JP5494017B2 - Heat exchanger and heat pump water heater using the same - Google Patents

Heat exchanger and heat pump water heater using the same Download PDF

Info

Publication number
JP5494017B2
JP5494017B2 JP2010045155A JP2010045155A JP5494017B2 JP 5494017 B2 JP5494017 B2 JP 5494017B2 JP 2010045155 A JP2010045155 A JP 2010045155A JP 2010045155 A JP2010045155 A JP 2010045155A JP 5494017 B2 JP5494017 B2 JP 5494017B2
Authority
JP
Japan
Prior art keywords
pipe
diameter
fluid flows
secondary fluid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010045155A
Other languages
Japanese (ja)
Other versions
JP2011179763A (en
Inventor
治 青柳
和彦 町田
昭佳 近澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010045155A priority Critical patent/JP5494017B2/en
Publication of JP2011179763A publication Critical patent/JP2011179763A/en
Application granted granted Critical
Publication of JP5494017B2 publication Critical patent/JP5494017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ給湯機における熱交換器の構成に関するものである。   The present invention relates to a configuration of a heat exchanger in a heat pump water heater.

図7は、従来の水−冷媒熱交換器の局部断面図、図8は断面の詳細図である。   FIG. 7 is a local sectional view of a conventional water-refrigerant heat exchanger, and FIG. 8 is a detailed sectional view.

従来の水−冷媒熱交換器は、2本の中径管11、12を互いに密着させながら絡み合うように螺旋状にねじり合わせて構成する。   The conventional water-refrigerant heat exchanger is configured by twisting together two medium-diameter pipes 11 and 12 in a spiral shape so that they are intertwined with each other.

これにより、大径管10内を流れる流体と中径管内を流れる流体は螺旋状に乱流化され、伝熱促進が図れ、熱交換効率の高い熱交換器がえられるというものである(例えば、特許文献1参照)。   As a result, the fluid flowing in the large-diameter pipe 10 and the fluid flowing in the medium-diameter pipe are turbulently spiraled, heat transfer is promoted, and a heat exchanger with high heat exchange efficiency is obtained (for example, , See Patent Document 1).

特開2005−291684号公報JP 2005-291684 A

しかしながら、従来の構成では、大径管10内に中径管11、12を挿入し、製造するため、図8において、大径管10の内面と中径管11、12の外面の最接近する隙間部分19は、隙間を確保する必要がある。   However, in the conventional configuration, the medium diameter pipes 11 and 12 are inserted into the large diameter pipe 10 and manufactured. Therefore, in FIG. 8, the inner surface of the large diameter pipe 10 and the outer surface of the medium diameter pipes 11 and 12 are closest to each other. The gap portion 19 needs to secure a gap.

特に、従来の構成は、中径管11、12の断面が略円形であるため、中径管11、12の断面積を大きくしすぎると、最接近する隙間部分19が確保できず、大径管10に中径管11、12を挿入することができず、製作不可になってしまうという課題を有していた。   Particularly, in the conventional configuration, since the cross sections of the medium diameter pipes 11 and 12 are substantially circular, if the cross sectional area of the medium diameter pipes 11 and 12 is excessively large, the closest gap portion 19 cannot be secured, and the large diameter pipes 11 and 12 are large. The medium-diameter pipes 11 and 12 cannot be inserted into the pipe 10, and there is a problem that the production becomes impossible.

また、最接近する隙間部分19を確保すると、中径管11、12の断面積は大きくすることができず、大径管内の流体が流れる部分17の断面積を減らすことができない。   Further, if the closest gap portion 19 is secured, the cross-sectional area of the medium-diameter pipes 11 and 12 cannot be increased, and the cross-sectional area of the part 17 through which the fluid flows in the large-diameter pipe cannot be reduced.

したがって、大径管内を流れる流体の流速を向上させることができず、熱伝達率に限界があり、能力を向上させることができないという課題を有していた。   Therefore, the flow velocity of the fluid flowing in the large-diameter pipe cannot be improved, and there is a problem that the heat transfer rate is limited and the capacity cannot be improved.

本発明は、前記従来の課題を解決するもので、熱交換性能に優れた熱交換器を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat exchanger excellent in heat exchange performance.

