JP5492625B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5492625B2
JP5492625B2 JP2010070488A JP2010070488A JP5492625B2 JP 5492625 B2 JP5492625 B2 JP 5492625B2 JP 2010070488 A JP2010070488 A JP 2010070488A JP 2010070488 A JP2010070488 A JP 2010070488A JP 5492625 B2 JP5492625 B2 JP 5492625B2
Authority
JP
Japan
Prior art keywords
compressor
minimum
frequency
time
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010070488A
Other languages
Japanese (ja)
Other versions
JP2011202885A (en
Inventor
智子 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2010070488A priority Critical patent/JP5492625B2/en
Publication of JP2011202885A publication Critical patent/JP2011202885A/en
Application granted granted Critical
Publication of JP5492625B2 publication Critical patent/JP5492625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、室内温度に応じて圧縮機の運転および運転周波数を制御する空気調和機に関する。   The present invention relates to an air conditioner that controls the operation and operating frequency of a compressor in accordance with the room temperature.

空気調和機は、圧縮機の運転を室内温度センサの検知温度と設定室内温度との比較に基づいてオン,オフ制御するとともに、その運転オン時の運転周波数を同検知温度と設定室内温度との差に応じて可変制御する。   The air conditioner performs on / off control of the compressor operation based on a comparison between the detected temperature of the indoor temperature sensor and the set indoor temperature, and the operating frequency at the time of the on operation is calculated between the detected temperature and the set indoor temperature. Variable control is performed according to the difference.

冷房時の圧縮機の運転オン,オフおよび運転周波数の制御例を図6に示す。初めは設定室内温度Tsが低く定められているので、運転オンが継続して運転周波数Fが低下していく。その後、利用者により設定室内温度Tsが上昇方向にシフトされた場合や、日中から夜間へ外気温が低下した時のように熱負荷が小さくなった場合、検知温度Taが設定室内温度Tsより低くなったところで(サーモオフ)、圧縮機(コンプ)が運転オフ(サーモオフ)する。   FIG. 6 shows a control example of on / off operation of the compressor and operation frequency during cooling. Initially, since the set room temperature Ts is set low, the operation is continuously turned on and the operation frequency F decreases. Thereafter, when the set room temperature Ts is shifted upward by the user, or when the heat load is reduced, such as when the outside air temperature decreases from daytime to nighttime, the detected temperature Ta is higher than the set room temperature Ts. When it becomes low (thermo off), the compressor (comp) is turned off (thermo off).

運転オフにより検知温度Taが上昇していき、その検知温度Taが設定室内温度Tsより所定値以上高くなると、圧縮機が運転オン(サーモオン)する。このとき、圧縮機保護用の最小運転時間である例えば20分間は、検知温度Taの変化にかかわらず、圧縮機の運転オンが継続するとともに、圧縮機の運転周波数Fが同保護用の予め定められている起動用運転周波数Fsを維持する。   When the operation is turned off, the detected temperature Ta rises, and when the detected temperature Ta becomes higher than the set indoor temperature Ts by a predetermined value or more, the compressor is turned on (thermo-on). At this time, for example, for 20 minutes, which is the minimum operation time for protecting the compressor, the compressor continues to be turned on regardless of the change in the detected temperature Ta, and the operating frequency F of the compressor is predetermined for the protection. The startup operating frequency Fs is maintained.

この運転オン時、起動用運転周波数Fsでの圧縮機能力が室内熱負荷より大きければ、検知温度Taが設定室内温度Tsを大きく下回る。その結果、最小運転時間の20分間が経過したとき、圧縮機が直ちに運転オフする。   When the operation is turned on, if the compression function force at the starting operation frequency Fs is larger than the indoor heat load, the detected temperature Ta is significantly lower than the set indoor temperature Ts. As a result, when the minimum operation time of 20 minutes has elapsed, the compressor is immediately turned off.

室内熱負荷の条件によっては、この運転オフの時間が運転オンの時間の2倍に満たないうちに検知温度Taが設定室内温度Tsより所定値以上高くなり、以後、圧縮機が運転オン,オフを頻繁に繰り返す。   Depending on the conditions of the indoor heat load, the detected temperature Ta becomes higher than the set indoor temperature Ts by a predetermined value before the operation OFF time is less than twice the operation ON time. Thereafter, the compressor is turned ON / OFF. Repeat frequently.

圧縮機が運転オン,オフを頻繁に繰り返す空気調和機として、例えば特許文献1に示すものがある。   For example, Patent Document 1 discloses an air conditioner in which a compressor frequently repeats operation on and off.

特開2004−347263号公報JP 2004-347263 A

圧縮機の運転オン,オフの頻繁な繰り返しは、室内温度の上下変動を招き、蒸し暑さと冷え過ぎの繰り返しにより非常に不快な環境となる。省エネルギー性の面でも好ましくない。   Frequent repetition of on / off operation of the compressor leads to up and down fluctuations in the room temperature, and the environment becomes very unpleasant due to repeated heat and cold. It is not preferable in terms of energy saving.

この発明は上記の事情を考慮したもので、その目的は、圧縮機の運転オン,オフの頻繁な繰り返しを防ぐことができ、これにより室内温度の上下変動を抑えて快適性の向上が図れるとともに、省エネルギー性の向上が図れる空気調和機を提供することにある。   The present invention takes the above-mentioned circumstances into consideration, and an object thereof is to prevent frequent repetition of on / off of the compressor, thereby improving comfort by suppressing up and down fluctuations in indoor temperature. An object of the present invention is to provide an air conditioner that can improve energy saving.

この発明の空気調和機は、圧縮機、室外熱交換器、減圧器、室内熱交換器を接続して冷媒を循環させる冷凍サイクルと、室内温度を検知する室内温度センサと、前記圧縮機の運転を前記室内温度センサの検知温度Taと設定室内温度Tsとの比較に基づいてオン,オフするとともに、その運転オン時の運転周波数Fを前記室内温度センサの検知温度Taと設定室内温度Tsとの差に応じて且つ予め定められている起動用運転周波数Fsから始めて同予め定められている最低運転周波数Fminと最高運転周波数Fmaxとの間で可変制御する第1制御手段と、この第1制御手段による前記圧縮機の運転オンの回数Nが設定回数Nsに達したとき、その各運転オンの時間tonがいずれも圧縮機保護用の最小運転時間ton1と同じで、かつ各運転オン時の運転周波数Fの各平均値Fxが設定値Fxsより大きく、かつ各運転オンの合間の各運転オフの時間toffが設定値toff1より小さいことを条件に、前記第1制御手段による前記圧縮機の次の運転オフ制御のタイミングにおいて、かつ直前の運転周波数Fが最低運転周波数Fminより大きい場合のみ、前記圧縮機を最低運転周波数Fminで連続運転する第2制御手段と、を備える。 An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, a decompressor, a refrigeration cycle that circulates refrigerant by connecting an indoor heat exchanger, an indoor temperature sensor that detects indoor temperature, and the operation of the compressor Is turned on and off based on the comparison between the detected temperature Ta of the indoor temperature sensor and the set indoor temperature Ts, and the operation frequency F at the time of the operation being turned on is determined between the detected temperature Ta of the indoor temperature sensor and the set indoor temperature Ts. First control means for variably controlling between a predetermined minimum operating frequency Fmin and a maximum operating frequency Fmax, starting from a predetermined starting operating frequency Fs according to the difference, and the first control means When the compressor operation-on count N by N reaches the set number Ns, each operation-on time ton is the same as the minimum operation time ton1 for compressor protection, and the operation when each operation is on. On the condition that each average value Fx of the frequency F is larger than the set value Fxs and each operation-off time toff between each operation-on is smaller than the set value toff1, the next control unit of the compressor by the first control means And a second control means for continuously operating the compressor at the minimum operating frequency Fmin only at the timing of the operation OFF control and only when the immediately preceding operating frequency F is greater than the minimum operating frequency Fmin .

この発明の空気調和機によれば、圧縮機の運転オン,オフの頻繁な繰り返しを防ぐことができる。これにより、室内温度の上下変動を抑えて快適性の向上が図れるとともに、省エネルギー性の向上が図れる。   According to the air conditioner of the present invention, frequent repetition of operation on and off of the compressor can be prevented. Thereby, the vertical fluctuation of the room temperature can be suppressed and the comfort can be improved, and the energy saving can be improved.

この発明の各実施形態の構成を示す図。The figure which shows the structure of each embodiment of this invention. 第1の実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of 1st Embodiment. 第1の実施形態における圧縮機の運転オン,オフおよび運転周波数の変化を室内温度変化と共に示す図。The figure which shows the driving | operation ON / OFF of the compressor in 1st Embodiment, and the change of an operating frequency with the indoor temperature change. 第2の実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of 2nd Embodiment. 第2の実施形態における圧縮機の運転オン,オフおよび運転周波数の変化を室内温度変化と共に示す図。The figure which shows the driving | operation ON / OFF of the compressor in 2nd Embodiment, and the change of an operating frequency with a room temperature change. 従来における圧縮機の運転オン,オフおよび運転周波数の制御を示す図。The figure which shows control of the operation on and off of the compressor in the past, and the operation frequency.

[1]第1の実施形態
以下、この発明の第1の実施形態について図面を参照しながら説明する。
図1に示すように、圧縮機1の冷媒吐出管に四方弁2を介して室外熱交換器3を接続し、その室外熱交換器3に減圧器たとえば電子膨張弁(流量調整弁)4を介して室内熱交換器5aを接続している。さらに、室内熱交換器5aに電子膨張弁(流量調整弁)6を介して室内熱交換器5bを接続し、その室内熱交換器5bに上記四方弁2を介して圧縮機1の冷媒吸込管を接続している。これら接続により、ヒートポンプ式冷凍サイクルを構成している。そして、室外熱交換器3に外気を送るための室外ファン7、室内熱交換器5a,5bに室内空気を循環させるための室内ファン8を設けている。また、室内ファン8によって吸込まれる室内空気の風路に室内温度センサ9を設けている。この室内温度センサ9は、室内温度Taを検知する。
[1] First embodiment
A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, an outdoor heat exchanger 3 is connected to a refrigerant discharge pipe of a compressor 1 via a four-way valve 2, and a decompressor, for example, an electronic expansion valve (flow rate adjusting valve) 4 is connected to the outdoor heat exchanger 3. The indoor heat exchanger 5a is connected via Further, an indoor heat exchanger 5b is connected to the indoor heat exchanger 5a via an electronic expansion valve (flow rate adjusting valve) 6, and the refrigerant suction pipe of the compressor 1 is connected to the indoor heat exchanger 5b via the four-way valve 2. Is connected. These connections constitute a heat pump refrigeration cycle. An outdoor fan 7 for sending outside air to the outdoor heat exchanger 3 and an indoor fan 8 for circulating indoor air in the indoor heat exchangers 5a and 5b are provided. In addition, an indoor temperature sensor 9 is provided in the air path of the indoor air sucked by the indoor fan 8. The indoor temperature sensor 9 detects the indoor temperature Ta.

冷房運転時は、実線矢印で示すように、圧縮機1が吐出する高温高圧のガス冷媒が四方弁2を通って室外熱交換器3に流れる。室外熱交換器3に流れたガス冷媒は、外気に熱を放出して凝縮し、液冷媒となる。この液冷媒が電子膨張弁4で減圧されて室内熱交換器5aに流れる。室内熱交換器5aに流れた液冷媒は全開状態の電子膨張弁6を通って室内熱交換器5bにも流入する。これら室内熱交換器5a,5bに流れた液冷媒は、室内空気から熱を奪って蒸発し、ガス冷媒となる。このガス冷媒が四方弁2を通って圧縮機1に戻る。こうして、室内熱交換器5a,5bが蒸発器として機能することにより、室内空気が冷却される。   During the cooling operation, as indicated by the solid line arrow, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the outdoor heat exchanger 3 through the four-way valve 2. The gas refrigerant that has flowed to the outdoor heat exchanger 3 releases heat to the outside air, condenses, and becomes a liquid refrigerant. This liquid refrigerant is decompressed by the electronic expansion valve 4 and flows to the indoor heat exchanger 5a. The liquid refrigerant that has flowed into the indoor heat exchanger 5a flows into the indoor heat exchanger 5b through the fully expanded electronic expansion valve 6. The liquid refrigerant that has flowed through the indoor heat exchangers 5a and 5b takes heat from the indoor air and evaporates to become a gas refrigerant. This gas refrigerant returns to the compressor 1 through the four-way valve 2. Thus, the indoor heat exchangers 5a and 5b function as an evaporator, thereby cooling the indoor air.

除湿運転時は、冷房時と同じ冷媒の流れを形成し、かつ電子膨張弁6の開度を絞ることにより、室内熱交換器5aを凝縮器、室内熱交換器5bを蒸発器として機能させる。   During the dehumidifying operation, the same refrigerant flow as that during cooling is formed, and the opening degree of the electronic expansion valve 6 is reduced, so that the indoor heat exchanger 5a functions as a condenser and the indoor heat exchanger 5b functions as an evaporator.

暖房時は、破線矢印で示すように、圧縮機1が吐出する高温高圧のガス冷媒が四方弁2を通って室内熱交換器5bに流れる。室内熱交換器5bに流れたガス冷媒は全開状態の電子膨張弁6を通って室内熱交換器5bにも流入する。これら室内熱交換器5a,5bに流れたガス冷媒は、室内空気に熱を放出して凝縮し、液冷媒となる。この液冷媒が電子膨張弁4で減圧して室外熱交換器3に流れる。室外熱交換器3流れた液冷媒は、外気から熱を汲み上げて蒸発し、ガス冷媒となる。このガス冷媒が四方弁2を通って圧縮機1に戻る。こうして、室内熱交換器5a,5bが凝縮器として機能することにより、室内空気が暖められる。   At the time of heating, as indicated by broken line arrows, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the four-way valve 2 to the indoor heat exchanger 5b. The gas refrigerant that has flowed into the indoor heat exchanger 5b flows into the indoor heat exchanger 5b through the fully-expanded electronic expansion valve 6. The gas refrigerant that has flowed into the indoor heat exchangers 5a and 5b releases heat to the indoor air and condenses to become liquid refrigerant. The liquid refrigerant is depressurized by the electronic expansion valve 4 and flows to the outdoor heat exchanger 3. The liquid refrigerant that has flowed through the outdoor heat exchanger 3 draws heat from the outside air and evaporates to become a gas refrigerant. This gas refrigerant returns to the compressor 1 through the four-way valve 2. Thus, the indoor heat exchangers 5a and 5b function as condensers, thereby warming the indoor air.

一方、制御部10に、上記電子膨張弁4,6、室外ファン7、室内ファン8、室内温度センサ9、インバータ11、リモートコントロール式の操作器(リモコンという)12を接続している。インバータ11は、制御部10の指令に応じた周波数Fの駆動電力を圧縮機1に対する駆動用として出力する。この出力周波数Fのことを、以下、運転周波数Fという。   On the other hand, the electronic expansion valves 4 and 6, the outdoor fan 7, the indoor fan 8, the indoor temperature sensor 9, the inverter 11, and a remote control type operation device (referred to as a remote controller) 12 are connected to the control unit 10. The inverter 11 outputs driving power having a frequency F corresponding to the command from the control unit 10 for driving the compressor 1. This output frequency F is hereinafter referred to as an operation frequency F.

制御部10は、主要な機能として次の(1)(2)の手段を有する。
(1)室内温度センサ9の検知温度Taに応じて圧縮機1の運転および運転周波数Fを制御する第1制御手段。具体的には、圧縮機1の運転を室内温度センサ9の検知温度Taとリモコン12の設定室内温度Tsとの比較に基づいてオン,オフするとともに、その運転オン時の運転周波数Fを上記検知温度Taと設定室内温度Tsとの差に応じて且つ圧縮機保護用として予め定められている起動用運転周波数Fsから始めて同じように予め定められている最低運転周波数Fminと最高運転周波数Fmaxとの間で可変制御する。なお、起動用運転周波数Fsは、例えば、最低運転周波数Fminの2倍より大きい値である。
The control unit 10 has the following means (1) and (2) as main functions.
(1) First control means for controlling the operation of the compressor 1 and the operation frequency F according to the detected temperature Ta of the indoor temperature sensor 9. Specifically, the operation of the compressor 1 is turned on / off based on the comparison between the detected temperature Ta of the indoor temperature sensor 9 and the set indoor temperature Ts of the remote controller 12, and the operating frequency F when the operation is on is detected. The minimum operating frequency Fmin and the maximum operating frequency Fmax that are determined in advance in the same manner starting from the starting operating frequency Fs that is determined in advance according to the difference between the temperature Ta and the set room temperature Ts and that is used for protecting the compressor. Variable control between. The starting operation frequency Fs is, for example, a value larger than twice the minimum operation frequency Fmin.

(2)圧縮機1が運転オン,オフを繰り返す場合に、圧縮機1を上記起動用運転周波数Fsより低い運転周波数で連続運転する第2制御手段。具体的には、第1制御手段による圧縮機1の運転オン(サーモオン)の回数Nが設定回数Nsに達したとき、その各運転オンの時間tonがいずれも圧縮機保護用の最小運転時間ton1と同じで、かつ各運転オン時の運転周波数Fの各平均値Fxが設定値Fxsより大きく、かつ各運転オンの合間の各運転オフの時間toffが設定値toff1より小さいことを条件に、第1制御手段による圧縮機1の次の運転オフ(サーモオフ)制御のタイミングにおいて、かつ直前の運転周波数Fが最低運転周波数Fminより大きい場合のみ、圧縮機1を最低運転周波数Fminで連続運転する。なお、設定値Fxsは、例えば、最低運転周波数Fminの2倍の値である。設定値toff1は、例えば、圧縮機保護用の最小運転時間ton1の2倍の値である。   (2) Second control means for continuously operating the compressor 1 at an operation frequency lower than the start-up operation frequency Fs when the compressor 1 is repeatedly turned on and off. Specifically, when the number N of operation on (thermo on) of the compressor 1 by the first control means reaches the set number Ns, each operation on time ton is the minimum operation time ton1 for compressor protection. And the average value Fx of the operation frequency F when each operation is on is larger than the set value Fxs, and each operation off time toff between each operation on is smaller than the set value toff1. The compressor 1 is continuously operated at the minimum operation frequency Fmin only at the timing of the next operation off (thermo-off) control of the compressor 1 by one control means and only when the immediately preceding operation frequency F is greater than the minimum operation frequency Fmin. The set value Fxs is, for example, a value that is twice the minimum operating frequency Fmin. The set value toff1 is, for example, a value twice the minimum operation time ton1 for protecting the compressor.

つぎに、図2のフローチャートおよび図3を参照しながら作用について説明する。図3は、冷房運転時の圧縮機1の運転オン,オフおよび運転周波数Fの変化を室内温度Taの変化と共に示している。   Next, the operation will be described with reference to the flowchart of FIG. 2 and FIG. FIG. 3 shows the on / off operation of the compressor 1 and the change in the operation frequency F during the cooling operation together with the change in the room temperature Ta.

検知温度Taが設定室内温度Tsより所定値以上高いところまで上昇すると、運転オン(サーモオン)制御のタイミングとなる(ステップ101のYES)。このとき、後述する最低運転周波数Fminの連続運転中でなければ(ステップ102のNO)、圧縮機1を運転オンする(ステップ103)。この運転オンに伴い、1回目の運転オン時間tonをカウントするとともに(ステップ104)、運転オン回数Nを“1”アップして“1”とする(ステップ105)。さらに、1回目の運転オン中の運転周波数Fの平均値Fxを算出する(ステップ106)。そして、運転オン回数Nと設定値Nsたとえば“3”とを比較する(ステップ107)。   When the detected temperature Ta rises to a place higher than the set indoor temperature Ts by a predetermined value or more, the timing of operation on (thermo on) control is reached (YES in step 101). At this time, if the operation is not continuously performed at the minimum operation frequency Fmin described later (NO in step 102), the compressor 1 is operated (step 103). Along with this operation ON, the first operation ON time ton is counted (step 104), and the operation ON frequency N is increased by “1” to be “1” (step 105). Further, an average value Fx of the operation frequency F during the first operation is calculated (step 106). Then, the operation ON frequency N is compared with a set value Ns such as “3” (step 107).

この場合、まだ1回目の運転オンなので、運転オン回数Nは設定値Ns(=“3”)に達しておらず(ステップ107のNO)、ステップ101の判定に戻る。   In this case, since the operation is still on for the first time, the operation on frequency N has not reached the set value Ns (= “3”) (NO in step 107), and the process returns to the determination in step 101.

圧縮機1が運転オンしてから圧縮機保護用の最小運転時間ton1たとえば20分間が経過するまでは、検知温度Taの変化にかかわらず、圧縮機1の運転オン状態を継続するとともに、圧縮機1の運転周波数Fを同保護用の予め定められている起動用運転周波数Fsに維持する。起動用運転周波数Fsとしては、最低運転周波数Fminが例えば“4.8Hz”であれば、その2倍以上の値である例えば“10Hz”を設定する。   Until the minimum operation time ton1 for protecting the compressor, for example, 20 minutes elapses after the compressor 1 is turned on, the compressor 1 is kept on regardless of the change in the detected temperature Ta, and the compressor The operating frequency F of 1 is maintained at a predetermined starting operating frequency Fs for the same protection. As the starting operation frequency Fs, for example, if the minimum operation frequency Fmin is “4.8 Hz”, for example, “10 Hz”, which is twice or more of that value, is set.

この1回目の運転オンにおいて、起動用運転周波数Fsでの圧縮機能力が室内熱負荷より大きければ、検知温度Taが設定室内温度Tsを大きく下回る。この状態で最小運転時間ton1(=20分間)が経過すると、運転オフ(サーモオフ)制御のタイミングとなる(ステップ101のNO)。このとき、後述の断続運転判定用の条件フラグfがまだ“0”であれば(ステップ113のNO)、圧縮機1を直ちに運転オフする(ステップ114)。この運転オフに伴い、1回目の運転オフ時間toffをカウントする(ステップ115)。   If the compression function force at the startup operation frequency Fs is larger than the indoor heat load in the first operation ON, the detected temperature Ta is significantly lower than the set indoor temperature Ts. When the minimum operation time ton1 (= 20 minutes) elapses in this state, the timing of operation off (thermo-off) control is reached (NO in step 101). At this time, if a later-described intermittent operation determination condition flag f is still “0” (NO in step 113), the compressor 1 is immediately turned off (step 114). Along with this operation off, the first operation off time toff is counted (step 115).

圧縮機1が運転オフすると、検知温度Taが上昇方向に変化する。やがて検知温度Taは設定室内温度Tsより所定値以上高いところまで上昇し、再び運転オン(サーモオン)制御のタイミングとなる(ステップ101のYES)。このとき、最低運転周波数Fminの連続運転中でなければ(ステップ102のNO)、圧縮機1を再び運転オンする(ステップ103)。この運転オンに伴い、2回目の運転オン時間tonをカウントするとともに(ステップ104)、運転オン回数Nを“1”アップして“2”とする(ステップ105)。さらに、2回目の運転オン中の運転周波数Fの平均値Fxを算出する(ステップ106)。そして、運転オン回数Nと設定値Ns(=“3”)とを比較する(ステップ107)。   When the compressor 1 is turned off, the detected temperature Ta changes in the increasing direction. Eventually, the detected temperature Ta rises to a place that is higher than the set room temperature Ts by a predetermined value or more, and the operation is turned on (thermo-on) control again (YES in step 101). At this time, if the continuous operation at the minimum operation frequency Fmin is not in progress (NO in step 102), the compressor 1 is operated again (step 103). Along with this operation ON, the second operation ON time ton is counted (step 104), and the operation ON frequency N is increased by “1” to “2” (step 105). Further, an average value Fx of the operation frequency F during the second operation is calculated (step 106). Then, the operation ON frequency N is compared with the set value Ns (= “3”) (step 107).

この場合、まだ2回目の運転オンなので、運転オン回数Nは設定値Ns(=“3”)に達しておらず(ステップ107のNO)、ステップ101の判定に戻る。   In this case, since the operation is still on for the second time, the operation on frequency N has not reached the set value Ns (= “3”) (NO in step 107), and the process returns to the determination in step 101.

この2回目の運転オンでも、圧縮機1が運転オンしてから圧縮機保護用の最小運転時間ton1(=20分間)が経過するまでは、検知温度Taの変化にかかわらず、圧縮機1の運転オン状態を継続するとともに、圧縮機1の運転周波数Fを起動用運転周波数Fsに維持する。   Even when the operation is turned on for the second time, the compressor 1 is turned on regardless of the change in the detected temperature Ta until the minimum operation time ton1 (= 20 minutes) for protecting the compressor elapses after the compressor 1 is turned on. While the operation on state is continued, the operation frequency F of the compressor 1 is maintained at the start operation frequency Fs.

この2回目の運転オンにおいて、起動用運転周波数Fsでの圧縮機能力が室内熱負荷より大きければ、検知温度Taが設定室内温度Tsを大きく下回る。この状態で最小運転時間ton1(=20分間)が経過すると、運転オフ(サーモオフ)制御のタイミングとなる(ステップ101のNO)。このとき、後述の断続運転判定用の条件フラグfがまだ“0”であれば(ステップ113のNO)、圧縮機1を直ちに運転オフする(ステップ114)。この運転オフに伴い、2回目の運転オフ時間toffをカウントする(ステップ115)。   If the compression function force at the startup operation frequency Fs is larger than the indoor heat load in the second operation ON, the detected temperature Ta is significantly lower than the set indoor temperature Ts. When the minimum operation time ton1 (= 20 minutes) elapses in this state, the timing of operation off (thermo-off) control is reached (NO in step 101). At this time, if a later-described intermittent operation determination condition flag f is still “0” (NO in step 113), the compressor 1 is immediately turned off (step 114). With this operation off, the second operation off time toff is counted (step 115).

圧縮機1が運転オフすると、検知温度Taが上昇方向に変化する。やがて検知温度Taは設定室内温度Tsより所定値以上高いところまで上昇し、再び運転オン(サーモオン)制御のタイミングとなる(ステップ101のYES)。このとき、最低運転周波数Fminの連続運転中でなければ(ステップ102のNO)、圧縮機1を運転オンする(ステップ103)。この運転オンに伴い、3回目の運転オン時間tonをカウントするとともに(ステップ104)、運転オン回数Nを“1”アップして“3”とする(ステップ105)。さらに、3回目の運転オン中の運転周波数Fの平均値Fxを算出する(ステップ106)。そして、運転オン回数Nと設定値Ns(=“3”)とを比較する(ステップ107)。   When the compressor 1 is turned off, the detected temperature Ta changes in the increasing direction. Eventually, the detected temperature Ta rises to a place that is higher than the set room temperature Ts by a predetermined value or more, and the operation is turned on (thermo-on) control again (YES in step 101). At this time, if the continuous operation at the minimum operation frequency Fmin is not in progress (NO in step 102), the compressor 1 is turned on (step 103). Along with this operation ON, the third operation ON time ton is counted (step 104), and the operation ON frequency N is increased by “1” to “3” (step 105). Further, the average value Fx of the operation frequency F during the third operation is calculated (step 106). Then, the operation ON frequency N is compared with the set value Ns (= “3”) (step 107).

この運転オンは3回目なので、運転オン回数Nは設定値Ns(=“3”)に達しており(ステップ107のYES)、ステップ108,109,110の判定に移る。ステップ108では、1回目と2回目の各運転オン時間tonが、最小運転時間ton1と同じかどうか判定する。ステップ109では、1回目と2回目の各運転オン時の各平均値Fxが、設定値Fxs(=“Fmin×2”)より大きいかどうか判定する。ステップ110では、1回目と2回目の各運転オフ時間toffが、設定値toff1(=“ton1n×2”)より小さいかどうか判定する。図3の例では、1回目の運転オン時間tonが最小運転時間ton1と同じ“20分間”、1回目の運転オン時の平均値Fxが最低運転周波数Fminの2倍より大きい“9.8kHz”、1回目の運転オフ時間toffが最小運転時間ton1の2倍より小さい“38分間”、2回目の運転オン時間tonが最小運転時間ton1と同じ“20分間”、2回目の運転オン時の平均値Fxが最低運転周波数Fminの2倍より大きい“9.8kHz”、2回目の運転オフ時間toffが最小運転時間ton1の2倍より小さい“29分間”となっている。   Since this operation is on for the third time, the operation on frequency N has reached the set value Ns (= “3”) (YES in Step 107), and the process proceeds to Steps 108, 109 and 110. In step 108, it is determined whether the first and second operation on-times ton are the same as the minimum operation time ton1. In step 109, it is determined whether or not each average value Fx at the time of each operation on for the first time and the second time is larger than a set value Fxs (= “Fmin × 2”). In step 110, it is determined whether or not the first and second operation off times toff are smaller than a set value toff1 (= “ton1n × 2”). In the example of FIG. 3, the first operation on time ton is the same as the minimum operation time ton1 for “20 minutes”, and the average value Fx at the first operation on is greater than twice the minimum operation frequency Fmin “9.8 kHz”. The first operation off time toff is less than twice the minimum operation time ton1 for “38 minutes”, the second operation ontime ton is the same as the minimum operation time ton1 “20 minutes”, and the average at the second operation on The value Fx is “9.8 kHz” which is greater than twice the minimum operation frequency Fmin, and the second operation off time toff is “29 minutes” which is less than twice the minimum operation time ton1.

これらの判定がいずれも肯定であれば(ステップ108のYES,109のYES,110のYES)、圧縮機1が運転オン,オフを頻繁に繰り返す断続運転の状況にあるとの判定の下に、条件フラグfを“1”にセットする(ステップ111)。   If both of these determinations are affirmative (YES in step 108, YES in 109, YES in 110), under the determination that the compressor 1 is in an intermittent operation situation in which operation is frequently turned on and off, The condition flag f is set to “1” (step 111).

各判定のいずれか1つでも否定であれば(ステップ108のNO,またはステップ109のNO,またはステップ110のNO)、圧縮機1が運転オン,オフを頻繁に繰り返す断続運転の状況にないとの判定の下に、運転オン回数N、各運転オン時間ton、各平均値Fx、各運転オフ時間toffをクリアする(ステップ112)。   If any one of the determinations is negative (NO in step 108, NO in step 109, or NO in step 110), the compressor 1 is not in an intermittent operation state in which the operation is frequently repeated on and off. In step S112, the number of operations ON N, each operation ON time ton, each average value Fx, and each operation OFF time toff are cleared.

この3回目の運転オンによって検知温度Taが設定室内温度Tsを大きく下回り、そのまま最小運転時間ton1(=20分間)が経過すると、運転オフ(サーモオフ)制御のタイミングとなる(ステップ101のNO)。このとき、条件フラグfが“1”で(ステップ113のYES)、しかも直前の運転周波数Fが最低運転周波数Fminより大きければ(ステップ116)、圧縮機1を運転オフせず最低運転周波数Fminで連続運転する(ステップ117)。   When the detected temperature Ta is significantly lower than the set indoor temperature Ts by the third operation ON and the minimum operation time ton1 (= 20 minutes) has passed, the operation OFF (thermo OFF) control timing is reached (NO in step 101). At this time, if the condition flag f is “1” (YES in step 113) and the immediately preceding operating frequency F is greater than the minimum operating frequency Fmin (step 116), the compressor 1 is not turned off and the minimum operating frequency Fmin is reached. Continuous operation is performed (step 117).

直前の運転周波数Fとは、3回目の運転オン中の最後に設定された運転周波数Fのことである。これが、最低運転周波数Fminより大きいということは、最低運転周波数Fminへの能力制御がなかったということであり、その場合は確かに圧縮機1が運転オン,オフを頻繁に繰り返す断続運転の状況にあると判断し、最低運転周波数Fminの連続運転に移行する。   The immediately preceding operation frequency F is the operation frequency F set last during the third operation on. If this is larger than the minimum operating frequency Fmin, it means that there was no capacity control to the minimum operating frequency Fmin. In this case, the compressor 1 is certainly in an intermittent operation state in which the operation is frequently turned on and off. It judges that there exists, and transfers to the continuous operation of the minimum operation frequency Fmin.

能力制御に関しては、例えば3回目の運転オン中に最小運転時間ton1が経過したとき、運転周波数Fを起動用運転周波数Fsを維持する必要はなく、運転周波数Fを検知温度Taと設定室内温度Tsとの差である室内熱負荷に応じて最低運転周波数Fminと最高運転周波数Fmaxとの間で可変制御する。これは、3回目の運転オン中に限らず、1回目および2回目の運転オン中においても、同様である。   With regard to capacity control, for example, when the minimum operation time ton1 has elapsed while the third operation is on, it is not necessary to maintain the operation frequency F at the start-up operation frequency Fs, and the operation frequency F is detected from the detected temperature Ta and the set indoor temperature Ts. Is variably controlled between the minimum operating frequency Fmin and the maximum operating frequency Fmax in accordance with the indoor heat load that is the difference between This is the same not only during the third operation on but also during the first and second operation on.

最低運転周波数Fminの連続運転に入ると、条件フラグfを“0”にリセットするとともに(ステップ118)、運転オン回数N、各運転オン時間ton、各平均値Fx、各運転オフ時間toffをクリアする(ステップ115)。   When the continuous operation at the minimum operation frequency Fmin is started, the condition flag f is reset to “0” (step 118), and the operation ON frequency N, each operation ON time ton, each average value Fx, and each operation OFF time toff are cleared. (Step 115).

また、最低運転周波数Fminの連続運転に入った後、検知温度Taが設定室内温度Tsより所定値以上高いところまで上昇して運転オン(サーモオン)制御のタイミングになると(ステップ101のYES)、最低運転周波数Fminの連続運転を解除する(ステップ102のYES、ステップ116)。以後、室内熱負荷に応じた通常の能力制御となる。   Further, after entering the continuous operation at the minimum operation frequency Fmin, when the detected temperature Ta rises to a place higher than the set room temperature Ts by a predetermined value or more and comes to the operation on (thermo on) control timing (YES in step 101), the minimum The continuous operation at the operation frequency Fmin is canceled (YES in step 102, step 116). Thereafter, normal capacity control is performed according to the indoor heat load.

以上のように、圧縮機1が運転オン,オフを頻繁に繰り返す断続運転の状況に入ると、それを確実に捕らえて圧縮機1を最小能力である最低運転周波数Fminで連続運転することにより、圧縮機1の運転オン,オフの頻繁な繰り返しを防ぐことができる。これにより、図3に示すように、室内温度Taの上下変動を抑えることができ、快適性の向上が図れる。また、最低運転周波数Fminの連続運転は、運転オン,オフが繰り返される場合に比べ、消費電力を大幅に低減できる。この点、省エネルギー性の向上が図れる。   As described above, when the compressor 1 enters the intermittent operation state where the operation is frequently turned on and off, the compressor 1 is reliably captured and continuously operated at the minimum operation frequency Fmin which is the minimum capacity. It is possible to prevent frequent repetition of turning on and off the compressor 1. Thereby, as shown in FIG. 3, the vertical fluctuation of the room temperature Ta can be suppressed, and the comfort can be improved. Further, the continuous operation at the minimum operation frequency Fmin can greatly reduce the power consumption as compared with the case where the operation is repeatedly turned on and off. In this respect, energy saving can be improved.

[2]第2の実施形態
制御部10は、主要な機能として、第1の実施形態と同じ(1)の第1手段を有するとともに、第1の実施形態における(2)の第2制御手段に代えて次の(12)の第2制御手段を有する。
(12)第1制御手段による圧縮機1の運転オンに伴い最低運転周波数Fminの一定時間たとえば1分間ごとの積算および圧縮機1の現運転周波数Fの一定時間たとえば1分間ごとの積算を開始し、第1制御手段による圧縮機1の運転オンの回数Nが設定回数“2”に達したとき、現運転周波数Fの積算値Fiが最低運転周波数Fminの積算値Fis以上であることを条件に、第1制御手段による圧縮機1の次の運転オフ制御のタイミングにおいて、圧縮機1を最低運転周波数Fminで連続運転する第2制御手段。
他の構成は、第1の実施形態と同じである。よって、その説明は省略する。
[2] Second embodiment
The control unit 10 has the same first function (1) as that of the first embodiment as a main function, and the following (12) instead of the second control means (2) in the first embodiment. Second control means.
(12) When the compressor 1 is turned on by the first control means, the integration of the minimum operation frequency Fmin for a certain period of time, for example, every minute and the accumulation of the current operation frequency F of the compressor 1 for a certain period of time, for example, every minute are started When the number N of operations of the compressor 1 by the first control means reaches the set number of times “2”, the integrated value Fi of the current operating frequency F is equal to or greater than the integrated value Fis of the minimum operating frequency Fmin. Second control means for continuously operating the compressor 1 at the minimum operating frequency Fmin at the timing of the next operation OFF control of the compressor 1 by the first control means.
Other configurations are the same as those of the first embodiment. Therefore, the description is omitted.

図4のフローチャートおよび図5を参照しながら作用について説明する。図5は、冷房時の圧縮機1の運転オン,オフおよび運転周波数Fの変化を室内温度Taの変化と共に示している。   The operation will be described with reference to the flowchart of FIG. 4 and FIG. FIG. 5 shows the change in operation on / off and operation frequency F of the compressor 1 during cooling, along with the change in the room temperature Ta.

検知温度Taが設定室内温度Tsより所定値以上高いところまで上昇すると、運転オン(サーモオン)制御のタイミングとなる(ステップ201のYES)。このとき、最低運転周波数Fminの連続運転中でなければ(ステップ202のNO)、圧縮機1を運転オンする(ステップ203)。この運転オンに伴い、最低運転周波数Fminの一定時間(=1分間)ごとの積算値Fisを求めるとともに(ステップ204)、圧縮機1の現運転周波数Fの一定時間(=1分間)ごとの積算値Fiを求め(ステップ205)、運転オン回数Nを“1”アップして“1”とする(ステップ206)。そして、運転オン回数Nと設定回数“2”とを比較する(ステップ207)。   When the detected temperature Ta rises to a place higher than the set indoor temperature Ts by a predetermined value or more, the timing for operation on (thermo on) control is reached (YES in step 201). At this time, if the continuous operation at the minimum operation frequency Fmin is not in progress (NO in step 202), the compressor 1 is turned on (step 203). As this operation is turned on, an integrated value Fis is obtained for every fixed time (= 1 minute) of the minimum operating frequency Fmin (step 204), and integrated for every fixed time (= 1 minute) of the current operating frequency F of the compressor 1. A value Fi is obtained (step 205), and the number of times of operation ON N is increased by "1" to be "1" (step 206). Then, the operation ON number N is compared with the set number “2” (step 207).

この場合、まだ1回目の運転オンなので、運転オン回数Nは設定回数“2”に達しておらず(ステップ207のNO)、ステップ201の判定に戻る。   In this case, since the operation is still on for the first time, the operation on frequency N has not reached the set frequency “2” (NO in step 207), and the process returns to the determination in step 201.

圧縮機1が運転オンしてから最小運転時間ton1が経過するまでは、検知温度Taの変化にかかわらず、圧縮機1の運転オン状態を継続するとともに、圧縮機1の運転周波数Fを起動用運転周波数Fsに維持する。   Until the minimum operation time ton1 elapses after the compressor 1 is turned on, the compressor 1 is kept on regardless of the change in the detected temperature Ta, and the operation frequency F of the compressor 1 is started. Maintain the operating frequency Fs.

この1回目の運転オンにおいて、起動用運転周波数Fsでの圧縮機能力が室内熱負荷より大きければ、検知温度Taが設定室内温度Tsを大きく下回る。この状態で最小運転時間ton1が経過すると、運転オフ(サーモオフ)制御のタイミングとなる(ステップ201のNO)。このとき、断続運転判定用の条件フラグfがまだ“0”であれば(ステップ210のNO)、圧縮機1を直ちに運転オフする(ステップ211)。そして、運転オン回数Nと設定回数“2”との比較に戻る(ステップ207)。最低運転周波数Fminの積算および現運転周波数Fの積算は継続する。   If the compression function force at the startup operation frequency Fs is larger than the indoor heat load in the first operation ON, the detected temperature Ta is significantly lower than the set indoor temperature Ts. When the minimum operation time ton1 elapses in this state, the operation off (thermo-off) control timing is reached (NO in step 201). At this time, if the condition flag f for intermittent operation determination is still “0” (NO in step 210), the compressor 1 is immediately turned off (step 211). Then, the process returns to the comparison between the operation ON number N and the set number “2” (step 207). Integration of the minimum operation frequency Fmin and integration of the current operation frequency F are continued.

圧縮機1が運転オフすると、検知温度Taが上昇方向に変化する。やがて検知温度Taは設定室内温度Tsより所定値以上高いところまで上昇して運転オン(サーモオン)制御のタイミングとなる(ステップ201のYES)。このとき、最低運転周波数Fminの連続運転中でなければ(ステップ202のNO)、圧縮機1を運転オンする(ステップ203)。最低運転周波数Fminの積算および現運転周波数Fの積算は継続する(ステップ204,205)。また、この2回目の運転オンに伴い、運転オン回数Nを“1”アップして“2”とし(ステップ206)、それと設定回数“2”とを比較する(ステップ207)。   When the compressor 1 is turned off, the detected temperature Ta changes in the increasing direction. Eventually, the detected temperature Ta rises to a place higher than the set room temperature Ts by a predetermined value or more, and the timing of operation on (thermo on) control is reached (YES in step 201). At this time, if the continuous operation at the minimum operation frequency Fmin is not in progress (NO in step 202), the compressor 1 is turned on (step 203). Integration of the minimum operation frequency Fmin and integration of the current operation frequency F are continued (steps 204 and 205). Further, with the second operation ON, the operation ON count N is increased by “1” to “2” (step 206), and this is compared with the set count “2” (step 207).

この場合、運転オン回数Nが設定回数“2”に達しているので(ステップ207のNO)、積算値Fiが積算値Fis以上かどうか判定する(ステップ208)。   In this case, since the operation ON number N has reached the set number “2” (NO in step 207), it is determined whether or not the integrated value Fi is equal to or greater than the integrated value Fis (step 208).

積算値Fiが積算値Fis未満であれば(ステップ208のNO)、そのまま検知温度Taに応じた運転制御を継続する。積算値Fiが積算値Fis以上になると(ステップ208のYES)、圧縮機1が運転オン,オフを頻繁に繰り返す断続運転の状況にあるとの判定の下に、条件フラグfを“1”にセットする(ステップ209)。   If the integrated value Fi is less than the integrated value Fis (NO in step 208), the operation control according to the detected temperature Ta is continued as it is. When the integrated value Fi becomes equal to or greater than the integrated value Fis (YES in step 208), the condition flag f is set to “1” under the determination that the compressor 1 is in an intermittent operation state in which operation is frequently turned on and off. Set (step 209).

この2回目の運転オンによって検知温度Taが設定室内温度Tsを大きく下回り、そのまま最小運転時間ton1(=20分間)が経過すると、運転オフ(サーモオフ)制御のタイミングとなる(ステップ201のNO)。このとき、条件フラグfが“1”であれば(ステップ210のYES)、圧縮機1を運転オフせず最低運転周波数Fminで連続運転する(ステップ212)。   When the second operation is turned on, the detected temperature Ta greatly falls below the set room temperature Ts, and when the minimum operation time ton1 (= 20 minutes) has passed, the operation off (thermo-off) control timing is reached (NO in step 201). At this time, if the condition flag f is “1” (YES in step 210), the compressor 1 is continuously operated at the minimum operation frequency Fmin without being turned off (step 212).

最低運転周波数Fminの連続運転に入ると、条件フラグfを“0”にリセットするとともに(ステップ213)、運転オン回数N、積算値Fis、積算値Fiをクリアする(ステップ214)。   When the continuous operation at the minimum operation frequency Fmin is started, the condition flag f is reset to “0” (step 213), and the operation ON number N, the integrated value Fi, and the integrated value Fi are cleared (step 214).

また、最低運転周波数Fminの連続運転に入った後、検知温度Taが設定室内温度Tsより所定値以上高いところまで上昇して運転オン(サーモオン)制御のタイミングになると(ステップ201のYES)、最低運転周波数Fminの連続運転を解除する(ステップ202のYES、ステップ215)。以後、室内熱負荷に応じた通常の能力制御となる。   Further, after entering the continuous operation at the minimum operation frequency Fmin, when the detected temperature Ta rises to a place higher than the set room temperature Ts by a predetermined value or more and comes to the operation on (thermo on) control timing (YES in step 201), the minimum The continuous operation at the operation frequency Fmin is canceled (YES in step 202, step 215). Thereafter, normal capacity control is performed according to the indoor heat load.

このように、圧縮機1が運転オン,オフを繰り返し、2回目の運転オンの後で現運転周波数Fの積算値Fiが最低運転周波数Fminの積算値Fisに達したとき、圧縮機1が運転オン,オフを頻繁に繰り返す断続運転の状況にあると判断し、圧縮機1を最低運転周波数Fminで連続運転する。   In this way, the compressor 1 repeats operation on and off, and after the second operation on, the compressor 1 operates when the integrated value Fi of the current operating frequency F reaches the integrated value Fis of the minimum operating frequency Fmin. The compressor 1 is determined to be in an intermittent operation state where ON and OFF are frequently repeated, and the compressor 1 is continuously operated at the minimum operation frequency Fmin.

この最低運転周波数Fminの連続運転により、第1の実施形態と同じく、快適性および省エネルギー性の向上が図れる。   By continuous operation at the minimum operation frequency Fmin, comfort and energy saving can be improved as in the first embodiment.

なお、この発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。各実施形態に亘る構成要素を適宜組み合わせてもよい。   The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. You may combine the component covering each embodiment suitably.

1…圧縮機、2…四方弁、3…室外熱交換器、4…電子膨張弁、5a,5b…室内熱交換器、6…電子膨張弁、7…室外ファン、8…室内ファン、9…室内温度センサ、10…制御部、11…インバータ、12…リモコン   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Electronic expansion valve, 5a, 5b ... Indoor heat exchanger, 6 ... Electronic expansion valve, 7 ... Outdoor fan, 8 ... Indoor fan, 9 ... Indoor temperature sensor, 10 ... control unit, 11 ... inverter, 12 ... remote control

Claims (2)

圧縮機、室外熱交換器、減圧器、室内熱交換器を接続して冷媒を循環させる冷凍サイクルと、
室内温度を検知する室内温度センサと、
前記圧縮機の運転を前記室内温度センサの検知温度Taと設定室内温度Tsとの比較に基づいてオン,オフするとともに、その運転オン時の運転周波数Fを前記室内温度センサの検知温度Taと設定室内温度Tsとの差に応じて且つ予め定められている起動用運転周波数Fsから始めて同予め定められている最低運転周波数Fminと最高運転周波数Fmaxとの間で可変制御する第1制御手段と、
前記第1制御手段による前記圧縮機の運転オンの回数Nが設定回数Nsに達したとき、その各運転オンの時間tonがいずれも圧縮機保護用の最小運転時間ton1と同じで、かつ各運転オン時の運転周波数Fの各平均値Fxが設定値Fxsより大きく、かつ各運転オンの合間の各運転オフの時間toffが設定値toff1より小さいことを条件に、前記第1制御手段による前記圧縮機の次の運転オフ制御のタイミングにおいて、かつ直前の運転周波数Fが最低運転周波数Fminより大きい場合のみ、前記圧縮機を最低運転周波数Fminで連続運転する第2制御手段と、
を備えることを特徴とする空気調和機。
A refrigeration cycle in which a refrigerant is circulated by connecting a compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger;
An indoor temperature sensor for detecting the indoor temperature;
The operation of the compressor is turned on and off based on the comparison between the detected temperature Ta of the indoor temperature sensor and the set indoor temperature Ts, and the operating frequency F when the operation is on is set as the detected temperature Ta of the indoor temperature sensor. First control means for variably controlling between a predetermined minimum operating frequency Fmin and a maximum operating frequency Fmax starting from a predetermined starting operating frequency Fs according to a difference from the room temperature Ts ;
When the number N of operation-on times of the compressor by the first control means reaches the set number Ns, each operation-on time ton is the same as the minimum operation time ton1 for protecting the compressor, and each operation. On the condition that each average value Fx of the operation frequency F at the time of ON is larger than the set value Fxs and each operation OFF time toff between each operation ON is smaller than the set value toff1, the compression by the first control means Second control means for continuously operating the compressor at the minimum operation frequency Fmin only at the timing of the next operation off control of the machine and only when the immediately preceding operation frequency F is greater than the minimum operation frequency Fmin ;
An air conditioner comprising:
前記設定値Fxは、最低運転周波数Fminの2倍の値であり、
前記設定値toff1は、圧縮機保護用の最小運転時間ton1の2倍の値である、
ことを特徴とする請求項1記載の空気調和機。
The set value Fx is twice the minimum operating frequency Fmin,
The set value toff1 is a value twice the minimum operation time ton1 for compressor protection.
The air conditioner according to claim 1 .
JP2010070488A 2010-03-25 2010-03-25 Air conditioner Expired - Fee Related JP5492625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070488A JP5492625B2 (en) 2010-03-25 2010-03-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070488A JP5492625B2 (en) 2010-03-25 2010-03-25 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011202885A JP2011202885A (en) 2011-10-13
JP5492625B2 true JP5492625B2 (en) 2014-05-14

Family

ID=44879725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070488A Expired - Fee Related JP5492625B2 (en) 2010-03-25 2010-03-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP5492625B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511761B2 (en) * 2011-10-13 2014-06-04 三菱電機株式会社 Air conditioner
JP5932759B2 (en) 2013-11-21 2016-06-08 三菱電機株式会社 Air conditioner
KR102243384B1 (en) * 2014-09-12 2021-04-22 엘지전자 주식회사 Control method of dehumidifier
CN108105964B (en) * 2017-12-11 2019-12-06 珠海格力电器股份有限公司 Starting method and system of frequency conversion unit, scheduler and air conditioner
WO2021214931A1 (en) 2020-04-23 2021-10-28 日立ジョンソンコントロールズ空調株式会社 Air conditioning system and control method
AU2020468256B2 (en) * 2020-09-17 2024-03-07 Mitsubishi Electric Corporation Refrigeration-cycle device, air conditioner comprising same, and method for controlling refrigeration-cycle device
WO2023286242A1 (en) * 2021-07-15 2023-01-19 三菱電機株式会社 Air conditioner
CN117387173B (en) * 2023-12-13 2024-04-05 珠海格力电器股份有限公司 Control method and device of air conditioner, electronic equipment and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236072A (en) * 1991-01-16 1992-08-25 Toshiba Corp Air-conditioning device
JPH06294542A (en) * 1993-04-07 1994-10-21 Fujitsu General Ltd Control method of airconditioning apparatus
JPH07294030A (en) * 1994-04-27 1995-11-10 Toshiba Corp Air conditioner
JP4415817B2 (en) * 2004-10-14 2010-02-17 パナソニック株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2011202885A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5492625B2 (en) Air conditioner
JP6230931B2 (en) Multi-type air conditioner
WO2010137344A1 (en) Air-conditioning device
JP6768546B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
AU2016346536B2 (en) Air conditioning apparatus
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP5802339B2 (en) Air conditioner
JP5642121B2 (en) Air conditioner
JP6033416B2 (en) Air conditioner
JP2007292439A (en) Outdoor unit
JP6019773B2 (en) Air conditioner control device
JP2009058222A (en) Outdoor unit
JP6749471B2 (en) Air conditioner
JP6022291B2 (en) Air conditioner
JP5071063B2 (en) Air conditioner
JP6391977B2 (en) Multi-type air conditioner control device, multi-type air conditioner system including the same, multi-type air conditioner control method, and control program
JP2009085463A (en) Air conditioner
JP5900463B2 (en) Air conditioning system
JP2008256264A (en) Air conditioner
JP2009264718A (en) Heat pump hot water system
JP2011242097A (en) Refrigerating apparatus
JP2011149611A (en) Air-conditioning apparatus
JP2009041832A (en) Air conditioner
JP2010210164A (en) Method of controlling operation of multi-chamber type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees