JP5493860B2 - 含フッ素重合体およびこれを有効成分とする表面改質剤 - Google Patents

含フッ素重合体およびこれを有効成分とする表面改質剤 Download PDF

Info

Publication number
JP5493860B2
JP5493860B2 JP2009532100A JP2009532100A JP5493860B2 JP 5493860 B2 JP5493860 B2 JP 5493860B2 JP 2009532100 A JP2009532100 A JP 2009532100A JP 2009532100 A JP2009532100 A JP 2009532100A JP 5493860 B2 JP5493860 B2 JP 5493860B2
Authority
JP
Japan
Prior art keywords
group
nmr
reaction product
surface modifier
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009532100A
Other languages
English (en)
Other versions
JPWO2009034773A1 (ja
Inventor
智 栗原
清一郎 村田
勝之 佐藤
雅可 堀内
すみ子 毛利
秀輝 阿部
吉山 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimatec Co Ltd
Original Assignee
Unimatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimatec Co Ltd filed Critical Unimatec Co Ltd
Priority to JP2009532100A priority Critical patent/JP5493860B2/ja
Publication of JPWO2009034773A1 publication Critical patent/JPWO2009034773A1/ja
Application granted granted Critical
Publication of JP5493860B2 publication Critical patent/JP5493860B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Description

本発明は、含フッ素重合体およびこれを有効成分とする表面改質剤に関する。さらに詳しくは、生体蓄積性が低いといわれている炭素数6以下のパーフルオロアルキル基を含有する(メタ)アクリル酸誘導体の単独重合体または共重合体である含フッ素重合体およびこれを有効成分とする表面改質剤に関する。
パーフルオロアルキル基含有アルコールのアクリル酸誘導体、例えばCF3(CF2)7CH2CH2OCOCH=CH2は、繊維用撥水撥油剤を形成する含フッ素共重合体の合成モノマーとして多量に使用されている。また、そのアクリレート化前駆体であるパーフルオロアルキルアルコールは、界面活性剤等として広く使用されている。
特公昭63−22237号公報
特許文献2には、基材の表面処理剤におけるパーフルオロアルキル基〔Rf〕含有(メタ)アクリレートの撥水撥油性の発現は、処理膜におけるRf基の配向に起因し、さらにRf基が配向するためにはRf基(炭素数8以上)に由来する微結晶の融点が存在することが必要であるとされ、そのため炭素数8以上のパーフルオロアルキル基を有するパーフルオロアルキル基含有(メタ)アクリレートが使用されてきたと記載されている。また、炭素数8以下のパーフルオロアルキル基を有するパーフルオロアルキル基含有(メタ)アクリレートを使用して、イソシアネート単量体非含有の場合においては、炭素数8以上でみられる撥水撥油性能への寄与は十分ではないことも示されている。
WO2004/035708
しかるに近年、自然界には存在しないパーフルオロオクタン酸(PFOA)あるいは炭素数8以上のパーフルオロアルキル基を有するパーフルオロアルキル基含有カルボン酸(PFCA)が大気中や河川等でその存在が確認されている。これらの化合物の内炭素数8前後のパーフルオロアルキル基を有する化合物は生体蓄積性が高く、環境に問題がみられるとの報告がなされており、今後はその製造や使用が困難になることが予測されている。
ここで、現在撥水撥油剤など表面改質剤の原料として用いられるテロマー化合物の内、炭素数8以上のパーフルオロアルキル基を有する化合物は、環境中でPFCAとなる可能性が示唆されており、今後はそれの製造、使用が困難となることが予測されている。一方、パーフルオロアルキル基の炭素数が6以下の化合物にあっては、生体蓄積性が低いといわれているものの、炭素数6以下のパーフルオロアルキル基を有する化合物では、表面改質剤等の製品に要求される性能を得ることは困難であるとされている。
本発明の目的は、生体蓄積性が低いといわれている炭素数6以下のパーフルオロアルキル基を有するポリフルオロアルキルアルコール(メタ)アクリル酸誘導体の単独重合体またはその共重合体よりなる含フッ素重合体およびこれを有効成分とする表面改質剤を提供することにある。
かかる本発明の目的は、一般式
CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOCOCR=CH2
(ここで、Rは水素原子またはメチル基であり、nは1〜6の整数であり、aは1〜4の整数であり、bは1〜3の整数であり、cは1〜3の整数である)で表されるポリフルオロアルキルアルコールアクリル酸誘導体または対応するメタクリル酸誘導体を重合単位で50〜100重量%含有する含フッ素重合体およびこれを有効成分とする表面改質剤によって達成される。上記一般式において、重合時の重合液安定性、溶解性、重合速度といった観点から、好ましくはnは2〜4の整数であり、aは1〜2の整数であり、bは1〜3の整数であり、cは1〜2の整数である。
本発明に係るポリフルオロアルキルアルコール(メタ)アクリル酸誘導体の単独重合体またはその共重合体である含フッ素重合体は、パーフルオロアルキル基が生体蓄積性の低い炭素数6以下で構成されているばかりではなく、分子中のフッ化ビニリデン由来のCH2CF2基が容易に脱HFして二重結合を形成し、それがオゾン分解を受けて分解し易いため、環境を阻害することが少なく、しかも従来の含フッ素重合体と同等の性能を有する、撥水撥油剤、オイルバリアなど表面改質剤の有効成分として好適に使用することができる。
含フッ素重合体の単量体として用いられるポリフルオロアルキルアルコール(メタ)アクリル酸誘導体は、一般式
CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH
で表されるポリフルオロアルキルアルコールをアクリル酸またはメタクリル酸とエステル化反応させることにより製造される。ここで、(メタ)アクリル酸とは、アクリル酸またはメタクリル酸を示している。このポリフルオロアルキルアルコールは、これに対応するポリフルオロアルキルアイオダイドから製造される。
ポリフルオロアルキルアルコール合成の出発原料となるポリフルオロアルキルアイオダイド
CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cI
は、一般式
CnF2n+1(CH2CF2)a(CF2CF2)bI 〔I〕
で表される末端ヨウ素化化合物にエチレンを付加反応させることにより製造される。エチレンの付加反応は、上記化合物〔I〕に過酸化物開始剤の存在下で加圧エチレンを付加させることにより行われ、その付加数は反応条件にもよるが、1以上、好ましくは1〜3、さらに好ましくは1である。なお、この付加反応は、用いられる開始剤の分解温度にも関係するが、一般に約80〜120℃の反応温度で行われ、低温で分解する過酸化物開始剤を用いた場合には80℃以下での反応が可能である。過酸化物開始剤としては、第3ブチルパーオキサイド、ジ(第3ブチルシクロヘキシル)パーオキシジカーボネート、ジセチルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ第2ブチルパーオキシジカーボネート等が挙げられ、反応の進行性および制御性の点から、上記化合物〔I〕に対して約1〜5モル%の割合で用いられる。
なお、上記化合物〔I〕は、次のような一連の工程を経て合成される。
(i)一般式
CnF2n+1I (n:1〜6)
で表されるパーフルオロアルキルアイオダイドを、上記の如き過酸化物開始剤(原料化合物に対し約0.1〜0.5モル%の使用量)の存在下でフッ化ビニリデンと反応させ、一般式
CnF2n+1(CH2CF2)aI 〔II〕
で表される化合物を得る
(ii)次いで上記一般式〔II〕で表される化合物に、過酸化物開始剤の存在下でテトラフルオロエチレンを反応させることにより、前記一般式〔I〕(bは1〜3の整数である)で表される末端ヨウ素化化合物が得られる。この反応に用いられる過酸化物開始剤としては、前記の如き有機過酸化物開始剤が(i)と同様の割合で用いられる。
フッ化ビニリデンおよびテトラフルオロエチレン付加反応の反応温度は、用いられる開始剤の分解温度にも依存するが、低温で分解する過酸化物開始剤を用いることにより、低圧条件下でも80℃以下での反応が可能である。反応は、CnF2n+1Iまたは前記化合物〔II〕をオートクレーブ内に入れ、その内温を昇温させて約10〜60℃、例えば50℃としたら、そこにCnF2n+1Iまたは化合物〔II〕に溶解した過酸化物系開始剤を加え、内温が例えば55℃になったら、フッ化ビニリデンまたはテトラフルオロエチレンを約0.1〜1.0MPaの圧力を保ちながら分添し、所望量を分添した後、例えば約55〜80℃の間の温度で約1時間程度エージングすることにより行われる。その添加量によって、反応によって付加したフッ化ビニリデンまたはテトラフルオロエチレン骨格の数aまたはbが左右される。一般には、種々のa値およびb値の混合物として形成される。
これらの反応が、低温で反応を行えるということは、エネルギーの使用量を減少させることが可能となるばかりではなく、設備内でのフッ酸等による腐食を抑制し、設備の更新頻度を減らすことができる。さらに、より廉価な材料の使用が可能となることから、更新頻度の減少と併せて、設備投資費用を廉価に抑えることができる。
エチレンが付加される具体的な化合物〔I〕としては、次のような化合物が例示される。この化合物は、種々のa値およびb値を有するオリゴマーの混合物であり、特定のa値およびb値を有するオリゴマーは混合物を蒸留することにより単離することができる。なお、所定のa値およびb値を有しないオリゴマーは、それを単離してまたは混合物のまま、再度フッ化ビニリデンまたはテトラフルオロエチレンとのオリゴマー数増加反応に用いることができる
C 2 F 5 (CH 2 CF 2 )(CF 2 CF 2 )I
C2F5(CH2CF2)(CF2CF2)2I
C2F5(CH2CF2)2(CF2CF2)I
C2F5(CH2CF2)2(CF2CF2)2I
C4F9(CH2CF2)(CF2CF2)I
C4F9(CH2CF2)2(CF2CF2)I
C4F9(CH2CF2)(CF2CF2)2I
C4F9(CH2CF2)2(CF2CF2)2I
ポリフルオロアルキルアルコールは、ポリフルオロアルキルアイオダイドをまずN-メチルホルムアミドHCONH(CH3)と反応させ、ポリフルオロアルキルアルコールとそのギ酸エステルとの混合物とした後、酸触媒の存在下でそれを加水分解反応することにより製造される。この反応に際しては、ポリフルオロアルキルアイオダイド中に結合されているフッ化ビニリデン由来のCH2CF2が脱HFを起こし、収率を低下させることを防止するために、好ましくは5〜10倍モル量程度のN-メチルホルムアミドを用い、また酸触媒としてp-トルエンスルホン酸の水溶液を用いることが好ましい。N-メチルホルムアミドとの反応は、約140〜160℃の温度で約4〜5時間程度行われ、次いで行われる加水分解反応は、約70〜90℃の温度で約7〜8時間程度行われる。
得られたポリフルオロアルキルアルコールは、これをアクリル酸またはメタクリル酸でエステル化反応させることができる。エステル化反応に際しては、まずポリフルオロアルキルアルコールにトルエン、ベンゼン等の芳香族炭化水素溶媒、p-トルエンスルホン酸等の触媒および重合禁止剤としてのハイドロキノンを加え、約90〜100℃に加熱した後、そこに約1〜2倍モル量のアクリル酸またはメタクリル酸を加え、約110〜120℃で約2〜5時間程度加熱し、脱水反応させて、エステル化反応が行われる。
ポリフルオロアルキルアルコール(メタ)アクリル酸誘導体は、それ単独でも重合されるが、他の含フッ素重合性単量体および/またはフッ素原子非含有重合性単量体と共重合させることも可能であり、含フッ素重合性単量体が用いられる場合には、それが有するポリフルオロアルキル基、好ましくはパーフルオロアルキル基の炭素数は1〜6、好ましくは2〜4でなければならない。
含フッ素重合性単量体としては、一般式
CH2=CRCOOR1-(NR2SO2)m-Rf
R:水素原子またはメチル基
R1:2価の有機基、好ましくは炭素数1〜4のアルキレン基または
ポリフルオロアルキレン基
R2:炭素数1〜5の低級アルキル基
Rf:炭素数1〜6、好ましくは2〜4のポリフルオロアルキル基、好ましくは
パーフルオロアルキル基
m:0または1
で表されるものが用いられ、例えば次のようなポリフルオロアルキル基含有(メタ)アクリレート単量体が示される。ただし、末端ポリフルオロアルキル基の炭素数nは1〜6でなければならず、R1基がポリフルオロアルキレン基で、m=0の場合には、末端ポリフルオロアルキル基との合計炭素数が1〜6でなければならない。
CH2=CHCOOCH2CnF2nH
CH2=C(CH3)COOCH2CnF2nH
CH2=CHCOOCH2CnF2n+1
CH2=C(CH3)COOCH2CnF2n+1
CH2=CHCOOC2H4CnF2n+1
CH2=C(CH3)COOC2H4CnF2n+1
CH2=CHCOOC3H6CnF2n+1
CH2=C(CH3)COOC3H6CnF2n+1
CH2=CHCOOC4H8CnF2n+1
CH2=C(CH3)COOC4H8CnF2n+1
CH2=CHCOOC2H4N(CH3)SO2CnF2n+1
CH2=C(CH3)COOC2H4N(CH3)SO2CnF2n+1
CH2=CHCOOC2H4N(C2H5)SO2CnF2n+1
CH2=C(CH3)COOC2H4N(C2H5)SO2CnF2n+1
CH2=CHCOOC2H4N(C3H7)SO2CnF2n+1
CH2=C(CH3)COOC2H4N(C3H7)SO2CnF2n+1
CH2=CHCOOC2H4CnF2nCF(CF3)2
CH2=C(CH3)COOC2H4CnF2nCF(CF3)2
また、フッ素原子非含有重合性単量体としては、好ましくは一般式
R3OCOCR=CH2
R:水素原子またはメチル基
R3:アルキル基、アルコキシアルキル基、シクロアルキル基、アリール基
またはアラルキル基
で表される(メタ)アクリル酸エステル、例えばメチル、エチル、プロピル、イソプロピル、n-ブチル、n-ヘキシル、2-エチルヘキシル、n-オクチル、ラウリル、ステアリル等のアルキル基、メトキシメチル、2-メトキシエチル、2-エトキシエチル、2-ブトキシエチル、3-エトキシプロピル等のアルコキシアルキル基、シクロヘキシル等のシクロアルキル基、フェニル等のアリール基、ベンジル等のアラルキル基でエステル化されたアクリル酸エステルまたはメタクリル酸エステル等が挙げられ、この他、フマル酸またはマレイン酸のモノメチル、ジメチル、モノエチル、ジエチル、モノプロピル、ジプロピル、モノブチル、ジブチル、モノ2-エチルヘキシル、ジ2-エチルヘキシル、モノオクチル、ジオクチル等のモノアルキルエステルまたはジアルキルエステル、酢酸ビニル、カプリル酸ビニル等のビニルエステル等も用いられる。さらに好ましくは、炭素数8以上の長鎖アルキル基、例えば2-エチルヘキシル、n-オクチル、ラウリル、ステアリル等のアルキル基を有するアルキル(メタ)アクリレート、シクロヘキシル等のシクロアルキル基、ベンジル等のアラルキル基等でエステル化されたアクリル酸エステル、特に好ましくはステアリル(メタ)アクリレート、ベンジル(メタ)アクリレートが、処理基材の塗膜性、撥水性、撥油性のバランス上好んで用いられる。ここで、(メタ)アクリレートとは、アクリレートまたはメタクリレートを示している。
これらの他の重合性単量体との共重合体にあっては、共重合体中ポリフルオロアルキルアルコール(メタ)アクリル酸誘導体単量体を約50重量%以上、好ましくは約50〜90重量%を占めるような割合で共重合させることが、撥水撥油性を発現させる上からは好ましい。勿論、この単量体が100重量%を占める単独重合体にあっても撥水撥油性が示されるが、コスト的にみれば他の共単量体との共重合体が有利であり、特にそれ自体撥水撥油性を示す前記ポリフルオロアルキル基含有(メタ)アクリレート単量体を、共重合体中50〜90重量%共重合させると、撥水撥油性およびコストの両面からみて好ましい。
共重合体中には、その特性が損われない範囲、例えば共重合体中30重量%以下の割合で他の共重合可能な単量体を共重合させることができる。かかる共重合可能な単量体としては、エチレン、スチレン、塩化ビニリデン、塩化ビニル、フッ化ビニル、フッ化ビニリデン、ビニルトルエン、α-メチルスチレン、p-メチルスチレン、ビニルナフタレン、アクリロニトリル、メタクリロニトリル、イソプレン、ペンタジエン、ブタジエン、クロロプレン、ビニルアルキルエーテル、ハロゲン化アルキルビニルエーテル、ビニルアルキルケトン、アジリジニルエチル(メタ)アクリレート、アジリジニル(メタ)アクリレート、ポリシロキサン含有(メタ)アクリレート、トリアリル(イソ)シアヌレート、アリルグリシジルエーテル、酢酸アリル、N-ビニルカルバゾール、マレイミド、N-メチルマレイミド、(2-ジメチルアミノ)エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、側鎖シリコン含有(メタ)アクリレート、ウレタン結合含有(メタ)アクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテルが挙げられる。
また、必要に応じて、多官能性単量体またはオリゴマーを共重合体中30重量%以下の割合で共重合させることもできる。かかる多官能性単量体またはオリゴマーとしては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ビスフェノールA・エチレンオキサイド付加物ジアクリレート、ジメチロールトリシクロデカンジアクリレート、グリセリンメタクリレートアクリレート、3-アクリロイルオキシグリセリンモノメタクリレート等が挙げられる。
この際、ラジカル重合開始剤と共に、架橋性基含有単量体、例えば(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチルアクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブトキシメチルアクリルアミド、ジアセトン(メタ)アクリルアミド、メチロール化ジアセトン(メタ)アクリルアミド、グリシジル(メタ)アクリレート等を加え、共重合体中約10重量%以下、好ましくは約0.5〜7重量%を占めるような割合で共重合させることができる。これらの架橋性基含有単量体を共重合させると、繊維表面の水酸基と架橋したりあるいは自己架橋して、表面改質剤の耐久性を高めることができる。ここで、(メタ)アクリルアミドとは、アクリルアミドまたはメタクリルアミドを示している。
重合反応に際しては、取扱いの簡便性といった観点から、好ましくは1,4-ビス(トリフルオロメチル)ベンゼン、1,1,1,2,2-ペンタフルオロ-3,3-ジクロロプロパン、1,1,2,2,3-ペンタフルオロ-1,3-ジクロロプロパン、1,1,1,2,3,4,4,5,5,5-デカフルオロペンタン、パーフルオロヘキサン等の含フッ素有機溶媒の少なくとも一種よりなる有機溶媒中または酢酸エチル等のエステル系の溶媒中で、ビス(4-第3ブチルシクロヘキシル)パーオキシジ
カーボネート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等の有機過酸化物を、重合性単量体に対して1〜4重量%、好ましくは1〜2重量%の割合で存在させ、約40〜60℃で15〜30時間程度反応させることにより重合反応が行われる。
ポリフルオロアルキルアルコール(メタ)アクリル酸誘導体の単独重合体または共重合体の製造方法はかかる溶液重合法に限定されず、例えば水を分散媒とし、ノニオン界面活性剤および/またはカチオン界面活性剤を含むけん濁重合法、乳化重合法なども用いられる。
このようにして得られるポリフルオロアルキルアルコール(メタ)アクリル酸誘導体の単独重合体または共重合体は、蒸発乾固する方法、無機塩等の凝集剤を添加して凝集させる方法などにより分離され、溶媒等で洗浄する方法により精製される。得られた単独重合体または共重合体の重量平均分子量Mwは、高速液体クロマトグラフィー法によって示され、その値は約2,000〜20,000,000となる。
溶液重合法により得られた重合体溶液は、さらに1,4-ビス(トリフルオロメチル)ベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン等の含フッ素有機溶媒、好ましくは重合反応に用いられたものと同じ有機溶媒によってその固形分濃度が約0.01〜30重量%、好ましくは約0.05〜5重量%に希釈され、表面改質剤として用いられる。水系の乳化重合法、けん濁重合法などによって得られる重合物については、そのままあるいは水で固形分濃度を約0.1〜10重量%に希釈した上で水性分散液として、または重合反応液に凝集剤を添加して重合物を凝集させ、水または有機溶媒で洗浄して分離された単独重合体または共重合体を水に分散または含フッ素有機溶媒に溶解させることにより、その水性分散液または有機溶媒溶液として、調製することもできる。水性分散液としては、好ましくは界面活性剤および水溶性有機溶媒を20%以下含有させたものが用いられる。かかる水性分散液または有機溶媒溶液は、例えば撥水撥油剤、オイルバリヤなどの表面改質剤として用いることができる。
この単独重合体または共重合体の水性分散液またはこれらの含フッ素有機溶媒溶液よりなる重合体溶液中には、さらに他の添加剤としてメラミン樹脂、尿素樹脂、ブロックドイ
ソシアネート等の架橋剤、重合体エクステンダー、シリコーン樹脂またはオイル、ワックス等の他の撥水剤、防虫剤、帯電防止剤、染料安定剤、防皺剤、ステインブロッカー等の表面改質剤用途に必要な添加剤を添加することができる。
このようにして得られる表面改質剤は、金属、紙、フィルム、繊維、布、織布、カーペットあるいはフィラメント、繊維、糸等で作られた布帛製品等に撥水撥油剤あるいは時計、モータ、一眼レフカメラのレンズ等の精密機械の摺動部品またはその摺動部品に近接する部品に対して摺動面から周辺部への潤滑オイルの滲み出しを防止するオイルバリアなど表面改質剤として有効に適用される。適用方法としては、塗布、浸漬、吹付け、パッディング、ロール被覆あるいはこれらの組合せ方法等が一般に用いられ、例えば浴の固形分濃度を約0.1〜10重量%とすることにより、パッド浴として使用される。このパッド浴に被処理材料をパッドし、次いで絞りロールで過剰の液を取り除いて乾燥し、被処理材料に対する重合体量が約0.01〜10重量%になるように付着せしめる。その後、被処理材料の種類にもよるが、一般には約100〜200℃の温度で約1分間乃至約2時間程度の乾燥が行われ、撥水撥油処理が終了する。
次に、実施例について本発明を説明する。
参考例1
(1) 攪拌機および温度計を備えた容量1200mlのオートクレーブに、
CF3(CF2)3(CH2CF2)(CF2CF2)I (99.8GC%)
603g(1.17モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80〜115℃に保ちながら、約3時間かけてエチレン49g(1.7モル)を導入した。内温50℃以下で内容物を回収し、
CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)I (98.3GC%)
635g(収率98.8%)を得た。
(2) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(1)で得られた
CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)I (98.3GC%)
100g(0.18モル)とN-メチルホルムアミド100g(1.68モル)を仕込み、150℃で4時間攪拌した。反応終了後、反応混合物を水30mlで洗浄し、その下層(82.8g)を15重量%p-トルエンスルホン酸水溶液83gと混合し、80℃で8時間攪拌した。反応混合物を静置後、下層として常温で無色透明の液体である反応生成物(78.4GC%)を60g(収率62.6%)得た。
反応生成物について、内圧0.2kPa、内温100〜144℃、塔頂温度58〜59℃の条件下で減圧蒸留を行い、精製反応生成物(95.4GC%)43.7g(蒸留収率88.2%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)OH
1H-NMR(CDCl3、TMS):δ2.89(CH 2 CF2)
2.35(CH 2 CH2)
3.95(CH2CH 2 )
2.61(OH)
19F-NMR(CDCl3、C6F6):ppm -82.01(CF 3 )
-126.71(CF3CF 2 CF2CF2)
-124.94(CF3CF2CF 2 CF2)
-113.08(CF3CF2CF2CF 2 )
-112.59(CH2CF 2 CF2CF2)
-126.82(CH2CF2CF 2 CF2)
-113.43(CH2CF2CF2CF 2 )
(3) 上記(2)で得られた反応生成物(95.4GC%)40.0g(0.09モル)、トルエン21g、p-トルエンスルホン酸1.7gおよびハイドロキノン0.05gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10.2g(0.14モル)を加え、内温115℃で2時間攪拌した。反応終了後、冷却して72gの反応液を回収し、エバポレータでトルエンを除去した残渣44.5gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(86.3GC%)を40.9g(収率82.6%)得た。
反応生成物について、内圧0.2kPa、内温103〜143℃、塔頂温度60〜61℃の条件下で減圧蒸留を行い、精製反応生成物(99.2GC%)15.7g(蒸留収率44.1%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.91(CH 2 CF2)
2.52(CH 2 CH2)
4.46(CH2CH 2 )
6.13(CH=CH2)
6.41、5.88(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -81.98(CF 3 )
-126.71(CF3CF 2 CF2CF2)
-124.93(CF3CF2CF 2 CF2)
-113.00(CF3CF2CF2CF 2 )
-112.56(CH2CF 2 CF2CF2)
-126.71(CH2CF2CF 2 CF2)
-113.57(CH2CF2CF2CF 2 )
参考例2
(4) 参考例1の(1)において、ポリフルオロアルキルアイオダイドとして
CF3(CF2)3(CH2CF2)(CF2CF2)2I (99.9GC%)
529g(0.86モル)を用い、またジ第3ブチルパーオキサイド量を5gに変更して、エチレン34g(1.2モル)を導入する反応を行い、
CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I (99.1GC%)
550g(収率99.4%)を得た。
(5) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(4)で得られた
CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I (99.1GC%)
150g(0.24モル)とN-メチルホルムアミド105g(1.78モル)を仕込み、150℃で5時間攪拌した。反応終了後、反応混合物を水40mlで洗浄し、その下層(132.3g)を15重量%p-トルエンスルホン酸水溶液135gと混合し、80℃で7時間攪拌した。反応混合物を静置後、下層として白色の固体である反応生成物(65.5GC%)を103g(収率53.5%)得た。
反応生成物について、内圧0.2kPa、内温121〜163℃、塔頂温度76〜77℃の条件下で減圧蒸留を行い、精製反応生成物(95.3GC%)66.9g(蒸留収率94.2%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OH
1H-NMR(CDCl3、TMS):δ2.91(CH 2 CF2)
2.39(CH 2 CH2)
3.99(CH2CH 2 )
1.83(OH)
19F-NMR(CDCl3、C6F6):ppm -82.11(CF 3 )
-126.92(CF3CF 2 CF2CF2)
-125.11(CF3CF2CF 2 CF2)
-113.11、-113.17(CF 2 CH2CF 2 )
-122.43(CH2CF2CF 2 CF2)
-124.49(CH2CF2CF2CF 2 )
-114.52(CF 2 CF2CH2CH2)
-124.94(CF2CF 2 CH2CH2)
(6) 上記(5)で得られた反応生成物(95.4GC%)60.0g(0.11モル)、トルエン29g、p-トルエンスルホン酸1.6gおよびハイドロキノン0.07gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10g(0.14モル)を加え、内温118℃で3時間攪拌した。反応終了後、冷却して82gの反応液を回収し、エバポレータでトルエンを除去した残渣63.9gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(89.3GC%)を60.8g(収率86.4%)得た。