前記従来の課題を解決するために、本発明の熱交換器は、1次流体が流れる配管と、2次流体が流れる配管と、を備え、前記2次流体が流れる配管は複数本で、かつ、前記1次流体が流れる前記配管内に配設されるとともに、前記2次流体が流れる前記配管の長手方向の軸に対する直角断面が、楕円形状であり、前記2次流体が流れる前記配管の外表面に多数の凹みを設け、多数の前記凹みの深さは、短径方向の凹みより長径方向の凹みの方が深いことを特徴とするもので、1次流体が流れる配管と前記2次流体が流れる配管との隙間を確保しながら、前記2次流体が流れる配管の断面積を大きくすることができるため、前記2次流体が流れる配管の内表面積及び外表面積を大きくすることができ、前記2次流体が流れる配管の伝熱性能を向上させることができる。 In order to solve the conventional problem, the heat exchanger according to the present invention includes a pipe through which a primary fluid flows and a pipe through which a secondary fluid flows, and a plurality of pipes through which the secondary fluid flows, and the with the primary fluid is arranged in said pipe flows, cross section perpendicular with respect to the longitudinal axis of the pipe where the secondary fluid flows, elliptical der is, of the pipe in which the secondary fluid flows A plurality of recesses are provided on the outer surface, and the depth of the plurality of recesses is characterized in that the recesses in the major axis direction are deeper than the recesses in the minor axis direction. Since the cross-sectional area of the pipe through which the secondary fluid flows can be increased while ensuring a gap with the pipe through which the fluid flows, the inner surface area and the outer surface area of the pipe through which the secondary fluid flows can be increased, Improve heat transfer performance of piping through which the secondary fluid flows It can be.

本発明によれば、熱交換性能に優れた熱交換器を提供できる。   According to the present invention, a heat exchanger excellent in heat exchange performance can be provided.

本発明の第1の実施の形態における熱交換器の平面図The top view of the heat exchanger in the 1st Embodiment of this invention 本発明の第1の実施の形態における熱交換器の側面図The side view of the heat exchanger in the 1st Embodiment of this invention 図2のA―A断面図AA sectional view of FIG. 本発明の第2の実施の形態における中径管の中心軸に直角方向の断面図Sectional drawing orthogonal to the central axis of the medium diameter pipe in the 2nd embodiment of the present invention 図4の中径管を90度回転した場合の断面図4 is a cross-sectional view when the medium diameter tube is rotated 90 degrees 本発明の第2の実施の形態における中径管の中心軸上で分割した詳細断面図Detailed sectional view divided on the central axis of the medium-diameter pipe in the second embodiment of the present invention 従来の水−冷媒熱交換器の局部断面図Local sectional view of a conventional water-refrigerant heat exchanger 従来の水−冷媒熱交換器の詳細断面図Detailed cross-sectional view of a conventional water-refrigerant heat exchanger

第1の発明は、1次流体が流れる配管と、2次流体が流れる配管と、を備え、前記2次流体が流れる配管は複数本で、かつ、前記1次流体が流れる前記配管内に配設されるとともに、前記2次流体が流れる前記配管の長手方向の軸に対する直角断面が、楕円形状であり、前記2次流体が流れる前記配管の外表面に多数の凹みを設け、多数の前記凹みの深さは、短径方向の凹みより長径方向の凹みの方が深いことを特徴とする熱交換器で、1次流体が流れる配管と前記2次流体が流れる配管との隙間を確保しながら、前記2次流体が流れる配管の断面積を大きくすることができるため、前記2次流体が流れる配管の内表面積及び外表面積を大きくすることができ、前記2次流体が流れる配管の伝熱性能を向上させることができる。 A first aspect of the present invention is a piping primary fluid flows, and a piping secondary fluid flows, in pipe plurality of the secondary fluid flows, and distribution within said pipe the primary fluid flows while being set, provided cross section perpendicular with respect to the longitudinal axis of the pipe where the secondary fluid flows, Ri elliptical der, a large number of depressions on the outer surface of the pipe in which the secondary fluid flows, said number of said The depth of the recess is a heat exchanger characterized in that the recess in the major axis direction is deeper than the recess in the minor axis direction, and a clearance between the pipe through which the primary fluid flows and the pipe through which the secondary fluid flows is secured. However, since the cross-sectional area of the pipe through which the secondary fluid flows can be increased, the inner surface area and the outer surface area of the pipe through which the secondary fluid flows can be increased, and the heat transfer of the pipe through which the secondary fluid flows. Performance can be improved.

また、2次流体が流れる配管の外表面に多数の凹みを設けたことを特徴とするもので、2次流体が流れる配管表面を流れる流体の流れを乱流にすることができ、伝熱性能を向上させることができ、熱交換器の効率を向上させることができる。また、2次流体が流れる配管の外表面に設けた凹みの深さは、短径方向の凹みより長径方向の凹みの方が深いことを特徴とするもので、2次流体が流れる配管内を通る流体の圧力損失の増加を抑制しながら、2次流体が流れる配管の外表面の熱伝達率の向上を図ることができる。 Further, characterized in that provided with a plurality of depressions in piping external surface of the secondary fluid flows, can be fluid flow through the piping surface the secondary fluid flows turbulent, Den Thermal performance can be improved and the efficiency of the heat exchanger can be improved. The depth of the recess is provided on the outer surface of the piping which secondary fluid flows, it better than in the minor axis direction indentations major axis depressions deeper characterized in, the pipe of the secondary fluid flows The heat transfer coefficient of the outer surface of the pipe through which the secondary fluid flows can be improved while suppressing an increase in pressure loss of the fluid passing through the pipe.

第2の発明は、前記1次流体が流れる前記配管を大径菅とし前記2次流体が流れる前記配管は、小径菅前記小径管の外周に密着させた中径管とを有し、複数本の前記2次流体が流れる前記配管互いに螺旋状にねじり合わせて構成され、複数本の前記2次流体が流れる前記配管が挿入される前記大径管の内径が、複数本の前記2次流体が流れる前記配管の長径の合計よりも小さいことを特徴とするもので、中径管を軸直角の断面が楕円形状に変形させ、複数本の中径管をねじり合わせることで、中径管の表面積を最大限に大きくした状態で、大径管に挿入することできる。 The second invention, the pipes in which the primary fluid flows to a large径菅, the pipe in which the secondary fluid flows, possess a diameter pipes in which in close contact with the outer periphery of the smaller diameter but smaller diameter tube, the pipe in which a plurality of the secondary fluid flows, is configured for twisting spirally together, the inner diameter of the large diameter tube to the pipe a plurality of the secondary fluid flows is inserted, a plurality of It is characterized by being smaller than the sum of the major diameters of the pipes through which the secondary fluid flows , by deforming the medium diameter pipe into an elliptical cross section perpendicular to the axis, and twisting a plurality of medium diameter pipes together, The medium diameter tube can be inserted into a large diameter tube with the surface area maximized.

また、複数の中径管を絡み合うようにねじり合わせる際に、楕円管の短径方向に潰れる力が加わっても、短径方向の凹みを深くすることで、強度を確保することができ、中径管が潰れて小径管の流路を閉塞することなく加工できる。 In addition, when twisting a plurality of medium-diameter pipes so as to be entangled, even if a force that crushes in the short-diameter direction of the elliptical pipe is applied, the strength can be ensured by deepening the dent in the short-diameter direction. Processing can be performed without crushing the diameter pipe and closing the flow path of the small diameter pipe.

また、凹みを深くすることで、さらに乱流促進を図ることができ、ねじりによる乱流促進を活かすことができ、熱伝達率を向上させることができる。   Further, by deepening the dent, turbulent flow can be further promoted, turbulent flow promotion by twisting can be utilized, and the heat transfer rate can be improved.

第3の発明は、水出口付近の大径管の内径が、水入口付近の大径管の内径より大きくすることで、高温で析出しやすいスケールが付着しても詰まりにくく、長時間の使用に耐えることができる。 The third aspect of the invention is that the inner diameter of the large-diameter pipe near the water outlet is larger than the inner diameter of the large-diameter pipe near the water inlet, so that even if a scale that is likely to precipitate at high temperature adheres, it will not clog and can be used for a long time. Can withstand.

第4の発明は、第1〜3のいずれかの発明の熱交換器を備えたヒートポンプ給湯機で、高効率のヒートポンプ給湯機を提供できる。 4th invention is a heat pump water heater provided with the heat exchanger of any one of 1st-3rd invention, and can provide a highly efficient heat pump water heater.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
本発明の第1の実施の形態について、図1〜図3を用いて説明する。図1は平面図、図2は側面図、図3は、A−A断面での断面図である。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. 1 is a plan view, FIG. 2 is a side view, and FIG. 3 is a cross-sectional view taken along the line AA.

図1、図2において、100は水冷媒熱交換器、101、102は大径管、193は冷媒側入口、194は冷媒側の出口、191は水側の入口、192は水側の出口である。また、Aは大径管101と大径管102の接続部である。   1 and 2, 100 is a water refrigerant heat exchanger, 101 and 102 are large diameter pipes, 193 is a refrigerant side inlet, 194 is a refrigerant side outlet, 191 is a water side inlet, and 192 is a water side outlet. is there. A is a connecting portion between the large diameter tube 101 and the large diameter tube 102.

図3において、111は中径管、112は小径管、D1は中径管111の長径、D2は中径管111の短径、151は水流路、152は冷媒流路、130は2本の中径管111に外接する円を示す。   In FIG. 3, 111 is a medium diameter pipe, 112 is a small diameter pipe, D1 is a long diameter of the medium diameter pipe 111, D2 is a short diameter of the medium diameter pipe 111, 151 is a water flow path, 152 is a refrigerant flow path, and 130 is two pipes. A circle circumscribing the medium diameter pipe 111 is shown.

以上のように構成された水冷媒熱交換器について、以下の動作、作用を説明する。   The following operation | movement and effect | action are demonstrated about the water refrigerant | coolant heat exchanger comprised as mentioned above.

図1、図2において、1次流体である低温の水は、水入口191から流入し、大径管101、102内を通り、水出口192より流出する。   In FIG. 1 and FIG. 2, low-temperature water, which is the primary fluid, flows from the water inlet 191, passes through the large-diameter pipes 101 and 102, and flows out from the water outlet 192.

一方、2次流体である冷媒(例えば、二酸化炭素)は、ヒートポンプサイクル(図示せず)にて加熱された高温の冷媒が、冷媒入口193から流入し、大径管101、102に挿入された小径管112内を通り、冷媒出口194より流出する。大径管101と102とは、接続部Aで接続されており、大径管102の内径は、大径管101の内径より大きい管で構成されている。なお、この水冷媒熱交換器にて生成されたお湯が、例えば、床暖房や給湯等に利用される。   On the other hand, as a secondary fluid refrigerant (for example, carbon dioxide), a high-temperature refrigerant heated by a heat pump cycle (not shown) flows from the refrigerant inlet 193 and is inserted into the large-diameter pipes 101 and 102. It passes through the small diameter pipe 112 and flows out from the refrigerant outlet 194. The large-diameter pipes 101 and 102 are connected by a connection portion A, and the large-diameter pipe 102 has an inner diameter larger than that of the large-diameter pipe 101. In addition, the hot water produced | generated with this water refrigerant | coolant heat exchanger is utilized for floor heating, hot water supply, etc., for example.

図3において、中径管111と小径管112とは、その断面が長径D1と短径D2からなる楕円形で形成されている。大径管101、102内を流れる低温の流体は流路151を通り、また、小径管112内を流れる高温の流体は流路152を通る。   In FIG. 3, the medium diameter pipe 111 and the small diameter pipe 112 are formed in an elliptical shape with a cross section consisting of a long diameter D1 and a short diameter D2. The low temperature fluid flowing in the large diameter pipes 101 and 102 passes through the flow path 151, and the high temperature fluid flowing in the small diameter pipe 112 passes through the flow path 152.

中径管111を楕円にすることは、2本の中径管111に外接する円の直径130を維持しながら、言い換えると、大径管101との隙間を確保しながら、短径D2より長径D1を長くすることができ、その分、中径管111の断面積を大きくすることができる。   Making the middle-diameter pipe 111 into an ellipse means that the diameter of the circle circumscribing the two middle-diameter pipes 111 is maintained, in other words, a larger diameter than the short diameter D2 while ensuring a gap with the large-diameter pipe 101. D1 can be lengthened, and the cross-sectional area of the medium diameter tube 111 can be increased accordingly.

これにより、小径管112の内表面積及び中径管111の外表面積を大きくすることができ、小径管内面の伝熱性能及び中径管外面の伝熱性能を向上させることができる。   Thereby, the inner surface area of the small diameter tube 112 and the outer surface area of the medium diameter tube 111 can be increased, and the heat transfer performance of the inner surface of the small diameter tube and the heat transfer performance of the outer surface of the medium diameter tube can be improved.

また、小径管112の断面積を大きくできることで、小径管112内を流れる高温の流体の流速を遅くでき、圧力損失を低減でき、伝熱性能を向上させることができる。   In addition, since the cross-sectional area of the small-diameter pipe 112 can be increased, the flow rate of the high-temperature fluid flowing through the small-diameter pipe 112 can be slowed, pressure loss can be reduced, and heat transfer performance can be improved.

また、大径管101内を流れる低温の流体の流路151を小さくすることができ、流速を増大させることが可能となり、中径管111の外表面の熱伝達率を向上させることができる。   Further, the flow path 151 of the low-temperature fluid flowing in the large-diameter pipe 101 can be reduced, the flow velocity can be increased, and the heat transfer coefficient of the outer surface of the medium-diameter pipe 111 can be improved.

また、大径管101の内径より大径管102の内径を大きくすることは次のような効果を可能とする。低温の水は、水入口191から入り、小径管内を通る高温の流体と熱交換
しながら徐々に温度が上昇し、水出口192付近ではかなりの高温になる。水が高温になると、低温では溶け込むことができたスケール成分(例えば、カルシウムやマグネシウムなど)は、高温では固体となって析出してしまう。
Further, making the inner diameter of the large diameter tube 102 larger than the inner diameter of the large diameter tube 101 enables the following effects. Low-temperature water enters from the water inlet 191 and gradually increases in temperature while exchanging heat with the high-temperature fluid passing through the small-diameter pipe, and reaches a considerably high temperature in the vicinity of the water outlet 192. When water becomes high temperature, the scale components (for example, calcium and magnesium) that can be dissolved at low temperature become solid and precipitate at high temperature.

析出したスケールは、中径管111の外表面や大径管102の内表面に付着し、水が通過する際の圧力損失を増大させてしまう。ここで、大径管101の内径よりも高温部に使用する水管の内径を大きくした大径管102を用いることで、スケールが多少付着しても圧力損失の急激な上昇を抑制でき、長期間の使用に耐える水冷媒熱交換器を有することができる。   The deposited scale adheres to the outer surface of the medium-diameter tube 111 and the inner surface of the large-diameter tube 102, and increases the pressure loss when water passes. Here, by using the large-diameter pipe 102 in which the inner diameter of the water pipe used in the high-temperature part is larger than the inner diameter of the large-diameter pipe 101, a rapid increase in pressure loss can be suppressed even if some scale is attached. Can have a water-refrigerant heat exchanger that can withstand the use of

(実施の形態2)
本発明の第2の実施の形態について、図4〜図6を用いて説明する。第2の実施の形態は、実施の形態1で説明した中径管の表面に凹みを設けたことを特徴とし、その凹みが短径側の凹みより、長径側の凹みを深くしたことを特徴とするものである。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS. The second embodiment is characterized in that a recess is provided on the surface of the medium-diameter tube described in the first embodiment, and the recess has a deeper recess on the longer diameter side than the recess on the shorter diameter side. It is what.

図4〜図6において、図4は中径管の中心軸に直角方向の断面図、図5は図4を90度回転した中径管の断面図、図6は中径管の中心軸上で分割した断面の詳細図を示す。   4 to 6, FIG. 4 is a cross-sectional view perpendicular to the central axis of the medium-diameter tube, FIG. 5 is a cross-sectional view of the medium-diameter tube rotated 90 degrees from FIG. 4, and FIG. The detailed drawing of the cross section divided | segmented by is shown.

図4、図5において、111は中径管、112は小径管、152は小径管内を流れる低温の流体の流路、131は長径方向に設けた凹み、132は短径方向に設けた凹み、H1は長径方向の凹みの深さ、H2は短径方向の凹みの深さ、141は短径方向に加わる力を示す。図6において、2本の中径管111をねじり合わせ、大径管101内に挿入した状態を示す。   4 and 5, 111 is a medium-diameter pipe, 112 is a small-diameter pipe, 152 is a flow path of a low-temperature fluid flowing in the small-diameter pipe, 131 is a depression provided in the major axis direction, 132 is a depression provided in the minor axis direction, H1 is the depth of the recess in the major axis direction, H2 is the depth of the recess in the minor axis direction, and 141 is the force applied in the minor axis direction. FIG. 6 shows a state in which two medium-diameter pipes 111 are twisted and inserted into the large-diameter pipe 101.

以上のように構成された水冷媒熱交換器について、以下の動作、作用を説明する。   The following operation | movement and effect | action are demonstrated about the water refrigerant | coolant heat exchanger comprised as mentioned above.

図4、5において、中径管111の表面には、凹み131と132があり、凹み131は長径方向に設けた凹みで、深さH1を有しており、凹み132は短径方向に設けた凹みで、深さH2を有している。この深さは、短径方向の凹みの深さH2より、長径方向の凹みの深さH1を大きくしている。   4 and 5, the surface of the medium-diameter pipe 111 has dents 131 and 132. The dent 131 is a dent provided in the major axis direction and has a depth H1, and the dent 132 is provided in the minor axis direction. It is a dent and has a depth H2. This depth is greater than the depth H2 of the recess in the minor axis direction, and the depth H1 of the recess in the major axis direction.

ここで、図6に示すような中径管をねじり合わせる加工を施した際に、短径方向の力141が生じ、中径管111はつぶれようとするが、H1の深さが深いことで短径方向の力141が加わっても耐えることができ、つぶれることなく所定の小径管内の流路152を確保しながら、製造が可能となる。   Here, when the process of twisting the medium diameter pipes as shown in FIG. 6 is performed, a force 141 in the short diameter direction is generated, and the medium diameter pipe 111 tends to collapse, but the depth of H1 is deep. Even if the force 141 in the short diameter direction is applied, it can endure and can be manufactured while securing the flow path 152 in a predetermined small diameter pipe without being crushed.

また、長径方向の凹みの深さH1を深くすることで、小径管112内を通る流体の圧力損失の増加を抑制しながら、中径管の外表面の熱伝達率の向上を図ることができる。   Further, by increasing the depth H1 of the recess in the long diameter direction, it is possible to improve the heat transfer coefficient of the outer surface of the medium diameter pipe while suppressing an increase in pressure loss of the fluid passing through the small diameter pipe 112. .

以上のように、本発明に係る熱交換器は、ヒートポンプサイクルと給湯サイクルが一体に構成された一体型ヒートポンプ給湯機、別体に構成された分離型ヒートポンプ給湯機、給湯用熱交換器で加熱したお湯をそのまま出湯できる直接出湯型ヒートポンプ給湯機などの各種ヒートポンプ給湯機の水―冷媒熱交換器に適用でき、給湯機能のほかに、浴槽給湯、暖房機能、乾燥機能を有するヒートポンプ装置にも適用できる。   As described above, the heat exchanger according to the present invention is heated by an integrated heat pump water heater in which a heat pump cycle and a hot water supply cycle are integrated, a separate heat pump water heater configured separately, and a heat exchanger for hot water supply. It can be applied to water-refrigerant heat exchangers of various heat pump water heaters such as direct hot water heat pump water heaters that can discharge hot water as it is. it can.

100 水冷媒熱交換器
101、102 大径管
111 中径管
112 小径管
121 水入口管
122 水出口管
131 冷媒入口管
132 冷媒出口管
141 中径管が短径方向に受ける力
151 大径管内を流れる流体の流路
152 小径管内を流れる流体の流路
191、192 水の流れ方向
193、194 冷媒の流れ方向
D1 長径
D2 短径
H1、H2 凹みの深さ
DESCRIPTION OF SYMBOLS 100 Water refrigerant | coolant heat exchanger 101,102 Large diameter pipe 111 Medium diameter pipe 112 Small diameter pipe 121 Water inlet pipe 122 Water outlet pipe 131 Refrigerant inlet pipe 132 Refrigerant outlet pipe 141 The force which a medium diameter pipe receives to a short diameter direction 151 In large diameter pipe Fluid flow path 152 Fluid flow path in small diameter pipes 191, 192 Water flow direction 193, 194 Refrigerant flow direction D1 Long diameter D2 Short diameter H1, H2 Depth of recess

Claims (4)

1次流体が流れる配管と、
2次流体が流れる配管と、を備え、
前記2次流体が流れる配管は複数本で、かつ、前記1次流体が流れる前記配管内に配設されるとともに、
前記2次流体が流れる前記配管の長手方向の軸に対する直角断面が、楕円形状であり、
前記2次流体が流れる前記配管の外表面に多数の凹みを設け、
多数の前記凹みの深さは、短径方向の凹みより長径方向の凹みの方が深いことを特徴とする熱交換器。
Piping through which the primary fluid flows;
A pipe through which a secondary fluid flows,
In piping plurality of the secondary fluid flows, and, while being disposed in said pipe the primary fluid flows,
Section perpendicular relative to the longitudinal axis of the pipe where the secondary fluid flows, Ri elliptical der,
A number of depressions are provided on the outer surface of the pipe through which the secondary fluid flows,
The depth of a large number of the recesses is such that the recesses in the major axis direction are deeper than the recesses in the minor axis direction .
前記1次流体が流れる前記配管を大径菅とし
前記2次流体が流れる前記配管は、小径菅前記小径管の外周に密着させた中径管とを有し、
複数本の前記2次流体が流れる前記配管互いに螺旋状にねじり合わせて構成され、
複数本の前記2次流体が流れる前記配管が挿入される前記大径管の内径が、複数本の前記2次流体が流れる前記配管の長径の合計よりも小さいことを特徴とする請求項1に記載の熱交換器。
The pipe the primary fluid flows to a large径菅,
Wherein the secondary fluid flows piping possess a diameter pipes in which in close contact with the outer periphery of the small diameter but with the small diameter tube,
The pipe plurality of the secondary fluid flows are configured for twisting spirally with each other,
Claim the pipe which a plurality of the secondary fluid flows the inner diameter of the large diameter tube to be inserted may be smaller than the sum of the major diameter of the pipe a plurality of the secondary fluid flows 1 The heat exchanger as described in.
前記1次流体を水とし、水出口付近の前記1次流体が流れる前記配管の内径は、水入口付近の前記1次流体が流れる前記配管の内径より大きいことを特徴とする請求項1または2に記載の熱交換器。 The primary fluid and water, the inner diameter of the pipe in which the primary fluid in the vicinity of the water outlet flows, according to claim 1 or 2, characterized in that larger than the inner diameter of the pipe in which the primary fluid in the vicinity of the water inlet flows The heat exchanger as described in. 前記請求項1〜3のいずれか1項に記載の熱交換器を備えたヒートポンプ給湯機。
The heat pump water heater provided with the heat exchanger of any one of the said Claims 1-3 .
JP2010045155A 2010-03-02 2010-03-02 Heat exchanger and heat pump water heater using the same Expired - Fee Related JP5494017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045155A JP5494017B2 (en) 2010-03-02 2010-03-02 Heat exchanger and heat pump water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045155A JP5494017B2 (en) 2010-03-02 2010-03-02 Heat exchanger and heat pump water heater using the same

Publications (2)

Publication Number Publication Date
JP2011179763A JP2011179763A (en) 2011-09-15
JP5494017B2 true JP5494017B2 (en) 2014-05-14

Family

ID=44691450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045155A Expired - Fee Related JP5494017B2 (en) 2010-03-02 2010-03-02 Heat exchanger and heat pump water heater using the same

Country Status (1)

Country Link
JP (1) JP5494017B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317636A (en) * 1988-06-20 1989-12-22 Toshiba Corp Heat exchanger
JP4063237B2 (en) * 2004-04-06 2008-03-19 松下電器産業株式会社 Heat exchange device and heat pump water heater using the same
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger

Also Published As

Publication number Publication date
JP2011179763A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP4942773B2 (en) Heat transfer pipe for hot water supply
JP6032585B2 (en) Triple tube structure and heat exchanger
JPWO2008029639A1 (en) Corrugated heat transfer tube for hot water supply
JP2008139008A (en) Heat exchanger tube and heat exchanger using the same
JP2005083667A (en) Heat exchanger
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP5157617B2 (en) Heat exchanger
JP6211313B2 (en) Triple tube heat exchanger
JP5494017B2 (en) Heat exchanger and heat pump water heater using the same
JP2009264644A (en) Heat exchanger
CN105202950A (en) Shell-and-tube type heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2008267631A (en) Heat exchanger
CN106288928B (en) A kind of heat exchanger helical baffles
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP4947162B2 (en) Heat exchanger
JP2012007773A (en) Heat exchanger
CN206037815U (en) Spiral baffling board for heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2012007771A (en) Heat exchanger
CN109724446B (en) Enhanced heat transfer pipe and cracking furnace
JP2010210137A (en) Heat exchanger
JP5533328B2 (en) Heat exchanger
CN110411244A (en) Heat exchange sleeve and heat exchanger with the heat exchange sleeve
JP2011185467A (en) Heat transfer tube and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5494017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees