JP5488444B2 - Radiation temperature control device - Google Patents

Radiation temperature control device Download PDF

Info

Publication number
JP5488444B2
JP5488444B2 JP2010282063A JP2010282063A JP5488444B2 JP 5488444 B2 JP5488444 B2 JP 5488444B2 JP 2010282063 A JP2010282063 A JP 2010282063A JP 2010282063 A JP2010282063 A JP 2010282063A JP 5488444 B2 JP5488444 B2 JP 5488444B2
Authority
JP
Japan
Prior art keywords
temperature
air
radiation
booth
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010282063A
Other languages
Japanese (ja)
Other versions
JP2012127624A (en
Inventor
憲司 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2010282063A priority Critical patent/JP5488444B2/en
Publication of JP2012127624A publication Critical patent/JP2012127624A/en
Application granted granted Critical
Publication of JP5488444B2 publication Critical patent/JP5488444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、ブース内に配設された輻射パネル内に流体を循環供給してブース内を輻射温調する輻射温調手段を備えた輻射温調装置に関する。   The present invention relates to a radiation temperature adjusting device including a radiation temperature adjusting means for circulatingly supplying a fluid into a radiation panel disposed in a booth to adjust the temperature of the inside of the booth.

従来から、電子顕微鏡等の精密機器による各種作業は、周囲温度等の環境からの影響により、その計測精度や運転状態が悪影響を受ける場合があることから、通常、精密機器が配設されるブース内の温度を所定温度に温調する温調装置が採用される。
このような温調装置として、温調された空気をブース内に送り込んで当該ブース内を所定温度に温調する送風式の温調装置がある。しかしながら、この送風式の温調装置では、ブース内に空気を送り込むため、当該ブース内には空気の対流が発生して、精密機器の計測精度や運転状態に悪影響を与えてしまう場合がある。
そのため、ブース内の空気の流れを極力発生させないようにしながら、温調を行う温調装置として、ブース内に輻射パネルを配設し当該輻射パネルに流体を通流させることで、当該流体からの輻射によりブース内の空気を温調する輻射温調装置が提案されている。
Traditionally, various operations using precision instruments such as electron microscopes can be adversely affected by environmental effects such as ambient temperature, so the measurement accuracy and operating conditions may be adversely affected. A temperature control device that adjusts the temperature inside to a predetermined temperature is employed.
As such a temperature control device, there is a blow-type temperature control device that sends temperature-controlled air into a booth and controls the temperature inside the booth to a predetermined temperature. However, in this air temperature control device, since air is sent into the booth, air convection occurs in the booth, which may adversely affect the measurement accuracy and operating state of precision equipment.
Therefore, as a temperature control device that controls the temperature while preventing the flow of air in the booth as much as possible, a radiant panel is arranged in the booth and the fluid is allowed to flow through the radiant panel. There has been proposed a radiation temperature control device that controls the temperature of air in a booth by radiation.

一方で、例えば、特許文献1に開示の温調装置では、熱源器にて温調された空気を、ブース内に直接送風する構成と、ブースの天井部に配設された輻射パネル内に送風する構成との両方を備えることが開示されている。そして、室内負荷が大きい起動時には、温調された空気をブース内に直接送風させる送風式の温調を行い、室内負荷が小さくなると、温調された空気を輻射パネル内に通流させ、輻射パネルからの輻射により輻射温調を行うように構成されている。   On the other hand, for example, in the temperature control device disclosed in Patent Document 1, the air temperature-controlled by the heat source device is directly blown into the booth, and the air is blown into the radiation panel disposed on the ceiling of the booth. It is disclosed that both are included. When the indoor load is high, the air temperature is controlled by blowing air to the booth directly, and when the indoor load is small, the temperature-controlled air is passed through the radiant panel. The radiation temperature is adjusted by radiation from the panel.

特開平6−201154号公報JP-A-6-201154

しかしながら、特許文献1に開示の温調装置では、温調された空気を、ブース内に直接送風する構成と、ブースの天井部に配設された輻射パネル内に送風する構成との両方を備えるため、構造が複雑となりやすく、コストの上昇、設置スペースの増加、装置の大型化等の問題が生じる。   However, the temperature control device disclosed in Patent Document 1 has both a configuration in which the temperature-controlled air is directly blown into the booth and a configuration in which the air is blown into the radiation panel disposed on the ceiling of the booth. Therefore, the structure tends to be complicated, and problems such as an increase in cost, an increase in installation space, and an increase in the size of the apparatus occur.

一方で、送風式の温調装置では、上述のとおり、精密機器の運転状態等に悪影響を与えかねないので、輻射温調装置を採用することが好ましいが、輻射温調装置では、基本的に、輻射パネルからの輻射により伝熱する構成であるため、ブース内の空気温度の上昇は非常に遅くなる。そのため、輻射温調装置の起動時には、ブース内の空気温度が空気用目標設定温度となるまでに、非常に長い時間(例えば、24時間程度以上)が必要となるという問題がある。また、このように長い時間輻射温調する場合には、起動における輻射温調手段の運転のために余分なエネルギーが必要となる。   On the other hand, as described above, since the air temperature control device may adversely affect the operation state of the precision instrument, it is preferable to employ the radiation temperature control device. Since the structure is such that heat is transferred by radiation from the radiation panel, the rise in the air temperature in the booth becomes very slow. Therefore, at the time of starting the radiation temperature control device, there is a problem that a very long time (for example, about 24 hours or more) is required until the air temperature in the booth becomes the target temperature for air. Further, when adjusting the radiation temperature for such a long time, extra energy is required for the operation of the radiation temperature adjusting means at the start-up.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、輻射温調手段の起動運転において、簡便な構成で、ブース内の空気温度をより短い時間で空気用目標設定温度に収束するように安定させ、省エネを実現できる輻射温調装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to converge the air temperature in the booth to the air target set temperature in a shorter time with a simple configuration in the startup operation of the radiation temperature adjusting means. An object of the present invention is to provide a radiation temperature control device that can stabilize and realize energy saving.

上記目的を達成するための本発明に係る輻射温調装置は、ブース内に配設された輻射パネル内に流体を循環供給して前記ブース内を輻射温調する輻射温調手段と、前記輻射温調手段の運転を制御する制御手段とを備えた輻射温調装置であって、その特徴構成は、
前記ブースが、天井部と側壁部とを備えて構成され、
前記ブース内の空気を前記輻射パネルの外表面に送風する送風手段を、前記ブース内に配設し、
板状の前記輻射パネルが、前記側壁部に沿って配設されるとともに、前記送風手段が前記輻射パネルと前記側壁部との間に配設され、
前記輻射温調手段の起動運転において、前記制御手段が、前記輻射温調手段を働かせて前記ブース内を輻射温調するとともに、前記送風手段を働かせて、前記送風手段により送風される空気を前記輻射パネルの外表面に吹付けて、当該空気と前記輻射パネル内の流体との間で熱交換させ、当該空気の対流により前記ブース内を温調する点にある。
In order to achieve the above object, a radiation temperature control device according to the present invention comprises a radiation temperature control means for circulating and supplying a fluid to a radiation panel disposed in a booth to adjust the radiation temperature in the booth, and the radiation A radiation temperature control device comprising a control means for controlling the operation of the temperature control means, the characteristic configuration is:
The booth is configured with a ceiling part and a side wall part,
Blower means for blowing air in the booth to the outer surface of the radiation panel is disposed in the booth,
The plate-like radiation panel is disposed along the side wall portion, and the air blowing means is disposed between the radiation panel and the side wall portion,
In the start-up operation of the radiant temperature adjusting means, the control means operates the radiant temperature adjusting means to adjust the radiant temperature inside the booth, and the air blowing means operates the air blown by the air blowing means. It is in the point which sprays on the outer surface of a radiation panel, makes it heat-exchange between the said air and the fluid in the said radiation panel, and temperature-controls the inside of the said booth by the convection of the said air.

上記特徴構成によれば、輻射温調手段の起動運転の際には、輻射パネルからの輻射により輻射温調を行うとともに、送風手段により送風されるブース内の空気を輻射パネルの外表面に吹付けて、当該空気と輻射パネル内の流体との間で熱交換させ、当該空気の対流によりブース内の対流温調を行うことができる。
ここで、この輻射温調手段の輻射パネルから輻射されることによる伝熱及びブース内の空気が輻射パネルに接触することによる伝熱(輻射温調)のみでは、ブース内の空気温度を空気用目標設定温度に収束させるために非常に長い時間(例えば、24時間程度以上)がかかる。そのため、この輻射温調手段を働かせるのと同時又は少し遅れた時期に、送風手段を働かせることで、送風手段により送風されるブース内の空気を輻射パネルの外表面に吹付けて、当該空気と輻射パネル内の流体との間で強制的に熱交換させ、輻射パネル内の流体が有する多くの熱(冷熱や温熱)を対流する空気によりブース内に伝熱させることができる(対流温調)。すなわち、単位時間当たりに、輻射温調のみで輻射パネルからブース内に供給される熱量よりも、輻射温調と対流温調とにより輻射パネルからブース内に供給される熱量の方が多くなり、輻射パネル内の流体が有する熱をより効率よくブース内の空気の温調に利用することができる。
これにより、ブース内に送風手段を設ける簡単な構成で、輻射温調手段の起動運転の際に、輻射温調手段と送風手段とを働かせるだけで、より短い時間(例えば、12時間程度)でブース内の空気温度を空気用目標設定温度に収束させ安定化させることができる。また、起動運転の際の運転時間が短くなるので、省エネを図ることができる。
よって、輻射温調手段の運転の際に、簡便な構成で、ブース内の空気温度をより短い時間で空気用目標設定温度に収束するように安定させ、省エネを実現できる。
更に、ブースが内部空間に外部から空気等が侵入しないように天井部と側壁部とを備えて形成され、この側壁部に沿って板状の輻射パネルが配設されるとともに、送風手段が、輻射パネルと側壁部との間に配設されている。この送風手段の配設場所は、輻射パネルから輻射され伝熱される熱(冷熱や温熱)が滞留し易い場所(輻射パネルと側壁部との間)である。この配設場所で送風手段が輻射パネルの外表面にブース内の空気を吹付けて対流させることで、輻射パネル内の流体が有する多くの熱(冷熱や温熱)を対流する空気によりブース内に伝熱させることができる(対流温調)とともに、輻射パネルと側壁部との間に滞留する熱(冷熱や温熱)も当該対流する空気によりブース内に伝熱させることができる。
よって、輻射パネル内の流体が有するより多くの熱量(冷熱や温熱)を対流する空気によりブース内に伝熱させ、輻射パネル内の流体が有する熱をより一層効率よくブース内の空気の温調に利用することができる。
According to the above characteristic configuration, when the radiation temperature adjusting means is activated, the radiation temperature is adjusted by radiation from the radiation panel, and the air in the booth blown by the blowing means is blown to the outer surface of the radiation panel. In addition, heat can be exchanged between the air and the fluid in the radiation panel, and convection temperature control in the booth can be performed by convection of the air.
Here, only the heat transfer by radiation from the radiation panel of the radiation temperature control means and the heat transfer by the air in the booth contacting the radiation panel (radiation temperature control), the air temperature in the booth is used for air. It takes a very long time (for example, about 24 hours or more) to converge to the target set temperature. For this reason, by operating the air blowing means at the same time as the radiation temperature adjusting means is activated or slightly delayed, the air in the booth blown by the air blowing means is blown to the outer surface of the radiation panel, and the air and Heat can be forcibly exchanged with the fluid in the radiant panel, and the heat in the fluid in the radiant panel can be transferred to the booth by the convection air (convection temperature control). . That is, the amount of heat supplied from the radiant panel to the booth by the radiant temperature control and the convection temperature control is larger than the amount of heat supplied from the radiant panel to the booth by only the radiant temperature control per unit time. The heat of the fluid in the radiant panel can be used more efficiently for temperature control of the air in the booth.
Thus, with a simple configuration in which the air blowing means is provided in the booth, the radiation temperature adjusting means and the air blowing means can be operated in a shorter time (for example, about 12 hours) when the radiation temperature adjusting means is activated. The air temperature in the booth can be converged and stabilized at the target temperature for air. In addition, since the operation time during the start-up operation is shortened, energy saving can be achieved.
Therefore, when the radiation temperature adjusting means is operated, the air temperature in the booth can be stabilized so as to converge to the air target set temperature in a shorter time with a simple configuration, thereby realizing energy saving.
Furthermore, the booth is formed with a ceiling part and a side wall part so that air or the like does not enter the internal space from the outside, a plate-like radiation panel is disposed along the side wall part, and the air blowing means, It is arrange | positioned between the radiation panel and the side wall part. The place where the air blowing means is disposed is a place (between the radiation panel and the side wall) where heat (cold heat or heat) radiated from the radiation panel and transferred is likely to stay. The air blower blows the air in the booth onto the outer surface of the radiant panel at this location and causes convection, so that the air in the radiant panel has a lot of heat (cold or hot) in the booth. In addition to being able to transfer heat (convection temperature control), heat (cold heat and hot heat) staying between the radiant panel and the side wall can be transferred to the booth by the convection air.
Therefore, the heat in the booth is transferred to the booth by convection air with a larger amount of heat (cold or hot) of the fluid in the radiant panel, and the heat of the fluid in the radiant panel is more efficiently controlled. Can be used.

本発明に係る輻射温調装置の更なる特徴構成は、前記ブース内の空気の空気温度を検出する空気温度検出手段を備え、
前記輻射温調手段の起動運転において、前記空気温度検出手段により検出された空気温度が空気用目標設定温度となった場合に、前記制御手段が、前記送風手段を停止させる点にある。
A further characteristic configuration of the radiation temperature control device according to the present invention includes an air temperature detecting means for detecting an air temperature of the air in the booth,
In the starting operation of the radiation temperature adjusting means, the control means stops the air blowing means when the air temperature detected by the air temperature detecting means reaches the target set temperature for air.

上記特徴構成によれば、輻射温調手段の起動運転において、空気温度が空気用目標設定温度となった場合には、制御手段が、輻射温調手段の運転を継続させつつ、送風手段を停止させる。これにより、起動運転から通常運転(輻射温調)に変更され、ブース内を輻射温調のみで温調することとなり、空気温度を空気用目標設定温度に収束させ安定させた状態を維持することができる。   According to the above characteristic configuration, in the start-up operation of the radiation temperature adjusting means, when the air temperature reaches the target set temperature for air, the control means stops the air blowing means while continuing the operation of the radiation temperature adjusting means. Let As a result, the start-up operation is changed to the normal operation (radiation temperature control), and the inside of the booth is controlled only by the radiation temperature control, and the air temperature is converged to the target set temperature for air and maintained in a stable state. Can do.

本発明に係る輻射温調装置の更なる特徴構成は、前記ブース内の空気の空気温度を検出する空気温度検出手段を備え、
前記輻射温調手段の起動運転において、前記制御手段が、前記空気温度検出手段により検出された空気温度と空気用目標設定温度との偏差が大きい場合には、前記輻射パネル内に循環供給される流体の流体用目標設定温度と空気用目標設定温度との温度差が大きくなるように流体用目標設定温度を設定し、前記空気温度と空気用目標設定温度との偏差が小さい場合には、流体用目標設定温度と空気用目標設定温度との温度差が小さくなるように流体用目標設定温度を設定する点にある。
A further characteristic configuration of the radiation temperature control device according to the present invention includes an air temperature detecting means for detecting an air temperature of the air in the booth,
In the start-up operation of the radiation temperature adjusting means, when the deviation between the air temperature detected by the air temperature detecting means and the air target set temperature is large, the control means is circulated and supplied into the radiation panel. When the fluid target set temperature is set so that the temperature difference between the fluid target set temperature and the air target set temperature is large, and the deviation between the air temperature and the air target set temperature is small, the fluid The target set temperature for fluid is set so that the temperature difference between the target set temperature for air and the target set temperature for air becomes small.

上記特徴構成によれば、制御手段が、空気温度(例えば、30℃)と空気用目標設定温度(例えば、20〜22℃)との偏差が大きい場合(室内負荷が大きい場合(例えば、偏差が8〜10℃))には、流体の流体用目標設定温度と空気用目標設定温度(例えば、20〜22℃)との温度差が大きくなるように流体用目標設定温度(例えば、10℃)を設定し、空気用目標設定温度(例えば、20〜22℃)に対して大きな温度差(例えば、10〜12℃)を備えた流体用目標設定温度(例えば、10℃)となった流体が、輻射パネルにより循環供給される。
また、制御手段が、空気温度(例えば、25℃)と空気用目標設定温度(例えば、20〜22℃)との偏差が小さい場合(室内負荷が小さい場合(例えば、偏差が3〜5℃))には、流体用目標設定温度と空気用目標設定温度(例えば、20〜22℃)との温度差が小さくなるように流体用目標設定温度(例えば、15〜18℃)を設定し、空気用目標設定温度(例えば、20〜22℃)に対して小さな温度差(例えば、2〜7℃)を備えた流体用目標設定温度(例えば、15〜18℃)となった流体が、輻射パネルにより循環供給される。
なお、上記偏差が大きい場合及び小さい場合のいずれの場合も、流体用目標設定温度は、検出された空気温度からみて空気用目標設定温度の反対側の温度(冷房運転の場合には空気用目標設定温度の低温側の温度、暖房運転の場合には空気用目標設定温度の高温側の温度)に設定される。
これにより、ブース内の室内負荷が大きい場合には、高い熱量(冷熱量又は温熱量)を備えた流体によりブース内の迅速な輻射温調ができ、これに対して室内負荷が小さい場合には、低い熱量(冷熱量又は温熱量)を備えた流体によりブース内を輻射温調して、空気用目標設定温度に収束し安定させることができる。
また、室内負荷が大きい場合に、より迅速な輻射温調ができるので、輻射温調手段の起動運転における運転時間を低減することができ、省エネを図ることができる。
According to the above characteristic configuration, when the control means has a large deviation between the air temperature (for example, 30 ° C.) and the air target set temperature (for example, 20 to 22 ° C.) (when the indoor load is large (for example, the deviation is 8 to 10 ° C)), the fluid target set temperature (for example, 10 ° C) so that the temperature difference between the fluid target set temperature and the air target set temperature (for example, 20 to 22 ° C) becomes large. The fluid having a target set temperature for fluid (for example, 10 ° C.) having a large temperature difference (for example, 10 to 12 ° C.) with respect to the target set temperature for air (for example, 20 to 22 ° C.) Circulated and supplied by the radiation panel.
Further, when the control means has a small deviation between the air temperature (for example, 25 ° C.) and the air target set temperature (for example, 20 to 22 ° C.) (when the indoor load is small (for example, the deviation is 3 to 5 ° C.)). ), The target set temperature for fluid (for example, 15 to 18 ° C.) is set so that the temperature difference between the target set temperature for fluid and the target set temperature for air (for example, 20 to 22 ° C.) becomes small. The fluid having a target set temperature for fluid (for example, 15 to 18 ° C.) having a small temperature difference (for example, 2 to 7 ° C.) with respect to the target set temperature (for example, 20 to 22 ° C.) Is circulated and supplied.
In both cases where the deviation is large and small, the fluid target set temperature is the temperature on the opposite side of the air target set temperature from the detected air temperature (in the case of cooling operation, the air target set temperature). The temperature is set to the low temperature side of the set temperature, or to the high temperature side of the target set temperature for air in the case of heating operation.
As a result, when the indoor load in the booth is large, a rapid radiation temperature control in the booth can be performed with a fluid having a high amount of heat (cold heat amount or heat amount). On the other hand, when the indoor load is small The inside of the booth can be radiantly temperature-controlled with a fluid having a low amount of heat (cold heat amount or warm heat amount), and can be converged and stabilized at the target set temperature for air.
Further, since the radiation temperature can be adjusted more quickly when the indoor load is large, the operation time in the startup operation of the radiation temperature adjusting means can be reduced, and energy saving can be achieved.

輻射温調装置を備えた輻射温調システムの概略構成図Schematic configuration diagram of a radiation temperature control system equipped with a radiation temperature control device 起動運転及び通常運転における空気温度、空気用目標設定温度、流体温度、流体用目標設定温度、送風ファンの運転状態を示す概念図Conceptual diagram showing air temperature, target set temperature for air, fluid temperature, target set temperature for fluid, and operating state of blower fan in start-up operation and normal operation 制御部による温調制御の概略作動フロー図Schematic operation flow diagram of temperature control by the control unit

本発明に係る輻射温調装置Eを備えた輻射温調システムDについて、図1〜図3を参照しながら説明する。   The radiation temperature control system D provided with the radiation temperature control apparatus E which concerns on this invention is demonstrated referring FIGS. 1-3.

輻射温調システムDは、図1に示すように、電子顕微鏡F(精密機器の一例)が収容されるブース1と、輻射温調装置Eとを備えて構成される。
輻射温調装置Eは、ブース1内に配設された輻射パネル2a内に流体Q(例えば、水)を循環供給してブース1内の空気Pを輻射温調する輻射温調手段2と、輻射パネル2a内に供給される流体Qの流体温度Q1を検出する流体用温度センサ3(流体温度検出手段の一例)と、ブース1内の空気Pの空気温度P1を検出する空気用温度センサ4(空気温度検出手段の一例)と、輻射温調手段2等の運転を制御する制御部5(制御手段の一例)と、ブース1内の空気Pを輻射パネル2aの外表面に送風する送風ファン20(送風手段の一例)とを備える。なお、図示を省略するが、制御部5にはブース1内の空気用目標設定温度P2及び流体用目標設定温度Q2等を設定可能で、設定された各種情報を記憶可能な記憶部を備えている。
以下では、ブース1、輻射温調装置E、送風ファン20の構成を説明した後、輻射温調装置Eの運転(起動運転、通常運転)について説明する。
As shown in FIG. 1, the radiation temperature adjustment system D includes a booth 1 in which an electron microscope F (an example of a precision instrument) is accommodated, and a radiation temperature adjustment device E.
The radiant temperature control device E circulates and supplies a fluid Q (for example, water) in a radiant panel 2a disposed in the booth 1, and radiates the temperature of the air P in the booth 1 to adjust the radiant temperature. A fluid temperature sensor 3 (an example of fluid temperature detection means) that detects a fluid temperature Q1 of the fluid Q supplied into the radiation panel 2a, and an air temperature sensor 4 that detects an air temperature P1 of the air P in the booth 1. (An example of air temperature detection means), a control unit 5 (an example of control means) for controlling the operation of the radiation temperature adjusting means 2 and the like, and a blower fan for blowing the air P in the booth 1 to the outer surface of the radiation panel 2a 20 (an example of a blowing means). Although not shown, the control unit 5 includes a storage unit that can set the target set temperature P2 for air and the target set temperature Q2 for fluid in the booth 1 and can store various set information. Yes.
Below, after explaining the configuration of the booth 1, the radiation temperature control device E, and the blower fan 20, the operation (startup operation, normal operation) of the radiation temperature control device E will be described.

ブース1は、図1に示すように、天井部1a及び側壁部1bを構成する壁面により囲繞されて概略立方体形状に形成されており、ブース1内の内部空間に外部から空気等が侵入しないように構成され、ブース1はクリーンルームとされている。ブース1内には、輻射温調装置Eから供給される流体Qからの輻射により、ブース1内の空気Pを温調する一対の板状の輻射パネル2aが、互いに対向する状態で、それぞれ側壁部1bに沿って配設されている。ブース1の内部空間の底部には架台Gが配設され、当該架台G上に電子顕微鏡Fが載置された状態でブース1内に収容されている。   As shown in FIG. 1, the booth 1 is surrounded by wall surfaces constituting the ceiling part 1 a and the side wall part 1 b and is formed in a substantially cubic shape so that air or the like does not enter the internal space in the booth 1 from the outside. The booth 1 is a clean room. In the booth 1, a pair of plate-like radiation panels 2 a that regulate the temperature of the air P in the booth 1 by radiation from the fluid Q supplied from the radiation temperature control device E are side walls in a state of facing each other. Arranged along the portion 1b. A gantry G is disposed at the bottom of the internal space of the booth 1, and the electron microscope F is placed on the gantry G and is accommodated in the booth 1.

ブース1内には、ブース1内の空気Pの空気温度P1を検出する空気用温度センサ4が配設されている。空気用温度センサ4により検出された空気温度P1は、輻射温調装置Eの制御部5に入力される構成となっている。   In the booth 1, an air temperature sensor 4 for detecting the air temperature P1 of the air P in the booth 1 is disposed. The air temperature P1 detected by the air temperature sensor 4 is input to the control unit 5 of the radiation temperature control device E.

輻射温調装置Eの輻射温調手段2は、圧縮機10、凝縮器11、第1電磁弁14、膨張弁12、蒸発器13(冷却手段の一例)の順に冷媒A(図中点線矢印参照)を循環させる冷凍回路Cを備えて構成されている。蒸発器13は、膨張された冷媒Aと流体Qとを熱交換させて流体Qを冷却させるように構成されている。膨張弁12は、冷凍回路Cを通流する冷媒Aの流量を調整自在で、当該冷媒Aを膨張可能に構成されている。また、第1電磁弁14は、冷凍回路Cを通流する冷媒Aの断続、すなわち、当該冷媒Aの通流の停止状態と通流状態とに切換できるように構成されている。なお、第1電磁弁14を、冷媒Aの通流状態では当該冷媒Aの流量を調整可能な構成としてもよい。   The radiant temperature control means 2 of the radiant temperature control apparatus E is a refrigerant A (refer to the dotted line arrow in the figure) in the order of the compressor 10, the condenser 11, the first electromagnetic valve 14, the expansion valve 12, and the evaporator 13 (an example of a cooling means). ) Is circulated in a refrigeration circuit C. The evaporator 13 is configured to cool the fluid Q by exchanging heat between the expanded refrigerant A and the fluid Q. The expansion valve 12 is configured such that the flow rate of the refrigerant A flowing through the refrigeration circuit C can be adjusted and the refrigerant A can be expanded. Further, the first solenoid valve 14 is configured to be able to switch between the intermittent state of the refrigerant A flowing through the refrigeration circuit C, that is, the stopped state and the flowing state of the refrigerant A. Note that the first electromagnetic valve 14 may be configured such that the flow rate of the refrigerant A can be adjusted when the refrigerant A is flowing.

冷凍回路Cには、圧縮機10と凝縮器11との間から分岐される分岐冷凍回路C1が設けられている。
分岐冷凍回路C1は、冷媒Aを圧縮機10と凝縮器11との間から分岐させて、冷凍回路Cにおける膨張弁12と蒸発器13との間に戻すように構成されている。分岐冷凍回路C1には、冷媒Aの流れ方向の上流側から順に、蒸発器13にて冷却された流体Qを、分岐冷凍回路C1を通流する冷媒Aと熱交換させて、流体Qを加熱する再熱器15、分岐冷凍回路C1を通流する冷媒Aの断続、すなわち、当該冷媒Aの通流の停止状態と通流状態とに切換できるように構成された第2電磁弁16が配設されている。第2電磁弁16を、冷媒Aの通流状態では当該冷媒Aの流量を調整可能な構成としてもよい。なお、分岐冷凍回路C1では、冷凍回路Cの蒸発器13及び圧縮機10を共用している。
The refrigeration circuit C is provided with a branch refrigeration circuit C1 that branches from between the compressor 10 and the condenser 11.
The branch refrigeration circuit C1 is configured to branch the refrigerant A from between the compressor 10 and the condenser 11 and return it between the expansion valve 12 and the evaporator 13 in the refrigeration circuit C. In the branch refrigeration circuit C1, the fluid Q cooled by the evaporator 13 is heat-exchanged with the refrigerant A flowing through the branch refrigeration circuit C1 in order from the upstream side in the flow direction of the refrigerant A to heat the fluid Q. The second solenoid valve 16 is arranged so as to be able to switch between the intermittent state of the refrigerant A flowing through the branch refrigerating circuit C1 and the refrigerant A flowing through the branch refrigeration circuit C1, that is, the stopped state and the flowing state of the refrigerant A. It is installed. The second electromagnetic valve 16 may be configured such that the flow rate of the refrigerant A can be adjusted when the refrigerant A is flowing. In the branch refrigeration circuit C1, the evaporator 13 and the compressor 10 of the refrigeration circuit C are shared.

また、輻射温調手段2は、流体Qを、蒸発器13、再熱器15、電気ヒータ17、送液ポンプ18、輻射パネル2aの入口及び出口、蒸発器13の順に循環通流させる流体循環流路19が設けられている。この流体循環流路19に設けられた電気ヒータ17は、公知の電気ヒータであり、流体循環流路19を通流し、再熱器15により加熱された流体Qをさらに加熱可能に構成されている。また、流体循環流路19に設けられた送液ポンプ18は、流体Qを流体循環流路19に循環通流させる循環手段として機能する。この流体循環流路19は、送液ポンプ18の下流側と輻射パネル2aの上流側との間で分岐しており、流体Qを一対の輻射パネル2aにそれぞれ供給可能に構成され、それぞれの輻射パネル2aの下流側と蒸発器13の上流側との間で合流しており、一対の輻射パネル2aから排出された流体Qを蒸発器13側に通流可能に構成されている。   In addition, the radiation temperature adjusting means 2 is a fluid circulation that circulates the fluid Q in the order of the evaporator 13, the reheater 15, the electric heater 17, the liquid feed pump 18, the inlet and outlet of the radiation panel 2 a, and the evaporator 13. A flow path 19 is provided. The electric heater 17 provided in the fluid circulation channel 19 is a known electric heater, and is configured to be able to further heat the fluid Q that flows through the fluid circulation channel 19 and is heated by the reheater 15. . Further, the liquid feed pump 18 provided in the fluid circulation channel 19 functions as a circulation means for circulating the fluid Q through the fluid circulation channel 19. The fluid circulation channel 19 branches between the downstream side of the liquid feed pump 18 and the upstream side of the radiation panel 2a, and is configured to be able to supply the fluid Q to the pair of radiation panels 2a, respectively. It joins between the downstream side of the panel 2a and the upstream side of the evaporator 13, and it is comprised so that the fluid Q discharged | emitted from a pair of radiation panel 2a can flow to the evaporator 13 side.

この流体循環流路19において送液ポンプ18の下流側と一対の輻射パネル2aの上流側(一対の輻射パネル2aに分岐する箇所よりも上流側)との間には、一対の輻射パネル2aに供給される流体Qの流体温度Q1を検出する流体用温度センサ3が配設されている。流体用温度センサ3により検出された流体温度Q1は、輻射温調装置Eの制御部5に入力される構成となっている。   In the fluid circulation channel 19, between the downstream side of the liquid feed pump 18 and the upstream side of the pair of radiation panels 2a (upstream side from the portion branched to the pair of radiation panels 2a), the pair of radiation panels 2a are connected. A fluid temperature sensor 3 for detecting the fluid temperature Q1 of the supplied fluid Q is disposed. The fluid temperature Q1 detected by the fluid temperature sensor 3 is configured to be input to the control unit 5 of the radiation temperature adjusting device E.

輻射パネル2aは、公知の輻射パネルにより構成され、ブース1内に一対設けられて、例えば、板状の輻射パネル2a内に蛇行して配設された伝熱パイプ(図示せず)内を入口から出口に向かって流体Qが通流することにより、当該流体Qからの輻射(伝熱)によりブース1内の空気Pを温調することが可能に構成されている。   The radiation panel 2a is constituted by a known radiation panel, and is provided in a pair in the booth 1, for example, an inlet through a heat transfer pipe (not shown) meanderingly disposed in the plate-like radiation panel 2a. When the fluid Q flows from the outlet toward the outlet, the temperature of the air P in the booth 1 can be controlled by radiation (heat transfer) from the fluid Q.

制御部5は、公知の情報演算処理手段から構成され、圧縮機10、膨張弁12、第1電磁弁14、第2電磁弁16、電気ヒータ17、送液ポンプ18、送風ファン20等の作動状態を制御し、冷媒A、流体Qの流量や温度制御等が可能に構成されている。なお、制御部5には、各機器の作動状態に関する信号が、当該各機器から入力されるように構成されている。   The control unit 5 includes known information calculation processing means, and operates the compressor 10, the expansion valve 12, the first electromagnetic valve 14, the second electromagnetic valve 16, the electric heater 17, the liquid feed pump 18, the blower fan 20, and the like. The state is controlled, and the flow rate and temperature control of the refrigerant A and the fluid Q are possible. Note that the control unit 5 is configured to receive a signal related to the operating state of each device from each device.

送風ファン20は、輻射パネル2aの外表面にブース1内の空気Pを吹き付け、当該空気Pをブース1内に対流させることができる構成(例えば、軸流送風機や斜流送風機等)であればよいが、本実施形態では、プロペラファン(軸流送風機)により構成されている。送風ファン20は、ブース1内において、ブース1の側壁部1bと輻射パネル2aとの間に形成された間隙に配設されている。送風ファン20の配設数については適宜設定可能であるが、本実施形態では、一対の輻射パネル2aのそれぞれに2つの送風ファン20が配設され、全体として4つの送風ファン20が配設されている。なお、送風ファン20は、輻射パネル2a、ブース1の側壁部1bや底部に固定配設される。また、送風ファン20の運転は、制御部5からの信号により制御される。   The blower fan 20 is configured to blow the air P in the booth 1 onto the outer surface of the radiation panel 2a and convect the air P into the booth 1 (for example, an axial blower or a mixed flow blower). Although it is good, in this embodiment, it is comprised by the propeller fan (axial flow fan). The blower fan 20 is disposed in the booth 1 in a gap formed between the side wall 1b of the booth 1 and the radiation panel 2a. Although the number of the blower fans 20 can be set as appropriate, in the present embodiment, two blower fans 20 are disposed in each of the pair of radiation panels 2a, and four blower fans 20 are disposed as a whole. ing. The blower fan 20 is fixedly disposed on the radiation panel 2a, the side wall 1b and the bottom of the booth 1. The operation of the blower fan 20 is controlled by a signal from the control unit 5.

次に、輻射温調装置Eの運転方法について、図2及び図3を参照して、ブース1内を冷房する場合について説明する。
輻射温調装置Eの起動運転時(電子顕微鏡Fの作業開始前)には、ユーザが操作部(図示せず)を操作して輻射温調装置Eを起動させると共に(ステップ♯1)、ブース1内の空気Pの空気温度P1が当該電子顕微鏡Fの作業に最適な温度(空気用目標設定温度P2:例えば20〜22℃)となるように、当該空気用目標設定温度P2を入力して設定する(ステップ♯2)。なお、輻射温調装置Eの起動と同時に、制御部5が、予め設定された温度を記憶部(図示せず)から読み出して、空気用目標設定温度P2として用いてもよい。
Next, the operation method of the radiation temperature control apparatus E will be described with reference to FIGS. 2 and 3 in the case where the booth 1 is cooled.
During startup operation of the radiation temperature control device E (before the work of the electron microscope F is started), the user operates the operation unit (not shown) to start the radiation temperature control device E (step # 1), and the booth The air target set temperature P2 is input so that the air temperature P1 of the air P in 1 becomes an optimum temperature for the operation of the electron microscope F (target set temperature P2 for air: 20 to 22 ° C., for example). Set (step # 2). At the same time as the activation of the radiation temperature control device E, the control unit 5 may read a preset temperature from a storage unit (not shown) and use it as the air target set temperature P2.

そして、制御部5は、輻射パネル2a内に循環供給される流体Qの流体用目標設定温度Q2を設定する。すなわち、制御部5は、図2に示すように、流体用目標設定温度Q2と空気用目標設定温度P2との温度差Δsである温度差Δs1が大きくなるように(温度差Δs1が所定値(例えば、10℃)以上の最大値となるように)、流体用目標設定温度Q2を、流体用目標設定温度Q2としての第1流体用目標設定温度Q21(例えば、10℃)に設定する(ステップ♯3)。第1流体用目標設定温度Q21は、検出された空気温度P1からみて空気用目標設定温度P2よりも低温側の温度に設定される。   And the control part 5 sets the target set temperature Q2 for fluids of the fluid Q circulated and supplied in the radiation panel 2a. That is, as shown in FIG. 2, the controller 5 increases the temperature difference Δs1, which is the temperature difference Δs between the fluid target set temperature Q2 and the air target set temperature P2 (the temperature difference Δs1 is a predetermined value ( For example, the fluid target set temperature Q2 is set to a first fluid target set temperature Q21 (for example, 10 ° C.) as the fluid target set temperature Q2 (step 10). # 3). The first fluid target set temperature Q21 is set to a temperature lower than the air target set temperature P2 in view of the detected air temperature P1.

さらに、制御部5は、輻射温調装置Eの起動と同時に、送風ファン20の運転を開始させ、当該送風ファン20を所定の回転数で回転させる(ステップ♯4)。なお、本実施形態では、ステップ♯1〜♯4は時間的に略同時に行われている。   Further, simultaneously with the activation of the radiation temperature adjusting device E, the control unit 5 starts the operation of the blower fan 20 and rotates the blower fan 20 at a predetermined rotational speed (step # 4). In this embodiment, steps # 1 to # 4 are performed substantially simultaneously in time.

これにより、送風ファン20の運転により、ブース1内の空気Pを輻射パネル2aの外表面に吹付けて、当該空気Pと輻射パネル2a内の流体Qとを強制的に熱交換させ、流体Qが有する多くの熱(冷熱)を対流する空気Pによりブース1内に伝熱させることができる(対流温調)。
この送風ファン20は、例えば、図1において左側に配設された輻射パネル2aでは、ブース1の側壁部1bから輻射パネル2aに向かう方向(図1において、左から右に向かう方向)に送風され、当該送風は輻射パネル2aの外表面に吹付けられて外表面に沿って通流した後、当該外表面の上下及び左右の各端部から電子顕微鏡Fが配設されたブース1の中央部(対向配置された一対の輻射パネル2a間)に通流する。特に、輻射パネル2aから輻射され伝熱される熱(冷熱)が滞留し易い場所(輻射パネル2aと側壁部1bとの間)で送風ファン20が輻射パネル2aの外表面にブース1内の空気Pを吹付けて対流させることで、輻射パネル2a内の流体Qが有する多くの熱(冷熱)を対流する空気Pによりブース1内に伝熱させることができる(対流温調)とともに、輻射パネル2aと側壁部1bとの間に滞留する熱(冷熱)も当該対流する空気Pによりブース1内に伝熱させることができる。
Thereby, the air P in the booth 1 is blown to the outer surface of the radiant panel 2a by the operation of the blower fan 20, and the air P and the fluid Q in the radiant panel 2a are forcibly heat-exchanged. Can be transferred to the booth 1 by convection air P (convection temperature control).
For example, in the radiant panel 2a disposed on the left side in FIG. 1, the blower fan 20 is blown in the direction from the side wall 1b of the booth 1 toward the radiant panel 2a (the direction from left to right in FIG. 1). The blower is blown to the outer surface of the radiation panel 2a and flows along the outer surface, and then the central portion of the booth 1 in which the electron microscope F is disposed from the upper and lower and left and right ends of the outer surface. It flows through (between a pair of opposed radiation panels 2a). In particular, in the place where the heat (cold heat) radiated from the radiation panel 2a is likely to stay (between the radiation panel 2a and the side wall 1b), the blower fan 20 is placed on the outer surface of the radiation panel 2a on the air P in the booth 1. Can be transferred to the booth 1 by the convection air P (convection temperature control) and the radiation panel 2a. The heat (cold heat) staying between the side wall 1b and the side wall 1b can also be transferred into the booth 1 by the convection air P.

従って、単位時間当たりに、輻射温調のみで輻射パネル2aからブース1内に供給される熱量よりも、輻射温調と対流温調とにより輻射パネル2aからブース1内に供給される熱量の方が多くなり、輻射パネル2a内の流体Qが有する熱をより効率よくブース1内の空気Pの温調に利用することができる。
よって、ブース1内に送風ファン20を設ける簡単な構成で、輻射温調手段2の起動運転の際に、輻射温調手段2と送風ファン20とを働かせるだけで、より短い時間(例えば、12時間程度)でブース1内の空気温度P1を空気用目標設定温度P2に収束させ安定化させることができる。また、起動運転の際の運転時間が短くなるので、省エネを図ることができる。
Accordingly, the amount of heat supplied from the radiant panel 2a to the booth 1 by the radiant temperature control and the convection temperature control is more than the amount of heat supplied from the radiant panel 2a to the booth 1 only by the radiant temperature control per unit time. Therefore, the heat of the fluid Q in the radiant panel 2a can be used for the temperature control of the air P in the booth 1 more efficiently.
Therefore, with a simple configuration in which the blower fan 20 is provided in the booth 1, a shorter time (for example, 12) can be obtained simply by operating the radiation temperature adjusting means 2 and the blower fan 20 when the radiation temperature adjusting means 2 is activated. The air temperature P1 in the booth 1 can be converged to the air target set temperature P2 and stabilized in about time). In addition, since the operation time during the start-up operation is shortened, energy saving can be achieved.

次に、制御部5は、検出された空気温度P1と空気用目標設定温度P2との偏差Δtを導出し、当該偏差Δtが大きい場合(偏差Δtが所定値以上の場合)には(ステップ♯5:Yes)、設定された第1流体用目標設定温度Q21(例えば、10℃)にて運転を継続する。図2において、このときの偏差Δtを偏差Δt1と記載し、第1流体用目標設定温度Q21と空気用目標設定温度P2との温度差Δsを温度差Δs1と記載する。なお、偏差Δtが大きいか否かを判断する所定値は、空気用目標設定温度P2+α(例えば、P2+2〜3℃)に設定される。
一方で、制御部5は、空気温度P1(例えば、25℃)と空気用目標設定温度P2(例えば、20〜22℃)との偏差Δtが小さい場合(偏差Δtが所定値(例えば、P2+2〜3℃)より小さい場合)には(ステップ♯5:No)、設定された第1流体用目標設定温度Q21を、流体用目標設定温度Q2と空気用目標設定温度P2との温度差Δsが小さくなるように(温度差Δs2が所定値(例えば、10℃)より小さくなるように)、第2流体用目標設定温度Q22(例えば、15〜18℃)に変更(再設定)する(ステップ♯6)。図2において、このときの偏差Δtを偏差Δt2と記載し、第2流体用目標設定温度Q22と空気用目標設定温度P2との温度差Δsを温度差Δs2と記載する。第2流体用目標設定温度Q22は、検出された空気温度P1からみて空気用目標設定温度P2よりも低温側の温度に設定される。
従って、制御部5は、実際、空気用温度センサ4により検出されたブース1内の空気Pの空気温度P1と空気用目標設定温度P2との偏差Δt(偏差Δt1、Δt2)に対応する形態で、流体用目標設定温度Q2と空気用目標設定温度P2とがそれぞれ所定の温度差Δs(温度差Δs1、Δs2)を生じるように流体用目標設定温度Q2(Q21、Q22)を設定することとなる。
Next, the control unit 5 derives a deviation Δt between the detected air temperature P1 and the air target set temperature P2, and when the deviation Δt is large (when the deviation Δt is greater than or equal to a predetermined value) (step # 5: Yes), the operation is continued at the set target set temperature Q21 for the first fluid (for example, 10 ° C.). In FIG. 2, the deviation Δt at this time is referred to as deviation Δt1, and the temperature difference Δs between the first fluid target set temperature Q21 and the air target set temperature P2 is described as a temperature difference Δs1. The predetermined value for determining whether or not the deviation Δt is large is set to the air target set temperature P2 + α (for example, P2 + 2 to 3 ° C.).
On the other hand, when the deviation Δt between the air temperature P1 (for example, 25 ° C.) and the air target set temperature P2 (for example, 20 to 22 ° C.) is small (the deviation Δt is a predetermined value (for example, P2 + 2 to 2). (Step # 5: No), the first target fluid temperature setting Q21 is less than the target fluid temperature target temperature Q2 and the air target temperature setting P2. In such a manner (so that the temperature difference Δs2 becomes smaller than a predetermined value (eg, 10 ° C.)), it is changed (reset) to the second fluid target set temperature Q22 (eg, 15-18 ° C.) (step # 6). ). In FIG. 2, the deviation Δt at this time is described as a deviation Δt2, and the temperature difference Δs between the second fluid target set temperature Q22 and the air target set temperature P2 is described as a temperature difference Δs2. The second fluid target set temperature Q22 is set to a temperature lower than the air target set temperature P2 in view of the detected air temperature P1.
Therefore, the control unit 5 actually corresponds to the deviation Δt (deviations Δt1, Δt2) between the air temperature P1 of the air P in the booth 1 detected by the air temperature sensor 4 and the air target set temperature P2. Then, the fluid target set temperature Q2 (Q21, Q22) is set such that the fluid target set temperature Q2 and the air target set temperature P2 respectively generate a predetermined temperature difference Δs (temperature differences Δs1, Δs2). .

これにより、輻射温調装置Eの起動運転時において、輻射温調手段2にて温調され流体用目標設定温度Q2となった流体Qにより、ブース1内の空気Pが空気用目標設定温度P2となるように輻射温調することができる。さらに、ブース1の室内負荷が大きい場合(偏差Δt1)には、高い熱量(冷熱量又は温熱量)を備えた流体Q(第1流体用目標設定温度Q21)によりブース1内の迅速な輻射温調ができ、これに対して室内負荷が小さい場合(偏差Δt2)には、低い熱量(冷熱量又は温熱量)を備えた流体Q(第2流体用目標設定温度Q22)によりブース1内を輻射温調して、空気用目標設定温度P2に収束し安定させることができる。また、室内負荷が大きい場合に、より迅速な輻射温調ができるので、輻射温調手段2の起動運転における運転時間を低減することができ、省エネを図ることができる。   Thereby, at the time of start-up operation of the radiation temperature control device E, the air P in the booth 1 is changed to the target set temperature P2 for the air by the fluid Q that has been temperature-controlled by the radiation temperature control means 2 and has become the target set temperature Q2 for the fluid. The radiation temperature can be adjusted so that Furthermore, when the indoor load of the booth 1 is large (deviation Δt1), the rapid radiation temperature in the booth 1 is obtained by the fluid Q (first fluid target set temperature Q21) having a high amount of heat (cooling amount or heating amount). In contrast, when the indoor load is small (deviation Δt2), the inside of the booth 1 is radiated by the fluid Q (second fluid target set temperature Q22) having a low calorific value (cold heat amount or warm heat amount). The temperature can be adjusted to converge and stabilize at the air target set temperature P2. Further, since the radiation temperature can be adjusted more quickly when the indoor load is large, the operation time in the startup operation of the radiation temperature adjusting means 2 can be reduced, and energy saving can be achieved.

そして、制御部5は、偏差Δtがゼロ(略ゼロ)となった場合(ステップ♯7:Yes)、すなわち、ブース1内の空気温度P1が空気用目標設定温度P2となった場合には、送風ファン20の運転を停止させる(ステップ♯8)。この状態では、ブース1内は、電子顕微鏡Fの運転に適した温度となっているので、送風ファン20による対流温調を停止し、起動運転から通常運転(輻射温調)に変更させ、ブース1内を輻射温調のみで温調することで、空気温度P1を空気用目標設定温度P2に収束させ安定させた状態を維持することができる(ステップ♯9)。なお、偏差Δtがゼロ(略ゼロ)となっていない場合(ステップ♯7:No)には、送風ファン20等の運転を継続する。   When the deviation Δt becomes zero (substantially zero) (step # 7: Yes), that is, when the air temperature P1 in the booth 1 becomes the air target set temperature P2, The operation of the blower fan 20 is stopped (step # 8). In this state, the booth 1 has a temperature suitable for the operation of the electron microscope F. Therefore, the convection temperature control by the blower fan 20 is stopped, and the startup operation is changed to the normal operation (radiation temperature control). By adjusting the temperature within 1 only by adjusting the radiation temperature, the air temperature P1 can be converged to the air target set temperature P2 and maintained in a stable state (step # 9). If the deviation Δt is not zero (substantially zero) (step # 7: No), the operation of the blower fan 20 and the like is continued.

通常運転では、制御部5は、空気温度P1が空気用目標設定温度P2に収束し安定した状態を維持するために、輻射温調手段2の運転を制御して、輻射パネル2aに供給する流体Qの流体温度Q1及び流体用目標設定温度Q2を適宜変更させるように構成されている。この通常運転では、輻射温調のみでブース1内が温調されるので、ブース1内に空気Pの対流がほとんど発生せず、電子顕微鏡Fの作業に悪影響を与えることは防止されている。   In the normal operation, the control unit 5 controls the operation of the radiation temperature adjusting means 2 and supplies the radiation panel 2a with the fluid so that the air temperature P1 converges to the air target set temperature P2 and maintains a stable state. The fluid temperature Q1 of Q and the target set temperature Q2 for fluid are appropriately changed. In this normal operation, the inside of the booth 1 is temperature-controlled only by the radiation temperature control, so that almost no convection of the air P occurs in the booth 1 and it is possible to prevent the work of the electron microscope F from being adversely affected.

よって、本願に係る輻射温調装置Eでは、輻射温調手段2の起動運転において、簡便な構成で、ブース1内の空気温度P1をより短い時間で空気用目標設定温度P2に収束するように安定させ省エネを実現でき、通常運転においては、空気Pの対流等の影響を受けることなく電子顕微鏡Fによる作業を行うことができる。   Therefore, in the radiation temperature control apparatus E according to the present application, the air temperature P1 in the booth 1 is converged to the air target set temperature P2 in a shorter time with a simple configuration in the startup operation of the radiation temperature control means 2. It is possible to stabilize and save energy, and in normal operation, the work by the electron microscope F can be performed without being affected by the convection of the air P or the like.

〔別実施形態〕
(A)上記実施形態においては、輻射温調手段2の起動(図3のステップ♯1)、空気用目標設定温度P2の設定(ステップ♯2)、流体用目標設定温度Q2の設定(ステップ♯3)、送風ファン20の運転開始(ステップ♯4)を、時間的に略同時に行う構成としたが、輻射温調手段2の起動運転時において、輻射温調及び対流温調を行って、ブース1内をより短い時間で空気用目標設定温度P2に収束するように安定させることができれば、特にこの構成に限定されるものではない。
例えば、上記ステップ♯1〜♯3を略同時に行い、その後、時間的に少し遅れた時期に、送風ファン20の運転を開始する(ステップ♯4を行う)構成としてもよい。すなわち、輻射パネル2a内の流体Qの流体温度Q1が、設定された流体用目標設定温度Q2(例えば、第1流体用目標設定温度Q21)に確実に収束した時点で、送風ファン20の運転を開始する構成とすることで、ブース1内の空気Pと輻射パネル2a内の流体Qとの熱交換をより効率よく行うことができる。また、ステップ♯1〜♯4を順次実行することもできる。
[Another embodiment]
(A) In the above embodiment, activation of the radiation temperature adjusting means 2 (step # 1 in FIG. 3), setting of the air target set temperature P2 (step # 2), and setting of the fluid target set temperature Q2 (step #) 3) Although the start of the operation of the blower fan 20 (step # 4) is performed almost simultaneously in time, the radiation temperature control and the convection temperature control are performed during the start-up operation of the radiation temperature control means 2, and the booth If it can be stabilized so that the inside of 1 is converged to the target temperature P2 for air in a shorter time, it is not particularly limited to this configuration.
For example, the steps # 1 to # 3 may be performed substantially simultaneously, and thereafter, the operation of the blower fan 20 may be started (step # 4 is performed) at a time slightly delayed in time. That is, when the fluid temperature Q1 of the fluid Q in the radiant panel 2a reliably converges to the set fluid target set temperature Q2 (for example, the first fluid target set temperature Q21), the blower fan 20 is operated. By setting it as the structure which starts, heat exchange with the air P in the booth 1 and the fluid Q in the radiation panel 2a can be performed more efficiently. Further, steps # 1 to # 4 can be executed sequentially.

(B)上記実施形態においては、冷房運転について説明したが、暖房運転の際にも本願の輻射温調装置Eを良好に適用することができる。 (B) Although the cooling operation has been described in the above embodiment, the radiation temperature control device E of the present application can be favorably applied also during the heating operation.

(C)上記実施形態においては、起動運転時において輻射温調手段2により輻射パネル2aに供給する流体Qの流体用目標設定温度Q2を、偏差Δtの大小に応じて、例えば、10℃(第1流体用目標設定温度Q21)、15〜18℃(第2流体用目標設定温度Q22)の2段階の温度に設定する例について説明したが、空気温度P1を適切に空気用目標設定温度P2に収束させ安定させることができれば、設定する温度やその段階数は適宜変更することができる。
また、通常運転時には、流体Qの流体用目標設定温度Q2を、空気用目標設定温度P2に設定してもよい。
(C) In the above-described embodiment, the target set temperature Q2 for the fluid Q supplied to the radiation panel 2a by the radiation temperature adjusting means 2 during the start-up operation is set to, for example, 10 ° C. according to the magnitude of the deviation Δt. The example in which the temperature is set to two stages of the target set temperature Q21 for 1 fluid and 15 to 18 ° C. (target set temperature Q22 for the second fluid) has been described. If convergence and stabilization can be achieved, the set temperature and the number of steps can be changed as appropriate.
Further, during normal operation, the target set temperature Q2 for the fluid Q may be set to the target set temperature P2 for air.

(D)上記実施形態においては、冷却手段として冷凍回路Cの蒸発器13を採用し、加熱手段として電気ヒータ17及び分岐冷凍回路C1の再熱器15を採用したが、冷却手段や加熱手段としては、流体Qを冷却できる公知の冷却手段や加熱できる公知の加熱手段を用いることができる。また、冷却手段や加熱手段の数についても適宜設定することができる。 (D) In the above embodiment, the evaporator 13 of the refrigeration circuit C is adopted as the cooling means, and the electric heater 17 and the reheater 15 of the branch refrigeration circuit C1 are adopted as the heating means. However, as the cooling means and the heating means, May be a known cooling means capable of cooling the fluid Q or a known heating means capable of heating. The number of cooling means and heating means can also be set as appropriate.

以上説明したように、輻射温調手段の起動運転において、簡便な構成で、ブース内の空気温度をより短い時間で空気用目標設定温度に収束するように安定させ、省エネを実現できる輻射温調装置として有効に利用することができる。   As described above, in the start-up operation of the radiation temperature control means, the radiation temperature control capable of realizing energy saving by stabilizing the air temperature in the booth to converge to the target temperature for air in a shorter time with a simple configuration. It can be effectively used as a device.

1 ブース
1a 天井部
1b 側壁部
2 輻射温調手段
2a 輻射パネル
3 流体用温度センサ(流体温度検出手段)
4 空気用温度センサ(空気温度検出手段)
5 制御部(制御手段)
20 送風ファン(送風手段)
P1 空気温度
P2 空気用目標設定温度
Q1 流体温度
Q2 流体用目標設定温度
C 冷凍回路
C1 分岐冷凍回路(冷凍回路)
E 輻射温調装置
F 電子顕微鏡(精密機器)
P 空気
Q 流体
Δt1、Δt2 偏差
Δs1、Δs2 温度差
DESCRIPTION OF SYMBOLS 1 Booth 1a Ceiling part 1b Side wall part 2 Radiation temperature control means 2a Radiation panel 3 Fluid temperature sensor (fluid temperature detection means)
4 Air temperature sensor (air temperature detection means)
5 Control unit (control means)
20 Blower fan (Blower unit)
P1 Air temperature P2 Air target set temperature Q1 Fluid temperature Q2 Fluid target set temperature C Refrigeration circuit C1 Branch refrigeration circuit (refrigeration circuit)
E Radiation temperature control device F Electron microscope (Precision equipment)
P Air Q Fluid Δt1, Δt2 Deviation Δs1, Δs2 Temperature difference

Claims (3)

ブース内に配設された輻射パネル内に流体を循環供給して前記ブース内を輻射温調する輻射温調手段と、前記輻射温調手段の運転を制御する制御手段とを備えた輻射温調装置であって、
前記ブースが、天井部と側壁部とを備えて構成され、
前記ブース内の空気を前記輻射パネルの外表面に送風する送風手段を、前記ブース内に配設し、
板状の前記輻射パネルが、前記側壁部に沿って配設されるとともに、前記送風手段が前記輻射パネルと前記側壁部との間に配設され、
前記輻射温調手段の起動運転において、前記制御手段が、前記輻射温調手段を働かせて前記ブース内を輻射温調するとともに、前記送風手段を働かせて、前記送風手段により送風される空気を前記輻射パネルの外表面に吹付けて、当該空気と前記輻射パネル内の流体との間で熱交換させ、当該空気の対流により前記ブース内を温調する輻射温調装置。
Radiation temperature control means comprising: a radiation temperature adjusting means for circulatingly supplying a fluid into a radiation panel disposed in the booth to adjust the radiation temperature inside the booth; and a control means for controlling the operation of the radiation temperature adjusting means. A device,
The booth is configured with a ceiling part and a side wall part,
Blower means for blowing air in the booth to the outer surface of the radiation panel is disposed in the booth,
The plate-like radiation panel is disposed along the side wall portion, and the air blowing means is disposed between the radiation panel and the side wall portion,
In the start-up operation of the radiant temperature adjusting means, the control means operates the radiant temperature adjusting means to adjust the radiant temperature inside the booth, and the air blowing means operates the air blown by the air blowing means. A radiation temperature control device that sprays on the outer surface of a radiation panel to exchange heat between the air and the fluid in the radiation panel, and adjusts the temperature of the booth by convection of the air.
前記ブース内の空気の空気温度を検出する空気温度検出手段を備え、
前記輻射温調手段の起動運転において、前記空気温度検出手段により検出された空気温度が空気用目標設定温度となった場合に、前記制御手段が、前記送風手段を停止させる請求項1に記載の輻射温調装置。
Air temperature detecting means for detecting the air temperature of the air in the booth,
2. The control device according to claim 1, wherein, in the start-up operation of the radiation temperature adjusting unit, the control unit stops the air blowing unit when the air temperature detected by the air temperature detecting unit becomes a target set temperature for air. Radiation temperature control device.
前記ブース内の空気の空気温度を検出する空気温度検出手段を備え、
前記輻射温調手段の起動運転において、前記制御手段が、前記空気温度検出手段により検出された空気温度と空気用目標設定温度との偏差が大きい場合には、前記輻射パネル内に循環供給される流体の流体用目標設定温度と空気用目標設定温度との温度差が大きくなるように流体用目標設定温度を設定し、前記空気温度と空気用目標設定温度との偏差が小さい場合には、流体用目標設定温度と空気用目標設定温度との温度差が小さくなるように流体用目標設定温度を設定する請求項1又は2に記載の輻射温調装置。
Air temperature detecting means for detecting the air temperature of the air in the booth,
In the start-up operation of the radiation temperature adjusting means, when the deviation between the air temperature detected by the air temperature detecting means and the air target set temperature is large, the control means is circulated and supplied into the radiation panel. When the fluid target set temperature is set so that the temperature difference between the fluid target set temperature and the air target set temperature is large, and the deviation between the air temperature and the air target set temperature is small, the fluid The radiation temperature adjusting device according to claim 1 or 2, wherein the target temperature setting for fluid is set so that a temperature difference between the target temperature setting for air and the target temperature setting for air is small.
JP2010282063A 2010-12-17 2010-12-17 Radiation temperature control device Active JP5488444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010282063A JP5488444B2 (en) 2010-12-17 2010-12-17 Radiation temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282063A JP5488444B2 (en) 2010-12-17 2010-12-17 Radiation temperature control device

Publications (2)

Publication Number Publication Date
JP2012127624A JP2012127624A (en) 2012-07-05
JP5488444B2 true JP5488444B2 (en) 2014-05-14

Family

ID=46644869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282063A Active JP5488444B2 (en) 2010-12-17 2010-12-17 Radiation temperature control device

Country Status (1)

Country Link
JP (1) JP5488444B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492435B2 (en) * 2014-07-17 2019-04-03 ダイキン工業株式会社 Temperature control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712994B2 (en) * 1992-02-13 1998-02-16 ダイキン工業株式会社 Air conditioning method and air conditioning apparatus using moisture absorbing liquid
JP2730426B2 (en) * 1992-10-07 1998-03-25 ダイキン工業株式会社 Air conditioner with heat storage panel
JP2883929B2 (en) * 1993-11-15 1999-04-19 株式会社東洋製作所 Radiation air conditioning chamber and air conditioning system including the chamber
JP3540861B2 (en) * 1995-03-23 2004-07-07 新日本製鐵株式会社 Radiation type air conditioning method and apparatus
JP2000074396A (en) * 1998-08-27 2000-03-14 Noritz Corp Method for controlling heating terminal
JP2002286241A (en) * 2001-03-27 2002-10-03 Matsushita Electric Ind Co Ltd Air-conditioning device
JP4505363B2 (en) * 2005-03-29 2010-07-21 東洋熱工業株式会社 Control method of cold / hot water in air conditioning system

Also Published As

Publication number Publication date
JP2012127624A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP4670935B2 (en) Operation method of air conditioner
WO2013099913A1 (en) Air-conditioning system that adjusts temperature and humidity
JP5514787B2 (en) Environmental test equipment
JP4620746B2 (en) Supply air temperature control system for clean rooms
JP5488444B2 (en) Radiation temperature control device
JP5685782B2 (en) Chiller linked operation method and system
JPH1151445A (en) Radiant air conditioning system
JP2006258388A (en) Control method of air conditioner
JP2010210216A (en) Air conditioning system
JP2009122357A (en) Device for regulating temperature of plate-like member
JP3299415B2 (en) Refrigerant circulation type air conditioning system
JP5268857B2 (en) Temperature control device
JP2010203744A (en) Heating device
JP2024053743A (en) Air conditioning equipment
JP2002178399A (en) Temperature adjusting device of stentering machine
JP2019039596A (en) Heat pump heat source machine
JP2006258377A (en) Ceiling radiation cooling and heating device
JP2009139062A (en) Temperature regulator
JP2009174829A (en) Temperature conditioning device
JP4968742B2 (en) Air temperature controller
JP5167174B2 (en) Heat exchanger and temperature control device
JP2009092307A (en) Bathroom heating and drying apparatus
JP2008014557A (en) Ceiling radiant cooling/heating device
JPH0213749A (en) Airconditioner
JP3236927B2 (en) Refrigerant circulation type air conditioning system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150