反応生成物について、内圧0.2kPa、内温125〜155℃、塔頂温度84〜86℃の条件下で減圧蒸留を行い、精製反応生成物(99.4GC%)42.2g(蒸留収率77.2%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.91(CH 2 CF2)
2.51(CH 2 CH2)
4.46(CH2CH 2 )
6.13(CH=CH2)
6.41、5.88(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -81.95(CF 3 )
-126.64(CF3CF 2 CF2CF2)
-124.80(CF3CF2CF 2 CF2)
-112.83(CF 2 CH2CF2)
-122.05(CH2CF 2 CF2CF2)
-124.13(CH2CF2CF 2 CF2)
-114.36(CF 2 CF2CH2CH2)
-124.45(CF2CF 2 CH2CH2)
参考例3
(7) 参考例1の(1)において、ポリフルオロアルキルアイオダイドとして
CF3(CF2)3(CH2CF2)2I (99.1GC%)
621g(1.30モル)を用い、またジ第3ブチルパーオキサイド量を8gに変更してエチレン53g(1.9モル)を導入する反応を行い、
CF3(CF2)3(CH2CF2)2(CH2CH2)I (98.2GC%)
655g(収率98.6%)を得た。
(8) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(7)で得られた
CF3(CF2)3(CH2CF2)2(CH2CH2)I (98.2GC%)
100g(0.20モル)とN-メチルホルムアミド108g(1.82モル)を仕込み、150℃で4時間攪拌した。反応終了後、反応混合物を水30mlで洗浄し、その下層(84.2g)を15重量%p-トルエンスルホン酸水溶液83gと混合し、80℃で8時間攪拌した。反応混合物を静置後、下層として常温で無色透明の液体である反応生成物(79.3GC%)を61g(収率68.2%)得た。
反応生成物について、内圧0.2kPa、内温120〜164℃、塔頂温度68〜69℃の条件下で減圧蒸留を行い、精製反応生成物(95.4GC%)43.7g(蒸留収率86.2%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)2(CH2CH2)OH
1H-NMR(CDCl3、TMS):δ2.83(CF2CH 2 CF2CH2)
3.44(CF2CH2CF2CH 2 )
2.39(CH 2 CH2)
3.99(CH2CH 2 )
3.47(OH)
19F-NMR(CDCl3、C6F6):ppm -82.1(CF 3 )
-126.4(CF3CF 2 CF2CF2)
-125.6(CF3CF2CF 2 CF2)
-113.7(CF3CF2CF2CF 2 )
-101.1(CH2CF 2 CH2CF2)
-105.2(CH2CF2CH2CF 2 )
(9) 上記(8)で得られた反応生成物(95.4GC%)40.0g(0.10モル)、トルエン22g、p-トルエンスルホン酸1.8gおよびハイドロキノン0.05gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10.5g(0.14モル)を加え、内温115℃で2時間攪拌した。反応終了後、冷却して74gの反応液を回収し、エバポレータでトルエンを除去した残渣45.2gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(87.4GC%)を40.7g(収率83.1%)得た。
反応生成物について、内圧0.2kPa、内温123〜163℃、塔頂温度71〜72℃の条件下で減圧蒸留を行い、精製反応生成物(99.3GC%)16.1g(蒸留収率44.9%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)2(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.83(CF2CH 2 CF2CH2)
3.45(CF2CH2CF2CH 2 )
2.52(CH 2 CH2)
4.45(CH2CH 2 )
6.13(CH=CH2)
6.41、5.88(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -82.1(CF 3 )
-126.3(CF3CF 2 CF2CF2)
-125.6(CF3CF2CF 2 CF2)
-113.7(CF3CF2CF2CF 2 )
-101.3(CH2CF 2 CH2CF2)
-105.1(CH2CF2CH2CF 2 )
実施例1
参考例1で得られた最終反応生成物(99.2GC%)
CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)OCOCH=CH2
10g、1,4-ビス(トリフルオロメチル)ベンゼン 35gおよびビス(4-第3ブチルシクロヘキシル)パーオキシジカーボネート 0.16gを、コンデンサを備えた容量50mlのナスフラスコに仕込み、マグネットスターラで攪拌しながら、50℃で16時間重合反応を行い、固形分濃度21.6重量%の重合体溶液を得た。
なお、用いられた重合体溶液を120℃のオーブンに入れて溶媒を除去して単離した含フッ素重合体の重量平均分子量Mwは、30,000であった。ここで、重量平均分子量Mwの測定は、Shodex GPC KD806 M+KD-802+KD-Gを用い、温度40℃、溶出液である10mM THFの溶出速度を1ml/分としてGPC測定により行われ、検出器は視差屈折計、解析はSIC製Labchat180(ポリスチレン換算)によって行われた。
実施例2
実施例1において、参考例1で得られた最終反応生成物の代わりに、同量の参考例2で得られた最終反応生成物(99.4GC%)
CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2
が用いられ、固形分濃度21.3重量%の重合体溶液を得た。ここで得られた含フッ素重合体の重量平均分子量Mwは、35,000であった。
比較例1
実施例1において、参考例1で得られた最終反応生成物の代わりに、同量の参考例3で得られた最終反応生成物(99.3GC%)
CF3(CF2)3(CH2CF2)2(CH2CH2)OCOCH=CH2
が用いられ、21.2重量%の重合体溶液を得た。ここで得られた含フッ素重合体の重量平均分子量Mwは、20,000であった。
比較例
実施例1において、参考例1で得られた最終反応生成物の代りに、同モル量の
CnF2n+1(CH2CH2)OCOCH=CH2 n:4 (比較例)
n:6 (比較例)
n:8 (比較例)
を用いて重合反応を行い、固形分濃度21.3重量%の重合体溶液を得た。
以上の実施例1〜よび比較例で得られた重合体溶液を、1,4-ビス(トリフルオロメチル)ベンゼンを用いて固形分濃度2重量%に希釈し、撥水撥油性能の一つの指標である静的接触角の測定を各種有機溶媒および水について行った。
静的接触角の測定:上記希釈液1mLを2×5cmのステンレス鋼板に塗り、50℃、30分間乾燥させて試験板を作成し、作成された板の表面における各種有機溶媒および水の静的接触角を、協和界面科学社製液滴式投影型接触角計を用いて、セシルドロップ法により測定した
得られた結果は、次の表1に示される。各実施例の静的接触角は、比較例(n=8)と同等の性能を示すことが確認された。
表1
ヘプタン オクタン デカン ドデカン テトラデカン
実施例1 45° 48° 58° 65° 76° 118°
〃 2 58° 61° 66° 70° 75° 120°
比較例1 36° 41° 52° 58° 71° 115°
36° 40° 52° 59° 71° 114°
42° 48° 56° 64° 79° 118°
58° 60° 66° 72° 78° 120°
実施例
参考例2で得られた最終反応生成物(99.4GC%)
CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2
40g(0.07モル)、ベンジルメタクリレート〔BzMA〕10g(0.06モル)、重合溶媒としてのパーフルオロヘキサンC6F14 200gおよびビス(4-第3ブチルシクロヘキシル)パーオキシジカーボネート 0.7gを、コンデンサを備えた容量250mlのナスフラスコに仕込み、マグネットスターラで攪拌しながら、50℃で21時間重合反応を行い、固形分濃度19.8重量%の共重合体溶液を得た。得られた含フッ素共重合体の重量平均分子量Mwを実施例1と同様に測定したところ、36,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが45.3モル%であった。
参考例4
(10) 参考例1の(1)において、ポリフルオロアルキルアイオダイドとして
CF3(CF2)(CH2CF2)(CF2CF2)3I (99.7GC%)
712g(1.17モル)が用いられ、
CF3(CF2)(CH2CF2)(CF2CF2)3(CH2CH2)I (98.3GC%)
754g(収率99.6%)を得た。
(11) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(10)で得られた
CF3(CF2)(CH2CF2)(CF2CF2)3(CH2CH2)I (98.3GC%)
113g(0.18モル)とN-メチルホルムアミド100g(1.68モル)を仕込み、150℃で4時間攪拌した。反応終了後、反応混合物を水30mlで洗浄し、その下層(103g)を15重量%p-トルエンスルホン酸水溶液83gと混合し、80℃で8時間攪拌した。反応混合物を静置後、下層として常温で無色透明の液体である反応生成物(70.5GC%)を73g(収率55.1%)得た。
反応生成物について、内圧0.2kPa、内温126〜165℃、塔頂温度75〜78℃の条件下で減圧蒸留を行い、精製反応生成物(95.9GC%)45.2g(蒸留収率84.2%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)(CF2CF2)3(CH2CH2)OH
1H-NMR(CDCl3、TMS):δ2.83(CH 2 CF2)
2.39(CH 2 CH2)
3.99(CH2CH 2 )
1.83(OH)
19F-NMR(CDCl3、C6F6):ppm -87.1(CF 3 )
-116.8(CF3CF 2 )
-113.1(CH2CF 2 CF2CF2CF2CF2CF2CF2)
-122.9(CF3CF2CF 2 CF2CF2CF2CF2CF2)
-122.6(CH2CF2CF2CF 2 CF2CF2CF2CF2)
-122.6(CH2CF2CF2CF2CF 2 CF2CF2CF2)
-124.2(CH2CF2CF2CF2CF2CF 2 CF2CF2)
-124.7(CH2CF2CF2CF2CF2CF2CF 2 CF2)
-144.4(CH2CF2CF2CF2CF2CF2CF2CF 2 )
(12) 上記(11)で得られた反応生成物(95.9GC%)41.0g(0.08モル)、トルエン21g、p-トルエンスルホン酸1.7gおよびハイドロキノン0.05gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10.1g(0.14モル)を加え、内温115℃で2時間攪拌した。反応終了後、冷却して75gの反応液を回収し、エバポレータでトルエンを除去した残渣43.0gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(87.6GC%)を45.3g(収率88.8%)得た。
反応生成物について、内圧0.2kPa、内温125〜160℃、塔頂温度85〜87℃の条件下で減圧蒸留を行い、精製反応生成物(99.5GC%)18.9g(蒸留収率47.4%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)(CF2CF2)3(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.88(CH 2 CF2)
2.51(CH 2 CH2)
4.46(CH2CH 2 )
6.13(CH=CH2)
6.41、5.88(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -87.0(CF 3 )
-116.7(CF3CF 2 )
-112.8(CH2CF 2 CF2CF2CF2CF2CF2CF2)
-122.7(CH2CF2CF 2 CF2CF2CF2CF2CF2)
-122.3(CH2CF2CF2CF 2 CF2CF2CF2CF2)
-122.3(CH2CF2CF2CF2CF 2 CF2CF2CF2)
-123.9(CH2CF2CF2CF2CF2CF 2 CF2CF2)
-124.3(CH2CF2CF2CF2CF2CF2CF 2 CF2)
-144.3(CH2CF2CF2CF2CF2CF2CF2CF 2 )
参考例5
(13) 参考例1の(1)において、ポリフルオロアルキルアイオダイドとして
CF3(CF2)(CH2CF2)2(CF2CF2)2I (99.8GC%)
670g(1.17モル)が用いられ、
CF3(CF2)(CH2CF2)2(CF2CF2)2(CH2CH2)I (98.4GC%)
711g(収率99.5%)を得た。
(14) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(13)で得られた
CF3(CF2)(CH2CF2)2(CF2CF2)2(CH2CH2)I (98.4GC%)
107g(0.18モル)とN-メチルホルムアミド100g(1.68モル)を仕込み、150℃で4時間攪拌した。反応終了後、反応混合物を水30mlで洗浄し、その下層(83g)を15重量%p-トルエンスルホン酸水溶液83gと混合し、80℃で8時間攪拌した。反応混合物を静置後、下層として白色の固体である反応生成物(75.6GC%)を66g(収率57.2%)得た。
反応生成物について、内圧0.2kPa、内温123〜163℃、塔頂温度72〜74℃の条件下で減圧蒸留を行い、精製反応生成物(94.8GC%)44.6g(蒸留収率84.7%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)2(CF2CF2)2(CH2CH2)OH
1H-NMR(CDCl3、TMS):δ2.83(CH 2 CF2CH2CF2)
2.86(CH2CF2CH 2 CF2)
2.37(CH 2 CH2)
3.96(CH2CH 2 )
2.59(OH)
19F-NMR(CDCl3、C6F6):ppm -87.0(CF 3 )
-116.7(CF3CF 2 )
-112.3(CH2CF 2 CH2CF2)
-113.0(CH2CF2CH2CF 2 )
-121.4(CF 2 CF2CF2CF2CH2)
-124.3(CF2CF 2 CF2CF2CH2)
-124.7(CF2CF2CF 2 CF2CH2)
-114.3(CF2CF2CF2CF 2 CH2)
(15) 上記(14)で得られた反応生成物(94.8GC%)42g(0.09モル)、トルエン21g、p-トルエンスルホン酸1.7gおよびハイドロキノン0.05gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10.1g(0.14モル)を加え、内温115℃で2時間攪拌した。反応終了後、冷却して71gの反応液を回収し、エバポレータでトルエンを除去した残渣45.1gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(86.2GC%)を43.8g(収率81.0%)得た。
反応生成物について、内圧0.2kPa、内温122〜160℃、塔頂温度86〜88℃の条件下で減圧蒸留を行い、精製反応生成物(99.2GC%)15.6g(蒸留収率41.0%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)2(CF2CF2)2(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.86(CH 2 CF2CH2CF2)
2.88(CH2CF2CH 2 CF2)
2.51(CH 2 CH2)
4.46(CH2CH 2 )
6.13(CH=CH2)
6.41、5.88(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -87.0(CF 3 )
-116.7(CF3CF 2 )
-114.8(CH2CF 2 CH2CF2)
-112.9(CH2CF2CH2CF 2 )
-122.1(CF 2 CF2CF2CF2CH2)
-124.5(CF2CF 2 CF2CF2CH2)
-124.7(CF2CF2CF 2 CF2CH2)
-114.4(CF2CF2CF2CF 2 CH2)
参考例6
(16) 参考例1の(1)において、ポリフルオロアルキルアイオダイドとして
CF3(CF2)3(CH2CF2)2(CF2CF2)I (99.7GC%)
670g(1.17モル)が用いられ、
CF3(CF2)3(CH2CF2)2(CF2CF2)(CH2CH2)I (98.5GC%)
706g(収率99.0%)を得た。
(17) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(16)で得られた
CF3(CF2)3(CH2CF2)2(CF2CF2)(CH2CH2)I (98.5GC%)
107g(0.18モル)とN-メチルホルムアミド100g(1.68モル)を仕込み、150℃で4時間攪拌した。反応終了後、反応混合物を水30mlで洗浄し、その下層(82g)を15重量%p-トルエンスルホン酸水溶液83gと混合し、80℃で8時間攪拌した。反応混合物を静置後、下層として白色の固体である反応生成物(73.8GC%)を65g(収率55.0%)得た。
反応生成物について、内圧0.2kPa、内温126〜167℃、塔頂温度75〜76℃の条件下で減圧蒸留を行い、精製反応生成物(95.2GC%)44.1g(蒸留収率87.5%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)2(CF2CF2)(CH2CH2)OH
1H-NMR(CDCl3、TMS):δ2.84(CH 2 CF2CH2CF2)
2.89(CH2CF2CH 2 CF2)
2.35(CH 2 CH2)
3.95(CH2CH 2 )
2.61(OH)
19F-NMR(CDCl3、C6F6):ppm -82.0(CF 3 )
-126.7(CF3CF 2 CF2CF2)
-124.9(CF3CF2CF 2 CF2)
-113.1(CF3CF2CF2CF 2 )
-112.4(CH2CF 2 CH2CF2)
-112.6(CH2CF2CH2CF 2 )
-126.8(CH2CF2CF 2 CF2)
-113.4(CH2CF2CF2CF 2 )
(18) 上記(17)で得られた反応生成物(95.2GC%)42g(0.09モル)、トルエン21g、p-トルエンスルホン酸1.7gおよびハイドロキノン0.05gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10.1g(0.14モル)を加え、内温115℃で2時間攪拌した。反応終了後、冷却して69gの反応液を回収し、エバポレータでトルエンを除去した残渣43.1gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(85.9GC%)を44.5g(収率81.7%)得た。
反応生成物について、内圧0.2kPa、内温125〜158℃、塔頂温度85〜86℃の条件下で減圧蒸留を行い、精製反応生成物(99.0GC%)15.7g(蒸留収率40.7%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)3(CH2CF2)2(CF2CF2)(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.88(CH 2 CF2CH2CF2)
2.91(CH2CF2CH 2 CF2)
2.52(CH 2 CH2)
4.46(CH2CH 2 )
6.13(CH=CH2)
6.41、5.88(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -81.9(CF 3 )
-126.7(CF3CF 2 CF2CF2)
-124.9(CF3CF2CF 2 CF2)
-113.0(CF3CF2CF2CF 2 )
-112.4(CH2CF 2 CH2CF2)
-112.6(CH2CF2CH2CF 2 )
-126.7(CH2CF2CF 2 CF2)
-113.6(CH2CF2CF2CF 2 )
参考例7
(19) 参考例1の(1)において、ポリフルオロアルキルアイオダイドとして
CF3(CF2)(CH2CF2)(CF2CF2)2I (99.6GC%)
594g(1.17モル)が用いられ、
CF3(CF2)(CH2CF2)(CF2CF2)2(CH2CH2)I (98.9GC%)
627g(収率98.9%)を得た。
(20) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(19)で得られた
CF3(CF2)(CH2CF2)(CF2CF2)2(CH2CH2)I (98.9GC%)
95.8g(0.18モル)とN-メチルホルムアミド100g(1.68モル)を仕込み、150℃で4時間攪拌した。反応終了後、反応混合物を水30mlで洗浄し、その下層(82g)を15重量%p-トルエンスルホン酸水溶液83gと混合し、80℃で8時間攪拌した。反応混合物を静置後、下層として白色の固体である反応生成物(76.4GC%)を62g(収率62.1%)得た。
反応生成物について、内圧0.2kPa、内温100〜157℃、塔頂温度59〜61℃の条件下で減圧蒸留を行い、精製反応生成物(94.9GC%)42.6g(蒸留収率85.3%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)(CF2CF2)2(CH2CH2)OH
1 H-NMR(CDCl 3 、TMS):δ2.37(CH 2 CH2)
3.96(CH2CH 2 )
2.59(OH)
19F-NMR(CDCl3、C6F6):ppm -87.0(CF 3 )
-116.7(CF3CF 2 )
-113.0(CH2CF 2 CF2CF2CF2CF2)
-121.4(CH2CF2CF 2 CF2CF2CF2)
-124.3(CH2CF2CF2CF 2 CF2CF2)
-124.7(CH2CF2CF2CF2CF 2 CF2)
-114.3(CH2CF2CF2CF2CF2CF 2 )
(21) 上記(20)で得られた反応生成物(94.9GC%)37g(0.09モル)、トルエン21g、p-トルエンスルホン酸1.7gおよびハイドロキノン0.05gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10.1g(0.14モル)を加え、内温115℃で2時間攪拌した。反応終了後、冷却して74gの反応液を回収し、エバポレータでトルエンを除去した残渣43.9gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(86.2GC%)を40.8g(収率85.4%)得た。
反応生成物について、内圧0.2kPa、内温114〜155℃、塔頂温度66〜69℃の条件下で減圧蒸留を行い、精製反応生成物(99.1GC%)13.8g(蒸留収率38.9%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.88(CH 2 CF2)
2.51(CH 2 CH2)
4.46(CH2CH 2 )
6.13(CH=CH2)
6.41、5.89(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -87.0(CF 3 )
-116.7(CF3CF 2 )
-112.9(CH2CF 2 CF2CF2CF2CF2)
-122.1(CH2CF2CF 2 CF2CF2CF2)
-124.5(CH2CF2CF2CF 2 CF2CF2)
-124.7(CH2CF2CF2CF2CF 2 CF2)
-114.4(CH2CF2CF2CF2CF2CF 2 )
参考例8
(22) 参考例1の(1)において、ポリフルオロアルキルアイオダイドとして
CF3(CF2)(CH2CF2)2(CF2CF2)I (99.8GC%)
554g(1.17モル)が用いられ、
CF3(CF2)(CH2CF2)2(CF2CF2)(CH2CH2)I (99.1GC%)
587g(収率99.2%)を得た。
(23) コンデンサおよび温度計を備えた容量200mlの三口フラスコに、上記(22)で得られた
CF3(CF2)(CH2CF2)2(CF2CF2)(CH2CH2)I (99.1GC%)
90g(0.18モル)とN-メチルホルムアミド100g(1.68モル)を仕込み、150℃で4時間攪拌した。反応終了後、反応混合物を水30mlで洗浄し、その下層(83g)を15重量%p-トルエンスルホン酸水溶液83gと混合し、80℃で8時間攪拌した。反応混合物を静置後、下層として白色の固体である反応生成物(75.3GC%)を56g(収率60.3%)得た。
反応生成物について、内圧0.2kPa、内温103〜155℃、塔頂温度56〜57℃の条件下で減圧蒸留を行い、精製反応生成物(95.3GC%)38.0g(蒸留収率85.9%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)2(CF2CF2)(CH2CH2)OH
1H-NMR(CDCl3、TMS):δ2.82(CH 2 CF2CH2CF2)
2.85(CH2CF2CH 2 CF2)
2.33(CH 2 CH2)
3.92(CH2CH 2 )
3.38(OH)
19F-NMR(CDCl3、C6F6):ppm -87.0(CF 3 )
-116.7(CF3CF 2 )
-112.6(CH2CF 2 CH2CF2)
-112.9(CH2CF 2 CF2CF2)
-124.7(CH2CF2CF 2 CF2)
-114.3(CH2CF2CF2CF 2 )
(24) 上記(23)で得られた反応生成物(95.3GC%)34g(0.09モル)、トルエン21g、p-トルエンスルホン酸1.7gおよびハイドロキノン0.05gを、コンデンサおよび温度計を備えた容量100mlの三口フラスコに仕込み、内温を100℃迄加熱した後アクリル酸10.1g(0.14モル)を加え、内温115℃で2時間攪拌した。反応終了後、冷却して76gの反応液を回収し、エバポレータでトルエンを除去した残渣43.5gを水道水で洗浄し、下層として常温で無色透明の液体である反応生成物(86.9GC%)を40.3g(収率84.7%)得た。
反応生成物について、内圧0.2kPa、内温100〜145℃、塔頂温度63〜65℃の条件下で減圧蒸留を行い、精製反応生成物(99.6GC%)15.6g(蒸留収率44.4%)を得た。
得られた精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物であることが確認された。
CF3(CF2)(CH2CF2)2(CF2CF2)(CH2CH2)OCOCH=CH2
1H-NMR(CDCl3、TMS):δ2.84(CH 2 CF2CH2CF2)
2.91(CH2CF2CH 2 CF2)
2.51(CH 2 CH2)
4.46(CH2CH 2 )
6.13(CH=CH2)
6.41、5.89(CH=CH 2 )
19F-NMR(CDCl3、C6F6):ppm -87.0(CF 3 )
-116.7(CF3CF 2 )
-112.6(CH2CF 2 CH2CF2)
-112.9(CH2CF 2 CF2CF2)
-124.7(CH2CF2CF 2 CF2)
-114.4(CH2CF2CF2CF 2 )
実施例
実施例において、参考例2で得られた最終反応生成物の代わりに、同モル量の参考例4で得られた最終反応生成物(99.5GC%)
CF3(CF2)(CH2CF2)(CF2CF2)3(CH2CH2)OCOCH=CH2
が、また重合溶媒として同量の1,1,1,2,2-ペンタフルオロ-3,3-ジクロロプロパンおよび1,1,2,2,3-ペンタフルオロ-1,3-ジクロロプロパンの混合溶媒(重量比45:55)が用いられ、固形分濃度19.8重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、35,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが45.2モル%であった。
実施例
実施例において、参考例2で得られた最終反応生成物の代わりに、同モル量の参考例5で得られた最終反応生成物(99.2GC%)
CF3(CF2)(CH2CF2)2(CF2CF2)2(CH2CH2)OCOCH=CH2
が、また重合溶媒として同量の1,3-ビストリフルオロメチルベンゼンが用いられ、固形分濃度19.6重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、34,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが43.2モル%であった。
実施例
実施例において、参考例2で得られた最終反応生成物の代わりに、同モル量の参考例6で得られた最終反応生成物(99.0GC%)
CF3(CF2)3(CH2CF2)2(CF2CF2)(CH2CH2)OCOCH=CH2
が、また重合溶媒として同量の1,4-ビストリフルオロメチルベンゼンが用いられ、固形分濃度19.7重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、35,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが43.6モル%であった。
実施例
実施例において、参考例2で得られた最終反応生成物の代わりに同モル量の参考例7で得られた最終反応生成物(99.1GC%)
CF3(CF2)(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2
が、また重合溶媒として同量のメチルパーフルオロブチルエーテルC4F9OCH3が用いられ、固形分濃度19.8重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、37,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが40.8モル%であった。
実施例
実施例において、参考例2で得られた最終反応生成物の代わりに、同モル量の参考例8で得られた最終反応生成物(99.6GC%)
CF3(CF2)(CH2CF2)2(CF2CF2)(CH2CH2)OCOCH=CH2
が、また重合溶媒として同量のCF3CHFCHFCF2CF3が用いられ、固形分濃度19.8重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、38,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが38.7モル%であった。
実施例
実施例において、参考例2で得られた最終反応生成物の代わりに、同モル量の参考例1で得られた最終反応生成物(99.2GC%)
CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)OCOCH=CH2
が、また重合溶媒として同量の酢酸エチルが用いられ、固形分濃度19.6重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、38,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが40.3モル%であった。
実施例10
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルメタクリレート〔StMA〕が用いられ、固形分濃度19.6重量%の重合体溶液を得た。ここで得られた含フッ素重合体の重量平均分子量Mwは、34,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StMAが29.8モル%であった。
実施例11
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルメタクリレートが用いられ、固形分濃度19.7重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、33,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StMAが30.0モル%であった。
実施例12
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルメタクリレートが用いられ、固形分濃度19.8重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、34,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StMAが28.3モル%であった。
実施例13
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルメタクリレートが用いられ、固形分濃度19.6重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、33,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StMAが28.5モル%であった。
実施例14
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルメタクリレートが用いられ、固形分濃度19.7重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、35,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StMAが25.8モル%であった。
実施例15
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルメタクリレートが用いられ、固形分濃度19.8重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、35,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StMAが24.3モル%であった。
実施例16
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルメタクリレートが用いられ、固形分濃度19.6重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、34,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StMAが25.6モル%であった。
実施例17
実施例において、ベンジルメタクリレートの代わりに同モル量のベンジルアクリレート〔BzA〕が用いられ、固形分濃度19.6重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、36,000であった。なお、1H-NMRで測定した共重合比は、共重合体中BzAが47.0モル%であった。
実施例18
実施例において、ベンジルメタクリレートの代わりに同モル量のステアリルアクリレート〔StA〕が用いられ、固形分濃度19.5重量%の共重合体溶液を得た。ここで得られた含フッ素共重合体の重量平均分子量Mwは、37,000であった。なお、1H-NMRで測定した共重合比は、共重合体中StAが29.9モル%であった。
比較例
実施例において、参考例2で得られた最終反応生成物の代わりに CF3(CF2)5(CH2)2OCOCH=CH2 が同量用いられ、固形分濃度19.8重量%の共重合体溶液を得た。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが37.0モル%であった。
比較例
実施例において、参考例2で得られた最終反応生成物の代わりに CF3(CF2)7(CH2)2OCOCH=CH2 が同量用いられ、固形分濃度19.7重量%の共重合体溶液を得た。なお、1H-NMRで測定した共重合比は、共重合体中BzMAが42.2モル%であった。
以上の実施例3〜18および比較例で得られた共重合体溶液を、それぞれの重合に際して用いられた重合溶媒を用いて固形分濃度2重量%に希釈し、撥水撥油性能(オイルバリア性)の一つの指標である静的接触角の測定を、実施例1と同様に、水およびデカンについて行い、また下記の方法によりオイル拡散試験を行った。
オイル拡散試験:グリース(協同油脂製品マルテンプ-SRL)封入ベアリングに、刷毛を用いて上記希釈液を塗布して室温下で乾燥を行い、ベアリングからのオイルの染み出し量として、塗布後のベアリングの重量を量り、オイル減少量を計測した上でその割合を算出した
得られた結果は、次の表2に示される。
表2
デカン オイル拡散試験(%)
実施例 71° 121° 0
72° 122° 0
71° 122° 0
72° 122° 0
67° 117° 0
66° 118° 0
66° 117° 0
10 72° 122° 0
11 72° 121° 0
12 71° 122° 0
13 71° 121° 0
14 66° 118° 0
15 67° 117° 0
16 66° 117° 0
17 72° 122° 0
18 72° 121° 0
比較例 51° 111° 3
72° 121° 0
実施例19
500mlガラス製反応器に、参考例2で得られた反応生成物 CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2 73.0g(0.125モル)、2-ヒドロキシエチルアクリレート6.0g、ベンジルメタクリレート22.0g、ポリアルキレングリコールモノメタクリレート4.0g、ポリオキシエチレンアルキルエーテル7.0g、アセトン80.0g、n-ドデシルメルカプタン0.5gおよび水220.0gを高圧ホモジナイザーを用いて60Mpaで乳化処理し、次いで得られた乳化液を窒素ガスで30分間置換した後、塩化ビニリデン11.0g、N-メチロールアクリルアミド6.0g、2,2′-アゾビス(2-アミジノプロパン)・2塩酸塩2.5gおよび水30.0gよりなる水溶液を投入し、70℃で4時間反応させた。反応後冷却し、固形分濃度25.1%の共重合体水性分散液485gを得た。
比較例
実施例19において、CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2の代わりに、CF3(CF2)7(CH2CH2)OCOCH=CH2 65.0g(0.125モル)が用いられ、固形分濃度21.0%の共重合体水性分散液452gを得た。
比較例
実施例19において、CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2の代わりに、CF3(CF2)5(CH2CH2)OCOCH=CH2 52.0g(0.125モル)が用いられ、固形分濃度22.7%の共重合体水性分散液466gを得た。
比較例
実施例19において、CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OCOCH=CH2の代わりに、CF3(CF2)3(CH2CH2)OCOCH=CH2 40.0g(0.125モル)が用いられ、固形分濃度24.4%の共重合体水性分散液480gを得た。
以上の実施例19および比較例で得られた共重合体水性分散液を、水で0.5重量%の固形分濃度に希釈し、そこに綿布、綿/ポリエステル混紡布、ポリエステル布、ナイロン布の各布の浸漬を行い、撥水性能(JIS L1092準拠)および撥油性能(AATCC-TM118準拠)を測定した。その際の絞り後のウエット ピックアップは、綿布110%、綿/ポリエステル混紡布75%、ポリエステル布115%、ナイロン布45%であった。乾燥は、80℃で10分間実施し、キュアは綿布、綿/ポリエステル混紡布、ポリエステル布については150℃、3分間、ナイロン布については170℃、1.5分間行った。
得られた結果は、次の表3に示される。なお、表中の各数値は、撥油性評価/撥水性評価を示している。
表3
撥水・撥油性能 実施例19 比較例7 比較例8 比較例9
綿 6/100 6/100 5/70 4/70
綿/ポリエステル 7/100 7/100 5/80 4/50
ポリエステル 6/100 6/100 5/70 4/70
ナイロン 7/100 7/100 7/80 5/70

Claims (12)

  1. 一般式
    CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOCOCR=CH2
    (ここで、Rは水素原子またはメチル基であり、nは1〜6の整数であり、aは1〜4の整数であり、bは1〜3の整数であり、cは1〜3の整数である)で表されるポリフルオロアルキルアルコールアクリル酸誘導体または対応するメタクリル酸誘導体を重合単位で50〜100重量%含有し、重量平均分子量Mwが2,000〜20,000,000である含フッ素重合体。
  2. ポリフルオロアルキルアルコールアクリル酸誘導体または対応するメタクリル酸誘導体に、一般式
    CH2=CRCOOR1-(NR2SO2)m-Rf
    (ここで、Rは水素原子またはメチル基であり、R1は2価の有機基であり、R2は炭素数1〜5の低級アルキル基であり、Rfは炭素数1〜6のポリフルオロアルキル基であり、mは0または1である)で表されるポリフルオロアルキル基含有アクリレート単量体または対応するメタクリレート単量体および/またはフッ素原子非含有重合性単量体を共重合させた請求項1記載の含フッ素重合体。
  3. ポリフルオロアルキルアルコールアクリル酸誘導体または対応するメタクリル酸誘導体と共重合されるポリフルオロアルキル基含有アクリレート単量体または対応するメタクリレート単量体において、R1基がポリフルオロアルキレン基でかつm=0の場合には、末端ポリフルオロアルキル基との合計炭素数が1〜6である請求項2記載の含フッ素重合体。
  4. ポリフルオロアルキルアルコールアクリル酸誘導体または対応するメタクリル酸誘導体と共重合されるフッ素原子非含有重合性単量体が、一般式
    R3OCOCR=CH2
    (ここで、Rは水素原子またはメチル基であり、R3はアルキル基、アルコキシアルキル基、シクロアルキル基、アリール基またはアラルキル基である)で表されるアクリル酸エステルまたはメタクリル酸エステル、フマル酸またはマレイン酸のモノアルキルエステルまたはジアルキルエステル、あるいはビニルエステルである請求項記載の含フッ素重合体。
  5. 請求項1記載の含フッ素重合体を有効成分とする表面改質剤。
  6. 有機溶媒溶液として調製された請求項5記載の表面改質剤。
  7. 含フッ素有機溶媒溶液として調製された請求項6記載の表面改質剤。
  8. 有機溶媒が、エステル系溶媒である請求項6記載の表面改質剤。
  9. エステル系溶媒が、酢酸エチルである請求項8記載の表面改質剤。
  10. 水性分散液として調製された請求項5記載の表面改質剤。
  11. 撥水撥油剤として用いられる請求項5、6、7、8、9または10記載の表面改質剤。
  12. オイルバリアとして用いられる請求項5、6、7、8、9または10記載の表面改質剤。
JP2009532100A 2007-09-10 2008-07-16 含フッ素重合体およびこれを有効成分とする表面改質剤 Active JP5493860B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009532100A JP5493860B2 (ja) 2007-09-10 2008-07-16 含フッ素重合体およびこれを有効成分とする表面改質剤

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007233554 2007-09-10
JP2007233554 2007-09-10
JP2007233555 2007-09-10
JP2007233555 2007-09-10
JP2009532100A JP5493860B2 (ja) 2007-09-10 2008-07-16 含フッ素重合体およびこれを有効成分とする表面改質剤
PCT/JP2008/062783 WO2009034773A1 (ja) 2007-09-10 2008-07-16 含フッ素重合体およびこれを有効成分とする表面改質剤

Publications (2)

Publication Number Publication Date
JPWO2009034773A1 JPWO2009034773A1 (ja) 2010-12-24
JP5493860B2 true JP5493860B2 (ja) 2014-05-14

Family

ID=40451785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009532100A Active JP5493860B2 (ja) 2007-09-10 2008-07-16 含フッ素重合体およびこれを有効成分とする表面改質剤

Country Status (7)

Country Link
US (1) US8501888B2 (ja)
EP (1) EP2189481B1 (ja)
JP (1) JP5493860B2 (ja)
KR (1) KR101131428B1 (ja)
CN (1) CN101802028B (ja)
CA (1) CA2697402C (ja)
WO (1) WO2009034773A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228356B1 (en) * 2006-03-10 2016-06-22 Unimatec Co., Ltd. Polyfluoroalkyl iodide and process for producing the same
JP4715958B2 (ja) * 2009-11-04 2011-07-06 ユニマテック株式会社 ポリフルオロアルキルホスホン酸塩乳化剤
US9029452B2 (en) * 2010-05-27 2015-05-12 E I Du Pont De Nemours And Company Fluoropolymer additive for coatings
US9290596B2 (en) * 2010-05-27 2016-03-22 The Chemours Company Fc, Llc Solvent-based fluoropolymer additives and their use in coating compositions
WO2012020735A1 (ja) 2010-08-11 2012-02-16 旭硝子株式会社 撥水剤組成物、その製造方法、疎水性基材処理剤組成物および物品
WO2012036036A1 (ja) 2010-09-13 2012-03-22 ユニマテック株式会社 含フッ素共重合体
JP5482762B2 (ja) 2011-10-18 2014-05-07 ユニマテック株式会社 含フッ素共重合体およびこれを有効成分とする表面改質剤
JP5397519B2 (ja) * 2011-10-19 2014-01-22 ダイキン工業株式会社 含フッ素組成物およびその用途
JP5397520B2 (ja) * 2011-10-19 2014-01-22 ダイキン工業株式会社 含フッ素組成物および表面処理剤
JP5397521B2 (ja) * 2011-10-19 2014-01-22 ダイキン工業株式会社 含フッ素組成物および含フッ素重合体
JP5692000B2 (ja) * 2011-10-27 2015-04-01 信越化学工業株式会社 硬化性樹脂組成物
JP5541272B2 (ja) 2011-12-12 2014-07-09 ユニマテック株式会社 含フッ素共重合体およびそれを有効成分とする撥水撥油剤
EP2835396B1 (en) * 2012-04-06 2016-11-02 Nitto Denko Corporation Breathable sheet imparted with oil repellent properties
JP6037643B2 (ja) * 2012-04-06 2016-12-07 日東電工株式会社 撥油性が付与された通気フィルム
JP5880390B2 (ja) * 2012-10-24 2016-03-09 信越化学工業株式会社 粘着剤用離型性組成物
KR102008301B1 (ko) * 2013-01-18 2019-08-07 엘지디스플레이 주식회사 투명기판 표면처리방법 및 표면처리된 투명기판을 포함하는 표시소자
US9803044B2 (en) 2013-03-06 2017-10-31 Unimatec Co., Ltd. Fluorine-containing oligomer, nano-silica composite particles using the same, and methods for producing both
JPWO2014136895A1 (ja) * 2013-03-06 2017-02-16 ユニマテック株式会社 含フッ素オリゴマー、それを用いたナノシリカコンポジット粒子およびそれらの製造法
JP2014172952A (ja) * 2013-03-07 2014-09-22 Unimatec Co Ltd 含フッ素重合体およびこれを有効成分とする表面改質剤
CN105873964A (zh) * 2013-11-01 2016-08-17 优迈特株式会社 含氟聚合物及将其作为有效成分的表面改性剂
JP5734406B1 (ja) * 2013-12-25 2015-06-17 ユニマテック株式会社 含フッ素2ブロック共重合体
JP6326966B2 (ja) * 2014-05-26 2018-05-23 ユニマテック株式会社 含フッ素ウレタン(メタ)アクリレートの製造法
JP6316686B2 (ja) * 2014-07-04 2018-04-25 旭化成株式会社 ペリクル、ペリクル付フォトマスク、及び半導体素子の製造方法
KR102494401B1 (ko) 2015-02-13 2023-02-02 유니마테크 가부시키가이샤 함불소 공중합체 및 이것을 유효 성분으로 하는 표면개질제
JP6693571B2 (ja) * 2016-11-01 2020-05-13 ユニマテック株式会社 含フッ素重合体およびこれを有効成分とする防錆剤
EP3604317B1 (en) * 2017-03-22 2021-09-29 Unimatec Co., Ltd. Polyfluoroalkyl phosphoric acid ester or salt thereof, and release agent having same as active ingredient
JPWO2021065137A1 (ja) * 2019-10-03 2021-04-08
EP4372058A1 (en) 2021-07-12 2024-05-22 Unimatec Co., Ltd. Fluorine-containing copolymer and surface-modified substrate using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911818A (ja) * 1972-03-16 1974-02-01
JPS5055689A (ja) * 1973-09-12 1975-05-15

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547861A (en) * 1968-04-12 1970-12-15 Allied Chem Novel fluorinated acrylates and polyacrylates
JPS59108081A (ja) 1982-12-13 1984-06-22 Nippon Mektron Ltd 撥水撥油剤
US5725789A (en) * 1995-03-31 1998-03-10 Minnesota Mining And Manufacturing Company Aqueous oil and water repellent compositions
AU707886B2 (en) * 1995-07-27 1999-07-22 Asahi Glass Company Limited Water and oil repellent composition, treating method therewith and copolymer
EP1553151B1 (en) 2002-10-15 2010-01-20 Asahi Glass Company, Limited Water-and-oil repellant composition
JP3972824B2 (ja) * 2003-01-28 2007-09-05 ユニマテック株式会社 水性分散液の製造法
EP2228356B1 (en) * 2006-03-10 2016-06-22 Unimatec Co., Ltd. Polyfluoroalkyl iodide and process for producing the same
US20080202384A1 (en) * 2007-02-28 2008-08-28 Sheng Peng Fluoropolymer compositions and method of use
US8318877B2 (en) * 2008-05-20 2012-11-27 E.I. Du Pont De Nemours And Company Ethylene tetrafluoroethylene (meth)acrylate copolymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911818A (ja) * 1972-03-16 1974-02-01
JPS5055689A (ja) * 1973-09-12 1975-05-15

Also Published As

Publication number Publication date
CA2697402C (en) 2013-01-22
CA2697402A1 (en) 2009-03-19
KR101131428B1 (ko) 2012-04-03
WO2009034773A1 (ja) 2009-03-19
CN101802028B (zh) 2012-08-29
US8501888B2 (en) 2013-08-06
JPWO2009034773A1 (ja) 2010-12-24
EP2189481B1 (en) 2014-02-12
EP2189481A1 (en) 2010-05-26
KR20100059881A (ko) 2010-06-04
EP2189481A4 (en) 2010-12-15
CN101802028A (zh) 2010-08-11
US20110009555A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5493860B2 (ja) 含フッ素重合体およびこれを有効成分とする表面改質剤
WO2010101091A1 (ja) 含フッ素重合体を有効成分とする表面改質剤
JP5167649B2 (ja) 含フッ素重合体からなる汚れ脱離剤
EP1736486B1 (en) Fluorine-containing monomer, fluorine-containing polymer and surface treating agent
JP2004352976A (ja) 含フッ素重合体を含んでなる表面処理剤
JP2014172952A (ja) 含フッ素重合体およびこれを有効成分とする表面改質剤
US20090302262A1 (en) Fluorous telomeric compounds and polymers containing same
CA2849662A1 (en) Fluorine-containing copolymer and surface modifier comprising the same as active ingredient
JP5003759B2 (ja) フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤
EP3064517B1 (en) Fluorine-containing polymer, and surface modifier containing same as active ingredient
JP6693571B2 (ja) 含フッ素重合体およびこれを有効成分とする防錆剤

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250