JP5485117B2 - Zygote - Google Patents

Zygote Download PDF

Info

Publication number
JP5485117B2
JP5485117B2 JP2010263778A JP2010263778A JP5485117B2 JP 5485117 B2 JP5485117 B2 JP 5485117B2 JP 2010263778 A JP2010263778 A JP 2010263778A JP 2010263778 A JP2010263778 A JP 2010263778A JP 5485117 B2 JP5485117 B2 JP 5485117B2
Authority
JP
Japan
Prior art keywords
thickness
bonding
joined
sintered body
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010263778A
Other languages
Japanese (ja)
Other versions
JP2012111187A (en
Inventor
友幸 石田
秀樹 森口
猛 中島
暁 久木野
伸一郎 万木
晃宏 榎並
克己 岡村
裕介 松田
浩司 佐野
慶三 小林
公洋 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010263778A priority Critical patent/JP5485117B2/en
Publication of JP2012111187A publication Critical patent/JP2012111187A/en
Application granted granted Critical
Publication of JP5485117B2 publication Critical patent/JP5485117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、接合体に関するものであり、特に、切削工具に好適な接合体に関する。   The present invention relates to a joined body, and more particularly to a joined body suitable for a cutting tool.

従来より、cBN(立方晶窒化硼素)切削工具に代表されるように、先端に高硬度材料をロウ付けにより接合した切削工具が製造されており、特殊鋼材その他各種の切削加工に利用されている。   Conventionally, as represented by a cBN (cubic boron nitride) cutting tool, a cutting tool in which a high-hardness material is joined to the tip by brazing has been manufactured, and is used for special steel materials and other various cutting processes. .

具体的には、例えば、超硬合金とcBNをロウ付けにより接合した工具が製造・販売されている(例えば、非特許文献1)。あるいは、PCD(焼結ダイヤモンド)またはcBNと、セラミックスまたはサーメットとをロウ付けにより接合した接合体が提案されている(例えば、特許文献1、特許文献2)。また、超硬合金またはサーメットと、高速度鋼等とを、Cuロウ材を用いたロウ付けにより接合した切削工具も提案されている(例えば、特許文献3)。   Specifically, for example, a tool in which a cemented carbide and cBN are joined by brazing is manufactured and sold (for example, Non-Patent Document 1). Alternatively, a joined body in which PCD (sintered diamond) or cBN and ceramics or cermet are joined by brazing has been proposed (for example, Patent Document 1 and Patent Document 2). A cutting tool in which a cemented carbide or cermet and high-speed steel or the like are joined by brazing using a Cu brazing material has also been proposed (for example, Patent Document 3).

そして、近年、これらの内でも、特に、超硬合金とcBNが接合された切削工具が注目されている。   In recent years, a cutting tool in which a cemented carbide and cBN are joined has attracted attention.

特開2002−36008号公報JP 2002-360008 A 特許第3549424号公報Japanese Patent No. 3549424 特開平11−294058号公報Japanese Patent Laid-Open No. 11-294058

住友電工ハードメタル株式会社発行、イゲタロイ 切削工具(’07−’08総合カタログ)、2006年10月、p.L4、コーティドスミボロンシリーズIssued by Sumitomo Electric Hardmetal Co., Ltd., Igetaroy cutting tool ('07 -'08 general catalog), October 2006, p. L4, Coated Sumiboron series

しかしながら、上記した従来の方法により得られた接合体においては、接合強度が未だ充分大きいとは言えず、接合強度がより大きな接合体、特に、超硬合金とcBNが強固に接合された接合体が望まれていた。   However, in the joined body obtained by the above-described conventional method, it cannot be said that the joining strength is still sufficiently high, and the joined body having a larger joining strength, particularly the joined body in which the cemented carbide and the cBN are firmly joined. Was desired.

本発明者は、上記課題を解決するにあたって、種々の実験を行い、鋭意検討した結果、一般的に超硬合金焼結体やcBN焼結体の結合相成分に用いられるTiを接合材に含有させた場合、接合に際して、Tiが超硬合金焼結体やcBN焼結体に元素拡散して、両者が強固に接合された、即ち、大きな接合強度の接合体を得ることができることが分かった。   In order to solve the above-mentioned problems, the present inventor conducted various experiments and intensively studied. As a result, Ti which is generally used as a binder component of cemented carbide sintered bodies and cBN sintered bodies is contained in the bonding material. In the case of bonding, it was found that Ti diffused into the cemented carbide sintered body and the cBN sintered body, and both were firmly joined, that is, a joined body having a large joining strength could be obtained. .

そして、この接合においては、接合材とcBN焼結体との界面に、TiとcBN焼結体の窒素成分との反応生成物であるTiN化合物層が形成されており、その厚みが接合強度に関係していることが分かった。   In this bonding, a TiN compound layer that is a reaction product of Ti and the nitrogen component of the cBN sintered body is formed at the interface between the bonding material and the cBN sintered body. It turns out that it is related.

具体的には、加熱時間やTi量の増加によってTiN化合物層が厚くなり、これに伴って、TiN化合物層のcBN焼結体に対する優れた濡れ性とも相俟って、接合強度が大きくなる。しかし、TiN化合物層が一定の厚みを超えると、TiN化合物層の脆さが接合強度に大きな影響を与え、あまりに厚く形成された場合、具体的には、300nm(ナノメートル)を超える厚みのTiN化合物層が形成された場合、この形成されたTiN化合物層が容易に破断されて、却って大きな接合強度を得られない。100nm以下であれば大きな接合強度を得やすくより好ましい。また、前記TiN化合物は粒状晶、柱状晶、アモルファスなどどのような結晶状態でも良い。   Specifically, the TiN compound layer becomes thick due to an increase in heating time and the amount of Ti, and along with this, joint strength increases with the excellent wettability of the TiN compound layer to the cBN sintered body. However, when the TiN compound layer exceeds a certain thickness, the brittleness of the TiN compound layer has a great influence on the bonding strength. Specifically, when the TiN compound layer is formed too thick, specifically, TiN having a thickness exceeding 300 nm (nanometer). When the compound layer is formed, the formed TiN compound layer is easily broken, and on the other hand, a large bonding strength cannot be obtained. If it is 100 nm or less, it is more preferable to obtain a large bonding strength. The TiN compound may be in any crystalline state such as granular crystals, columnar crystals, and amorphous.

一方、加熱時間が短い、あるいはTi量が少なく、TiN化合物層が薄すぎる場合、具体的には、10nm未満のTiN化合物層が形成されるに留まった場合は、Tiの被接合材への元素拡散が充分に行われないことや、TiN化合物層が接合面全面に生成されずTiN化合物が生成する面積が小さくなりやすいため、大きな接合強度を得られないことが分かった。なお、上記TiN化合物層には、Ti、N以外の成分が少量含まれていてもよい。そのような成分としては、cBNや超硬合金を構成する元素、接合材を構成する元素を挙げることができる。   On the other hand, when the heating time is short or the Ti amount is small and the TiN compound layer is too thin, specifically, when the TiN compound layer of less than 10 nm is formed, the element to the Ti bonded material It was found that the diffusion was not sufficiently performed and that the TiN compound layer was not formed on the entire bonding surface and the area where the TiN compound was generated was likely to be small, so that a large bonding strength could not be obtained. The TiN compound layer may contain a small amount of components other than Ti and N. Examples of such components include elements constituting cBN and cemented carbide, and elements constituting a bonding material.

そして、このような接合体は、通常、cBN焼結体の底面と背面の2面で、接合材を介して超硬合金焼結体と接合されるが、切削時、ワークと接する際、刃先に衝撃がかかるため、比較的軟質層である接合材が衝撃を緩和する効果がある。その一方、接合材の熱伝導率は、被接合材である超硬合金焼結体やcBN焼結体に比べて低いため、接合層の厚みを厚くした場合、cBN焼結体から超硬合金焼結体への伝熱が阻害されて、耐摩耗性の向上効果を得にくい。   Such a joined body is usually joined to the cemented carbide sintered body via a joining material on the two surfaces of the bottom surface and the back surface of the cBN sintered body. Therefore, the bonding material which is a relatively soft layer has an effect of reducing the impact. On the other hand, the thermal conductivity of the bonding material is lower than that of the cemented carbide sintered body or cBN sintered body that is the material to be bonded. Heat transfer to the sintered body is hindered and it is difficult to obtain an effect of improving wear resistance.

本発明者は、切削時、特に刃先の温度が上がりやすい高速切削時、衝撃を受けやすい底面側の接合層の厚みを比較的厚くする一方で、負荷がかかりにくい背面側の接合層の厚みを薄くして熱伝導性を向上させることにより、刃先の温度上昇を抑制できると共に、耐摩耗性を向上できることを見出した。   The inventor makes the thickness of the bonding layer on the bottom side that is susceptible to impacts during cutting, particularly during high-speed cutting where the temperature of the cutting edge easily rises, while reducing the thickness of the bonding layer on the back side that is difficult to be loaded. It has been found that by increasing the thermal conductivity by reducing the thickness, the temperature rise of the cutting edge can be suppressed and the wear resistance can be improved.

請求項1に記載の発明は、上記の知見に基づく発明であり、
超硬合金焼結体を第1の被接合材とし、cBN焼結体を第2の被接合材とする接合体であって、前記第1の被接合材および第2の被接合材は、両者の間に設置されたチタン(Ti)を含有する接合材を介して、少なくとも、前記第2の被接合材の背面と底面からなる2面で接合されており、前記第2の被接合材と前記接合材との界面に、厚み10〜300nmの窒化チタン(TiN)化合物層が形成されていると共に、前記背面の接合層の厚みが、底面の接合層の厚みよりも薄いことを特徴とする接合体である。
The invention according to claim 1 is an invention based on the above findings,
A cemented carbide sintered body as a first material to be joined and a cBN sintered body as a second material to be joined, wherein the first material to be joined and the second material to be joined are: The second material to be bonded is bonded to at least two surfaces consisting of a back surface and a bottom surface of the second material to be bonded through a bonding material containing titanium (Ti) disposed between the two. A titanium nitride (TiN) compound layer having a thickness of 10 to 300 nm is formed at the interface between the back surface and the bonding material, and the thickness of the back surface bonding layer is smaller than the thickness of the bottom surface bonding layer. It is a joined body.

請求項1の発明によれば、前記したように、超硬合金焼結体とcBN焼結体との間に、大きな接合強度を有する接合体を得ることができるため、高強度に接合された切削工具等を提供することができる。また、刃先の温度上昇を抑制することができ、耐摩耗性を向上させることができる   According to the invention of claim 1, as described above, a bonded body having a large bonding strength can be obtained between the cemented carbide sintered body and the cBN sintered body. A cutting tool or the like can be provided. Moreover, the temperature rise of a blade edge can be suppressed and abrasion resistance can be improved.

前記の通り、請求項1における窒化チタン(TiN)化合物層には、本請求項の発明の趣旨を逸脱しない範囲の少量のTi、N以外の元素を含有する化合物も含まれる。   As described above, the titanium nitride (TiN) compound layer in claim 1 includes a compound containing a small amount of elements other than Ti and N within a range not departing from the gist of the invention of this claim.

接合は加熱により行われるが、cBN焼結体は、熱に弱く、高温で分解されやすいため、短時間で熱劣化しやすい。このため、加熱は短時間に行われることが好ましい。   Joining is performed by heating, but the cBN sintered body is vulnerable to heat and easily decomposed at high temperatures, and thus is easily deteriorated by heat in a short time. For this reason, it is preferable that heating is performed in a short time.

具体的な加熱手段としては、通電時間1分以内の通電加熱が好ましく、30秒以内が特に好ましく、その際の第1の被接合材である超硬合金焼結体の温度としては、1000〜1300℃程度が好ましい。   As specific heating means, energization heating within an energization time of 1 minute is preferable, and within 30 seconds is particularly preferable. The temperature of the cemented carbide sintered body as the first material to be bonded at that time is 1000 to 1000. About 1300 degreeC is preferable.

接合材の融点が1000℃以下であると、cBN焼結体の品質劣化を防ぎ、かつTiN化合物層厚みを所定の範囲に制御しやすく好ましい。   When the melting point of the bonding material is 1000 ° C. or less, it is preferable to prevent the quality deterioration of the cBN sintered body and to easily control the TiN compound layer thickness within a predetermined range.

接合材の融点が1000℃以上である場合、所定のTiN化合物層厚みを得るために加熱時間を長くするか、あるいは加熱温度を高くする必要があるが、加熱時間を長くするとcBNの品質劣化が生じやすく、加熱温度を高くするとTiN化合物層が厚くなりすぎ、また超硬合金焼結体が変形するなどの問題が生じる恐れがある。   When the melting point of the bonding material is 1000 ° C. or higher, it is necessary to lengthen the heating time or to increase the heating temperature in order to obtain a predetermined TiN compound layer thickness. If the heating temperature is increased, the TiN compound layer becomes too thick and there is a possibility that problems such as deformation of the cemented carbide sintered body may occur.

加熱に際しては、縦方向、横方向の両方向から加圧しながら加熱することが好ましい。   In heating, it is preferable to heat while applying pressure from both the vertical and horizontal directions.

縦方向、横方向の両方向から加圧することにより、cBN焼結体の接合位置を超硬基材に対して一定とし、正確に位置決めすることができるため、片方向から加圧する場合よりも接合後の研削加工量をより小さくできるほか、cBN焼結体の移動量、研削量を必要最小限の大きさに設計することができ、cBN焼結体をより小さくでき、高価なcBN焼結体の使用量を抑制することができる。   By applying pressure from both the vertical and horizontal directions, the cBN sintered body can be bonded to the cemented carbide substrate at a constant position and accurately positioned. The amount of grinding of the cBN sintered body can be made smaller, the amount of movement of the cBN sintered body and the grinding amount can be designed to the minimum necessary size, the cBN sintered body can be made smaller, and the expensive cBN sintered body The amount used can be suppressed.

また、縦方向と横方向の加圧力を制御することにより、底面および背面の接合層の厚みを所定の厚み比に制御しやすく好ましい。さらに、濡れ性のみに頼ることなく被接合材と接合材との接触面積を広げられるため、短時間でも接合面積を広くでき、好ましい。横方向から加圧しない、あるいは横方向の加圧力が適切でない場合、主に背面側に隙間が生じやすく、特に幅0.5mm以上の隙間が生じた場合に接合強度が低下しやすい。また、隙間が無い場合でも、加圧していない場合には、接合層内の気泡が残留しやすく、加圧による元素拡散の活性化が期待できない。さらに、短時間で加熱した場合には、濡れ性不足により被接合材間に接合材が広がりきらないため、接合面積が小さくなりやすく、接合強度が低下しやすい。   Further, it is preferable that the thickness of the bonding layer on the bottom surface and the back surface can be easily controlled to a predetermined thickness ratio by controlling the applied pressure in the vertical direction and the horizontal direction. Furthermore, since the contact area between the material to be joined and the joining material can be expanded without relying only on wettability, the joining area can be widened even in a short time, which is preferable. When pressure is not applied from the lateral direction or when the lateral pressure is not appropriate, a gap is likely to be formed mainly on the back side, and particularly when a gap having a width of 0.5 mm or more is generated, the bonding strength is likely to be reduced. Even if there is no gap, if pressure is not applied, bubbles in the bonding layer tend to remain, and activation of element diffusion due to pressure cannot be expected. Further, when heated for a short time, the bonding material cannot be spread between the materials to be bonded due to insufficient wettability, so that the bonding area tends to be small and the bonding strength tends to decrease.

また、通電加熱を行う場合、超硬基材への加圧力が小さすぎると、超硬合金焼結体と電極との間の接触抵抗が多くなり、電流が流れない、あるいは放電する等の問題が発生する恐れがある。通電加熱を行う場合の好ましい圧力は、0.1〜200MPaである。   In addition, when conducting heating, if the pressure applied to the cemented carbide substrate is too small, the contact resistance between the cemented carbide sintered body and the electrode increases, and current does not flow or discharge. May occur. A preferable pressure in the case of conducting current heating is 0.1 to 200 MPa.

なお、コバルト(Co)などのメタルバインダーを含むcBN焼結体やcBN含有率が70%を超えるcBN含有率が大きい焼結体を被接合体として超硬合金に接合した工具では、1000℃以上の温度で長時間加熱による接合を行うと、cBN焼結体に亀裂が生成し良好な接合を行うことが難しい問題点があった。   In addition, in a tool in which a cBN sintered body containing a metal binder such as cobalt (Co) or a sintered body having a cBN content ratio exceeding 70% is bonded to a cemented carbide as a body to be bonded, 1000 ° C. or more. When joining by heating for a long time at this temperature, there was a problem that cracks were generated in the cBN sintered body and it was difficult to perform good joining.

これはcBNとメタルバインダーの熱膨張係数差が非常に大きいため、1000℃以上の加熱でメタルバインダーの体積膨張が大きくなってcBN焼結体に亀裂が生成したり、cBN含有率が70%を超えるcBN焼結体では基材となる超硬合金との熱膨張係数差が大きく、接合後の冷却過程でcBN焼結体に亀裂が生じてしまうことが原因と考えられる。また、1000℃以上の温度でcBN焼結体のメタルバインダーが液相を生成し、cBN焼結体に亀裂が生成することが原因とも考えられる。   This is because the difference in thermal expansion coefficient between cBN and metal binder is very large, so that the volume expansion of the metal binder increases when heated at 1000 ° C. or higher, and cracks are generated in the cBN sintered body, or the cBN content is 70%. It is considered that the cBN sintered body exceeding this has a large difference in thermal expansion coefficient from the cemented carbide as the base material, and the cBN sintered body is cracked in the cooling process after joining. Moreover, it is also considered that the metal binder of the cBN sintered body generates a liquid phase at a temperature of 1000 ° C. or higher, and cracks are generated in the cBN sintered body.

このようなcBN焼結体の品質劣化の発生を防ぐためには、通電加熱時、cBN焼結体よりも超硬合金焼結体が優先的に発熱するように、cBN焼結体と接合材の配置、通電方法を工夫することが好ましい。   In order to prevent such quality degradation of the cBN sintered body, the cBN sintered body and the bonding material are heated so that the cemented carbide sintered body preferentially generates heat over the cBN sintered body during energization heating. It is preferable to devise the arrangement and energization method.

具体的には、例えば、cBN焼結体に接する電極と超硬合金焼結体に接する電極の材質を変えることが挙げられる。電極の材質を変えることにより、超硬合金焼結体とcBN焼結体の各々に流れる電流の量が異なるため、それぞれの発熱を制御することができる。また、cBN焼結体よりも超硬合金焼結体を集中的に通電加熱して、間接的にcBN焼結体を加熱してもよい。   Specifically, for example, the materials of the electrode in contact with the cBN sintered body and the electrode in contact with the cemented carbide sintered body can be changed. By changing the material of the electrode, the amount of current flowing through each of the cemented carbide sintered body and the cBN sintered body is different, so that each heat generation can be controlled. Alternatively, the cemented carbide sintered body may be heated more intensively than the cBN sintered body to indirectly heat the cBN sintered body.

このように、通電経路を工夫することにより、超硬合金焼結体をcBN焼結体よりも優先的に加熱することができ好ましい。これにより、cBN焼結体を必要以上に高温加熱することなく、短時間で接合材近傍を高温加熱することができ、強固な接合が可能になると共に、cBN焼結体の品質劣化(熱的劣化、分解、亀裂生成等)を招くことなく、cBN焼結体の高硬度等の特徴を十分に生かすことができる。   Thus, it is preferable that the cemented carbide sintered body can be preferentially heated over the cBN sintered body by devising the energization path. As a result, it is possible to heat the vicinity of the bonding material at a high temperature in a short time without heating the cBN sintered body at an unnecessarily high temperature, and it becomes possible to perform strong bonding and to reduce the quality of the cBN sintered body (thermal The characteristics such as the high hardness of the cBN sintered body can be fully utilized without causing deterioration, decomposition, crack generation, or the like.

請求項2に記載の発明は、
前記背面の接合層の厚みをa、前記底面の接合層の厚みをbとした時、bは1〜50μmであり、かつ、aとbが、0.05<a/b<1の関係にあることを特徴とする請求項1に記載の接合体である。
The invention described in claim 2
When the thickness of the bonding layer on the back surface is a and the thickness of the bonding layer on the bottom surface is b, b is 1 to 50 μm, and a and b have a relationship of 0.05 <a / b <1. The joined body according to claim 1, wherein the joined body is provided.

本発明者は、前記した背面の接合層の厚みと底面の接合層の厚みとの好ましい関係につき、鋭意検討を行った結果、底面の接合層の厚みを1〜50μm、より好ましくは1〜20μmとすることにより、耐欠損性を保つことができることを見出した。さらに、底面の接合層の厚みbに対する背面の接合層の厚みaの比a/bを、所定の範囲に制御することにより、耐欠損性を保ちつつ、刃先の放熱を促進することができ、耐摩耗性の優れた接合体を得ることができることを見出した。   As a result of intensive studies on the preferable relationship between the thickness of the bonding layer on the back surface and the thickness of the bonding layer on the bottom surface, the present inventor has made the thickness of the bonding layer on the bottom surface 1 to 50 μm, more preferably 1 to 20 μm. It was found that the fracture resistance can be maintained. Furthermore, by controlling the ratio a / b of the thickness a of the bonding layer on the back surface to the thickness b of the bonding layer on the bottom surface within a predetermined range, heat dissipation of the blade edge can be promoted while maintaining fracture resistance. It has been found that a bonded body having excellent wear resistance can be obtained.

即ち、底面の接合層の厚みが厚すぎる場合には、熱伝導性が低下して、刃先温度が上がりやすくなるため、耐摩耗性が低下しやすい。一方、薄すぎる場合には、耐欠損性が低下しやすい。また、前記のa/bが小さすぎる、即ち、底面の接合層の厚みに対して背面の接合層の厚みが薄すぎる場合には、耐欠損性が低下しやすい。一方、大きすぎる、即ち、底面の接合層の厚みに対して背面の接合層の厚みが厚すぎる場合には、熱伝導性が低下し耐摩耗性が低下しやすくなることを見出した。具体的には、0.05<a/b<1であることが好ましいことが分かった。0.1<a/b<0.8であるとより好ましい。本発明のように背面と底面の接合層厚みを制御することは従来のロウ付け法では難しかった。   That is, when the thickness of the bonding layer on the bottom surface is too thick, the thermal conductivity is lowered, and the cutting edge temperature is likely to rise, so that the wear resistance is likely to be lowered. On the other hand, if it is too thin, the fracture resistance tends to decrease. In addition, when the a / b is too small, that is, when the thickness of the back surface bonding layer is too thin with respect to the thickness of the bottom surface bonding layer, the fracture resistance tends to be lowered. On the other hand, it was found that when the thickness of the back surface joining layer is too large relative to the thickness of the bottom surface joining layer, the thermal conductivity is lowered and the wear resistance is likely to be lowered. Specifically, it was found that 0.05 <a / b <1 is preferable. More preferably, 0.1 <a / b <0.8. As in the present invention, it is difficult to control the thickness of the bonding layer between the back surface and the bottom surface by the conventional brazing method.

請求項3に記載の発明は、
前記接合材が、ジルコニウム(Zr)、コバルト(Co)、ニッケル(Ni)、銀(Ag)、銅(Cu)から選ばれた1種または2種以上を含むことを特徴とする請求項1または請求項2に記載の接合体である。
The invention according to claim 3
The bonding material includes one or more selected from zirconium (Zr), cobalt (Co), nickel (Ni), silver (Ag), and copper (Cu). A joined body according to claim 2.

請求項3の発明においては、接合材として、前記したTiに加えて、一般に超硬合金焼結体やcBN焼結体の結合相成分として用いられるCo、Ni、あるいはcBN焼結体と優れた濡れ性を示すAg、Cu、Zrの少なくともいずれかを含む合金からなる接合材を用いているため、接合強度のより高い接合体を得ることができる。   In the invention of claim 3, in addition to the above-described Ti, as a bonding material, Co, Ni, or cBN sintered body generally used as a binder component of cemented carbide sintered body or cBN sintered body is excellent. Since a bonding material made of an alloy containing at least one of Ag, Cu, and Zr showing wettability is used, a bonded body with higher bonding strength can be obtained.

このような接合材としては、例えば、Ag−Ti合金、Cu−Ti合金、Ni−Ti合金、Co−Ti合金、およびこれらの固溶体、例えば、Cu−Ti―Zr合金、Ag−Cu−Ti合金、Cu−Ni−Ti合金、Cu−Ni−Zr−Ti合金等、さらには、これらの金属間化合物等を挙げることができる。なお、超硬合金基材やcBNに含まれる他の成分、例えばW、Cr、Ta、Nbなどが微量含まれていてもよい。例えば、Cu−Cr−Al−Ti合金等を挙げることができる。   Examples of such a bonding material include an Ag—Ti alloy, a Cu—Ti alloy, a Ni—Ti alloy, a Co—Ti alloy, and solid solutions thereof such as a Cu—Ti—Zr alloy and an Ag—Cu—Ti alloy. Cu-Ni-Ti alloy, Cu-Ni-Zr-Ti alloy and the like, and further, these intermetallic compounds can be exemplified. Note that trace amounts of other components contained in the cemented carbide substrate or cBN, such as W, Cr, Ta, and Nb may be included. For example, a Cu—Cr—Al—Ti alloy can be used.

金属間化合物は、接合材に最初から含まれていても良い。また、金属間化合物を構成する元素が、接合材には別の状態で含まれており、接合完了後に反応生成されても良い。金属間化合物が反応生成される場合は、接合に反応熱を利用することができるため、接合にとってより有効である。   The intermetallic compound may be contained in the bonding material from the beginning. Moreover, the element which comprises an intermetallic compound is contained in another state in the bonding | jointing material, and it may produce | generate by reaction after the completion of joining. When an intermetallic compound is produced by reaction, reaction heat can be used for joining, which is more effective for joining.

請求項4に記載の発明は、
前記接合材が、チタン(Ti)、ジルコニウム(Zr)、銅(Cu)、ニッケル(Ni)から構成されており、
Ti、Zr、Cuの各含有比率の合計をxvol%、
Niの含有比率を(100−x)vol%としたとき、
Tiの含有比率が(0.1〜0.4)xvol%、
Zrの含有比率が(0.1〜0.4)xvol%、
Cuの含有比率が(0.3〜0.7)xvol%
であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の接合体である。
The invention according to claim 4
The bonding material is made of titanium (Ti), zirconium (Zr), copper (Cu), nickel (Ni),
The total content ratio of Ti, Zr, and Cu is xvol%,
When the content ratio of Ni is (100−x) vol%,
Ti content ratio is (0.1 to 0.4) xvol%,
The content ratio of Zr is (0.1 to 0.4) x vol%,
Cu content ratio is (0.3-0.7) xvol%
It is a joined body of any one of Claim 1 thru | or 3 characterized by the above-mentioned.

前記した通り、Niは、超硬合金焼結体やcBN焼結体の結合相成分として用いられ、CuやZrは、cBN焼結体と優れた濡れ性を示す材料であるため、これらの材料を含有する接合材を用いた場合、接合強度のより高い接合体を得ることができる。   As described above, Ni is used as a binder phase component of cemented carbide sintered bodies and cBN sintered bodies, and Cu and Zr are materials showing excellent wettability with cBN sintered bodies. When a bonding material containing is used, a bonded body with higher bonding strength can be obtained.

本発明者が、種々の実験を行ったところ、Ti、Zr、Cuの各含有比率の合計をxvol%、Niの含有比率を(100−x)vol%とし、さらに、Cu、Zr、Tiの各含有比率が上記の比率の場合、接合材の融点、濡れ性が良好となりやすく、より強固な接合を得ることができることが分かった。   When the present inventor conducted various experiments, the total content ratio of Ti, Zr, and Cu was xvol%, the content ratio of Ni was (100−x) vol%, and further, Cu, Zr, and Ti It was found that when each content ratio is the above ratio, the melting point and wettability of the bonding material are likely to be good, and a stronger bond can be obtained.

請求項5に記載の発明は、
前記接合材に含まれるニッケル(Ni)の含有比率が、70vol%以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の接合体である。
The invention described in claim 5
5. The joined body according to claim 1, wherein a content ratio of nickel (Ni) contained in the joining material is 70 vol% or less.

前記したように、超硬合金焼結体やcBN焼結体の結合相成分として用いられるNiを含む接合材は、接合強度のより高い接合体を得ることができる。しかし、Niの比率が70vol%を超えると、接合材中に含まれるTi含有量が相対的に減少し、前記した適切な厚みのTiN化合物層を形成することが困難となるため、好ましくない。   As described above, the bonding material containing Ni used as the binder component of the cemented carbide sintered body or the cBN sintered body can obtain a bonded body with higher bonding strength. However, if the ratio of Ni exceeds 70 vol%, the Ti content contained in the bonding material is relatively reduced, and it becomes difficult to form a TiN compound layer having an appropriate thickness as described above.

以上、本発明においては、高圧安定型の材料であるcBN焼結体の品質劣化(熱的劣化、分解、亀裂生成等)を招くことなく、高接合強度であると共に、耐摩耗性が高く、かつ耐欠損性に優れた接合体を提供することができ、刃先の温度上昇を抑制して、cBN焼結体の高硬度等の特徴を十分に生かすことができる工具を提供することができる。特に、耐摩工具、鉱山・土木工具、切削工具等の工具として好適に提供することができ好ましい。   As described above, in the present invention, the cBN sintered body, which is a high-pressure stable material, does not cause quality deterioration (thermal deterioration, decomposition, crack generation, etc.), and has high bonding strength and high wear resistance. In addition, it is possible to provide a bonded body having excellent fracture resistance, and it is possible to provide a tool that can sufficiently utilize the characteristics such as high hardness of the cBN sintered body by suppressing the temperature rise of the blade edge. In particular, it can be suitably provided as a tool such as a wear-resistant tool, a mining / civil engineering tool, a cutting tool, and the like.

本発明によれば、従来の方法により得られた接合体に比べて、接合強度がより大きな接合体を提供することができ、高強度に接合された切削工具等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, compared with the joined body obtained by the conventional method, a joined body with larger joining strength can be provided, and the cutting tool etc. which were joined by high intensity | strength can be provided.

本発明の実施の形態における接合体を模式的に示す図であって、(a)は側面図、(b)は平面図である。It is a figure which shows typically the conjugate | zygote in embodiment of this invention, Comprising: (a) is a side view, (b) is a top view. 通電加圧接合における通電の一形態を説明する概念図である。It is a conceptual diagram explaining the one form of electricity supply in electricity supply pressurization joining. 温度測定を説明するための側面図である。It is a side view for demonstrating temperature measurement. 強度測定を説明するための側面図である。It is a side view for demonstrating intensity | strength measurement.

以下、本発明を実施の形態に基づき、図を用いて説明する。   Hereinafter, the present invention will be described with reference to the drawings based on embodiments.

1.接合体の構成
図1は、本実施の形態における接合体を模式的に示す図であって、(a)は側面図、(b)は平面図である。図1において、1は超硬合金焼結体により形成される第1の被接合材であり、2はcBN焼結体により形成される第2の被接合材であり、3は第1の被接合材1と第2の被接合材2との間に介在するTiを含有する接合材であり、第2の被接合材2と接合材3との界面には、厚み10〜300nmのTiN化合物層(図示省略)が形成されている。
1. 1 is a diagram schematically showing a joined body in the present embodiment, where (a) is a side view and (b) is a plan view. In FIG. 1, 1 is a first material to be joined formed of a cemented carbide sintered body, 2 is a second material to be joined formed of a cBN sintered body, and 3 is a first material to be joined. TiN compound containing Ti interposed between the bonding material 1 and the second bonded material 2, and a TiN compound having a thickness of 10 to 300 nm at the interface between the second bonded material 2 and the bonding material 3 A layer (not shown) is formed.

(通電加圧接合法)
次に、通電加圧接合法について、図2を用いて説明する。図2は、通電加圧接合における通電の一形態を説明する概念図である。図2において、34は電極であり、35は分割電極であり、36はアルミナ等で形成された水平方向加圧材である。
(Electric pressure bonding method)
Next, the energization and pressure bonding method will be described with reference to FIG. FIG. 2 is a conceptual diagram illustrating an embodiment of energization in energization / pressure bonding. In FIG. 2, 34 is an electrode, 35 is a divided electrode, and 36 is a horizontal pressure member made of alumina or the like.

図2において、分割電極35は第2の被接合材2に接しており、電極34は第1の被接合材1に接している。電極34と分割電極35の材質を変えることで、それぞれの電気伝導度と熱伝導度を変えることができ、第1の被接合材1と第2の被接合材2にそれぞれ異なった電流を与えることが可能となり、それぞれの温度を極端に変えることが可能となる。   In FIG. 2, the divided electrode 35 is in contact with the second material to be bonded 2, and the electrode 34 is in contact with the first material to be bonded 1. By changing the material of the electrode 34 and the divided electrode 35, the electric conductivity and the thermal conductivity can be changed, and different currents are given to the first bonded material 1 and the second bonded material 2, respectively. It becomes possible to change each temperature extremely.

これにより、第2の被接合材2よりも第1の被接合材1を優先的に発熱させることが可能になるため、熱に弱く、短時間で熱劣化しやすい第2の被接合材2(cBN焼結体)の熱劣化を防ぐことができる。   Thereby, since it becomes possible to heat the 1st to-be-joined material 1 preferentially rather than the 2nd to-be-joined material 2, the 2nd to-be-joined material 2 which is weak to a heat | fever and is easy to carry out a thermal deterioration in a short time. Thermal degradation of the (cBN sintered body) can be prevented.

さらに、それぞれの電極を独立して加圧することにより、第1の被接合材1と第2の被接合材2に与える圧力を高精度に制御することができる。このため、第1の被接合材1が最適な接触抵抗となるように、第2の被接合材2の水平方向加圧材36による横方向加圧力と最適なバランスで加圧して、接合材3(接合層)厚みを最適な厚みにすることができる。   Furthermore, by pressurizing each electrode independently, the pressure applied to the first material to be bonded 1 and the second material to be bonded 2 can be controlled with high accuracy. For this reason, in order that the 1st to-be-joined material 1 may become optimal contact resistance, it pressurizes by the horizontal direction pressurization material 36 of the 2nd to-be-joined material 2 with the horizontal direction pressurization material 36, and an optimal balance. 3 (bonding layer) thickness can be set to an optimum thickness.

(通電条件)
通電条件は、使用される被接合材1、2および接合材3の材質等により、適宜決定されるが、接合材3近傍以外で、被接合材1、2の材料の変形・溶融や、粒子の粗大化を招かないためには、1分以内、特に30秒以内程度が好ましい。
(Conduction conditions)
The energization conditions are appropriately determined depending on the materials to be joined 1 and 2 and the joining material 3 used. In order not to cause coarsening, it is preferably within 1 minute, particularly within 30 seconds.

(接合材の形態)
通電加圧接合を行う接合材3の形態としては、第1の被接合材1や第2の被接合材2の表面に粉末、箔、もしくはペースト状にして塗布する方法の他、めっき法や物理蒸着法で被覆する方法を採用することができる。めっき法や物理蒸着法で被覆する方法は、接合材3を被覆した後に被接合材1、2をハンドリングしやすく、接合工程の自動化に有利である他、被覆膜厚の制御も行いやすいため、接合強度を安定化させる上で特に好ましい。
(Bonding material form)
As a form of the bonding material 3 for performing the electric pressure bonding, in addition to a method of applying the powder, foil, or paste on the surface of the first bonded material 1 or the second bonded material 2, a plating method, A method of coating by physical vapor deposition can be employed. The method of coating by plating or physical vapor deposition is easy to handle the bonded materials 1 and 2 after the bonding material 3 is coated, and is advantageous for automation of the bonding process, and it is also easy to control the coating film thickness. Particularly preferable for stabilizing the bonding strength.

(加圧)
加圧しながら通電加熱することで、接合材3は変形しやすくなり、接合材3と被接合材1、2の密着性は高まり、元素拡散しやすくなる。この結果、接合強度を飛躍的に高めることができる。特に、本発明の接合体を切削工具、例えば切削チップに適用する場合、基材である第1の被接合材1と第2の被接合材2の接合面は、上下方向と水平方向の2方向となり、両方向で第1の被接合材1と第2の被接合材2がしっかりと接合されることが必要となる。このような場合では、前記した通り2方向からの加圧を行うことが好ましい。
(Pressurization)
By applying current and heating while applying pressure, the bonding material 3 is easily deformed, the adhesion between the bonding material 3 and the bonded materials 1 and 2 is increased, and element diffusion is facilitated. As a result, the bonding strength can be dramatically increased. In particular, when the joined body of the present invention is applied to a cutting tool, for example, a cutting tip, the joining surfaces of the first material to be joined 1 and the second material to be joined 2 are 2 in the vertical and horizontal directions. It is necessary to firmly bond the first material to be bonded 1 and the second material to be bonded 2 in both directions. In such a case, it is preferable to pressurize from two directions as described above.

加圧力は小さすぎると電極と被接合材1、2の接触抵抗が多くなり、電流を流せなくなる、あるいは放電してしまうこと等があり、不適当である。また、大きすぎると超硬合金焼結体が変形するため、不適当である。本発明の場合、被接合材1では0.1MPa〜200MPa、被接合材2では0.01〜50MPaが適当である。   If the applied pressure is too small, the contact resistance between the electrode and the materials to be joined 1 and 2 increases, and current may not flow or discharge may occur, which is inappropriate. On the other hand, if it is too large, the cemented carbide sintered body is deformed, which is inappropriate. In the present invention, 0.1 MPa to 200 MPa is appropriate for the material to be bonded 1, and 0.01 to 50 MPa is appropriate for the material to be bonded 2.

(雰囲気)
接合中の雰囲気は、被接合材1、2および接合材3のいずれとも金属を含むため、真空中あるいは不活性ガス中あるいは還元雰囲気中で行うことが望ましい。真空度は特に限定されないが、13.3Pa(0.1Torr)より高真空であることが望ましい。不活性ガスとしては、アルゴン、ヘリウム、窒素、あるいはこれらの混合ガスを挙げることができる。還元雰囲気としては、前記不活性ガスに水素ガスを若干割合混合したガス雰囲気や、被接合材3近傍に加熱した黒鉛を設置する方法を挙げることができる。
(atmosphere)
The bonding atmosphere is preferably performed in a vacuum, in an inert gas, or in a reducing atmosphere because all of the materials to be bonded 1 and 2 and the bonding material 3 contain metal. The degree of vacuum is not particularly limited, but is preferably higher than 13.3 Pa (0.1 Torr). Examples of the inert gas include argon, helium, nitrogen, or a mixed gas thereof. Examples of the reducing atmosphere include a gas atmosphere in which hydrogen gas is mixed in a certain proportion with the inert gas, and a method in which heated graphite is installed in the vicinity of the material to be joined 3.

(電流の形態)
通電する電流の形態は、被接合材1、2および接合材3を適切な温度に加熱できるための電流を流すことができるのであれば直流電流、交流電流とも使用できる。特に、直流パルス電流はピーク電流値とパルスのON、OFF比を変えることができるため、接合界面の瞬間的な加熱と被接合体1、2の全体的な温度制御範囲を広げることができ、接合には有効である。
(Form of current)
As the form of the current to be energized, any direct current or alternating current can be used as long as a current for allowing the materials 1 and 2 and the bonding material 3 to be heated to an appropriate temperature can flow. In particular, since the DC pulse current can change the peak current value and the ON / OFF ratio of the pulse, the instantaneous heating of the bonding interface and the overall temperature control range of the bonded objects 1 and 2 can be expanded. It is effective for joining.

(接合材の厚みの設定)
次に、接合材3の厚みについて、図1を用いて説明する。接合材3の厚みは、背面側の厚みaに比べて底面側の厚みbを厚く、好ましくは0.05<a/b<1と底面側の厚みbを厚く設定することにより、耐摩耗性が高く、かつ耐欠損性にも優れた接合体が得られる。
(Setting of bonding material thickness)
Next, the thickness of the bonding material 3 will be described with reference to FIG. The thickness of the bonding material 3 is set so that the bottom surface side thickness b is larger than the back surface side thickness a, and preferably 0.05 <a / b <1 and the bottom surface side thickness b is set to be thick. And a bonded body having excellent fracture resistance can be obtained.

1.接合材の作製
表1に示す各接合材3を用いて、各接合条件に従って、実施例1〜15および比較例1〜7の接合体を作製した。
1. Production of Bonding Material Using each bonding material 3 shown in Table 1, bonded bodies of Examples 1 to 15 and Comparative Examples 1 to 7 were produced according to each bonding condition.

(1)TiN化合物層の厚み
表1による。
(1) Thickness of TiN compound layer

(2)第1の被接合材1(実施例および比較例に共通)
材質:1箇所にザグリを入れた超硬合金焼結体(台金)
形状:先端角90°、内接円12.7mm、厚み4.76mm、R0.8mm(JIS:SNGN120408)
(2) 1st to-be-joined material 1 (common to an Example and a comparative example)
Material: Cemented carbide sintered body with counterbore in one place (base metal)
Shape: tip angle 90 °, inscribed circle 12.7mm, thickness 4.76mm, R0.8mm (JIS: SNGN120408)

(3)第2の被接合材2(実施例および比較例に共通)
材質:cBN(チップ)(cBN含有率90%)
形状:2mm×1mm、厚み1.2mm
(3) Second material to be joined 2 (common to Examples and Comparative Examples)
Material: cBN (chip) (cBN content 90%)
Shape: 2mm x 1mm, thickness 1.2mm

(4)接合材、加熱方法、接合条件
表1の通りである。表1の接合材組成の欄は、接合された状態における接合材3の組成を示しており、EPMA法により調べた結果であり、この組成は出発材の接合材3の組成と一致していた。第1の被接合材のザグリに対して、第2の被接合材が底面1mm×1mmの範囲で接触し、かつ背面でも接触するようにセットし接合する。
(4) Bonding material, heating method, bonding conditions The column of the bonding material composition in Table 1 shows the composition of the bonding material 3 in the bonded state, and is a result of investigation by the EPMA method. This composition was consistent with the composition of the bonding material 3 as the starting material. . The second bonded material is set and bonded to the counterbore of the first bonded material so that the second bonded material is in contact with the bottom surface in a range of 1 mm × 1 mm and also in contact with the back surface.

2.測定方法
(1)接合材の厚み
研磨を行った後、顕微鏡観察により底面接合材厚み(第2の被接合材2の底面側の接合材3の露出面での平均厚み)、背面接合材厚み(第2の被接合材2の背面側の接合材3の露出面での平均厚み)を測定した。結果を表1に示す。
2. Measurement Method (1) Bonding Material Thickness After polishing, the bottom surface bonding material thickness (average thickness on the exposed surface of the bonding material 3 on the bottom surface side of the second material to be bonded 2) and the back surface bonding material thickness are obtained by microscopic observation. (Average thickness on the exposed surface of the bonding material 3 on the back side of the second bonded material 2) was measured. The results are shown in Table 1.

(2)TiN化合物層の厚み
接合界面をFIB加工した後、TEMによる観察およびEDX、EELSによる組成分析を行うことによりTiN化合物層の厚みを測定した。観察する倍率は、TiN化合物層の厚みにより適宜調整し、1視野内における厚みの平均値を求めた。結果を表1に示す。
(2) Thickness of TiN compound layer After FIB processing of the joint interface, the thickness of the TiN compound layer was measured by performing observation by TEM and composition analysis by EDX and EELS. The magnification to observe was adjusted suitably with the thickness of the TiN compound layer, and the average value of the thickness in one visual field was calculated | required. The results are shown in Table 1.

(3)基材温度の測定
図3は、基材温度の測定方法を説明する模式図である。図3において、44は、接合体の第1の被接合材1に照射されるレーザーのレーザースポットである。
(3) Measurement of substrate temperature FIG. 3 is a schematic diagram for explaining a method for measuring a substrate temperature. In FIG. 3, 44 is a laser spot of the laser irradiated to the 1st to-be-joined material 1 of a conjugate | zygote.

第1の被接合材1(超硬合金焼結体)のザグリ付近の温度を、放射温度計を用いて測定した。具体的には、図4に示すように、第1の被接合材1(13mm角×厚み5mm)の上面およびザグリの背面から1mmの位置に、レーザースポット44(直径1mm)の中心を位置させ、レーザースポット44の温度を放射温度計により測定した。測定結果を表1に示す。   The temperature near the counterbore of the first material to be joined 1 (sintered cemented carbide) was measured using a radiation thermometer. Specifically, as shown in FIG. 4, the center of the laser spot 44 (diameter 1 mm) is positioned 1 mm from the upper surface of the first material to be bonded 1 (13 mm square × thickness 5 mm) and the back surface of the counterbore. The temperature of the laser spot 44 was measured with a radiation thermometer. The measurement results are shown in Table 1.

(4)接合強度の測定
図4に接合強度の測定方法を示す。接合体を紙面の上下から加圧した状態で、紙面に垂直な力を第2の被接合材2の第1の被接合材から出っ張った部分に加えることにより、接合材3にせん断力を与え、破断時の強度を接合強度とした。測定結果を表1に示す。
(4) Measurement of bonding strength FIG. 4 shows a method for measuring bonding strength. A shear force is applied to the bonding material 3 by applying a force perpendicular to the paper surface to the portion of the second bonded material 2 protruding from the first bonded material in a state where the bonded body is pressed from above and below the paper. The strength at break was defined as the bonding strength. The measurement results are shown in Table 1.

3.観察
接合強度測定後の実施例および比較例の破断面をSEM・EDXにより観察した。また、接合面をTEMにより観察した。
3. Observation The fracture surfaces of the examples and comparative examples after the measurement of the bonding strength were observed with SEM / EDX. Moreover, the joint surface was observed by TEM.

実施例4の破断面のSEM像、EDX像および接合面のTEM像観察、EELS分析により、Bリッチ層、即ち脆いとされるTiN化合物層ではなく、cBN内で破断しており、大きな接合強度が得られていることが分かった。これに対して、比較例7は、TiN化合物層の厚みが過大となり、TiN化合物層で破断しており、大きな接合強度が得られないことが分かった。他の実施例および比較例についても、同様にして観察した。   According to the SEM image, EDX image, TEM image observation and EELS analysis of the fracture surface of Example 4, it is not a B-rich layer, that is, a TiN compound layer that is considered to be brittle, but is fractured in cBN, resulting in a large bonding strength It was found that was obtained. In contrast, in Comparative Example 7, it was found that the thickness of the TiN compound layer was excessive, and the TiN compound layer was broken, so that a large bonding strength could not be obtained. Other examples and comparative examples were observed in the same manner.

4.評価
表1より、TiN化合物層の厚みにより、接合強度は変動し、10〜300nmの範囲内にある場合には、高い接合強度が得られることが分かった。なお、実施例9については、底面にボイド(隙間)が発生しているため、接合強度が低下している。また、実施例12〜15は請求項4を満足する実施例である。
4). Evaluation From Table 1, it was found that the bonding strength varies depending on the thickness of the TiN compound layer, and when the thickness is in the range of 10 to 300 nm, a high bonding strength is obtained. In Example 9, since the void (gap) is generated on the bottom surface, the bonding strength is reduced. Examples 12 to 15 are examples that satisfy claim 4.

また、実施例2〜6のように加熱時間が10〜60秒の場合には適切な厚みのTiN化合物層が形成され、cBNの熱劣化が認められず、実施例4のように加熱時間が20秒の場合には特に高い接合強度が得られることが分かった。   In addition, when the heating time is 10 to 60 seconds as in Examples 2 to 6, a TiN compound layer with an appropriate thickness is formed, and thermal degradation of cBN is not recognized, and the heating time is as in Example 4. In the case of 20 seconds, it was found that particularly high bonding strength can be obtained.

Figure 0005485117
Figure 0005485117

なお、表1において接合材組成の欄のCu、Zr、Co、Niに付記されている数値は、各金属のvol%を表す数値である。   In Table 1, the numerical values appended to Cu, Zr, Co, and Ni in the column of the bonding material composition are numerical values representing vol% of each metal.

6.切削試験
次に、実施例4で得られた接合体の底面、背面接合材厚みを調整した試料(実施例16〜21、および比較例8)を作製し、切削試験を行った。底面、背面接合厚みは横方向加圧力を適宜調整して作製した。切削条件は以下の通りである。
切削速度:1200m/min
切り込み:0.3mm
送り速さ:0.25mm/rev
切削時間:20min
被削材:FC300(湿式)
6). Cutting Test Next, samples (Examples 16 to 21 and Comparative Example 8) in which the bottom surface and the back surface bonding material thickness of the joined body obtained in Example 4 were adjusted were prepared and subjected to a cutting test. The bottom surface and the back surface bonding thickness were prepared by appropriately adjusting the lateral pressing force. Cutting conditions are as follows.
Cutting speed: 1200 m / min
Cutting depth: 0.3mm
Feeding speed: 0.25mm / rev
Cutting time: 20 min
Work material: FC300 (wet)

結果を表2に示す。   The results are shown in Table 2.

Figure 0005485117
Figure 0005485117

表2より、底面厚みが1〜50μmでかつ底背面厚み比(背面厚み/底面厚み)が0.05を超え1未満である実施例18〜21の場合、摩耗量は0.29mm以下であり、耐摩耗性に優れていることが分かった。さらに底背面厚み比(背面厚み/底面厚み)が0.8未満であると摩耗量は0.21mm以下でありより好ましいことが分かった。これに対して、底面厚みが50μmを超えて厚すぎる実施例16の場合、切削中に接合層が塑性変形し、欠損が生じていた。そして、底背面厚み比が1を超えている比較例8の場合、背面厚みが厚すぎるため、刃先温度が上昇して、大きな摩耗を示していた。また、底面厚みに比べて背面厚みが薄すぎ、底背面厚み比が0.05を下回っている実施例17の場合、耐欠損性が低くなりすぎ、欠損が生じていた。   From Table 2, in Examples 18 to 21 in which the bottom thickness is 1 to 50 μm and the bottom back thickness ratio (back thickness / bottom thickness) is more than 0.05 and less than 1, the wear amount is 0.29 mm or less. It was found to be excellent in wear resistance. Furthermore, it was found that the amount of wear is more preferably 0.21 mm or less when the bottom back thickness ratio (back face thickness / bottom face thickness) is less than 0.8. On the other hand, in the case of Example 16 where the bottom thickness exceeded 50 μm and was too thick, the bonding layer was plastically deformed during the cutting, resulting in defects. And in the case of the comparative example 8 whose bottom back thickness ratio exceeds 1, since the back thickness was too thick, the blade-tip temperature rose and showed big wear. Further, in Example 17 in which the back surface thickness was too thin compared to the bottom surface thickness and the bottom back surface thickness ratio was less than 0.05, the chipping resistance was too low, and the chipping occurred.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 第1の被接合材
2 第2の被接合材
2a 底面
2b 背面
3 接合材
34 電極
35 分割電極
36 水平方向加圧材
44 レーザースポット
a 背面の接合総の厚み
b 底面の接合総の厚み
DESCRIPTION OF SYMBOLS 1 1st to-be-joined material 2 2nd to-be-joined material 2a Bottom surface 2b Back surface 3 Joining material 34 Electrode 35 Divided electrode 36 Horizontal direction pressurizing material 44 Laser spot a Total thickness of joining of back surface b Total thickness of joining of bottom surface

Claims (5)

超硬合金焼結体を第1の被接合材とし、cBN焼結体を第2の被接合材とする接合体であって、前記第1の被接合材および第2の被接合材は、両者の間に設置されたチタン(Ti)を含有する接合材を介して、少なくとも、前記第2の被接合材の背面と底面からなる2面で接合されており、前記第2の被接合材と前記接合材との界面に、厚み10〜300nmの窒化チタン(TiN)化合物層が形成されていると共に、前記背面の接合層の厚みが、底面の接合層の厚みよりも薄いことを特徴とする接合体。   A cemented carbide sintered body as a first material to be joined and a cBN sintered body as a second material to be joined, wherein the first material to be joined and the second material to be joined are: The second material to be bonded is bonded to at least two surfaces consisting of a back surface and a bottom surface of the second material to be bonded through a bonding material containing titanium (Ti) disposed between the two. A titanium nitride (TiN) compound layer having a thickness of 10 to 300 nm is formed at the interface between the back surface and the bonding material, and the thickness of the back surface bonding layer is smaller than the thickness of the bottom surface bonding layer. To be joined. 前記背面の接合層の厚みをa、前記底面の接合層の厚みをbとした時、bは1〜50μmであり、かつ、aとbが、0.05<a/b<1の関係にあることを特徴とする請求項1に記載の接合体。   When the thickness of the bonding layer on the back surface is a and the thickness of the bonding layer on the bottom surface is b, b is 1 to 50 μm, and a and b have a relationship of 0.05 <a / b <1. The joined body according to claim 1, wherein the joined body is provided. 前記接合材が、ジルコニウム(Zr)、コバルト(Co)、ニッケル(Ni)、銀(Ag)、銅(Cu)から選ばれた1種または2種以上を含むことを特徴とする請求項1または請求項2に記載の接合体。   The bonding material includes one or more selected from zirconium (Zr), cobalt (Co), nickel (Ni), silver (Ag), and copper (Cu). The joined body according to claim 2. 前記接合材が、チタン(Ti)、ジルコニウム(Zr)、銅(Cu)、ニッケル(Ni)から構成されており、
Ti、Zr、Cuの各含有比率の合計をxvol%、
Niの含有比率を(100−x)vol%としたとき、
Tiの含有比率が(0.1〜0.4)xvol%、
Zrの含有比率が(0.1〜0.4)xvol%、
Cuの含有比率が(0.3〜0.7)xvol%
であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の接合体。
The bonding material is made of titanium (Ti), zirconium (Zr), copper (Cu), nickel (Ni),
The total content ratio of Ti, Zr, and Cu is xvol%,
When the content ratio of Ni is (100−x) vol%,
Ti content ratio is (0.1 to 0.4) xvol%,
The content ratio of Zr is (0.1 to 0.4) x vol%,
Cu content ratio is (0.3-0.7) xvol%
The joined body according to any one of claims 1 to 3, wherein:
前記接合材に含まれるニッケル(Ni)の含有比率が、70vol%以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の接合体。   The joined body according to any one of claims 1 to 4, wherein a content ratio of nickel (Ni) contained in the joining material is 70 vol% or less.
JP2010263778A 2010-11-26 2010-11-26 Zygote Expired - Fee Related JP5485117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263778A JP5485117B2 (en) 2010-11-26 2010-11-26 Zygote

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263778A JP5485117B2 (en) 2010-11-26 2010-11-26 Zygote

Publications (2)

Publication Number Publication Date
JP2012111187A JP2012111187A (en) 2012-06-14
JP5485117B2 true JP5485117B2 (en) 2014-05-07

Family

ID=46495918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263778A Expired - Fee Related JP5485117B2 (en) 2010-11-26 2010-11-26 Zygote

Country Status (1)

Country Link
JP (1) JP5485117B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552543B2 (en) * 2010-11-26 2014-07-16 住友電気工業株式会社 Zygote
JP6459042B2 (en) 2013-12-25 2019-01-30 三菱マテリアル株式会社 Joining brazing material, composite member using the same, and cutting tool
JP6245520B2 (en) * 2014-03-24 2017-12-13 三菱マテリアル株式会社 Composite member and cutting tool
JP6694597B2 (en) 2015-08-31 2020-05-20 三菱マテリアル株式会社 Composite member and cutting tool

Also Published As

Publication number Publication date
JP2012111187A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5552543B2 (en) Zygote
JP5464442B2 (en) Joining method
JP4647016B2 (en) Zygote
WO2013150610A1 (en) Sintered cubic boron nitride tool
EP2656958A1 (en) Rotary tool
JP5485117B2 (en) Zygote
CN109822094A (en) A kind of Al-Ti diverse metal alloy welding method
JP5663807B2 (en) Cubic boron nitride sintered tool
JP5821088B2 (en) Cubic boron nitride sintered body tool and manufacturing method thereof
JPWO2013129320A1 (en) Coated rotating tool and manufacturing method thereof
JP5225729B2 (en) Joining method of joined body
Ma et al. Resistance welding of large-size CBN grits
JP2011025333A (en) Joined body
JP6193651B2 (en) Resistance welding electrode
JP5613293B2 (en) Zygote
TWM449059U (en) Monocrystal diamond tool
JP2012152827A (en) Joined body
GAO et al. Microstructure and mechanical property of ultrasonic soldered joint of AZ31B magnesium alloys
Qianzhong et al. Influence of Holding Time on Properties of Cemented Carbide-polycrystalline Diamond Compact Joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5485117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees