JP5484503B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5484503B2
JP5484503B2 JP2012057200A JP2012057200A JP5484503B2 JP 5484503 B2 JP5484503 B2 JP 5484503B2 JP 2012057200 A JP2012057200 A JP 2012057200A JP 2012057200 A JP2012057200 A JP 2012057200A JP 5484503 B2 JP5484503 B2 JP 5484503B2
Authority
JP
Japan
Prior art keywords
cooled
fluid
concentration
cooled fluid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012057200A
Other languages
Japanese (ja)
Other versions
JP2013190162A (en
Inventor
孝史 福井
信 齊藤
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012057200A priority Critical patent/JP5484503B2/en
Publication of JP2013190162A publication Critical patent/JP2013190162A/en
Application granted granted Critical
Publication of JP5484503B2 publication Critical patent/JP5484503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、液体である被冷却流体を冷却する冷却装置に関するものである。   The present invention relates to a cooling device that cools a fluid to be cooled that is a liquid.

従来より被冷却流体を冷却する冷却装置において、被冷却流体の凍結を防止することは冷却装置の信頼性を確保する上で重要な課題であり、凍結を防止するための技術がいくつか提案されている。   Conventionally, in a cooling device that cools a fluid to be cooled, preventing freezing of the fluid to be cooled has been an important issue in securing the reliability of the cooling device, and several techniques for preventing freezing have been proposed. ing.

そのようなものとして、圧縮機、凝縮器、主膨張弁、蒸発器を配管にて接続し冷媒を蒸発器にて蒸発することにより蒸発器を流通するブラインを冷却する冷却装置が提案されている(例えば特許文献1参照)。この冷却装置は、ブライン流量に応じて、蒸発器でのブラインの内部凍結を防止するように、スクリュー圧縮機の容量を制御する容量制御手段を備えたものである。   As such, there has been proposed a cooling device that cools the brine flowing through the evaporator by connecting the compressor, the condenser, the main expansion valve, and the evaporator with piping and evaporating the refrigerant with the evaporator. (For example, refer to Patent Document 1). This cooling device is provided with a capacity control means for controlling the capacity of the screw compressor so as to prevent internal freezing of the brine in the evaporator according to the brine flow rate.

また、蒸発器の低圧側の冷媒温度と蒸発器に流入する被冷却流体の温度とを検出し、その検出結果に基づき被冷却流体の「凍結の有無」又は「凍結の可能性」を判定する冷却装置が提案されている(例えば特許文献2参照)。この冷却装置は、判定結果に基づいて凍結防止制御を作動させることで、被冷却流体の凍結を未然に防止するようにしたものである。   In addition, the refrigerant temperature on the low pressure side of the evaporator and the temperature of the fluid to be cooled flowing into the evaporator are detected, and the “presence / absence of freezing” or “possibility of freezing” of the fluid to be cooled is determined based on the detection result. A cooling device has been proposed (see, for example, Patent Document 2). In this cooling device, the freeze prevention control is operated based on the determination result to prevent the fluid to be cooled from freezing.

特許第3637786号公報(第5、6ページなど)Japanese Patent No. 3637786 (pages 5 and 6 etc.) 特許第4823264号公報(第7ページなど)Japanese Patent No. 4823264 (Page 7 etc.)

特許文献1、2に記載されているような技術は、被冷却流体の温度や流量の低下による凍結を防止するものである。また、被冷却流体として凝固点を低下させる添加物を混ぜたブラインを使用する場合、添加物の含有濃度が低下することでブラインが凍結する可能性もある。しかしながら、特許文献1、2に記載されているような技術においては、濃度計などの計測器を用いることでしか、添加物の含有濃度低下を判別することができず、被冷却流体(ブライン)が凍結してしまうといった課題があった。   The techniques described in Patent Documents 1 and 2 prevent freezing due to a decrease in the temperature and flow rate of the fluid to be cooled. Moreover, when using the brine which mixed the additive which reduces a freezing point as a to-be-cooled fluid, a brine may freeze by the content concentration of an additive falling. However, in the techniques as described in Patent Documents 1 and 2, a decrease in the concentration of the additive can be determined only by using a measuring instrument such as a concentration meter, and the fluid to be cooled (brine) There was a problem that would freeze.

本発明は、上記のような課題を解決するためになされたもので、被冷却流体として凝固点を低下させる添加物を混ぜたブラインを使用した場合において、濃度計などの計測器を使用することなく、被冷却流体の添加物の含有濃度を管理することができ、含有濃度低下に起因する被冷却流体の凍結を未然に防止することが可能であって、信頼性の高い冷却装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and when a brine mixed with an additive that lowers the freezing point is used as a fluid to be cooled, without using a measuring instrument such as a densitometer. It is possible to control the content concentration of the additive of the fluid to be cooled, to prevent the fluid to be cooled from freezing due to the decrease in the content concentration, and to obtain a highly reliable cooling device. Objective.

本発明に係る冷却装置は、冷媒を圧縮する圧縮機、前記圧縮機により圧縮された冷媒を凝縮する凝縮器、前記凝縮器によって凝縮された冷媒を減圧する減圧装置、前記減圧装置によって減圧された冷媒を蒸発させる蒸発器が順次配管接続されて構成された冷媒回路と、被冷却流体を被冷却流体送出装置により前記蒸発器に送出し、前記蒸発器を流れる冷媒と熱交換して冷却する被冷却流体流路と、を有する冷却装置であって、前記冷媒回路における低圧側の冷媒圧力、前記圧縮機の吸入側の冷媒温度、前記蒸発器に流入する被冷却流体の温度、前記蒸発器から流出する被冷却流体の温度、前記圧縮機の運転容量、前記被冷却流体流路における被冷却流体の流量から、該冷却装置の運転情報を検出する運転情報検出手段と、前記運転情報検出手段からの運転情報に基づいて被冷却流体密度と被冷却流体比熱の積を演算し、この演算結果と前記被冷却流体の濃度との相関に基づいて前記被冷却流体の濃度の状態を判定する被冷却流体濃度検出手段と、を備えたものである。 The cooling device according to the present invention includes a compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a decompression device that decompresses the refrigerant condensed by the condenser, and a pressure reduced by the decompression device. A refrigerant circuit configured by sequentially connecting evaporators for evaporating refrigerant, and a fluid to be cooled is sent to the evaporator by a fluid delivery device to be cooled, and is cooled by exchanging heat with the refrigerant flowing through the evaporator. A cooling fluid passage, comprising: a low-pressure side refrigerant pressure in the refrigerant circuit; a refrigerant temperature on the suction side of the compressor; a temperature of a fluid to be cooled flowing into the evaporator; and from the evaporator temperature of the cooling fluid flowing, the operating capacity of the compressor, from said flow rate of the cooling fluid in the cooling fluid channel, the operation information detecting means for detecting operating information of the cooling device, the operation information detecting hands Based on the operation information from calculates the product of the cooling fluid density and fluid to be cooled specific heat, the determines the state of concentration of the fluid to be cooled based on the correlation between the density of the fluid to be cooled with the computation result Cooling fluid concentration detection means.

本発明に係る冷却装置は、冷媒を圧縮する圧縮機、前記圧縮機により圧縮された冷媒を凝縮する凝縮器、前記凝縮器によって凝縮された冷媒を減圧する減圧装置、前記減圧装置によって減圧された冷媒を蒸発させる蒸発器が順次配管接続されて構成された冷媒回路と、被冷却流体を被冷却流体送出装置により前記蒸発器に送出し、前記蒸発器を流れる冷媒と熱交換して冷却する被冷却流体流路と、を有する冷却装置であって、前記冷媒回路における低圧側の冷媒圧力、前記圧縮機の吸入側の冷媒温度、前記蒸発器に流入する被冷却流体の温度、前記蒸発器から流出する被冷却流体の温度、前記圧縮機の運転容量、前記被冷却流体流路における被冷却流体の流量から、該冷却装置の運転情報を検出する運転情報検出手段と、前記被冷却流体の物性情報を記憶する物性情報記憶手段と、前記運転情報検出手段からの運転情報に基づいて被冷却流体密度と被冷却流体比熱の積を演算し、この演算結果と前記物性情報記憶手段からの前記被冷却流体の物性情報とを用いて前記被冷却流体の濃度の絶対値を算出し、前記被冷却流体の濃度の絶対値に基づいて前記被冷却流体の濃度の状態を判定する被冷却流体濃度検出手段と、を備えたものである。 The cooling device according to the present invention includes a compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a decompression device that decompresses the refrigerant condensed by the condenser, and a pressure reduced by the decompression device. A refrigerant circuit configured by sequentially connecting evaporators for evaporating refrigerant, and a fluid to be cooled is sent to the evaporator by a fluid delivery device to be cooled, and is cooled by exchanging heat with the refrigerant flowing through the evaporator. A cooling fluid passage, comprising: a low-pressure side refrigerant pressure in the refrigerant circuit; a refrigerant temperature on the suction side of the compressor; a temperature of a fluid to be cooled flowing into the evaporator; and from the evaporator temperature of the cooling fluid flowing, the operating capacity of the compressor, from said flow rate of the cooling fluid in the cooling fluid channel, the operation information detecting means for detecting operating information of the cooling device, those of the fluid to be cooled Calculating the physical property information storage means for storing information, the cooled fluid density and the product of the fluid to be cooled specific heat based on the operation information from the operation information detecting unit, the object from the calculation result with the property information storage means The absolute value of the concentration of the cooled fluid is calculated using physical property information of the cooling fluid, and the concentration of the cooled fluid is determined based on the absolute value of the concentration of the cooled fluid Means.

本発明によれば、冷却装置の運転状態を用いて蒸発器に流れる被冷却流体における添加物の濃度変化を検出することができる。このため、被冷却流体の添加物濃度管理において、濃度計等の計測器を使用することなく、濃度変化を検出することができるため、安価に機能を構成できる。また、本発明によれば、被冷却流体の添加物濃度の状況を常時監視できるため、濃度低下に起因する熱交換器内での被冷却流体の凍結を未然に防止することが可能であり、信頼性が向上した冷却装置を実現できる。   According to the present invention, it is possible to detect a change in the concentration of the additive in the fluid to be cooled that flows to the evaporator using the operating state of the cooling device. Therefore, in the additive concentration management of the fluid to be cooled, the concentration change can be detected without using a measuring instrument such as a densitometer, so that the function can be configured at low cost. In addition, according to the present invention, since the state of the additive concentration of the fluid to be cooled can be constantly monitored, it is possible to prevent the fluid to be cooled from being frozen in the heat exchanger due to the decrease in concentration. A cooling device with improved reliability can be realized.

本発明の実施の形態1に係る冷却装置の構成図である。It is a block diagram of the cooling device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷却装置における情報・制御信号の伝送方法の概念図である。It is a conceptual diagram of the transmission method of the information and control signal in the cooling device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷却装置の被冷却流体濃度に対する被冷却流体の密度と比熱の積の相関関係を示した図である。It is the figure which showed the correlation of the product of the density of a to-be-cooled fluid with respect to the to-be-cooled fluid density | concentration of the cooling device which concerns on Embodiment 1 of this invention, and a specific heat. 本発明の実施の形態1に係る冷却装置の被冷却流体の濃度状態判定の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of the density | concentration state determination of the to-be-cooled fluid of the cooling device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷却装置の被冷却流体の濃度状態判定の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of the density | concentration state determination of the to-be-cooled fluid of the cooling device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷却装置の被冷却流体(ブライン)の凍結判定の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of freezing determination of the to-be-cooled fluid (brine) of the cooling device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷却装置の蒸発器における被冷却流体(ブライン)と冷媒との温度プロファイルを示した概念図である。It is the conceptual diagram which showed the temperature profile of the to-be-cooled fluid (brine) and the refrigerant | coolant in the evaporator of the cooling device which concerns on Embodiment 2 of this invention. 本発明の実施の形態1に係る冷却装置の別の構成図である。It is another block diagram of the cooling device which concerns on Embodiment 1 of this invention.

実施の形態1.
《機器構成》
本発明の実施の形態1に係る冷却装置100の構成を図1に基づいて説明する。図1は、本発明の実施の形態1に係る冷却装置100の構成図である。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。
Embodiment 1 FIG.
"Equipment configuration"
A configuration of cooling device 100 according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of a cooling device 100 according to Embodiment 1 of the present invention. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification.

本実施の形態1に係る冷却装置100は、冷媒が循環する冷媒回路Aと、冷媒回路Aを循環する冷媒と熱交換する被冷却流体が循環する被冷却流体流路Bとを備えている。   The cooling device 100 according to the first embodiment includes a refrigerant circuit A in which a refrigerant circulates, and a cooled fluid channel B in which a cooled fluid that exchanges heat with the refrigerant that circulates in the refrigerant circuit A circulates.

冷媒回路Aは、圧縮機1、凝縮器2、減圧装置3及び蒸発器4が順次配管接続されて構成されている。冷媒回路Aは、蒸発器4を介して被冷却流体流路Bに冷熱を供給する機能を有している。   The refrigerant circuit A is configured by connecting a compressor 1, a condenser 2, a decompression device 3, and an evaporator 4 in order by piping. The refrigerant circuit A has a function of supplying cold heat to the cooled fluid flow path B through the evaporator 4.

被冷却流体流路Bは、蒸発器4と、冷蔵庫や室内機などの冷熱負荷500とが接続されて構成されている。被冷却流体流路Bには、更に、被冷却流体流路Bに被冷却流体を循環させるための例えばポンプ等のような被冷却流体送出手段5が接続されている。被冷却流体流路Bは、被冷却流体を、蒸発器4を流れる冷媒との熱交換により冷却し、冷却した被冷却流体を冷熱負荷500へと導く機能を有している。   The fluid flow path B to be cooled is configured by connecting the evaporator 4 and a cooling load 500 such as a refrigerator or an indoor unit. The cooled fluid flow path B is further connected to a cooled fluid delivery means 5 such as a pump for circulating the cooled fluid through the cooled fluid flow path B. The fluid flow path B to be cooled has a function of cooling the fluid to be cooled by heat exchange with the refrigerant flowing through the evaporator 4 and guiding the cooled fluid to be cooled to the cooling load 500.

(圧縮機)
圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。圧縮機1は、運転容量(周波数)を可変することが可能な容積式圧縮機で構成されている。運転容量を可変させる制御方法は、例えば、インバータにより制御されるモータの駆動による方法やスライドバルブを用いた方法がある。なお、図1においては、圧縮機1が1台のみ搭載されている状態を例に示しているが、これに限定されず、2台以上の圧縮機が並列もしくは直列に接続されたものであってもよい。
(Compressor)
The compressor 1 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. The compressor 1 is composed of a positive displacement compressor capable of changing an operating capacity (frequency). Control methods for varying the operating capacity include, for example, a method of driving a motor controlled by an inverter and a method of using a slide valve. FIG. 1 shows an example in which only one compressor 1 is mounted. However, the present invention is not limited to this, and two or more compressors are connected in parallel or in series. May be.

(凝縮器)
凝縮器2は、圧縮機1から吐出された高温高圧の冷媒と外部からの熱源として供給される被熱交換媒体とが熱交換し、外部の熱源に放熱するものである。凝縮器2は、例えば、伝熱管と多数のフィンで構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。フィン・アンド・チューブ型熱交換器を用いる場合は、熱交換媒体は空気であり、媒体の送出装置はファン等の駆動手段(図示せず)を用いる。
(Condenser)
The condenser 2 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and a heat exchange medium supplied as an external heat source, and dissipates heat to the external heat source. The condenser 2 may be constituted by, for example, a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a large number of fins. When a fin-and-tube heat exchanger is used, the heat exchange medium is air, and the medium delivery device uses driving means (not shown) such as a fan.

ただし、凝縮器2は、フィン・アンド・チューブ型熱交換器に限定されず、間隔をおいて薄板を多数並べて、周縁部をシールし、各薄板間に形成された空間を交互に冷媒流路と水流路としてなるプレート式熱交換器で構成してもよい。プレート式熱交換器を用いる場合であって、被熱交換媒体が例えば水のような流体である場合、ポンプ等の送出装置(図示せず)を用いて被熱交換媒体を凝縮器2に供給すればよい。この被熱交換媒体を水に限定するものではなく、同様な作用を示す流体であれば、別の流体であってもよい。   However, the condenser 2 is not limited to the fin-and-tube heat exchanger, and a large number of thin plates are arranged at intervals, the peripheral edge is sealed, and the space formed between the thin plates is alternately formed as a refrigerant flow path. And a plate heat exchanger as a water flow path. When a plate heat exchanger is used and the heat exchange medium is a fluid such as water, the heat exchange medium is supplied to the condenser 2 using a delivery device (not shown) such as a pump. do it. The heat exchange medium is not limited to water, and may be another fluid as long as it exhibits a similar action.

なお、図1においては、凝縮器2が1台のみ搭載されている状態を例に示しているが、これに限定されず2台以上の凝縮器が並列又は直列に接続して搭載するようにしてもよい。さらに、凝縮器2は、ヒートパイプ式熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、二重管式熱交換器等で構成してもよい。   Although FIG. 1 shows an example in which only one condenser 2 is mounted, the present invention is not limited to this, and two or more condensers are mounted in parallel or in series. May be. Furthermore, the condenser 2 may be configured by a heat pipe heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a double tube heat exchanger, or the like.

(減圧装置)
減圧装置3は、冷媒を減圧して膨張させるものである。減圧装置3は、冷媒回路A内を流れる冷媒の流量の調節等を行うもので、ステッピングモータ(図示せず)により絞りの開度を調整することが可能な電子膨張弁で構成するとよい。なお、電子膨張弁以外にも、受圧部にダイアフラムを採用した機械式膨張弁、又は温度式膨張弁、キャピラリーチューブ等、同様な役割を成すものであれば、他の形式のものを用いてもよい。
(Pressure reduction device)
The decompression device 3 decompresses and expands the refrigerant. The decompression device 3 adjusts the flow rate of the refrigerant flowing in the refrigerant circuit A, and is preferably composed of an electronic expansion valve capable of adjusting the opening of the throttle by a stepping motor (not shown). In addition to the electronic expansion valve, other types may be used as long as they have a similar function, such as a mechanical expansion valve adopting a diaphragm for the pressure receiving portion, a temperature expansion valve, a capillary tube, or the like. Good.

(蒸発器)
蒸発器4は、減圧装置3で減圧された低温低圧の冷媒と被冷熱流体とが熱交換するものである。蒸発器4は、例えば間隔をおいて薄板を多数並べて、周縁部をシールし、各薄板間に形成された空間を交互に冷媒流路と被冷却流体流路としてなるプレート式熱交換器で構成するとよい。
(Evaporator)
The evaporator 4 exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the decompression device 3 and the cooled heat fluid. The evaporator 4 is composed of a plate heat exchanger in which, for example, a large number of thin plates are arranged at intervals, the peripheral edge is sealed, and the space formed between the thin plates is alternately used as a refrigerant flow path and a cooled fluid flow path. Good.

なお、被冷却流体流路Bを流れる被冷熱流体の流れ方向は図1の実線の矢印で表した対向流(冷媒と被冷却流体が対向で流れる形式)であってもよいし、実線の矢印の逆方向である破線の矢印で表した方向に流れる並行流(冷媒と被冷却流体が並行に流れる形式)であってもよい。   Note that the flow direction of the cooled fluid flowing through the cooled fluid flow path B may be a counterflow (a type in which the refrigerant and the cooled fluid flow oppositely) represented by solid arrows in FIG. 1 or a solid arrow. It may be a parallel flow (a type in which the refrigerant and the fluid to be cooled flow in parallel) flowing in the direction represented by the broken-line arrow which is the opposite direction of the above.

また、蒸発器4は、プレート式熱交換器に限定されず、冷媒と熱交換する熱交換媒体として液体の被冷却流体を用いることができるものであれば他の形式の熱交換器であってもよい。例えば、シェルアンドチューブ式熱交換器で蒸発器4を構成してもよい。   The evaporator 4 is not limited to a plate heat exchanger, and may be any other type of heat exchanger as long as it can use a liquid to be cooled as a heat exchange medium for exchanging heat with a refrigerant. Also good. For example, you may comprise the evaporator 4 with a shell and tube type heat exchanger.

(被冷却流体)
被冷却流体流路Bを循環する被冷却流体には、水に凝固点を降下させる添加物を混ぜたブラインを用いる。被冷却流体の凍結温度(凝固点)は、添加物の含有濃度(以下、ブライン濃度という)によって異なるため、冷却装置100の使用時においては冷熱負荷500に供給する被冷却流体流出温度よりも低い凝固点になるようにブライン濃度が調整されて使用される。例えば、被冷却流体流出温度が−5℃であれば、凝固点が−15℃となるようにブライン濃度を調整して使用される。添加物の含有濃度を高めてブライン濃度を高くするほど凝固点は低くなり、添加物の含有濃度を低くしてブライン濃度を低くするほど凝固点は高くなる。
(Cooled fluid)
As the fluid to be cooled that circulates through the fluid flow path B, brine in which an additive that lowers the freezing point is mixed with water is used. Since the freezing temperature (freezing point) of the fluid to be cooled varies depending on the concentration of the additive (hereinafter referred to as the brine concentration), the freezing point lower than the outflow temperature of the fluid to be cooled supplied to the cooling load 500 when the cooling device 100 is used. The brine concentration is adjusted to be used. For example, if the cooled fluid outflow temperature is −5 ° C., the brine concentration is adjusted so that the freezing point is −15 ° C. The freezing point decreases as the concentration of the additive increases and the brine concentration increases, and the freezing point increases as the concentration of the additive decreases and the brine concentration decreases.

(被冷却流体送出手段)
被冷却流体送出手段5は、前述のような被冷却流体を被冷却流体流路Bを循環させるため、ポンプ等の流体送出装置で構成するとよい。ただし、被冷却流体送出手段5を、ポンプ等の流体送出装置に限定するものではなく、同様な役割を成すものであれば、他形式の送出装置で構成してもよい。
(Cooled fluid delivery means)
The cooled fluid delivery means 5 may be composed of a fluid delivery device such as a pump in order to circulate the cooled fluid as described above through the cooled fluid flow path B. However, the to-be-cooled fluid delivery means 5 is not limited to a fluid delivery device such as a pump, and may be constituted by another type of delivery device as long as it plays a similar role.

(冷媒)
冷却装置100に用いられる冷媒には、例えばR410A、R407C、R404A等のHFC(ハイドロフルオロカーボン)冷媒、R22、R134a等のHCFC(ハイドロクロロフルオロカーボン)冷媒、もしくは炭化水素、ヘリウムのような自然冷媒等があるが、これらに限定されず同様の冷媒作用をするものであれば、上記以外のものであってもよい。
(Refrigerant)
Examples of the refrigerant used in the cooling device 100 include HFC (hydrofluorocarbon) refrigerants such as R410A, R407C, and R404A, HCFC (hydrochlorofluorocarbon) refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium. However, the present invention is not limited to these, and other materials may be used as long as they have the same refrigerant effect.

(運転情報検出手段)
冷却装置100の運転情報検出手段について説明する。冷却装置100は、運転情報検出手段として、吸入冷媒温度検出手段40と、被冷却流体流入温度検出手段41と、被冷却流体流出温度検出手段42と、運転容量検出手段20と、低圧圧力検出手段30と、被冷却流体流量検出手段50と、を有している。
(Driving information detection means)
The operation information detection means of the cooling device 100 will be described. The cooling device 100 includes, as operation information detection means, an intake refrigerant temperature detection means 40, a cooled fluid inflow temperature detection means 41, a cooled fluid outflow temperature detection means 42, an operation capacity detection means 20, and a low pressure detection means. 30 and the fluid flow rate detecting means 50 to be cooled.

吸入冷媒温度検出手段40は、例えば図1に示すように圧縮機1の吸入側に設置され、圧縮機1の吸入冷媒温度を検出するものである。被冷却流体流入温度検出手段41は、例えば図1に示すように被冷却流体流路Bにおける蒸発器4の流入口側に設置され、蒸発器4に流入する被冷却流体の温度を検出するものである。被冷却流体流出温度検出手段42は、例えば図1に示すように被冷却流体流路Bにおける蒸発器4の流出口側に設置され、蒸発器4から流出する被冷却流体の温度を検出するものである。これらの温度検出手段は、例えば温度センサで構成するとよい。   For example, as shown in FIG. 1, the intake refrigerant temperature detection means 40 is installed on the intake side of the compressor 1 and detects the intake refrigerant temperature of the compressor 1. The to-be-cooled fluid inflow temperature detecting means 41 is installed on the inlet side of the evaporator 4 in the to-be-cooled fluid flow path B as shown in FIG. 1, for example, and detects the temperature of the to-be-cooled fluid flowing into the evaporator 4 It is. The cooled fluid outflow temperature detecting means 42 is installed on the outlet side of the evaporator 4 in the cooled fluid flow path B as shown in FIG. 1, for example, and detects the temperature of the cooled fluid flowing out from the evaporator 4 It is. These temperature detection means may be constituted by a temperature sensor, for example.

運転容量検出手段20は、例えば図1に示すような位置に設置され、圧縮機1の運転容量(周波数)を検出するものである。低圧圧力検出手段30は、例えば図1に示すように圧縮機1の吸入側に設置され、冷媒回路Aにおける低圧側の冷媒圧力を検出するものである。低圧圧力検出手段30は、例えば圧力センサで構成するとよい。被冷却流体流量検出手段50は、例えば図1に示すような位置に設置され、被冷却流体流路Bにおける被冷却流体の流量を検出するものである。   The operating capacity detection means 20 is installed at a position as shown in FIG. 1, for example, and detects the operating capacity (frequency) of the compressor 1. The low pressure detection means 30 is installed on the suction side of the compressor 1 as shown in FIG. 1, for example, and detects the low pressure side refrigerant pressure in the refrigerant circuit A. The low-pressure detection means 30 may be constituted by a pressure sensor, for example. The to-be-cooled fluid flow rate detecting means 50 is installed at a position as shown in FIG. 1, for example, and detects the flow rate of the to-be-cooled fluid in the to-be-cooled fluid flow path B.

なお、冷却装置100の各運転情報検出手段の設置位置は、図1に示す位置に限定されず、対応する温度や圧力、圧縮機1の運転容量(周波数)、被冷却流体の流量を検出することが可能な範囲で別の位置に設置されていてももちろんよい。   In addition, the installation position of each operation information detection means of the cooling device 100 is not limited to the position shown in FIG. 1, and detects the corresponding temperature and pressure, the operation capacity (frequency) of the compressor 1, and the flow rate of the fluid to be cooled. Of course, it may be installed in another position as far as possible.

図2は、冷却装置100における情報・制御信号の伝送方法の概念図である。図2に基づいて、冷却装置100の制御系について説明する。   FIG. 2 is a conceptual diagram of an information / control signal transmission method in the cooling device 100. A control system of the cooling device 100 will be described with reference to FIG.

(制御系)
図2に示すように、冷却装置100は、各検出手段(各運転情報検出手段)によって検出された各検出値に基づいて、ブラインの濃度状態判定を行う濃度状態判定部(被冷却流体濃度検出手段)101、濃度状態判定部101の判定結果に基づいて冷却装置100の各アクチュエータを操作し凍結を防止する制御部150、濃度状態判定部101の判定結果を外部に報知する報知部160を有している。
(Control system)
As shown in FIG. 2, the cooling device 100 includes a concentration state determination unit (cooled fluid concentration detection) that determines a concentration state of brine based on each detection value detected by each detection unit (each operation information detection unit). Means) 101, a control unit 150 that operates each actuator of the cooling device 100 based on the determination result of the concentration state determination unit 101 to prevent freezing, and a notification unit 160 that notifies the determination result of the concentration state determination unit 101 to the outside. doing.

濃度状態判定部101は、測定部110、演算部120、記憶部130、判定部140を備えている。各運転情報検出手段により検出された運転情報は、まず測定部110へ入力される。次に、測定部110に入力された検出値は、演算部120に入力される。演算部120では、予め与えられた式等を用いて検出値の演算を行い、その演算結果が記憶部130へ入力され記憶される。   The density state determination unit 101 includes a measurement unit 110, a calculation unit 120, a storage unit 130, and a determination unit 140. The driving information detected by each driving information detection unit is first input to the measurement unit 110. Next, the detection value input to the measurement unit 110 is input to the calculation unit 120. The computing unit 120 computes the detected value using an expression given in advance, and the computation result is input to the storage unit 130 and stored.

記憶部130は、演算部120より得られた演算結果、予め与えられた定数、演算に用いる式、機器仕様等を記憶でき、必要に応じてこれらの記憶内容を参照、書き換えることが可能になっている。   The storage unit 130 can store the calculation results obtained from the calculation unit 120, constants given in advance, equations used for the calculation, device specifications, and the like, and the stored contents can be referred to and rewritten as necessary. ing.

演算部120は、それぞれの検出値を用いて、判定部140での濃度状態判定に用いるブラインの密度と比熱の積の値を演算する。具体的には、演算部120は、それぞれの検出値と、記憶部130に予め記憶されている冷却装置100の機種情報、例えば圧縮機1や蒸発器4の仕様や、演算に用いる定数等の値と、に基づいて被冷却流体の密度と比熱の積となる値(物性値)を演算する。   The calculation unit 120 calculates the value of the product of the density of the brine and the specific heat used for the concentration state determination in the determination unit 140 using each detection value. Specifically, the calculation unit 120 includes each detection value and model information of the cooling device 100 stored in advance in the storage unit 130, such as specifications of the compressor 1 and the evaporator 4, constants used for calculation, and the like. Based on the value, a value (physical property value) that is a product of the density of the fluid to be cooled and the specific heat is calculated.

判定部140では、演算部120で演算された演算結果に基づいて、ブラインの「濃度低下」、「濃度上昇」または「濃度正常」を判定する。そして、判定部140での判定結果が制御部150へ入力される。   The determination unit 140 determines “concentration decrease”, “concentration increase”, or “density normal” of the brine based on the calculation result calculated by the calculation unit 120. Then, the determination result in the determination unit 140 is input to the control unit 150.

制御部150は、判定部140での判定結果に基づいてブラインの凍結を防止するため、圧縮機1、減圧装置3、被冷却流体送出手段5のうち、少なくともいずれかの制御を行う。また、判定部140の判定結果において凍結が発生していると判断された場合は、報知部160によって警報を発報する。   The control unit 150 controls at least one of the compressor 1, the decompression device 3, and the cooled fluid delivery means 5 in order to prevent the brine from freezing based on the determination result in the determination unit 140. Further, when it is determined that freezing has occurred in the determination result of the determination unit 140, an alarm is issued by the notification unit 160.

測定部110、演算部120、判定部140、制御部150は、例えばマイクロコンピュータ等のデータ処理手段により構成され、記憶部130は半導体メモリ等の記憶手段によって構成されている。また、報知部160では、マイクロコンピュータ等による処理結果をLEDやモニタ等によって表示したり、警告音等を出力したり、電話回線、LAN回線、無線等の通信手段(図示せず)により遠隔地へ情報を出力することができる。なお、測定部110、演算部120、記憶部130、判定部140、制御部150及び報知部160を冷却装置100に内蔵する構成としてもよいし、冷却装置100の外部に別置きする形態としてもよい。   The measurement unit 110, the calculation unit 120, the determination unit 140, and the control unit 150 are configured by data processing means such as a microcomputer, and the storage unit 130 is configured by storage means such as a semiconductor memory. In addition, the notification unit 160 displays the processing result of the microcomputer or the like by an LED or a monitor, outputs a warning sound, or the like, or remotely communicates with a communication means (not shown) such as a telephone line, a LAN line, or radio. Information can be output. The measurement unit 110, the calculation unit 120, the storage unit 130, the determination unit 140, the control unit 150, and the notification unit 160 may be built in the cooling device 100, or may be separately placed outside the cooling device 100. Good.

《冷却装置の運転動作》
続いて、冷却装置100の運転動作について図1に基づき説明する。
冷媒回路Aにおいては、圧縮機1から吐出された高温高圧のガス冷媒は、凝縮器2へ至り、外部からの被熱交換媒体との熱交換作用により凝縮液化する。凝縮液化した冷媒は、減圧装置3にて減圧されて二相冷媒となって、蒸発器4に送られる。蒸発器4に送られた二相冷媒は、被冷却流体送出手段5により供給される被冷却流体との熱交換作用により蒸発し、低圧のガス冷媒となる。
《Cooling device operation》
Then, the operation | movement operation | movement of the cooling device 100 is demonstrated based on FIG.
In the refrigerant circuit A, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the condenser 2 and is condensed and liquefied by heat exchange with the heat exchange medium from the outside. The condensed and liquefied refrigerant is decompressed by the decompression device 3 to become a two-phase refrigerant and sent to the evaporator 4. The two-phase refrigerant sent to the evaporator 4 evaporates by a heat exchange action with the fluid to be cooled supplied by the fluid to be cooled sending means 5 and becomes a low-pressure gas refrigerant.

減圧装置3は、圧縮機1の吸入側における冷媒の圧縮機吸入過熱度が所定値となるように開度調整され、蒸発器4を流れる冷媒の流量を制御している。このため、蒸発器4の出口のガス冷媒は、所定の過熱度を有する状態となる。そして、蒸発器4にてガス化された低圧ガス冷媒は、再び圧縮機1へ戻る。なお、圧縮機吸入過熱度は、吸入冷媒温度検出手段40の検出値から冷媒の蒸発温度を引くことにより求められる。また、蒸発温度は、低圧圧力検出手段30の圧力を飽和温度換算することにより求められる。   The decompression device 3 is adjusted in opening so that the compressor suction superheat degree of the refrigerant on the suction side of the compressor 1 becomes a predetermined value, and controls the flow rate of the refrigerant flowing through the evaporator 4. For this reason, the gas refrigerant at the outlet of the evaporator 4 has a predetermined degree of superheat. Then, the low-pressure gas refrigerant gasified by the evaporator 4 returns to the compressor 1 again. The compressor intake superheat degree is obtained by subtracting the refrigerant evaporation temperature from the detected value of the intake refrigerant temperature detection means 40. Further, the evaporation temperature is obtained by converting the pressure of the low pressure detection means 30 into a saturation temperature.

一方、被冷却流体流路Bでは、被冷却流体送出手段5によって被冷却流体が蒸発器4に供給され、冷媒回路Aの冷媒との熱交換作用により冷却された後、冷熱負荷500に導かれる。蒸発器4内には、冷熱負荷500からの要求に応じ、かつ、被冷却流体が凍結しない範囲での流量の冷媒が流れるように、制御部150によって圧縮機1の運転容量が制御される。   On the other hand, in the cooled fluid flow path B, the cooled fluid is supplied to the evaporator 4 by the cooled fluid delivery means 5, cooled by the heat exchange action with the refrigerant in the refrigerant circuit A, and then led to the cooling load 500. . The operation capacity of the compressor 1 is controlled by the control unit 150 so that the refrigerant flows in the evaporator 4 in response to a request from the cooling load 500 and in a range where the fluid to be cooled does not freeze.

《被冷却流体濃度状態の判定方法(フローチャート)》
続いて、図3及び図4に基づいて冷却装置100の被冷却流体(ブライン)の濃度状態の判定方法について説明する。図3は、冷却装置100の被冷却流体濃度に対する被冷却流体の密度と比熱の積の相関関係を示した図である。図4は、冷却装置100の被冷却流体の濃度状態判定の処理の流れを示したフローチャートである。なお、図3では、縦軸が被冷却流体の密度と比熱の積を、横軸が被冷却流体濃度を、それぞれ示している。
<< Determination method (flow chart) of concentration state of fluid to be cooled >>
Next, a method for determining the concentration state of the fluid to be cooled (brine) of the cooling device 100 will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing a correlation between the product of the density of the fluid to be cooled and the specific heat with respect to the concentration of the fluid to be cooled in the cooling device 100. FIG. 4 is a flowchart showing the flow of processing for determining the concentration state of the fluid to be cooled in the cooling device 100. In FIG. 3, the vertical axis represents the product of the density of the fluid to be cooled and the specific heat, and the horizontal axis represents the concentration of the fluid to be cooled.

上述したように、濃度状態判定部101は、冷却装置100の運転情報と記憶部130に記憶された機種情報に基づいてブラインの密度と比熱の積を演算する。ここで例えば、ブラインの中で代表的なエチレングリコール系やプロピレングリコール系を被冷却流体として用いた場合、ブライン濃度と、ブラインの密度と比熱の積において図3に示すような相関関係がある。このような相関関係に基づいて、冷却装置100ではブライン密度と比熱の積の値の大小により相対的にブライン濃度変化を判定する。   As described above, the concentration state determination unit 101 calculates the product of the density of the brine and the specific heat based on the operation information of the cooling device 100 and the model information stored in the storage unit 130. Here, for example, when a typical ethylene glycol type or propylene glycol type in the brine is used as the fluid to be cooled, there is a correlation as shown in FIG. 3 in the product of the brine concentration, the density of the brine, and the specific heat. Based on such a correlation, the cooling device 100 relatively determines the change in the brine concentration based on the value of the product of the brine density and the specific heat.

ST1では、濃度状態判定部101は、記憶部130に予め記憶された冷却装置100の機種情報を取得する。機種情報としては、例えば、圧縮機1のストロークボリュームや蒸発器4の仕様(伝熱面積、伝熱壁の熱伝導率、伝熱壁の厚さなど)がある。また、その他にも機種情報として、蒸発器4における冷媒と被冷却流体との熱伝達率の算出式(式の内容については後述)に用いる比例係数βrとβw、累乗係数γrとγwを機種情報として保持しておく。ここで、比例係数βrとβw、累乗係数γrとγwは実測データ、もしくはシミュレーションデータ、熱伝達の理論式等より、それぞれ予め算出しておき、定数として記憶部130にて記憶保持しておく。   In ST <b> 1, the concentration state determination unit 101 acquires model information of the cooling device 100 stored in advance in the storage unit 130. The model information includes, for example, the stroke volume of the compressor 1 and the specifications of the evaporator 4 (heat transfer area, heat transfer wall heat conductivity, heat transfer wall thickness, etc.). In addition, as model information, proportional coefficients βr and βw and power coefficients γr and γw used for calculation formulas of heat transfer coefficients between the refrigerant and the fluid to be cooled in the evaporator 4 (the contents of the formulas will be described later) are model information. Keep as. Here, the proportional coefficients βr and βw and the power coefficients γr and γw are calculated in advance from actual measurement data, simulation data, theoretical formulas of heat transfer, and the like, and are stored and held in the storage unit 130 as constants.

なお、本実施の形態1では、濃度状態判定部101の記憶部130には判定対象の冷却装置100単体の機種情報を記憶しているとして説明しているが、これに限定されず、記憶部130には上記のような冷却装置100の機種情報を複数記憶して、データベースとして保持しておいてもよい。このようにすれば、例えば、濃度状態判定部101を外部に別置きする場合において、濃度判定対象の冷却装置100が変更された場合でも、それに対応して変更後の冷却装置100の機種のブラインの濃度状態判定が可能となる。   In the first embodiment, it is described that the storage unit 130 of the concentration state determination unit 101 stores model information of the determination target cooling device 100 alone. However, the present invention is not limited to this, and the storage unit A plurality of pieces of model information of the cooling device 100 as described above may be stored in 130 and held as a database. In this way, for example, when the concentration state determination unit 101 is separately provided outside, even if the concentration determination target cooling device 100 is changed, the brine of the model of the cooling device 100 after the change is correspondingly changed. Concentration state can be determined.

ST2では、濃度状態判定部101は、冷却装置100の運転情報(圧縮機1の運転容量、冷媒圧力、冷媒温度、被冷却流体の流量等)を取得する。   In ST2, the concentration state determination unit 101 acquires operation information of the cooling device 100 (operation capacity of the compressor 1, refrigerant pressure, refrigerant temperature, flow rate of fluid to be cooled, and the like).

ST3では、濃度状態判定部101は、ST1で取得した冷却装置100の機種情報とST2で取得した冷却装置100の運転情報を用いて冷媒循環量を演算する。   In ST3, the concentration state determination unit 101 calculates the refrigerant circulation amount using the model information of the cooling device 100 acquired in ST1 and the operation information of the cooling device 100 acquired in ST2.

冷媒循環量Gr[kg/h]は、例えば、圧縮機1の押しのけ量(ストロークボリューム)Vst[m3 ]、圧縮機周波数F[Hz]、圧縮機吸入ガス比容積Vg[m3 /kg]、体積効率ηv[−]より次式(1)から求める。

Figure 0005484503
The refrigerant circulation amount Gr [kg / h] is, for example, the displacement (stroke volume) Vst [m 3 ], the compressor frequency F [Hz], and the compressor intake gas specific volume Vg [m 3 / kg]. From the volume efficiency ηv [−], the following equation (1) is obtained.
Figure 0005484503

圧縮機吸入ガス比容積Vgの算出方法は、例えば、低圧圧力検出手段30と吸入冷媒温度検出手段40の検出値のうち少なくともどちらか一方を用いて、冷媒物性値を求める近似式やテーブルなどにより演算して求める方法がある。体積効率ηvは0.8〜0.9程度の値を定数として与える。   The compressor intake gas specific volume Vg is calculated by, for example, an approximate expression or table for obtaining the physical property value of the refrigerant using at least one of the detection values of the low pressure detection means 30 and the intake refrigerant temperature detection means 40. There is a method of obtaining by calculation. The volume efficiency ηv gives a value of about 0.8 to 0.9 as a constant.

ST4では、濃度状態判定部101は、蒸発器4の熱伝達特性を求めるために冷媒側熱伝達率αr[kW/(m2 ・K)]と被冷却流体側熱伝達率αw[kW/(m2 ・K)]を演算する。 In ST4, the concentration state determination unit 101 calculates the refrigerant-side heat transfer coefficient αr [kW / (m 2 · K)] and the cooled fluid-side heat transfer coefficient αw [kW / ( m 2 · K)] is calculated.

冷媒側熱伝達率αrは、冷媒循環量Gr、機種情報として取得した比例係数βr、累乗係数γrを用いて、被冷却流体側熱伝達率αwは、運転情報として取得した被冷却流体の流量Gw、機種情報として取得した比例係数βw、累乗係数γwを用いてそれぞれ次式(2)、(3)より求めることができる。

Figure 0005484503
Figure 0005484503
The refrigerant-side heat transfer coefficient αr uses the refrigerant circulation amount Gr, the proportionality coefficient βr acquired as model information, and the power coefficient γr, and the cooled fluid-side heat transfer coefficient αw determines the flow rate Gw of the cooled fluid acquired as operation information. Using the proportionality coefficient βw and the power coefficient γw acquired as model information, they can be obtained from the following equations (2) and (3), respectively.
Figure 0005484503
Figure 0005484503

ST5では、濃度状態判定部101は、ST4で演算した熱伝達率を用いて、蒸発器4における熱通過率Kを演算する。   In ST5, the concentration state determination unit 101 calculates the heat transfer rate K in the evaporator 4 using the heat transfer coefficient calculated in ST4.

熱通過率Kは、冷媒側熱伝達率αrと被冷却流体側熱伝達率αwを用いて、次式(4)より求めることができる。

Figure 0005484503
The heat passage rate K can be obtained from the following equation (4) using the refrigerant side heat transfer coefficient αr and the fluid to be cooled side heat transfer coefficient αw.
Figure 0005484503

なお、式(4)は熱通過率Kの定義式から熱伝導抵抗の項を省略したものであるが、もちろん次式(5)で示す熱通過率Kの定義式を用いてもよい。

Figure 0005484503
ここで、
δ:伝熱壁の厚さ[m]、
λ:伝熱壁の熱伝導率[kW/(m・K)]である。 In addition, although Formula (4) abbreviate | omits the term of heat conduction resistance from the definition formula of the heat passage rate K, of course, you may use the definition formula of the heat passage rate K shown by following Formula (5).
Figure 0005484503
here,
δ: Heat transfer wall thickness [m],
λ: Thermal conductivity [kW / (m · K)] of the heat transfer wall.

ST6では、濃度状態判定部101は、被冷却流体の密度ρwと比熱Cpwの積ρwCpwを演算する。   In ST6, the concentration state determination unit 101 calculates a product ρwCpw of the density ρw of the fluid to be cooled and the specific heat Cpw.

被冷却流体の密度ρwと比熱Cpwの積ρwCpwは、ST5で求めた熱通過率K、ST1で取得した機種情報及びST2で取得した運転情報とを用いて、次式(6)で求めることができる。

Figure 0005484503
ここで、
A:蒸発器の伝熱面積[m2 ]、
Gw:被冷却流体の流量[m3 /h]、
ΔTm:蒸発器における対数平均温度差[K]、
ΔTw:蒸発器における被冷却流体の出入口温度差[K]である。 The product ρwCpw of the density ρw of the fluid to be cooled and the specific heat Cpw can be obtained by the following equation (6) using the heat transfer rate K obtained in ST5, the model information obtained in ST1 and the operation information obtained in ST2. it can.
Figure 0005484503
here,
A: Heat transfer area of the evaporator [m 2 ],
Gw: Flow rate of fluid to be cooled [m 3 / h],
ΔTm: logarithm average temperature difference [K] in the evaporator,
ΔTw: the temperature difference [K] of the fluid to be cooled in the evaporator.

ΔTwは、被冷却流体流入温度検出手段41と被冷却流体流出温度検出手段42の検出値の差により求められる。対数平均温度差ΔTmは、被冷却流体流入温度検出手段41の検出値Twiと被冷却流体流出温度検出手段42の検出値Two、及び、低圧圧力検出手段30の検出値を飽和温度換算した値(蒸発温度)ETとを用いて、例えば次式(7)より求められる。   ΔTw is obtained from a difference between detected values of the cooled fluid inflow temperature detecting means 41 and the cooled fluid outflow temperature detecting means 42. The logarithmic average temperature difference ΔTm is a value obtained by converting the detected value Twi of the cooled fluid inflow temperature detecting means 41, the detected value Two of the cooled fluid outflow temperature detecting means 42, and the detected value of the low pressure detection means 30 into a saturated temperature ( For example, the following equation (7) can be used.

Figure 0005484503
ここで、
Twi:被熱交換流体流入温度[℃]、
Two:被熱交換流体流出温度[℃]、
ET:蒸発温度[℃]である。
Figure 0005484503
here,
Twi: Heat exchange fluid inflow temperature [° C.]
Two: Heat exchange fluid outflow temperature [° C.]
ET: Evaporation temperature [° C.].

ST7では、濃度状態判定部101は、冷却装置100のブライン濃度の初期状態を記憶する初期学習がなされているか判定する。判定結果がYESであれば、そのままST9へ移動する。判定結果がNOであれば、ST8へ移動する。ST8では、ST6で演算した被冷却流体の密度と比熱の積ρwCpwを、初期値ρwCpw0 として記憶部130に記憶してST9へ移動する。ここで定めた初期値ρwCpw0 が冷却装置100のブライン濃度の初期状態に相当するとして、以後の濃度状態判定の基準値として使用する。 In ST7, the concentration state determination unit 101 determines whether or not initial learning for storing the initial state of the brine concentration of the cooling device 100 is performed. If a determination result is YES, it will move to ST9 as it is. If a determination result is NO, it will move to ST8. In ST8, the product ρwCpw of the density of the fluid to be cooled and the specific heat calculated in ST6 is stored in the storage unit 130 as the initial value ρwCpw 0 and moved to ST9. Assuming that the initial value ρwCpw 0 determined here corresponds to the initial state of the brine concentration of the cooling device 100, it is used as a reference value for subsequent concentration state determination.

ST9では、濃度状態判定部101は、ST6で演算した被冷却流体の密度と比熱の積ρwCpwと、ρwCpw0 が等しいかどうか判定する。判定結果がYESであれば、初期状態からブライン濃度変化が無いと判断できるので「濃度正常」と判定し、ST10へ移動して報知部160にて「濃度正常」出力を行い、被冷却流体の濃度状態判定を終了する。 In ST9, density state determination unit 101 determines the density and the specific heat of the product RowCpw of the cooling fluid computed in ST6, whether RowCpw 0 are equal. If the determination result is YES, it can be determined that there is no change in the brine concentration from the initial state, so it is determined that the concentration is normal, and the process proceeds to ST10, where the notification unit 160 outputs “normal concentration” and The density state determination ends.

判定結果がNOであれば、ST11へ移動する。ST11では、濃度状態判定部101は、ρwCpwがρwCpw0 より小さいかどうか判定する。判定結果がYESであれば、初期状態から濃度が上昇していると判断できるので「濃度上昇」状態と判定し、ST12へ移動して報知部160にて「濃度上昇」出力を行い、被冷却流体の濃度状態判定を終了する。判定結果がNOであれば、初期状態から濃度が低下していると判断できるので「濃度低下」状態と判定し、ST13へ移動して報知部160にて「濃度低下」出力を行い、被冷却流体の濃度状態判定を終了する。 If a determination result is NO, it will move to ST11. In ST11, the concentration condition determining module 101, RowCpw determines whether RowCpw 0 less. If the determination result is YES, it can be determined that the concentration has increased from the initial state, so it is determined to be in the “concentration increased” state, the process proceeds to ST12, and the “concentration increased” output is performed by the notification unit 160 to be cooled. The determination of the fluid concentration state is terminated. If the determination result is NO, it can be determined that the concentration has decreased from the initial state, so it is determined to be in the “concentration decreased” state, the process proceeds to ST13, and the “concentration decreased” output is output from the notification unit 160 to be cooled. The determination of the fluid concentration state is terminated.

なお、ST13にて「濃度低下」となって判定が終了した場合、図2に示すように濃度状態判定部101から制御部150に保護制御信号を伝送し、冷却装置100における被冷却流体の凍結を防止する凍結防止制御を実施させるようにするとよい。制御動作としては、例えば圧縮機1の即時運転停止、増速禁止、又は数秒ごとに圧縮機1の周波数を数Hzずつ減速、又は圧縮機1の運転容量アップ禁止、数秒ごとに圧縮機1の運転容量を数%ずつダウン等のような運転制御がある。   In ST13, when the determination is “concentration decreased” and the determination is completed, a protection control signal is transmitted from the concentration state determination unit 101 to the control unit 150 as shown in FIG. It is advisable to perform anti-freezing control for preventing this. As the control operation, for example, the operation of the compressor 1 is immediately stopped, the speed increase is prohibited, or the frequency of the compressor 1 is decelerated by several Hz every few seconds, or the operation capacity of the compressor 1 is prohibited from being increased, and the compressor 1 is stopped every few seconds. There are operation controls such as down the operation capacity by several percent.

また、これらの保護制御動作は、上記の運転制御の1つを行う単一設定でもよいし、上記の運転制御のうちの複数を行う併用設定であってもよい。保護制御動作を併用設定とする場合は、例えば、ρwCpwとρwCpw0 との乖離度合いに応じて各運転制御の閾値を設定し、段階的に各運転制御を行ってもよい。このように連動して保護制御動作となる各運転制御を実施することで、ブライン濃度低下による蒸発器4の凍結をより確実に防止することができる。 These protection control operations may be a single setting for performing one of the above-described operation controls, or may be a combined setting for performing a plurality of the above-described operation controls. When the protection control operation is set to be used together, for example, a threshold value for each operation control may be set according to the degree of deviation between ρwCpw and ρwCpw 0 and each operation control may be performed step by step. Thus, by performing each operation control which becomes a protection control operation in conjunction with each other, freezing of the evaporator 4 due to a decrease in the brine concentration can be more reliably prevented.

判定結果が「濃度正常」の場合の出力は、報知部160での表示により行う。判定結果が正常でない濃度異常状態(「濃度低下」、「濃度上昇」)となった場合の出力は、正常の場合と同様、報知部160での表示により行う。また、異常状態の場合は緊急を要するため、電話回線、LAN回線、無線等の通信手段を通じて、サービスマンやユーザーへ異常発生を直接出力し、報知してもよい。   The output when the determination result is “normal density” is performed by display on the notification unit 160. The output when the determination result is an abnormal concentration abnormal state (“density decrease”, “density increase”) is performed by display on the notification unit 160 as in the normal case. Further, since an emergency is required in the case of an abnormal state, the occurrence of abnormality may be directly output and notified to a service person or user through a communication means such as a telephone line, a LAN line, or radio.

《作用効果》
本実施の形態1に係る冷却装置100によれば、被冷却流体であるブラインの濃度管理において、濃度計等の計測器を使用することなく、ブライン濃度状態を把握することが可能となるため、安価に冷却装置100の保守管理、メンテナンス技術を実現できる。
<Effect>
According to the cooling device 100 according to the first embodiment, in the concentration management of the brine to be cooled, it is possible to grasp the brine concentration state without using a measuring instrument such as a concentration meter. Maintenance management and maintenance technology of the cooling device 100 can be realized at low cost.

また、冷却装置100においては、被冷却流体として使用されるブラインの物性情報を用いることなく、ブライン濃度状態を把握できるため、様々なブライン種類に対応して濃度状態判定を行うことができる。   In the cooling device 100, since the brine concentration state can be grasped without using the physical property information of the brine used as the fluid to be cooled, the concentration state determination can be performed corresponding to various types of brine.

さらに、冷却装置100においては、常時ブライン濃度を管理できるため、濃度低下に起因する水熱交換器内でのブライン凍結を未然に防止することが可能であり、冷却装置100の信頼性が向上する。   Furthermore, in the cooling device 100, since the brine concentration can be managed at all times, it is possible to prevent the brine from being frozen in the water heat exchanger due to the decrease in concentration, and the reliability of the cooling device 100 is improved. .

実施の形態2.
本発明の実施の形態2に係る冷却装置(以下、便宜的に冷却装置200と称するものとする)の構成を説明する。なお、この実施の形態2では実施の形態1との相違点を中心に説明するものとする。
Embodiment 2. FIG.
A configuration of a cooling device according to Embodiment 2 of the present invention (hereinafter referred to as cooling device 200 for convenience) will be described. In the second embodiment, the difference from the first embodiment will be mainly described.

冷却装置200は、実施の形態1に係る冷却装置100の構成に加えて、被冷却流体流路Bで使用する被冷却流体(ブライン)の物性情報を予め保持しておき、濃度状態判定部101において冷却装置200の運転情報と、ブラインの物性情報から求められるブライン濃度の絶対値に基づいて濃度状態を判定するようにしたものである。その他の構成は実施の形態1と同様である。なお、実施の形態2に係る冷却装置200が備える記憶部130が本発明の物性情報記憶手段に相当するものである。   In addition to the configuration of the cooling device 100 according to the first embodiment, the cooling device 200 holds in advance physical property information of the fluid to be cooled (brine) used in the fluid flow path B to be cooled, and the concentration state determination unit 101. In FIG. 6, the concentration state is determined based on the absolute value of the brine concentration obtained from the operation information of the cooling device 200 and the physical property information of the brine. Other configurations are the same as those of the first embodiment. In addition, the memory | storage part 130 with which the cooling device 200 which concerns on Embodiment 2 is provided corresponds to the physical property information storage means of this invention.

冷却装置200において使用するブラインの物性情報を記憶部130に予め記憶しておく。記憶する形式は関数式や近似式のような式の形態でもよいし、テーブル形式で記憶保持してももちろんよい。記憶部130に記憶されたブラインの物性情報と、冷却装置200の運転情報とを用いて、演算部120でブライン濃度の絶対値を演算する。判定部140は演算部120で演算されたブライン濃度の絶対値に基づいてブライン濃度の状態を判定する。以下にブライン濃度状態の判定方法を説明する。   Physical property information of the brine used in the cooling device 200 is stored in the storage unit 130 in advance. The form of storage may be in the form of an expression such as a function expression or approximate expression, or of course stored in a table form. Using the physical property information of the brine stored in the storage unit 130 and the operation information of the cooling device 200, the calculation unit 120 calculates the absolute value of the brine concentration. The determination unit 140 determines the state of the brine concentration based on the absolute value of the brine concentration calculated by the calculation unit 120. A method for determining the brine concentration state will be described below.

《被冷却流体濃度状態の判定方法(フローチャート)》
図5に基づいて冷却装置200の被冷却流体(ブライン)の濃度状態の判定方法について説明する。図5は、冷却装置200の被冷却流体の濃度状態判定の処理の流れを示したフローチャートである。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。図5に示すST22〜ST26の処理は、実施の形態1と同様であるため説明を省略する。
<< Determination method (flow chart) of concentration state of fluid to be cooled >>
A method for determining the concentration state of the fluid to be cooled (brine) of the cooling device 200 will be described with reference to FIG. FIG. 5 is a flowchart showing the flow of processing for determining the concentration state of the fluid to be cooled in the cooling device 200. In the following, the second embodiment will be described focusing on the differences from the first embodiment. Since the processing of ST22 to ST26 shown in FIG. 5 is the same as that of Embodiment 1, the description thereof is omitted.

ST21では、濃度状態判定部101は、実施の形態1の冷却装置100と同様、冷却装置の機種情報を取得する。このときに、濃度状態判定部101は、実施の形態1で説明したような機種情報に加えて、予め記憶しておいた冷却装置200のブライン物性情報を取得する。   In ST21, the concentration state determination unit 101 acquires model information of the cooling device, similar to the cooling device 100 of the first embodiment. At this time, the density state determination unit 101 acquires brine physical property information of the cooling device 200 stored in advance in addition to the model information described in the first embodiment.

ST27では、濃度状態判定部101は、ST26にて算出したρwCpwの値と、ブラインの物性情報とに基づいてブライン濃度φを算出する。予め記憶しておいた冷却装置200のブライン物性情報に基づいて、ブライン密度ρwとブライン比熱Cpwの積を算出し、ブライン濃度φとの相関関係(例えば図3に示す特性)を求めておけば、ST26にて算出したρwCpwの値からブライン濃度φの絶対値を算出できる。   In ST27, the concentration state determination unit 101 calculates the brine concentration φ based on the value of ρwCpw calculated in ST26 and the physical property information of the brine. If the product of the brine density ρw and the brine specific heat Cpw is calculated based on the brine physical property information of the cooling device 200 stored in advance, the correlation (for example, the characteristics shown in FIG. 3) with the brine concentration φ is obtained. The absolute value of the brine concentration φ can be calculated from the value of ρwCpw calculated in ST26.

ST28では、濃度状態判定部101は、冷却装置200のブライン濃度の初期状態を記憶する初期学習がなされているか判定する。判定結果がYESであれば、そのままST30へ移動する。判定結果がNOであれば、ST29へ移動する。ST29では、ST27で算出したブライン濃度φを、初期値φ0 として記憶部130に記憶してST30へ移動する。ここで定めた初期値φ0 が冷却装置200のブライン濃度の初期状態に相当するとして、以後の濃度状態判定の基準値として使用する。 In ST28, the concentration state determination unit 101 determines whether initial learning for storing the initial state of the brine concentration of the cooling device 200 is performed. If a determination result is YES, it will move to ST30 as it is. If a determination result is NO, it will move to ST29. In ST29, the brine concentration phi calculated in ST27, moves to the storage unit 130 as an initial value phi 0 to ST30. Assuming that the initial value φ 0 determined here corresponds to the initial state of the brine concentration of the cooling device 200, it is used as a reference value for subsequent concentration state determination.

ST30では、濃度状態判定部101は、ST27で算出した濃度φと、φ0 が等しいかどうか判定する。判定結果がYESであれば、初期状態からブライン濃度変化が無いと判断できるので「濃度正常」と判定し、ST31へ移動して報知部160にて「濃度正常」出力を行い、被冷却流体の濃度状態判定を終了する。 In ST30, the concentration state determination unit 101 determines whether the density phi calculated in ST27, phi 0 is equal. If the determination result is YES, it can be determined that there is no change in brine concentration from the initial state, so it is determined that the concentration is normal, and the operation moves to ST31 to output “normal concentration” at the notification unit 160, The density state determination ends.

判定結果がNOであれば、ST32へ移動する。ST32では、φがφ0 より大きいかどうか判定する。判定結果がYESであれば、ブライン濃度が上昇していると判断できるので「濃度上昇」状態と判定し、ST33へ移動して報知部160にて「濃度上昇」出力を行い、ブラインの濃度状態判定を終了する。判定結果がNOであれば、ブライン濃度は低下していると判断できるので「濃度低下」状態と判定し、ST34へ移動して報知部160にて「濃度低下」出力を行い、ブラインの濃度状態判定を終了する。 If a determination result is NO, it will move to ST32. In ST32, φ, it is determined whether or not greater than φ 0. If the determination result is YES, it can be determined that the brine concentration has increased, so it is determined to be in the “concentration increased” state, the process proceeds to ST33, and the “concentration increased” output is performed by the notification unit 160, and the brine concentration state The judgment ends. If the determination result is NO, it can be determined that the brine concentration is decreasing, so it is determined to be in the “concentration decreasing” state, the process proceeds to ST34, the “concentration decreasing” output is performed by the notification unit 160, and the brine concentration state The judgment ends.

なお、ST29で設定したブライン濃度の初期値φ0 を報知部160にて表示させるようにしてもよい。このようにすることで、例えば冷却装置200の初期設置後に、サービスマンやユーザーが冷却装置200の運転開始時のブラインの初期濃度チェックをすることが可能となる。 Note that the initial value φ 0 of the brine concentration set in ST29 may be displayed on the notification unit 160. In this way, for example, after the initial installation of the cooling device 200, a serviceman or a user can check the initial concentration of brine at the start of operation of the cooling device 200.

また、ST27で算出したブライン濃度φと、ブラインの物性情報として得られるブライン濃度と凍結点の関係からブライン凝固点Tfを求め、得られたブライン凝固点Tfを用いて蒸発器4におけるブラインの凍結判定を行ってもよい。以下に、ブライン濃度φを凍結判定に用いた場合の凍結判定方法を説明する。   Further, the brine freezing point Tf is obtained from the relationship between the brine concentration φ calculated in ST27 and the brine concentration obtained as the physical property information of the brine and the freezing point, and the brine freezing determination in the evaporator 4 is determined using the obtained brine freezing point Tf. You may go. The freezing determination method when the brine concentration φ is used for freezing determination will be described below.

《被冷却流体の凍結判定方法(フローチャート)》
図6は、冷却装置200の被冷却流体(ブライン)の凍結判定の処理の流れを示したフローチャートである。図7は、蒸発器4における被冷却流体(ブライン)と冷媒との温度プロファイルを示した概念図である。図6及び図7に基づいて、冷却装置200の被冷却流体の凍結判定方法について説明する。なお、実施の形態1でも同様の流れで凍結判定が実行できる。
<< Method for determining freezing of fluid to be cooled (flow chart) >>
FIG. 6 is a flowchart showing the flow of processing for determining whether or not the fluid to be cooled (brine) is frozen in the cooling device 200. FIG. 7 is a conceptual diagram showing a temperature profile of the fluid to be cooled (brine) and the refrigerant in the evaporator 4. Based on FIG.6 and FIG.7, the freezing determination method of the to-be-cooled fluid of the cooling device 200 is demonstrated. In the first embodiment, the freezing determination can be executed in the same flow.

被冷却流体の凍結判定は、蒸発器4において被冷却流体が通過する流路と冷媒が通過する流路との間の壁面の温度(以下、壁面温度)Twlと、凍結壁面温度(被冷却流体が凍結する限界の壁面温度)Twfとを比較し、壁面温度Twlが凍結壁面温度Twfより高ければ、凍結は発生していないと判定し、壁面温度Twlが凍結壁面温度Twf以下であれば、凍結により流路の閉塞が発生していると判断する。   The determination of the freezing of the fluid to be cooled is performed by determining the wall surface temperature (hereinafter referred to as the wall surface temperature) Twl between the flow path through which the fluid to be cooled passes and the flow path through which the refrigerant passes in the evaporator 4 and the freezing wall temperature (fluid to be cooled). Is compared with the freezing wall temperature Twf. If the wall temperature Twl is higher than the freezing wall temperature Twf, it is determined that freezing has not occurred. If the wall temperature Twl is equal to or lower than the freezing wall temperature Twf, freezing is performed. Therefore, it is determined that the channel is blocked.

ST41では、濃度状態判定部101は、冷却装置200の機種情報と、ブライン物性を取得する。冷却装置200の記憶部130にブライン濃度φとブライン凝固点Tfの関係を近似式やテーブル形式等で予め記憶しておき、ブラインの物性情報として取得できるようにしておく。   In ST41, the concentration state determination unit 101 acquires model information of the cooling device 200 and brine physical properties. The relationship between the brine concentration φ and the brine freezing point Tf is stored in advance in the storage unit 130 of the cooling device 200 as an approximate expression or a table format so that it can be acquired as physical property information of the brine.

ST42では、濃度状態判定部101は、冷却装置200の運転情報より壁面温度Twlを算出する。図7に示すように、壁面温度Twlは、被冷却流体温度Tw、冷媒温度Te、冷媒側熱伝達率αr、被冷却流体側熱伝達率αwlの関係から求められる。例えば、図5のST24で求めた冷媒側熱伝達率αrと被冷却流体側熱伝達率αwから冷媒側熱伝達率αrと被冷却流体側熱伝達率αwの比を求めて、その比から壁面温度Twlを演算することができる。   In ST42, the concentration state determination unit 101 calculates the wall surface temperature Twl from the operation information of the cooling device 200. As shown in FIG. 7, the wall surface temperature Twl is obtained from the relationship among the cooled fluid temperature Tw, the refrigerant temperature Te, the refrigerant side heat transfer coefficient αr, and the cooled fluid side heat transfer coefficient αwl. For example, the ratio of the refrigerant side heat transfer rate αr and the cooled fluid side heat transfer rate αw is obtained from the refrigerant side heat transfer rate αr and the cooled fluid side heat transfer rate αw obtained in ST24 of FIG. The temperature Twl can be calculated.

具体的には、被冷却流体温度が10℃、冷媒温度が4℃、被冷却流体側熱伝達率αwと冷媒側熱伝達率αrの比が例えば2:1の場合、壁面温度Twlは10−{(10−4)×2}/3=6℃として求められる。なお、壁面内の熱移動の温度低下分は、被冷却流体(ブライン)及び冷媒の熱伝達に起因する温度変化に対して非常に小さいため、無視するものとする。   Specifically, when the cooled fluid temperature is 10 ° C., the refrigerant temperature is 4 ° C., and the ratio of the cooled fluid side heat transfer coefficient αw to the refrigerant side heat transfer coefficient αr is, for example, 2: 1, the wall surface temperature Twl is 10−. {(10-4) × 2} / 3 = 6 ° C. Note that the temperature drop of the heat transfer in the wall surface is very small with respect to the temperature change caused by the heat transfer of the fluid to be cooled (brine) and the refrigerant, and is ignored.

なお、被冷却流体温度Twは、ここではTwiとTwoとの平均として、Tw=(Twi+Two)/2として与える。また、冷媒温度Teには低圧圧力検出手段30により検出される低圧圧力の飽和温度を低圧冷媒温度として用いるとよい。ここでは、壁面温度Twlの算出を被冷却流体流入温度Twi、被冷却流体流出温度Two及び冷媒温度Teを用いて算出したが、これらのうち何れか一つを用いて算出するようにしてもよい。   In addition, the to-be-cooled fluid temperature Tw is given as Tw = (Twi + Two) / 2 as an average of Twi and Two here. Further, the saturation temperature of the low pressure detected by the low pressure detection means 30 may be used as the refrigerant temperature Te as the low pressure refrigerant temperature. Here, the wall surface temperature Twl is calculated using the cooled fluid inflow temperature Twi, the cooled fluid outflow temperature Two, and the refrigerant temperature Te, but may be calculated using any one of these. .

ST43では、濃度状態判定部101は、ST27で算出したブライン濃度φを取得する。   In ST43, the density state determination unit 101 acquires the brine concentration φ calculated in ST27.

ST44では、濃度状態判定部101は、ST41で取得したブライン濃度とブライン凝固点との関係と、ST43で取得したブライン濃度φより、ブライン凝固点Tfを算出する。   In ST44, the concentration state determination unit 101 calculates a brine freezing point Tf from the relationship between the brine concentration and the brine freezing point acquired in ST41 and the brine concentration φ acquired in ST43.

ST45では、濃度状態判定部101は、凍結判定の閾値となる凍結壁面温度Twfを算出する。なお、具体的な算出方法は後述する。   In ST45, the concentration state determination unit 101 calculates a frozen wall surface temperature Twf that is a threshold for freezing determination. A specific calculation method will be described later.

ST46では、濃度状態判定部101は、壁面温度Twlと凍結壁面温度Twfとを比較し、壁面温度Twlが凍結壁面温度Twfより高くなっていれば、凍結による流路の閉塞は発生していないと判断し、そのまま判定を終了する。そうでない場合は、凍結により流路の閉塞が発生していると判断し、ST47へ移動し、凍結異常出力を行う。   In ST46, the concentration state determination unit 101 compares the wall surface temperature Twl with the frozen wall surface temperature Twf, and if the wall surface temperature Twl is higher than the frozen wall surface temperature Twf, the channel is not blocked by freezing. Judgment is made, and the determination is finished as it is. Otherwise, it is determined that the flow path is clogged due to freezing, and the process moves to ST47 to output a freezing abnormality.

ここで、凍結により流路の閉塞が発生していると判定された場合に、被冷却流体の凍結を防止する凍結防止制御を行ってもよい。凍結防止制御としては、例えば、圧縮機1の即時運転停止、増速禁止、又は数秒ごとに圧縮機1の周波数を数Hzずつ減速、又は圧縮機1の運転容量アップ禁止、数秒ごとに圧縮機1の運転容量を数%ずつダウン等のような運転制御がある。   Here, when it is determined that the flow path is blocked due to freezing, anti-freezing control for preventing freezing of the fluid to be cooled may be performed. As anti-freezing control, for example, the operation of the compressor 1 is immediately stopped, the speed increase is prohibited, or the frequency of the compressor 1 is decelerated by several Hz every few seconds, or the operation capacity of the compressor 1 is prohibited from being increased, and the compressor is stopped every few seconds. There is an operation control such that the operation capacity of 1 is reduced by several percent.

また、これらの保護制御動作は上記の運転制御の1つを行う単一設定でもよいし、上記の運転制御のうちの複数を行う併用設定であってもよい。保護制御動作を併用設定とする場合は、例えば、TwlとTwfとの乖離度合いに応じて各運転制御の閾値を設定し、段階的に各運転制御を行ってもよい。このように連動して保護制御動作となる各運転制御を実施することで、ブライン濃度低下による蒸発器4の凍結をより確実に防止することができる。   These protection control operations may be a single setting for performing one of the above-described operation controls, or may be a combined setting for performing a plurality of the above-described operation controls. When the protection control operation is set to be used together, for example, a threshold value for each operation control may be set in accordance with the degree of deviation between Twl and Twf, and each operation control may be performed step by step. Thus, by performing each operation control which becomes a protection control operation in conjunction with each other, freezing of the evaporator 4 due to a decrease in the brine concentration can be more reliably prevented.

(凍結壁面温度Twfの算出)
次に、凍結判定の閾値となる凍結壁面温度Twfの算出方法について説明する。凍結壁面温度Twfは、冷却開始からの時間(冷却運転時間)tc、被冷却流体流入温度Twi、被冷却流体流出温度Two、被冷却流体の流速Uw、被冷却流体の凝固点Tfに応じて変化することが知られている。また、被冷却流体の物性(熱伝導率λw、比熱Cpw、密度ρw、動粘度νw等)によっても異なったものとなることが知られている。ここでは、まず、凍結壁面温度Twfの算出に用いる蒸発器4の凍結限界冷却温度比θc* の算出方法について説明する。
(Calculation of frozen wall temperature Twf)
Next, a method for calculating the frozen wall surface temperature Twf that serves as the threshold for freezing determination will be described. The frozen wall surface temperature Twf varies depending on the time from the start of cooling (cooling operation time) tc, the cooled fluid inflow temperature Twi, the cooled fluid outflow temperature Two, the flow velocity Uw of the cooled fluid, and the freezing point Tf of the cooled fluid. It is known. It is also known that the fluid to be cooled varies depending on the physical properties (thermal conductivity λw, specific heat Cpw, density ρw, kinematic viscosity νw, etc.). Here, first, a method for calculating the freezing limit cooling temperature ratio θc * of the evaporator 4 used for calculating the frozen wall surface temperature Twf will be described.

(凍結限界冷却温度比θc* の算出)
まず、被冷却流体流入温度検出手段41により検出される被冷却流体流入温度Twiと、被冷却流体流出温度検出手段42により検出される被冷却流体流出温度Twoとにより定常運転時での凍結限界冷却温度比θcs* を算出する。また、被冷却流体流入温度Twiと、被冷却流体流出温度Twoと、冷却運転時間tcとより、冷却開始時点での過渡運転時(圧縮機起動時等)における凍結限界冷却温度比θct* を算出する。そして、θcs* とθct* の何れか高い方を蒸発器4の凍結限界冷却温度比θc* とする。θcs* 、θct* は次式(8)、(9)より求めることができる。
(Calculation of freezing limit cooling temperature ratio θc * )
First, the freezing limit cooling in the steady operation based on the cooled fluid inflow temperature Twi detected by the cooled fluid inflow temperature detecting means 41 and the cooled fluid outflow temperature Two detected by the cooled fluid outflow temperature detecting means 42. The temperature ratio θcs * is calculated. Further, the freezing limit cooling temperature ratio θct * at the time of transient operation at the start of cooling (such as when the compressor is started) is calculated from the cooled fluid inflow temperature Twi, the cooled fluid outflow temperature Two, and the cooling operation time tc. To do. Then, the? Cs * and Shitact * either higher freezing limit cooling temperature ratio θc of the evaporator 4 *. θcs * and θct * can be obtained from the following equations (8) and (9).

Figure 0005484503
Figure 0005484503
Figure 0005484503
Figure 0005484503

ここで、
Fo:管内閉塞開始時刻のフーリエ数(=aw×tc/dh2 )[無次元]、
aw:被冷却流体の温度拡散率(=λw/(Cpw×ρw))[m2 /s]、
tc:冷却開始より閉塞開始までの時間[sec]、
λw:被冷却流体の熱伝導率[W/m・K]、
Cpw:被冷却流体の定圧比熱[J/(kg・K)]、
ρw:被冷却流体の密度[kg/m3 ]、
Rew:被冷却流体レイノルズ数(=Uw×dh/νw)[無次元]、
Uw:被冷却流体の流速[m/s]、
dh:水力相当直径[m]、
νw:被冷却流体の動粘度[m2 /s]である。
here,
Fo: Fourier number (= aw × tc / dh 2 ) [no dimension] of the start time of occlusion in the tube,
aw: temperature diffusivity of the fluid to be cooled (= λw / (Cpw × ρw)) [m 2 / s],
tc: Time from the start of cooling to the start of closure [sec],
λw: thermal conductivity of the fluid to be cooled [W / m · K],
Cpw: constant pressure specific heat of fluid to be cooled [J / (kg · K)],
ρw: density of fluid to be cooled [kg / m 3 ],
Rew: Cooled fluid Reynolds number (= Uw × dh / νw) [dimensionless],
Uw: Flow velocity of fluid to be cooled [m / s],
dh: hydraulic equivalent diameter [m],
νw: Kinematic viscosity [m 2 / s] of the fluid to be cooled.

上式において、aw、λw、Cpw、ρw、νwは被冷却流体の物性を用いて被冷却流体温度Twより求まり、dhは熱交換器(蒸発器)の仕様によって決まる。被冷却流体温度Twは、上述したように、ここではTwiとTwoとの平均として、Tw=(Twi+Two)/2として与える。被冷却流体の流速Uwは被冷却流体の流量によって決まり、ここでは被冷却流体流量検出手段50の検出値と被冷却流体の流量として用いる。定常運転時の凍結限界冷却温度比θcs* はTwi、Two及びUwによって求めることができ、過渡運転時の凍結限界冷却温度比θct* はTwi、Two、Uw及びtcによって求めることができる。なお、被冷却流体温度TwをTwiとTwoとの平均値としたが、凍結壁面温度Twfの算出においても、TwiとTwoのどちらか一方としてもよい。 In the above equation, aw, λw, Cpw, ρw, and νw are obtained from the cooled fluid temperature Tw using physical properties of the cooled fluid, and dh is determined by the specifications of the heat exchanger (evaporator). As described above, the fluid temperature Tw to be cooled is given as Tw = (Twi + Two) / 2 as an average of Twi and Two. The flow rate Uw of the fluid to be cooled is determined by the flow rate of the fluid to be cooled, and here is used as the detection value of the fluid flow rate detecting means 50 and the flow rate of the fluid to be cooled. The freezing limit cooling temperature ratio θcs * during steady operation can be obtained from Twi, Two, and Uw, and the freezing limit cooling temperature ratio θct * during transient operation can be obtained from Twi, Two, Uw, and tc. In addition, although the to-be-cooled fluid temperature Tw was made into the average value of Twi and Two, also in calculation of freezing wall surface temperature Twf, it is good also as either Twi or Two.

以上のようにして求められた凍結限界冷却温度比θc* を用いて次式(10)より凍結壁面温度Twfが算出される。被冷却流体の凝固点Tfは、ST44にてブライン濃度φより求めたブライン凝固点Tfを用いる。 Using the freezing limit cooling temperature ratio θc * obtained as described above, the frozen wall surface temperature Twf is calculated from the following equation (10). As the freezing point Tf of the fluid to be cooled, the brine freezing point Tf obtained from the brine concentration φ in ST44 is used.

Figure 0005484503
ここで、
Tw:被冷却流体温度(=(Twi+Two)/2)[℃]である。
Figure 0005484503
here,
Tw: Temperature of fluid to be cooled (= (Twi + Two) / 2) [° C.].

上記のように凍結壁面温度Twf算出において、ブライン濃度φより求めたブライン凝固点Tfを用いることでブライン濃度変化に対応した凍結壁面温度Twfを求めることができる。   As described above, in calculating the frozen wall surface temperature Twf, the frozen wall surface temperature Twf corresponding to the brine concentration change can be obtained by using the brine solidification point Tf obtained from the brine concentration φ.

なお、ここで説明した一連の凍結判定処理は冷却装置200における測定部110、演算部120、記憶部130、判定部140で行われる。従って、図2に示した濃度状態判定部101が凍結判定の処理を行う。また、上記で説明した凍結防止制御は制御部150が行う。凍結異常出力は報知部160で行われる。   Note that the series of freeze determination processes described here are performed by the measurement unit 110, the calculation unit 120, the storage unit 130, and the determination unit 140 in the cooling device 200. Therefore, the density state determination unit 101 shown in FIG. 2 performs a freezing determination process. Further, the freeze prevention control described above is performed by the control unit 150. Freezing abnormality output is performed by the notification unit 160.

《作用効果》
本実施の形態2に係る冷却装置200によれば、被冷却流体であるブラインの濃度管理において、濃度計等の計測器を使用することなく、ブライン濃度の絶対値を把握することが可能となるため、安価に冷却装置200の保守管理、メンテナンス技術を実現できる。
<Effect>
According to the cooling device 200 according to the second embodiment, it is possible to grasp the absolute value of the brine concentration without using a measuring instrument such as a densitometer in the concentration management of the brine to be cooled. Therefore, maintenance management and maintenance technology for the cooling device 200 can be realized at low cost.

また、冷却装置200によれば、実施の形態1と同様の作用効果が得られると共に、上記のようにして得られたブライン濃度の絶対値からその時のブライン凝固点を常時把握することもでき、得られたブライン凝固点の情報を水熱交換器内でのブライン凍結判定に用いることが可能となるため、凍結判定の高精度化を図ることができる。   Further, according to the cooling device 200, the same effect as in the first embodiment can be obtained, and the brine freezing point at that time can be always grasped from the absolute value of the brine concentration obtained as described above. Since the information on the brine freezing point thus obtained can be used for the brine freezing determination in the water heat exchanger, the accuracy of the freezing determination can be improved.

《冷却装置の変形例》
各実施の形態の冷却装置における冷媒回路Aの構成は、図に示した構成に限定されず、上記機器構成に記載した以外の冷媒回路要素、例えば、四方弁やアキュームレータ、レシーバ、油分離器、内部熱交換器(冷媒−冷媒熱交換器)等が接続された冷媒回路であってももちろんよい。
《Cooling device modification》
The configuration of the refrigerant circuit A in the cooling device of each embodiment is not limited to the configuration shown in the figure, and refrigerant circuit elements other than those described in the device configuration, for example, a four-way valve, an accumulator, a receiver, an oil separator, Of course, the refrigerant circuit may be connected to an internal heat exchanger (refrigerant-refrigerant heat exchanger) or the like.

《対数平均温度差ΔTmの算出方法の変形例》
上記の説明では、対数平均温度差ΔTmを、被冷却流体流入温度Twi、被冷却流体流出温度Two及び蒸発温度ETを用いて算出するとしたが、以下のように算出してもよい。すなわち、図8に示すように、図1の構成に加えてさらに冷媒流入温度検出手段43及び冷媒流出温度検出手段44を設け、これらの各検出値も用いて次式(11)により算出してもよい。なお、図8は、本発明の実施の形態1に係る冷却装置100の別の構成図である。
<< Modified example of calculation method of logarithm average temperature difference ΔTm >>
In the above description, the logarithmic average temperature difference ΔTm is calculated using the cooled fluid inflow temperature Twi, the cooled fluid outflow temperature Two, and the evaporation temperature ET, but may be calculated as follows. That is, as shown in FIG. 8, in addition to the configuration of FIG. 1, a refrigerant inflow temperature detecting means 43 and a refrigerant outflow temperature detecting means 44 are further provided, and these detected values are also used to calculate by the following equation (11). Also good. FIG. 8 is another configuration diagram of cooling device 100 according to Embodiment 1 of the present invention.

Figure 0005484503
ここで、
Tei:蒸発器の冷媒流入温度[℃]、
Teo:蒸発器の冷媒流出温度[℃]である。
Figure 0005484503
here,
Tei: Refrigerant inflow temperature [° C.] of the evaporator,
Teo: Refrigerant outflow temperature [° C.] of the evaporator.

上記のように蒸発器4の出入口で生じる冷媒の温度勾配を考慮した対数平均温度差ΔTmを求めることで推算値の高精度化を図ることができる。   As described above, it is possible to increase the accuracy of the estimated value by obtaining the logarithmic average temperature difference ΔTm in consideration of the temperature gradient of the refrigerant generated at the inlet / outlet of the evaporator 4.

例えば、R410Aのような疑似非共沸混合冷媒の場合には蒸発器4の出入口の冷媒で温度勾配はほとんど生じないが、例えばR407Cのような非共沸混合冷媒の場合には蒸発器4の出入口で冷媒の温度勾配が生じる。このように、特にR407Cのような非共沸混合冷媒を使用する冷却装置においては、上述の演算方法を適用することで、推算精度を向上させることが可能となる。   For example, in the case of a pseudo non-azeotropic refrigerant mixture such as R410A, the temperature gradient hardly occurs at the refrigerant at the inlet / outlet of the evaporator 4, but in the case of a non-azeotropic refrigerant mixture such as R407C, the evaporator 4 A temperature gradient of the refrigerant occurs at the entrance / exit. Thus, in the cooling device using the non-azeotropic refrigerant mixture such as R407C in particular, it is possible to improve the estimation accuracy by applying the above-described calculation method.

なお、ここでは冷媒流入温度検出手段43と、冷媒流出温度検出手段44の両方が設置されるとしたが、例えば冷媒流出温度検出手段44は設置せず、冷媒流入温度検出手段43のみを設置するとしてもよい。その場合、冷媒流出温度検出手段44として吸入冷媒温度検出手段40を代用すると上式で対数平均温度差ΔTmを求めることができる。   Here, both the refrigerant inflow temperature detecting means 43 and the refrigerant outflow temperature detecting means 44 are installed. However, for example, the refrigerant outflow temperature detecting means 44 is not installed, and only the refrigerant inflow temperature detecting means 43 is installed. It is good. In that case, the logarithmic average temperature difference ΔTm can be obtained by the above equation by substituting the intake refrigerant temperature detection means 40 as the refrigerant outflow temperature detection means 44.

本発明の特徴事項を各実施の形態において説明したが、上述したように例えば、冷媒の流路構成(配管接続)、被冷却流体の流路構成、圧縮機・熱交換器・減圧手段等の冷媒回路要素の構成、各運転情報検出手段の設置位置等の内容は、各実施の形態で説明した内容に限定されるものではなく、本発明の技術の範囲内で適宜変更が可能である。   The features of the present invention have been described in the embodiments. As described above, for example, the refrigerant flow path configuration (pipe connection), the flow path configuration of the fluid to be cooled, the compressor, the heat exchanger, the decompression means, etc. The contents of the configuration of the refrigerant circuit element, the installation position of each operation information detection means, etc. are not limited to the contents described in each embodiment, and can be appropriately changed within the scope of the technology of the present invention.

1 圧縮機、2 凝縮器、3 減圧装置、4 蒸発器、5 被冷却流体送出手段、20 運転容量検出手段、30 低圧圧力検出手段、40 吸入冷媒温度検出手段、41 被冷却流体流入温度検出手段、42 被冷却流体流出温度検出手段、43 冷媒流入温度検出手段、44 冷媒流出温度検出手段、50 被冷却流体流量検出手段、100 冷却装置、101 濃度状態判定部、110 測定部、120 演算部、130 記憶部、140 判定部、150 制御部、160 報知部、200 冷却装置、500 冷熱負荷、A 冷媒回路、B 被冷却流体流路。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Pressure reducing device, 4 Evaporator, 5 Cooled fluid delivery means, 20 Operating capacity detection means, 30 Low pressure detection means, 40 Intake refrigerant temperature detection means, 41 Cooled fluid inflow temperature detection means 42 Cooled fluid outflow temperature detection means, 43 Refrigerant inflow temperature detection means, 44 Refrigerant outflow temperature detection means, 50 Cooled fluid flow rate detection means, 100 Cooling device, 101 Concentration state determination section, 110 Measurement section, 120 Calculation section, 130 memory | storage part, 140 determination part, 150 control part, 160 alerting | reporting part, 200 cooling device, 500 cold load, A refrigerant circuit, B to-be-cooled fluid flow path.

Claims (12)

冷媒を圧縮する圧縮機、前記圧縮機により圧縮された冷媒を凝縮する凝縮器、前記凝縮器によって凝縮された冷媒を減圧する減圧装置、前記減圧装置によって減圧された冷媒を蒸発させる蒸発器が順次配管接続されて構成された冷媒回路と、
被冷却流体を被冷却流体送出装置により前記蒸発器に送出し、前記蒸発器を流れる冷媒と熱交換して冷却する被冷却流体流路と、を有する冷却装置であって、
前記冷媒回路における低圧側の冷媒圧力、前記圧縮機の吸入側の冷媒温度、前記蒸発器に流入する被冷却流体の温度、前記蒸発器から流出する被冷却流体の温度、前記圧縮機の運転容量、前記被冷却流体流路における被冷却流体の流量から、該冷却装置の運転情報を検出する運転情報検出手段と、
前記運転情報検出手段からの運転情報に基づいて被冷却流体密度と被冷却流体比熱の積を演算し、この演算結果と前記被冷却流体の濃度との相関に基づいて前記被冷却流体の濃度の状態を判定する被冷却流体濃度検出手段と、を備えた
ことを特徴とする冷却装置。
A compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a decompressor that decompresses the refrigerant condensed by the condenser, and an evaporator that evaporates the refrigerant decompressed by the decompressor A refrigerant circuit configured by pipe connection;
A cooled fluid flow path that sends a cooled fluid to the evaporator by a cooled fluid delivery device and cools the refrigerant by exchanging heat with the refrigerant flowing through the evaporator,
Low-pressure side refrigerant pressure in the refrigerant circuit, suction-side refrigerant temperature of the compressor, temperature of the cooled fluid flowing into the evaporator, temperature of the cooled fluid flowing out of the evaporator, operating capacity of the compressor Operation information detecting means for detecting operation information of the cooling device from the flow rate of the fluid to be cooled in the fluid flow path to be cooled ;
The product of the cooled fluid density and the specific heat of the cooled fluid is calculated based on the operating information from the operating information detecting means, and the concentration of the cooled fluid is calculated based on the correlation between the calculation result and the concentration of the cooled fluid. And a cooled fluid concentration detecting means for determining the state .
記冷媒回路における低圧側の冷媒圧力を検出する低圧圧力検出手段、
前記圧縮機の吸入側の冷媒温度を検出する吸入冷媒温度検出手段、
前記蒸発器に流入する被冷却流体の温度を検出する被冷却流体流入温度検出手段、
前記蒸発器から流出する被冷却流体の温度を検出する被冷却流体流出温度検出手段、
前記圧縮機の運転容量を検出する運転容量検出手段、及び、
前記被冷却流体流路における被冷却流体の流量を検出する被冷却流体流量検出手段を設け、
前記被冷却流体濃度検出手段は、
前記被冷却流体密度と前記被冷却流体比熱の積を演算する演算部と、
前記演算部での演算結果と前記被冷却流体の濃度との相関に基づいて前記被冷却流体の濃度の状態を判定する判定部と、を備えている
ことを特徴とする請求項1に記載の冷却装置。
Low pressure detecting means for detecting the refrigerant pressure in the low-pressure before Symbol refrigerant circuit,
Suction refrigerant temperature detection means for detecting the refrigerant temperature on the suction side of the compressor;
Cooled fluid inflow temperature detecting means for detecting the temperature of the cooled fluid flowing into the evaporator,
Cooled fluid outflow temperature detecting means for detecting the temperature of the cooled fluid flowing out of the evaporator,
Operating capacity detecting means for detecting the operating capacity of the compressor; and
A cooled fluid flow rate detecting means for detecting a flow rate of the cooled fluid in the cooled fluid channel is provided;
The cooled fluid concentration detection means includes:
A calculator for calculating the product of the the fluid to be cooled density the fluid to be cooled specific heat,
The determination part which determines the state of the density | concentration of the said to-be-cooled fluid based on the correlation with the calculation result in the said calculating part, and the density | concentration of the said to-be-cooled fluid is provided. Cooling system.
前記被冷却流体濃度検出手段は、
前記被冷却流体密度と被冷却流体比熱との積の初期値を記憶しておき、
冷却運転中に、前記初期値を基準として、前記被冷却流体密度と被冷却流体比熱との積が前記初期値よりも大きくなった場合に濃度低下状態と判定し、
前記初期値よりも小さくなった場合に濃度上昇状態と判定し、
前記初期値に対して変化がなければ濃度一定状態、と判定する
ことを特徴とする請求項1又は2に記載の冷却装置。
The cooled fluid concentration detection means includes:
An initial value of the product of the cooled fluid density and the cooled fluid specific heat is stored,
During the cooling operation, on the basis of the initial value, when the product of the cooled fluid density and the specific heat of the cooled fluid is larger than the initial value, it is determined that the concentration is reduced,
When it becomes smaller than the initial value, it is determined that the concentration is increased,
The cooling device according to claim 1 or 2, wherein if there is no change with respect to the initial value, it is determined that the concentration is constant.
冷媒を圧縮する圧縮機、前記圧縮機により圧縮された冷媒を凝縮する凝縮器、前記凝縮器によって凝縮された冷媒を減圧する減圧装置、前記減圧装置によって減圧された冷媒を蒸発させる蒸発器が順次配管接続されて構成された冷媒回路と、
被冷却流体を被冷却流体送出装置により前記蒸発器に送出し、前記蒸発器を流れる冷媒と熱交換して冷却する被冷却流体流路と、を有する冷却装置であって、
前記冷媒回路における低圧側の冷媒圧力、前記圧縮機の吸入側の冷媒温度、前記蒸発器に流入する被冷却流体の温度、前記蒸発器から流出する被冷却流体の温度、前記圧縮機の運転容量、前記被冷却流体流路における被冷却流体の流量から、該冷却装置の運転情報を検出する運転情報検出手段と、
前記被冷却流体の物性情報を記憶する物性情報記憶手段と、
前記運転情報検出手段からの運転情報に基づいて被冷却流体密度と被冷却流体比熱の積を演算し、この演算結果と前記物性情報記憶手段からの前記被冷却流体の物性情報とを用いて前記被冷却流体の濃度の絶対値を算出し、前記被冷却流体の濃度の絶対値に基づいて前記被冷却流体の濃度の状態を判定する被冷却流体濃度検出手段と、を備えた
ことを特徴とする冷却装置。
A compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a decompressor that decompresses the refrigerant condensed by the condenser, and an evaporator that evaporates the refrigerant decompressed by the decompressor A refrigerant circuit configured by pipe connection;
A cooled fluid flow path that sends a cooled fluid to the evaporator by a cooled fluid delivery device and cools the refrigerant by exchanging heat with the refrigerant flowing through the evaporator,
Low-pressure side refrigerant pressure in the refrigerant circuit, suction-side refrigerant temperature of the compressor, temperature of the cooled fluid flowing into the evaporator, temperature of the cooled fluid flowing out of the evaporator, operating capacity of the compressor Operation information detecting means for detecting operation information of the cooling device from the flow rate of the fluid to be cooled in the fluid flow path to be cooled ;
Physical property information storage means for storing physical property information of the fluid to be cooled;
The calculated the cooled fluid density and the product of the fluid to be cooled specific heat based on the operation information from the operation information detection means, wherein by using the physical property information of the fluid to be cooled from the calculation result with the property information storage means Cooled fluid concentration detection means for calculating an absolute value of the concentration of the cooled fluid and determining a concentration state of the cooled fluid based on the absolute value of the concentration of the cooled fluid. Cooling system.
記冷媒回路における低圧側の冷媒圧力を検出する低圧圧力検出手段、
前記圧縮機の吸入側の冷媒温度を検出する吸入冷媒温度検出手段、
前記蒸発器に流入する被冷却流体の温度を検出する被冷却流体流入温度検出手段、
前記蒸発器から流出する被冷却流体の温度を検出する被冷却流体流出温度検出手段、
前記圧縮機の運転容量を検出する運転容量検出手段、及び、
前記被冷却流体流路における被冷却流体の流量を検出する被冷却流体流量検出手段を設け、
前記被冷却流体濃度検出手段は、
前記被冷却流体密度と前記被冷却流体比熱の積を演算する演算部と、
前記演算部での演算結果と前記物性情報記憶手段からの前記被冷却流体の物性情報とを用いて前記被冷却流体の濃度の絶対値を算出し、前記被冷却流体の濃度の絶対値に基づいて前記被冷却流体の濃度の状態を判定する判定部と、を備えている
ことを特徴とする請求項4に記載の冷却装置。
Low pressure detecting means for detecting the refrigerant pressure in the low-pressure before Symbol refrigerant circuit,
Suction refrigerant temperature detection means for detecting the refrigerant temperature on the suction side of the compressor;
Cooled fluid inflow temperature detecting means for detecting the temperature of the cooled fluid flowing into the evaporator,
Cooled fluid outflow temperature detecting means for detecting the temperature of the cooled fluid flowing out of the evaporator,
Operating capacity detecting means for detecting the operating capacity of the compressor; and
A cooled fluid flow rate detecting means for detecting a flow rate of the cooled fluid in the cooled fluid channel is provided;
The cooled fluid concentration detection means includes:
A calculator for calculating the product of the the fluid to be cooled density the fluid to be cooled specific heat,
The absolute value of the concentration of the cooled fluid is calculated using the calculation result in the calculation unit and the physical property information of the cooled fluid from the physical property information storage means, and based on the absolute value of the concentration of the cooled fluid The cooling device according to claim 4, further comprising: a determination unit that determines a concentration state of the fluid to be cooled.
前記被冷却流体濃度検出手段は、
前記被冷却流体の濃度の絶対値の初期値を記憶しておき、
冷却運転中に、前記初期値を基準として、前記被冷却流体の濃度の絶対値が前記初期値よりも小さくなった場合に濃度低下状態と判定し、
前記初期値よりも大きくなった場合に濃度上昇状態と判定し、
前記初期値に対して変化がなければ濃度一定状態と判定する
ことを特徴とする請求項4又は5に記載の冷却装置。
The cooled fluid concentration detection means includes:
An initial value of the absolute value of the concentration of the fluid to be cooled is stored,
During the cooling operation, on the basis of the initial value, when the absolute value of the concentration of the fluid to be cooled is smaller than the initial value, it is determined that the concentration is reduced.
When it becomes larger than the initial value, it is determined that the concentration is increased,
The cooling device according to claim 4 or 5, wherein if there is no change with respect to the initial value, it is determined that the concentration is constant.
前記被冷却流体の凍結を防止する凍結防止運転を実行する制御部を備え、
前記被冷却流体濃度検出手段は、
前記運転情報検出手段からの運転情報を用いて前記蒸発器の壁面温度を演算し、
前記被冷却流体の物性情報と、前記被冷却流体の濃度の絶対値と、を用いて前記被冷却流体の凝固点を演算し、
前記被冷却流体の凝固点と、前記運転情報検出手段からの運転情報と、を用いて凍結壁面温度を演算し、
前記演算部で演算された前記壁面温度と前記凍結壁面温度とを比較し、この比較結果に基づいて前記被冷却流体の凍結の状況を判定し、
前記制御部は、
前記被冷却流体濃度検出手段により凍結による流路の閉塞が発生していると判定された場合に前記凍結防止運転を実行する
ことを特徴とする請求項4〜6のいずれか一項に記載の冷却装置。
A control unit for performing an anti-freezing operation for preventing freezing of the fluid to be cooled;
The cooled fluid concentration detection means includes:
Using the operation information from the operation information detection means to calculate the wall surface temperature of the evaporator,
Using the physical property information of the cooled fluid and the absolute value of the concentration of the cooled fluid, the freezing point of the cooled fluid is calculated,
The frozen wall temperature is calculated using the freezing point of the fluid to be cooled and the operation information from the operation information detecting means,
Comparing the wall surface temperature calculated by the calculation unit and the frozen wall surface temperature, based on this comparison result, determine the freezing state of the fluid to be cooled,
The controller is
Wherein according to any one of claims 4-6, characterized in that executing the freeze prevention operation in the case where clogging of the flow path due to freezing by the cooling fluid concentration detector is determined to have occurred Cooling system.
前記被冷却流体濃度検出手段により前記被冷却流体の濃度が低下していると判定された場合に、前記被冷却流体の凍結を防止する凍結防止運転を行う制御部を備えた
ことを特徴とする請求項3又は6に記載の冷却装置。
And a controller for performing an anti-freezing operation for preventing freezing of the cooled fluid when the cooled fluid concentration detecting means determines that the concentration of the cooled fluid is reduced. The cooling device according to claim 3 or 6.
前記制御部は、
前記凍結防止運転として、前記圧縮機の回転数を連続的に又は段階的に低下させる制御、もしくは前記圧縮機の運転容量を連続的に又は段階的に低下させる制御をする
ことを特徴とする請求項7又は8に記載の冷却装置。
The controller is
The antifreezing operation is characterized in that control for decreasing the rotational speed of the compressor continuously or stepwise or control for decreasing the operating capacity of the compressor continuously or stepwise is performed. Item 9. The cooling device according to Item 7 or 8.
前記制御部は、
前記凍結防止運転として、前記圧縮機の運転を停止させる運転停止指令を発する
ことを特徴とする請求項7又は8に記載の冷却装置。
The controller is
The cooling device according to claim 7 or 8, wherein an operation stop command for stopping the operation of the compressor is issued as the freeze prevention operation .
前記被冷却流体濃度検出手段の濃度状態判定結果に基づいて、警報を報知する報知部を備えた
ことを特徴とする請求項1〜10のいずれか一項に記載の冷却装置。
The cooling device according to any one of claims 1 to 10, further comprising a notification unit that notifies a warning based on a concentration state determination result of the cooled fluid concentration detection means.
前記判定部の凍結判定結果に基づいて、警報を報知する報知部を備えた
ことを特徴とする請求項2、請求項5、請求項2に従属する請求項3、請求項5に従属する請求項6〜11のいずれか一項に記載の冷却装置。
An informing unit for informing an alarm based on a result of freezing determination by the determining unit is provided. Claims dependent on claim 2, claim 5, and claim 2 and claims 3 and 5 dependent on claim 2. Item 12. The cooling device according to any one of Items 6 to 11 .
JP2012057200A 2012-03-14 2012-03-14 Cooling system Active JP5484503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057200A JP5484503B2 (en) 2012-03-14 2012-03-14 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057200A JP5484503B2 (en) 2012-03-14 2012-03-14 Cooling system

Publications (2)

Publication Number Publication Date
JP2013190162A JP2013190162A (en) 2013-09-26
JP5484503B2 true JP5484503B2 (en) 2014-05-07

Family

ID=49390611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057200A Active JP5484503B2 (en) 2012-03-14 2012-03-14 Cooling system

Country Status (1)

Country Link
JP (1) JP5484503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016071977A1 (en) * 2014-11-05 2016-05-12 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299731B1 (en) * 2015-05-22 2019-01-30 Daikin Industries, Ltd. Temperature-adjusting fluid supply apparatus
EP3495753B1 (en) 2017-10-24 2020-08-12 Mitsubishi Electric Corporation Geothermal heat pump system and control method for geothermal heat pump system
US11333388B2 (en) 2018-04-04 2022-05-17 Mitsubishi Electric Corporation Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
CN113932399B (en) * 2020-07-13 2023-07-07 广东美的暖通设备有限公司 Antifreezing control method and device, cold and hot water machine and computer storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341779A (en) * 1986-08-07 1988-02-23 株式会社荏原製作所 Method of operating heat pump with heating tower
JP2514696B2 (en) * 1987-09-30 1996-07-10 株式会社竹中工務店 Thermal storage state detection device for ice thermal storage equipment
JP4805715B2 (en) * 2006-04-10 2011-11-02 暖冷工業株式会社 Freezing prevention method for heat exchange coil of air conditioner, and heat exchange coil for freezing prevention
JP4823264B2 (en) * 2008-03-31 2011-11-24 三菱電機株式会社 Cooling device and cooling device monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016071977A1 (en) * 2014-11-05 2016-05-12 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2013190162A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4823264B2 (en) Cooling device and cooling device monitoring system
JP5409743B2 (en) Cooling system
JP6141425B2 (en) Refrigeration cycle equipment
JP5334909B2 (en) Refrigeration air conditioner and refrigeration air conditioning system
CN102165276B (en) Steam compression system with a flash tank economizer and control method thereof
JP5147889B2 (en) Air conditioner
JP5058324B2 (en) Refrigeration cycle equipment
JP6584497B2 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detection system
JP5220045B2 (en) Cooling system
JP5484503B2 (en) Cooling system
JP2009079842A (en) Refrigerating cycle device and its control method
WO2016078824A1 (en) A method for operating a vapour compression system with a receiver
JP6297164B2 (en) Refrigeration cycle equipment
JP5289475B2 (en) Refrigeration cycle apparatus, flow rate calculation method and program
WO2019053858A1 (en) Refrigeration cycle apparatus and refrigeration apparatus
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
Zhao et al. Development of a stepped capillary tube as a low cost throttling device for a residential heat pump system
JP6206787B2 (en) Refrigeration equipment
JP6762422B2 (en) Refrigeration cycle equipment
JP2013061115A (en) Refrigeration cycle system
JP5615257B2 (en) Flow monitoring device and flow monitoring system
JP6410935B2 (en) Air conditioner
JP2005106314A (en) Refrigeration unit
JP5340348B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5484503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250