JP5491093B2 - Resistance welding equipment - Google Patents

Resistance welding equipment Download PDF

Info

Publication number
JP5491093B2
JP5491093B2 JP2009179227A JP2009179227A JP5491093B2 JP 5491093 B2 JP5491093 B2 JP 5491093B2 JP 2009179227 A JP2009179227 A JP 2009179227A JP 2009179227 A JP2009179227 A JP 2009179227A JP 5491093 B2 JP5491093 B2 JP 5491093B2
Authority
JP
Japan
Prior art keywords
electrode
inner electrode
outer electrode
workpiece
moving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009179227A
Other languages
Japanese (ja)
Other versions
JP2011031269A (en
Inventor
英世 竹内
高史 新明
武宏 和泉
考司 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obara Group Inc
Original Assignee
Obara Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obara Group Inc filed Critical Obara Group Inc
Priority to JP2009179227A priority Critical patent/JP5491093B2/en
Publication of JP2011031269A publication Critical patent/JP2011031269A/en
Application granted granted Critical
Publication of JP5491093B2 publication Critical patent/JP5491093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、抵抗溶接装置に関する。   The present invention relates to a resistance welding apparatus.

抵抗溶接方法として、例えば図9(a)に示すように、2枚の金属板を重ねたワークWの一方の面に2本の電極101・102を接触させて通電する、いわゆる片側スポット溶接が知られている。この場合、電極101・102間には図9(b)に点線で示すような経路で電流が流れるため、各電極101・102とワークWとの接触部のうち、相手電極側部分の電流密度が高くなって高温となり(高温部をS1で示す)、その反対側の電流密度が低くなって低温となる(低温部をS2で示す)。ワークの温度が高くなりすぎると、ワーク表面が部分的に溶融してワーク表面に割れが発生する恐れがあり、ワークの温度が低すぎると、ワークが十分に軟化せず、接合されない恐れがある。このため、電極に流す電流値は、前記接触部の高温部S1で割れが発生しないように、且つ、前記接触部の低温部S2でワークが十分に接合されるように設定する必要がある。   As a resistance welding method, for example, as shown in FIG. 9A, so-called one-side spot welding is performed in which two electrodes 101 and 102 are brought into contact with one surface of a workpiece W on which two metal plates are stacked and energized. Are known. In this case, a current flows between the electrodes 101 and 102 along a path indicated by a dotted line in FIG. 9B, and therefore, the current density of the counterpart electrode side portion in the contact portion between each electrode 101 and 102 and the workpiece W. Becomes higher and the temperature becomes higher (the high temperature portion is indicated by S1), and the current density on the opposite side becomes lower and the temperature becomes lower (the low temperature portion is indicated by S2). If the temperature of the workpiece becomes too high, the workpiece surface may partially melt and cracks may occur on the workpiece surface. If the workpiece temperature is too low, the workpiece may not be sufficiently softened and bonded. . For this reason, it is necessary to set the value of the current flowing through the electrodes so that cracks do not occur in the high temperature portion S1 of the contact portion and the workpiece is sufficiently joined in the low temperature portion S2 of the contact portion.

しかし、高張力鋼(ハイテン鋼)のように融点の高い材料を溶接する場合は、温度を少なくとも1000℃以上まで高める必要がある。このため、前記接触部の低温部S2が1000℃以上となるように電流値を大きくすると、高温部S1で割れが発生し、高温部S1で割れが発生しないように電流値を抑えると、低温部S2でワークが接合されないというジレンマが生じ、電流値を適切に設定することが極めて困難であった。   However, when welding a material having a high melting point such as high-tensile steel (high-tensile steel), it is necessary to increase the temperature to at least 1000 ° C. or higher. For this reason, when the current value is increased so that the low temperature portion S2 of the contact portion is 1000 ° C. or higher, cracking occurs in the high temperature portion S1, and if the current value is suppressed so that cracking does not occur in the high temperature portion S1, There was a dilemma that the workpieces were not joined at the part S2, and it was extremely difficult to set the current value appropriately.

例えば特許文献1には、図10(a)に示すように、筒状の外側電極201(第2の部分9)の内周に絶縁体202(電気的絶縁体8)を介して内側電極203(第1中央円筒形部分7)が同軸状に設けられた電極(以下、同軸電極と言う。)を有する溶接装置が示されている。このような同軸電極によれば、図10(b)に示すように、外側電極201と内側電極203との間における電流密度を周方向で均等に分布させることができるため、電極とワークとの接触部において、上記の高温部S1及び低温部S2のように温度差は形成されず、温度を均一化できる。従って、高張力鋼のような材料を溶接する場合であっても、ワークに割れを生じさせず、且つ、ワークを確実に接合することができる電流値を、比較的容易に設定することが可能となる。   For example, in Patent Document 1, as shown in FIG. 10A, an inner electrode 203 is disposed on an inner periphery of a cylindrical outer electrode 201 (second portion 9) via an insulator 202 (electrical insulator 8). A welding apparatus having an electrode (hereinafter referred to as a coaxial electrode) in which the (first central cylindrical portion 7) is provided coaxially is shown. According to such a coaxial electrode, the current density between the outer electrode 201 and the inner electrode 203 can be evenly distributed in the circumferential direction as shown in FIG. In the contact portion, a temperature difference is not formed unlike the high temperature portion S1 and the low temperature portion S2, and the temperature can be made uniform. Therefore, even when welding materials such as high-strength steel, it is possible to set the current value that does not cause cracks in the workpiece and that can reliably join the workpiece relatively easily. It becomes.

特開平4−284980号公報JP-A-4-284980

しかし、同軸電極を用いて溶接する場合、電流密度が内側電極の直下部分に集中し、この部分の温度が非常に高温となる。例えば高張力鋼を溶接する場合は、溶接点を少なくとも1000℃以上にする必要がある一方で、内側電極に多く用いられるCr−Cu合金は400℃を超えると軟化し始める。このため、ワークの熱が内側電極に伝わり内側電極が軟化変形して、内側電極とワークとの接触部における面圧が低下することによりスパークが発生する恐れがある。   However, when welding is performed using a coaxial electrode, the current density is concentrated in a portion directly below the inner electrode, and the temperature of this portion becomes very high. For example, when welding high-tensile steel, it is necessary to make the welding point at least 1000 ° C. or higher. On the other hand, a Cr—Cu alloy often used for the inner electrode starts to soften when the temperature exceeds 400 ° C. For this reason, the heat of the workpiece is transmitted to the inner electrode, the inner electrode is softened and deformed, and the surface pressure at the contact portion between the inner electrode and the workpiece may be reduced, thereby generating a spark.

例えば、内側電極を大径に形成してその体積を大きくすれば、内側電極の熱容量が大きくなり、ワークの熱による温度上昇を抑えることができる。しかし、内側電極を大径化するとワークとの接触面積が大きくなるため、内側電極とワークとの接触部における面圧が小さくなり、適切に溶接がされない恐れがある。かかる不具合を回避するために、電極をワークに強い力で押し付けると、ワークが撓んで電極とワークとの接触状態が不均一となり、やはり溶接が適切に施されない恐れがある。   For example, if the inner electrode is formed to have a large diameter and its volume is increased, the heat capacity of the inner electrode is increased, and the temperature rise due to the heat of the workpiece can be suppressed. However, when the diameter of the inner electrode is increased, the contact area with the workpiece is increased, so that the surface pressure at the contact portion between the inner electrode and the workpiece is reduced, and there is a possibility that the welding is not appropriately performed. In order to avoid such a problem, when the electrode is pressed against the workpiece with a strong force, the workpiece is bent and the contact state between the electrode and the workpiece becomes non-uniform, and there is a possibility that welding is not properly performed.

本発明の解決すべき課題は、高張力鋼のような溶接により接合しにくい材料であっても、内側電極の軟化を防止し、確実に接合することができる抵抗溶接装置を提供することにある。   The problem to be solved by the present invention is to provide a resistance welding apparatus capable of preventing the inner electrode from being softened and reliably joining even a material which is difficult to be joined by welding such as high-tensile steel. .

前記課題を解決するために、本発明は、筒状に形成された外側電極、及び、外側電極の内周に同軸状に配され、外側電極に対して軸方向に移動可能である内側電極を有する同軸電極と、内側電極を軸方向に移動させる内側電極移動手段と、外側電極を軸方向に移動させる外側電極移動手段とを有し、内側電極及び外側電極の先端部を、重ねられた複数の金属板一方側から接触させて両電極間に通電することで、内側電極の直下にナゲットを形成して前記複数の金属板を溶接する抵抗溶接装置であって、内側電極の先端部に平坦面を形成し、この平坦面から基端側に向けて、電極の中心軸方向と直交する方向の断面積が徐々に大きくなるようにし、内側電極の先端部に、前記平坦部から基端側へ向けて外径を徐々に大きくした中実の円すい部を形成し、該円すい部の頂角が100〜170度であることを特徴とするものである。 In order to solve the above problems, the present invention includes an outer electrode formed in a cylindrical shape, and an inner electrode that is coaxially arranged on the inner periphery of the outer electrode and is movable in the axial direction with respect to the outer electrode. a plurality of coaxial electrodes, the inner electrode moving means for moving the inner electrode in the axial direction, and an outer electrode moving means for moving the outer electrode in the axial direction, the tip end portion of the inner electrode and the outer electrode was overlaid with A resistance welding apparatus for welding a plurality of metal plates by forming a nugget immediately below the inner electrode by contacting the metal plate from one side and energizing between the two electrodes. forming a flat surface, toward the base end side from the flat surface, the cross-sectional area in a direction perpendicular to the center axis of the electrode so as to gradually increase, the distal end of the inner electrode, the proximal end of the flat portion Solid conical part with gradually increasing outer diameter toward the side Formed, the apex angle of the circular pyramid portion is characterized in that 100 to 170 degrees.

例えば図11に示すように、内側電極300を段付き軸状に形成すれば、大径部301により大きな体積を確保できると共に、小径部302の先端部に設けられた平坦部303の面積を小さくすることができる。しかし、大径部301により内側電極300の体積を大きくしても、ワークと接触する内側電極300の先端部に円柱状の小径部302が形成されるため、この小径部302が熱により軟化してスパークを発生させる恐れがある。これに対し、本発明のように、内側電極の中心軸方向と直交する方向の断面積(以下、横断面積)を、平坦面から基端側へ向けて徐々に大きくすることにより、ワークから平坦面を介して伝わる熱が、体積のより大きくなる基端側へ向けて拡散されるため、内側電極の先端部の温度上昇を抑えることができ、軟化変形を防止できる。   For example, as shown in FIG. 11, if the inner electrode 300 is formed in a stepped shaft shape, a large volume can be secured by the large diameter portion 301 and the area of the flat portion 303 provided at the tip of the small diameter portion 302 can be reduced. can do. However, even if the volume of the inner electrode 300 is increased by the large-diameter portion 301, the cylindrical small-diameter portion 302 is formed at the tip of the inner electrode 300 that contacts the workpiece, so that the small-diameter portion 302 is softened by heat. May cause a spark. On the other hand, as in the present invention, the cross-sectional area (hereinafter referred to as the cross-sectional area) in the direction orthogonal to the central axis direction of the inner electrode is gradually increased from the flat surface toward the base end, thereby flattening from the workpiece. Since the heat transmitted through the surface is diffused toward the proximal end where the volume increases, the temperature rise at the distal end of the inner electrode can be suppressed and softening deformation can be prevented.

上記の内側電極の先端部に、前記平坦部から外径を徐々に大きくした中実の円すい部を形成すれば、その横断面積を基端側へ向けて徐々に大きくすることができる。この円すい部の頂角が小さすぎると、平坦部から伝わる熱を基端側へ十分に拡散することができず、円すい部の頂角が大きすぎると、内側電極の押し付け力によりワークが少し凹むことで円すい部とワークとが接触するため、接触面積が大きくなって面圧が低下する恐れがある。このため、円すい部の頂角は100〜170度に設定することが好ましい。   If a solid conical portion having an outer diameter gradually increased from the flat portion is formed at the distal end portion of the inner electrode, the cross-sectional area can be gradually increased toward the proximal end side. If the apex angle of this conical part is too small, the heat transmitted from the flat part cannot be sufficiently diffused to the base end side, and if the apex angle of the conical part is too large, the work is slightly recessed due to the pressing force of the inner electrode. As a result, the conical portion and the workpiece come into contact with each other, so that the contact area increases and the surface pressure may decrease. For this reason, it is preferable to set the apex angle of the conical portion to 100 to 170 degrees.

また、同軸電極により溶接する場合は、内側電極の直下でワークが高温となり、その外周を筒状の外側電極で囲まれた状態となる。このとき、外側電極の先端部が周方向全域においてワークに接触し、外側電極の内部の空間を密閉すると、内部の熱を外に逃がすことができず、内部電極の軟化を促進する恐れがある。そこで、外側電極の先端部に切り欠き部を形成すれば、外側電極をワークに当接させた状態で、内部空間と外部とを連通する窓が形成され、内部の熱を逃がすことができ、内部電極の軟化防止に寄与することができる。尚、切り欠き部はワークと接触しないため、切り欠き部を外側電極の周方向等間隔位置に形成することで、外側電極とワークとの接触部(すなわち通電箇所)を周方向で均等に配することができ、内側電極と外側電極との間における電流密度を均等に分布させることができる。   Moreover, when welding with a coaxial electrode, a workpiece | work becomes high temperature directly under an inner side electrode, and the outer periphery will be in the state enclosed by the cylindrical outer side electrode. At this time, if the tip of the outer electrode is in contact with the workpiece in the entire circumferential direction and the space inside the outer electrode is sealed, the internal heat cannot be released to the outside and the internal electrode may be softened. . Therefore, if a notch is formed at the tip of the outer electrode, a window that connects the internal space and the outside is formed in a state where the outer electrode is in contact with the workpiece, and the internal heat can be released. This can contribute to prevention of softening of the internal electrode. Since the notch does not contact the workpiece, the notch is formed at equal intervals in the circumferential direction of the outer electrode, so that the contact portion (that is, the energized location) between the outer electrode and the workpiece is evenly arranged in the circumferential direction. The current density between the inner electrode and the outer electrode can be evenly distributed.

また、同軸電極で溶接を行うと、内側電極とワークとの当接部で発生したスパッタが、外側電極の内周面に付着して固化することがある。この固化したスパッタが外側電極から剥がれ落ち、内側電極と外側電極との間の領域に落下すると、通電を阻害する恐れがある。そこで、上記のように外側電極の先端部に切り欠き部を形成すれば、スパッタの一部が外側電極の切り欠き部から外部に抜けるため、外側電極の内周面に付着するスパッタを低減することができ、通電が阻害される恐れを減じることができる。   Further, when welding is performed using a coaxial electrode, spatter generated at the contact portion between the inner electrode and the workpiece may adhere to the inner peripheral surface of the outer electrode and solidify. If the solidified spatter is peeled off from the outer electrode and falls into a region between the inner electrode and the outer electrode, there is a possibility that current conduction may be hindered. Therefore, if the notch is formed at the tip of the outer electrode as described above, a part of the spatter comes out from the notch of the outer electrode to the outside, thereby reducing spatter adhering to the inner peripheral surface of the outer electrode. This can reduce the possibility that the energization is hindered.

以上のように、本発明の抵抗溶接装置によれば、高張力鋼のような溶接により接合しにくい材料であっても、内側電極の軟化に伴うスパーク発生を抑制すると共に、ワークを確実に接合することができる。   As described above, according to the resistance welding apparatus of the present invention, even if the material is difficult to be joined by welding such as high-strength steel, the generation of sparks due to the softening of the inner electrode is suppressed and the workpiece is reliably joined. can do.

溶接装置の断面図である。It is sectional drawing of a welding apparatus. 同軸電極の断面図である。It is sectional drawing of a coaxial electrode. 同軸電極の正面図である。It is a front view of a coaxial electrode. 同軸電極の下面図である。It is a bottom view of a coaxial electrode. 内側電極の先端部の断面図である。It is sectional drawing of the front-end | tip part of an inner side electrode. 同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which makes a coaxial electrode contact | abut to a workpiece | work. 同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which makes a coaxial electrode contact | abut to a workpiece | work. 外側電極をワークに食い込ませた状態を示す断面図である。It is sectional drawing which shows the state which made the outer side electrode dig into a workpiece | work. (a)は、従来の電極による抵抗溶接の様子を示す断面図であり、(b)は、ワーク表面における電流密度の分布を示す平面図である。(A) is sectional drawing which shows the mode of the resistance welding by the conventional electrode, (b) is a top view which shows distribution of the current density in the workpiece | work surface. (a)は、従来の同軸電極による抵抗溶接の様子を示す断面図であり、(b)は、ワーク表面における電流密度の分布を示す平面図である。(A) is sectional drawing which shows the mode of the resistance welding by the conventional coaxial electrode, (b) is a top view which shows distribution of the current density in the workpiece | work surface. 段付き軸状の内側電極の断面図である。It is sectional drawing of a stepped axial inner electrode.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1実施形態に係る抵抗溶接装置は、図1に示すように、筒状の外側電極10、及び外側電極10の内周に配された内側電極20を有する同軸電極30と、同軸電極30を支持する支持部40と、支持部40に対して外側電極10を軸方向に移動させるための外側電極移動手段(本実施形態ではスプリング50)と、支持部40に対して内側電極20を軸方向に移動させるための内側電極移動手段(本実施形態ではシリンダ60)と、支持部40を介して同軸電極30全体を中心軸方向に移動させる同軸電極移動手段(本実施形態では昇降機70)とを備える。外側電極10及び内側電極20は、図2に示すように、コイル81を介して電源80に接続される。外側電極10と内側電極20との径方向間には、円筒状の絶縁部材90が配される。尚、本実施形態では、同軸電極30の中心軸方向を鉛直方向とし、同軸電極30を降下させて外側電極10及び内側電極20の先端部をワークWの上面に当接させる場合を示す。   As shown in FIG. 1, the resistance welding apparatus according to the first embodiment of the present invention is coaxial with a cylindrical outer electrode 10 and a coaxial electrode 30 having an inner electrode 20 disposed on the inner periphery of the outer electrode 10. A support portion 40 that supports the electrode 30, an outer electrode moving means (a spring 50 in this embodiment) for moving the outer electrode 10 in the axial direction with respect to the support portion 40, and an inner electrode 20 with respect to the support portion 40 The inner electrode moving means (cylinder 60 in the present embodiment) for moving the electrode in the axial direction and the coaxial electrode moving means (the elevator 70 in the present embodiment) for moving the entire coaxial electrode 30 in the central axis direction via the support portion 40. ). The outer electrode 10 and the inner electrode 20 are connected to a power source 80 via a coil 81 as shown in FIG. A cylindrical insulating member 90 is disposed between the outer electrode 10 and the inner electrode 20 in the radial direction. In the present embodiment, the center axis direction of the coaxial electrode 30 is a vertical direction, and the coaxial electrode 30 is lowered to bring the outer electrode 10 and the tip of the inner electrode 20 into contact with the upper surface of the workpiece W.

外側電極10は、金属材料(例えばCr−Cu合金)で略円筒形状に形成され、先端部を下方に向けて配される。外側電極10の先端部11は、図2に示すように、先端側(下方)へ向けて徐々に肉厚が小さくなっており、本実施形態では軸方向断面で下向きに膨らんだ円弧状を成している。外側電極10には、図3及び図4に示すように、先端部11から基端側(上方)に延びた切り欠き部12が、円周方向等間隔の複数箇所(図示例では6箇所)に形成される。本実施形態では、切り欠き部12の円周方向幅L1は、隣り合う切り欠き部12間の円周方向間隔L2よりも小さくなるように設定される(図4参照)。 The outer electrode 10 is formed of a metal material (for example, Cr—Cu alloy) in a substantially cylindrical shape, and is disposed with its tip portion directed downward. As shown in FIG. 2, the distal end portion 11 of the outer electrode 10 gradually decreases in thickness toward the distal end side (downward). In this embodiment, the distal end portion 11 forms an arc shape that swells downward in the axial section. doing. As shown in FIGS. 3 and 4, the outer electrode 10 has notch portions 12 extending from the distal end portion 11 to the proximal end side (upward) at a plurality of locations at equal intervals in the circumferential direction (six locations in the illustrated example) Formed. In the present embodiment, the circumferential width L 1 of the notch 12 is set to be smaller than the circumferential interval L 2 between the adjacent notches 12 (see FIG. 4).

外側電極移動手段としてのスプリング50は、図2に示すように、外側電極10の上端部と支持部40との軸方向間に圧縮状態で配され、これにより外側電極10が常に下向きに付勢される。また、外側電極10の下方への移動は、支持部40に設けられた保持部41で規制される。具体的には、外側電極10の上端部には、外径へ突出した係止部13が形成され、保持部41の下端部には内径向きの突出部42が形成される。これらの外側電極10の係止部13と保持部41の突出部42とが軸方向で係合することで、係合部より下方への外側電極10の移動が規制される。   As shown in FIG. 2, the spring 50 as the outer electrode moving means is arranged in a compressed state between the upper end portion of the outer electrode 10 and the support portion 40, so that the outer electrode 10 is always biased downward. Is done. Further, the downward movement of the outer electrode 10 is restricted by a holding portion 41 provided in the support portion 40. Specifically, a locking portion 13 protruding to the outer diameter is formed at the upper end portion of the outer electrode 10, and a protruding portion 42 directed toward the inner diameter is formed at the lower end portion of the holding portion 41. The engaging portion 13 of the outer electrode 10 and the protruding portion 42 of the holding portion 41 are engaged in the axial direction, so that the movement of the outer electrode 10 below the engaging portion is restricted.

内側電極20は、金属材料(例えばCr−Cu合金)で中実に形成され、外側電極10の内周面に固定された円筒形状の絶縁部材90の内周に挿入される。内側電極20は外側電極10に対して軸方向に相対移動可能に設けられ、本実施形態では、内側電極20は絶縁部材90に対して摺動可能に設けられる。内側電極20の先端部(下端部)21には、図5に示すように平坦面22が形成され、この平坦面22から基端側へ向けて横断面積が徐々に大きくなっている。本実施形態では、平坦面22から上方へ向けて外径を徐々に大きくした中実の円すい部23が形成される。円すい部23の頂角αは100〜170度の範囲内に設定され、例えば140度に設定される。   The inner electrode 20 is formed of a metal material (for example, Cr—Cu alloy) and is inserted into the inner periphery of a cylindrical insulating member 90 fixed to the inner peripheral surface of the outer electrode 10. The inner electrode 20 is provided so as to be movable relative to the outer electrode 10 in the axial direction. In this embodiment, the inner electrode 20 is provided so as to be slidable with respect to the insulating member 90. A flat surface 22 is formed at the distal end (lower end) 21 of the inner electrode 20 as shown in FIG. 5, and the cross-sectional area gradually increases from the flat surface 22 toward the proximal end side. In the present embodiment, a solid conical portion 23 having an outer diameter that gradually increases from the flat surface 22 upward is formed. The apex angle α of the conical portion 23 is set within a range of 100 to 170 degrees, for example, 140 degrees.

内側電極移動手段としてのシリンダ60は、図1に示すように支持部40に取付けられ、シリンダ60内の圧力を高めると、支持部40に対して内側電極20が下方に押し出される。   The cylinder 60 as the inner electrode moving means is attached to the support portion 40 as shown in FIG. 1, and when the pressure in the cylinder 60 is increased, the inner electrode 20 is pushed downward with respect to the support portion 40.

以下、上記構成の抵抗溶接装置による溶接方法の一例を説明する。   Hereinafter, an example of a welding method using the resistance welding apparatus having the above configuration will be described.

まず、図1に示すように、内側電極20の先端部を外側電極10の先端部よりも下方に突出させた状態とし、この状態で同軸電極30全体を昇降機70により降下させ、図6に示すように、内側電極20の先端部21をワークWの上面に当接させる。続けて同軸電極30を降下させると、内側電極20がシリンダ60内部の圧力に抗して相対的に後退する(実際は、内側電極20がワークWに当接して静止した状態で、シリンダ60等が降下する)。このとき、内側電極20の先端部21はシリンダ60内部の圧力によりワークWに押し付けられている。   First, as shown in FIG. 1, the tip of the inner electrode 20 is protruded downward from the tip of the outer electrode 10, and the entire coaxial electrode 30 is lowered by the elevator 70 in this state, and shown in FIG. In this way, the tip 21 of the inner electrode 20 is brought into contact with the upper surface of the workpiece W. When the coaxial electrode 30 is continuously lowered, the inner electrode 20 moves backward relatively against the pressure in the cylinder 60 (actually, the cylinder 60 or the like is in a state where the inner electrode 20 is in contact with the workpiece W and is stationary). Descent). At this time, the tip 21 of the inner electrode 20 is pressed against the workpiece W by the pressure inside the cylinder 60.

さらに同軸電極30を降下させると、図7に示すように、外側電極10の先端部11がワークWに当接し、スプリング50の弾性力に抗して外側電極10が支持部40に近づく側に相対的に移動する(実際は、外側電極10及び内側電極20がワークWに当接して静止した状態で、支持部40等が降下する)。このとき、外側電極10は、スプリング60の弾性反力によりワークWに押し付けられ、図8に示すように、外側電極10の先端部11がワークWに僅かに食い込む。   When the coaxial electrode 30 is further lowered, as shown in FIG. 7, the distal end portion 11 of the outer electrode 10 comes into contact with the work W, and the outer electrode 10 approaches the support portion 40 against the elastic force of the spring 50. Move relative to each other (actually, the support portion 40 and the like are lowered while the outer electrode 10 and the inner electrode 20 are in contact with the workpiece W and are stationary). At this time, the outer electrode 10 is pressed against the workpiece W by the elastic reaction force of the spring 60, and the tip 11 of the outer electrode 10 slightly bites into the workpiece W as shown in FIG.

以上により、外側電極10及び内側電極20のワークWへの当接が完了する。このとき、外側電極10はスプリング50の弾性反力によりワークWに押し付けられ、内側電極20はシリンダ60内の圧力によりワークWに押し付けられている。   Thus, the contact of the outer electrode 10 and the inner electrode 20 with the workpiece W is completed. At this time, the outer electrode 10 is pressed against the workpiece W by the elastic reaction force of the spring 50, and the inner electrode 20 is pressed against the workpiece W by the pressure in the cylinder 60.

この状態で外側電極10と内側電極20との間に通電することにより、溶接が行われる。具体的には、同軸電極30に通電することにより、ワークWのうち、内側電極20の直下部分に電流密度が集中し、この部分の温度が上昇する。この熱が上側の板W1と下側の板W2との接触部に伝達され、この接触部の材料が軟化(あるいは溶融)し、ナゲットを形成して両者を接合する。   In this state, welding is performed by energizing between the outer electrode 10 and the inner electrode 20. Specifically, when the coaxial electrode 30 is energized, the current density concentrates in the portion of the workpiece W directly below the inner electrode 20, and the temperature of this portion rises. This heat is transmitted to the contact portion between the upper plate W1 and the lower plate W2, and the material of this contact portion is softened (or melted) to form a nugget and join them together.

このとき、内側電極20の直下部分におけるワークWの熱が、平坦面22を介して内側電極20に伝達される。上記のように、内側電極20の先端部は、平坦面22から基端側へ横断面積が徐々に大きくなっており、すなわち、内側電極20の中心軸方向の微小長さ当りの体積が、基端側へ行くに従って徐々に大きくなっているため、平坦面22から伝わった熱が、より体積の大きくなる基端側へ拡散し、内側電極20の先端部21の温度上昇を抑えることができる。   At this time, the heat of the workpiece W in the portion immediately below the inner electrode 20 is transmitted to the inner electrode 20 through the flat surface 22. As described above, the distal end portion of the inner electrode 20 has a gradually increasing cross-sectional area from the flat surface 22 to the proximal end side. That is, the volume per minute length in the central axis direction of the inner electrode 20 is Since the temperature gradually increases toward the end side, the heat transmitted from the flat surface 22 diffuses to the base end side where the volume becomes larger, and the temperature rise of the front end portion 21 of the inner electrode 20 can be suppressed.

また、通電中は、外側電極10がワークWに当接することにより内部空間が形成されているが、外側電極10に切り欠き部12が設けられているため、外側電極10の内部空間と外部とを連通する窓が形成され、内部空間の熱を外へ逃がすことができる。これにより、外側電極10の内部空間における冷却効果を高め、内側電極20の軟化をより確実に防止できる。尚、切り欠き部12は周方向等間隔に設けられているため、すなわち、外側電極10の先端部に、ワークに接触する接触部(断面円弧状曲面)とワークに接触しない非接触部(切り欠き部12)とが周方向等間隔に設けられているため、外側電極10と内側電極20との間の電流密度を周方向で均等に分布させることができる。   During energization, the outer electrode 10 is in contact with the workpiece W to form an internal space. However, since the outer electrode 10 has a notch 12, the inner space of the outer electrode 10 and the outer space are formed. Is formed, and the heat in the internal space can be released to the outside. Thereby, the cooling effect in the internal space of the outer electrode 10 can be enhanced, and the softening of the inner electrode 20 can be prevented more reliably. In addition, since the notches 12 are provided at equal intervals in the circumferential direction, that is, at the tip of the outer electrode 10, a contact portion that contacts the workpiece (circular curved surface) and a non-contact portion that does not contact the workpiece (cut) Since the notches 12) are provided at equal intervals in the circumferential direction, the current density between the outer electrode 10 and the inner electrode 20 can be evenly distributed in the circumferential direction.

また、外側電極10に切り欠き部12を設けることで、外側電極10の内周で発生したスパッタが切り欠き部12を抜けて外部に抜けるため、外側電極10の内周面に付着するスパッタの量が低減され、通電が阻害される恐れを減じることができる。   Further, by providing the notch 12 in the outer electrode 10, spatter generated on the inner periphery of the outer electrode 10 passes through the notch 12 and exits to the outside. The amount can be reduced, and the possibility that energization is hindered can be reduced.

10 外側電極
20 内側電極
21 先端部
22 平坦面
23 円すい部
30 同軸電極
40 支持部
50 移動手段
60 スプリング
70 絶縁部材
80 シリンダ
DESCRIPTION OF SYMBOLS 10 Outer electrode 20 Inner electrode 21 Tip part 22 Flat surface 23 Conical part 30 Coaxial electrode 40 Support part 50 Moving means 60 Spring 70 Insulating member 80 Cylinder

Claims (3)

筒状に形成された外側電極、及び、外側電極の内周に同軸状に配され、外側電極に対して軸方向に移動可能である内側電極を有する同軸電極と、内側電極を軸方向に移動させる内側電極移動手段と、外側電極を軸方向に移動させる外側電極移動手段とを有し、内側電極及び外側電極の先端部を、重ねられた複数の金属板一方側から接触させて両電極間に通電することで、内側電極の直下にナゲットを形成して前記複数の金属板を溶接する抵抗溶接装置であって、
内側電極の先端部に平坦面を形成し、この平坦面から基端側に向けて、電極の中心軸方向と直交する方向の断面積が徐々に大きくなるようにし、
内側電極の先端部に、前記平坦部から基端側へ向けて外径を徐々に大きくした中実の円すい部を形成し、該円すい部の頂角が100〜170度である抵抗溶接装置。
Cylindrical shape formed in the outer electrode, and, arranged coaxially on the inner periphery of the outer electrode, moving coaxially electrode having an inner electrode is axially movable relative to the outer electrode, the inner electrode in the axial direction an inner electrode moving means for, and an outer electrode moving means for moving the outer electrode in the axial direction, the electrodes of the tip of the inner electrode and the outer electrode, in contact with the plurality of metal plates stacked from one side It is a resistance welding device that welds the plurality of metal plates by forming a nugget directly under the inner electrode by energizing in between ,
Form a flat surface at the tip of the inner electrode, and gradually increase the cross-sectional area in the direction orthogonal to the central axis direction of the electrode from the flat surface toward the base end side,
A resistance welding apparatus in which a solid conical portion having an outer diameter gradually increased from the flat portion toward the base end side is formed at the distal end portion of the inner electrode, and the apex angle of the conical portion is 100 to 170 degrees.
前記同軸電極全体を軸方向に移動させる同軸電極移動手段を有し、Coaxial electrode moving means for moving the entire coaxial electrode in the axial direction,
前記同軸電極移動手段により前記同軸電極を移動させながら、前記内側電極移動手段により内側電極の相対的な後退を許容して内側電極を前記複数の金属板に所定の圧力で押し付けると共に、前記外側電極移動手段により外側電極の相対的な後退を許容して外側電極を複数の金属板に所定の圧力で押し付ける請求項1記載の抵抗溶接装置。While moving the coaxial electrode by the coaxial electrode moving means, the inner electrode moving means allows relative retreat of the inner electrode and presses the inner electrode against the plurality of metal plates with a predetermined pressure. The resistance welding apparatus according to claim 1, wherein the outer electrode is pressed against the plurality of metal plates with a predetermined pressure while allowing the outer electrode to be relatively retracted by the moving means.
外側電極の先端部の周方向等間隔箇所に切り欠き部を形成した請求項1記載の抵抗溶接装置。   The resistance welding apparatus according to claim 1, wherein a notch is formed at a circumferentially equidistant portion of the tip of the outer electrode.
JP2009179227A 2009-07-31 2009-07-31 Resistance welding equipment Active JP5491093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179227A JP5491093B2 (en) 2009-07-31 2009-07-31 Resistance welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179227A JP5491093B2 (en) 2009-07-31 2009-07-31 Resistance welding equipment

Publications (2)

Publication Number Publication Date
JP2011031269A JP2011031269A (en) 2011-02-17
JP5491093B2 true JP5491093B2 (en) 2014-05-14

Family

ID=43760864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179227A Active JP5491093B2 (en) 2009-07-31 2009-07-31 Resistance welding equipment

Country Status (1)

Country Link
JP (1) JP5491093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103659100A (en) * 2012-09-18 2014-03-26 上海强精金属制品有限公司 Welding fixture capable of preventing water-heater chamber assembly from sparking

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664610B1 (en) 2014-12-05 2016-10-10 현대자동차주식회사 Welding device and welding system of automobile parts
JP2020075264A (en) 2018-11-06 2020-05-21 マツダ株式会社 Resistance-welding device, resistance-welding method using the same, and welding device
JP2021041440A (en) * 2019-09-12 2021-03-18 マツダ株式会社 Resistance welding method and resistance welding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1179062B (en) * 1984-08-20 1987-09-16 Fiat Auto Spa PROCESS AND EQUIPMENT FOR THE WELDING OF THIN SHEETS
FR2670698B1 (en) * 1990-12-19 1993-04-16 Lorraine Laminage POINT RESISTANCE WELDING METHOD AND WELDING ELECTRODE FOR CARRYING OUT THE METHOD.
JPH11104846A (en) * 1997-10-03 1999-04-20 Toyota Motor Corp Coated conductive member joining device
JP4187066B2 (en) * 2003-01-27 2008-11-26 株式会社村田製作所 Resistance welding method, apparatus, and electronic component manufacturing method
JP4175562B2 (en) * 2003-03-18 2008-11-05 オリジン電気株式会社 Resistance welding equipment
JP2004298880A (en) * 2003-03-28 2004-10-28 Origin Electric Co Ltd Resistance welding device
JP4836173B2 (en) * 2004-12-24 2011-12-14 ダイハツ工業株式会社 Series spot welding equipment or indirect spot welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103659100A (en) * 2012-09-18 2014-03-26 上海强精金属制品有限公司 Welding fixture capable of preventing water-heater chamber assembly from sparking
CN103659100B (en) * 2012-09-18 2016-02-24 上海强精金属制品有限公司 A kind of weld jig preventing the body assembly sparking of water heater room

Also Published As

Publication number Publication date
JP2011031269A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JPH11342477A (en) Spot welding method
JP5491093B2 (en) Resistance welding equipment
KR102127991B1 (en) Resistance spot welding method and welded structure
JP2020082091A (en) Welding electrode processing tool, welding electrode processor and welding electrode processing method
JP4139375B2 (en) Resistance welding electrode and resistance welding method
JP6900692B2 (en) Joining method using rivets and equipment used for its implementation
JP2019136748A (en) Resistance spot welding method
JP2023013804A (en) Joining device and joining method for friction stir joining and resistance welding
JP2023013802A (en) Joining device for friction stir joining and resistance welding
JP2011031271A (en) Resistance welding method
JP2008110397A (en) Projection welding method for article to be welded having high conductivity
JP4757651B2 (en) Resistance welding method for highly conductive metal materials
JP5748411B2 (en) Manufacturing method of joint product by one-side spot welding
KR101788520B1 (en) Bonded article manufacturing method and bonded article
JP4940334B2 (en) Projection welding method for highly conductive workpieces
JP6075254B2 (en) Spot welding tip shaping method
JP4825056B2 (en) Highly conductive workpiece and resistance welding method thereof
JP7255119B2 (en) Indirect spot welding device and welding method
JP2011031267A (en) Resistance welding apparatus, resistance welding method, and electrode used therefor
JP4284928B2 (en) Resistance welding machine
JP4994982B2 (en) Diffusion bonding method for copper thin-walled pipe
JP4973592B2 (en) Manufacturing method of electrical contact
JP7111076B2 (en) resistance welding equipment
JP2009101399A (en) Spot welding method
JP7479757B2 (en) Spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5491093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250