43の先端部にバレル部を設け、バレル部に電線の端末部が圧着されるようにしてもよい。
(5)樹脂連結枠部45は、リード部28,43のうち、回路基板11に沿って延出された基端側に設けられていたが、これに限られず、回路基板11側に向けて(回路基板11と直交する方向に)延出された部分に設けるようにしてもよい。
(6)樹脂成形部35,44及び樹脂連結枠部45は、同時に成形することとしたが、別々に成形してもよい。
(4) In the first embodiment, the lead portions 28 and 43 are connected to the conductive path of the circuit board 11. However, the present invention is not limited to this, and a barrel portion is provided at the tip of the lead portions 28 and 43. The terminal portion of the electric wire may be crimped to the barrel portion.
(5) The resin connection frame portion 45 is provided on the base end side of the lead portions 28 and 43 extending along the circuit board 11, but is not limited thereto, and is directed toward the circuit board 11 side. You may make it provide in the extended part (in the direction orthogonal to the circuit board 11).
(6) The resin molding portions 35 and 44 and the resin connection frame portion 45 are molded at the same time, but may be molded separately.

10…過電流遮断装置
11…回路基板
12…スイッチング素子
13…制御回路
14…閾値生成回路
15…比較回路
16…補正回路
20…過電流検出用複合素子
21…電流検出部
22,41…抵抗発熱部
25…電流検知用感熱素子
28,43,44…リード部
33…接続部
35…樹脂成形部
40…温度補正部
42…温度補正用感熱素子
45…樹脂連結枠部
DESCRIPTION OF SYMBOLS 10 ... Overcurrent interruption device 11 ... Circuit board 12 ... Switching element 13 ... Control circuit 14 ... Threshold generation circuit 15 ... Comparison circuit 16 ... Correction circuit 20 ... Overcurrent detection composite element 21 ... Current detection part 22,41 ... Resistance heating 25: Current sensing thermal element 28, 43, 44 ... Lead part 33 ... Connection part 35 ... Resin molding part 40 ... Temperature correction part 42 ... Temperature correction thermal element 45 ... Resin connecting frame part

Claims (8)

車両の電源から負荷に至る負荷回路の過電流を遮断する過電流遮断装置に用いられる過電流検出用複合素子であって、
接続部を備えた一対のリード部を有して前記負荷回路に直列に配される抵抗発熱部と、
接続部を備えた一対のリード部を有し前記抵抗発熱部に対して熱伝達可能に設けられて温度に応じて電気的特性を変化させる電流検知用感熱素子と、
少なくとも前記各リード部の前記接続部を残して前記抵抗発熱部及び前記電流検知用感熱素子を一体に覆う樹脂成形部と、
接続部を備えたリード部を有し雰囲気温度に応じて電気的特性を変化させる温度補正用感熱素子と、
前記温度補正用感熱素子を前記抵抗発熱部又は前記電流検知用感熱素子と一体的な連結状態とする樹脂連結枠部と、を備え
前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子における前記各リード部の前記回路基板側への延出寸法は、共に、前記回路基板から生じる熱による影響を回避できる所定寸法以上に設定されている過電流検出用複合素子。
An overcurrent detection composite element used in an overcurrent interrupting device for interrupting an overcurrent of a load circuit from a vehicle power source to a load,
A resistance heating part having a pair of lead parts with a connection part and arranged in series with the load circuit;
A current-sensing thermal element that has a pair of lead portions provided with a connection portion and is provided so as to be able to transfer heat to the resistance heating portion and changes electrical characteristics in accordance with temperature;
A resin molding part that integrally covers the resistance heating part and the current sensing thermal element, leaving at least the connection part of each lead part;
A thermosensitive element for temperature correction that has a lead part with a connection part and changes electrical characteristics according to the ambient temperature;
And a resin coupling frame to the the resistance heating unit or integral connection state and the current detecting heat sensitive element of the temperature correcting sensitive element,
In each of the resistance heating part, the current detection thermal element, and the temperature correction thermal element, the extension dimension of each lead part toward the circuit board is more than a predetermined dimension that can avoid the influence of heat generated from the circuit board. Composite element for overcurrent detection set to .
記各リード部は、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子のそれぞれの両側から回路基板に沿う方向に突出すると共に前記回路基板側に屈曲されていることを特徴とする請求項1の過電流検出用複合素子。 Before SL each lead portion, the resistance heating unit, characterized in Tei Rukoto is bent to the circuit board side with projecting from respective opposite sides of the current detecting thermal element and the temperature compensating heat sensitive element in a direction along the circuit board The composite element for overcurrent detection according to claim 1. 前記樹脂連結枠部は、隣り合う前記各リード部の間を連結していることを特徴とする請求項2記載の過電流検出用複合素子。 The overcurrent detection composite element according to claim 2, wherein the resin connection frame portion connects between the adjacent lead portions. 前記温度補正用感熱素子は、前記抵抗発熱部を備えて構成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の過電流検出用複合素子。 The overcurrent detecting composite element according to any one of claims 1 to 3, wherein the temperature-correcting thermosensitive element includes the resistance heating portion. 車両の電源から負荷に至る負荷回路の過電流を遮断し、過電流検出用複合素子を備える過電流遮断装置であって、
前記過電流検出用複合素子は、
接続部を備えた一対のリード部を有して前記負荷回路に直列に配される抵抗発熱部と、
接続部を備えた一対のリード部を有し前記抵抗発熱部に対して熱伝達可能に設けられて温度に応じて電気的特性を変化させる電流検知用感熱素子と、
少なくとも前記各リード部の前記接続部を残して前記抵抗発熱部及び前記電流検知用感熱素子を一体に覆う樹脂成形部と、
接続部を備えたリード部を有し雰囲気温度に応じて電気的特性を変化させる温度補正用感熱素子と、
前記温度補正用感熱素子を前記抵抗発熱部又は前記電流検知用感熱素子と一体的な連結状態とする樹脂連結枠部と、を備え
前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子における前記各リード部の前記回路基板側への延出寸法は、共に、前記回路基板から生じる熱による影響を回避できる所定寸法以上に設定されている過電流遮断装置。
An overcurrent interrupting device that interrupts an overcurrent of a load circuit from a power source of a vehicle to a load and includes a composite element for overcurrent detection,
The overcurrent detection composite element is:
A resistance heating part having a pair of lead parts with a connection part and arranged in series with the load circuit;
A current-sensing thermal element that has a pair of lead portions provided with a connection portion and is provided so as to be able to transfer heat to the resistance heating portion and changes electrical characteristics in accordance with temperature;
A resin molding part that integrally covers the resistance heating part and the current sensing thermal element, leaving at least the connection part of each lead part;
A thermosensitive element for temperature correction that has a lead part with a connection part and changes electrical characteristics according to the ambient temperature;
And a resin coupling frame to the previous SL resistance heating unit or the current detecting thermal element with integral coupling state the temperature correcting sensitive element,
In each of the resistance heating part, the current detection thermal element, and the temperature correction thermal element, the extension dimension of each lead part toward the circuit board is more than a predetermined dimension that can avoid the influence of heat generated from the circuit board. Overcurrent interrupt device set to .
記各リード部は、前記抵抗発熱部、電流検知用感熱素子及び前記温度補正用感熱素子の両側から回路基板に沿う方向に突出すると共に前記回路基板側に屈曲されていることを特徴とする請求項5の過電流遮断装置。 Before SL each lead portion, the resistance heating unit, characterized by Tei Rukoto is bent to the circuit board side with projecting from both sides of the current detecting thermal element and the temperature compensating heat sensitive element in a direction along the circuit board The overcurrent interruption device according to claim 5. 前記樹脂連結枠部は、隣り合う前記各リード部の間を連結していることを特徴とする請求項6記載の過電流遮断装置。 The overcurrent interrupting device according to claim 6, wherein the resin connection frame portion connects the adjacent lead portions. 前記温度補正用感熱素子は、前記抵抗発熱部を備えて構成されていることを特徴とする請求項5ないし請求項7のいずれか一項に記載の過電流遮断装置。 The overcurrent interrupting device according to any one of claims 5 to 7, wherein the temperature-correcting heat-sensitive element includes the resistance heating unit.
JP2010093133A 2010-04-14 2010-04-14 Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element Expired - Fee Related JP5494165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093133A JP5494165B2 (en) 2010-04-14 2010-04-14 Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093133A JP5494165B2 (en) 2010-04-14 2010-04-14 Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element

Publications (2)

Publication Number Publication Date
JP2011223830A JP2011223830A (en) 2011-11-04
JP5494165B2 true JP5494165B2 (en) 2014-05-14

Family

ID=45040032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093133A Expired - Fee Related JP5494165B2 (en) 2010-04-14 2010-04-14 Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element

Country Status (1)

Country Link
JP (1) JP5494165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573584B2 (en) * 2010-10-15 2014-08-20 株式会社オートネットワーク技術研究所 Overcurrent detection element
JP5718833B2 (en) * 2012-01-31 2015-05-13 住友電装株式会社 Wire protector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153630A (en) * 1980-04-28 1981-11-27 Matsushita Electric Works Ltd Heat-sensitive element block
JPH05223043A (en) * 1992-02-10 1993-08-31 Nippondenso Co Ltd Current detecting device
JP3797590B2 (en) * 1999-08-25 2006-07-19 矢崎総業株式会社 Power breaker
JP2012029545A (en) * 2009-09-29 2012-02-09 Auto Network Gijutsu Kenkyusho:Kk Overcurrent shut-off apparatus and overcurrent detection element used for the same

Also Published As

Publication number Publication date
JP2011223830A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
WO2011040295A1 (en) Overcurrent cutoff device, and overcurrent detecting element to be used for overcurrent cutoff device
US20130221532A1 (en) Semiconductor module with switching elements
JP6384211B2 (en) Shunt resistor
WO2016042732A1 (en) Battery sensor device
JP5445329B2 (en) Power semiconductor device
US20150364286A1 (en) Complex protection device
JP5494165B2 (en) Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element
US20150249333A1 (en) Complex protection device of blocking the abnormal state of current and voltage
JP2009070805A (en) Substrate type temperature fuse with resistor and secondary battery protection circuit
JP5823144B2 (en) Overcurrent protection device
JP6474640B2 (en) Current detection resistor
US9025292B2 (en) Apparatus and method for the intelligent protection of an electrical lead
JP4593518B2 (en) Semiconductor device with fuse
US11817694B2 (en) Protection element and protection circuit for a battery
JP2018129969A (en) Electronic circuit and overheat detection method
KR101529829B1 (en) The complex protection device of blocking the abnormal state of current and voltage
JP2011139568A (en) Circuit structure body and electric junction box
JP5762856B2 (en) Current sensor
JP2005197104A (en) Fuse device
JP5821817B2 (en) Current detection circuit and power supply control device
JP2016092210A (en) Overheat and overcurrent detection element and switching circuit using element
JP5573584B2 (en) Overcurrent detection element
TWI547967B (en) Complex protection device
US20230420207A1 (en) Device including a fuse
US20240153729A1 (en) Circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees