JP5483666B2 - building - Google Patents

building Download PDF

Info

Publication number
JP5483666B2
JP5483666B2 JP2008067805A JP2008067805A JP5483666B2 JP 5483666 B2 JP5483666 B2 JP 5483666B2 JP 2008067805 A JP2008067805 A JP 2008067805A JP 2008067805 A JP2008067805 A JP 2008067805A JP 5483666 B2 JP5483666 B2 JP 5483666B2
Authority
JP
Japan
Prior art keywords
column
steel pipe
pillar
slab
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008067805A
Other languages
Japanese (ja)
Other versions
JP2009221755A (en
Inventor
洋文 金子
徹 宇佐美
賢二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2008067805A priority Critical patent/JP5483666B2/en
Publication of JP2009221755A publication Critical patent/JP2009221755A/en
Application granted granted Critical
Publication of JP5483666B2 publication Critical patent/JP5483666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、柱の座屈を抑制する柱構造を備えた建物に関する。   The present invention relates to a building having a column structure that suppresses column buckling.

柱は、柱に加わる荷重で曲げ座屈を生じて崩壊しないようにその断面積や部材長が設計されている。   The column is designed in cross-sectional area and member length so that it does not collapse due to bending buckling caused by the load applied to the column.

このため、例えば、既存の建物において、既存の柱に接合されていた梁やスラブを取り除き、吹き抜け構造に変更する場合、梁やスラブが取り除かれたことで部材長が長くなり、柱に加わる荷重が減少しても柱が座屈する場合がある。   For this reason, for example, in an existing building, when a beam or slab joined to an existing column is removed and the structure is changed to a blow-off structure, the length of the member is increased by removing the beam or slab, and the load applied to the column The column may buckle even if the value decreases.

このような状況で既存の柱を座屈させないためには、既存の柱の座屈強度を高くする必要がある。これには、既存の柱の断面積を大きくする方法が有効であるが、既存の柱の断面積を大きくすることは施工上、困難である。   In order to prevent the existing column from buckling in such a situation, it is necessary to increase the buckling strength of the existing column. For this purpose, a method of increasing the cross-sectional area of the existing column is effective, but it is difficult in terms of construction to increase the cross-sectional area of the existing column.

一方、既存の建物において、梁やスラブを取り除き、吹き抜け構造に変更する要求は高く、既存の柱をそのまま残して使用しても座屈を生じさせない、柱の座屈を抑制する技術が求められている。   On the other hand, in existing buildings, there is a high demand for removing beams and slabs and changing them to a blow-by structure, and there is a need for a technology that suppresses column buckling without causing buckling even if existing columns are used as they are. ing.

柱の断面積を変えずに柱の強度を高くする技術として、柱の周囲を鋼管で囲み、柱と鋼管の間に空間を設ける構造が提案されている(特許文献1)。
しかし、特許文献1は、図9に示すように、火災時に、熱で柱の強度が低下するのを遅くさせるために柱の周囲を鋼管で囲んだものである。
As a technique for increasing the strength of a column without changing the cross-sectional area of the column, a structure in which the periphery of the column is surrounded by a steel pipe and a space is provided between the column and the steel pipe has been proposed (Patent Document 1).
However, in Patent Document 1, as shown in FIG. 9, in the event of a fire, the periphery of the pillar is surrounded by a steel pipe in order to slow down the strength of the pillar due to heat.

即ち、柱(内側鋼部材2)の周囲を外側鋼部材1で囲み、内側鋼部材2に耐火被覆を施す替わりに内側鋼部材2と外側鋼部材1との間に中空部3を形成している。このとき、外側鋼部材1の上下端部は、仕口部のダイアフラム4で内側鋼部材2に連結され、ダイアフラム4に加わる鉛直荷重を内側鋼部材2と分担している。   That is, the periphery of the pillar (inner steel member 2) is surrounded by the outer steel member 1, and a hollow portion 3 is formed between the inner steel member 2 and the outer steel member 1 instead of applying a fireproof coating to the inner steel member 2. Yes. At this time, the upper and lower ends of the outer steel member 1 are connected to the inner steel member 2 by the diaphragm 4 of the joint, and share the vertical load applied to the diaphragm 4 with the inner steel member 2.

このため、ダイアフラム4に加わる鉛直荷重は内側鋼部材2と外側鋼部材1のそれぞれに加わる。鉛直荷重が増し、内側鋼部材2と外側鋼部材1の座屈の許容値を超えると、内側鋼部材2と外側鋼部材1のいずれもが座屈を開始する。   For this reason, the vertical load applied to the diaphragm 4 is applied to each of the inner steel member 2 and the outer steel member 1. When the vertical load increases and exceeds the allowable buckling value of the inner steel member 2 and the outer steel member 1, both the inner steel member 2 and the outer steel member 1 start to buckle.

即ち、特許文献1の構成では、柱(内側鋼部材2)の強度をある程度は増すことができるが、柱の座屈は抑制できない。
特開平5−302399号公報
That is, in the configuration of Patent Document 1, the strength of the column (inner steel member 2) can be increased to some extent, but the buckling of the column cannot be suppressed.
JP-A-5-302399

本発明は、上記事実に鑑み、柱の座屈を抑制することを目的とする。   In view of the above-described facts, the present invention aims to suppress column buckling.

請求項1に記載の発明に係る建物は、中間層の梁やスラブが取り除かれて部材長が長くされた柱と、上方の梁と下方の梁又は梁上のスラブに接続され前記柱を所定の隙間を開けて周囲を囲み、前記上方の梁の下面と所定の隙間を開けて配置され、前記柱に曲げ変形が生じたとき前記柱の中央部及び両端部が内周面と当接する鋼管と、を有することを特徴としている。 The building according to claim 1 is connected to a column whose length is increased by removing a beam or a slab in an intermediate layer, and an upper beam and a lower beam or a slab on a beam. A steel pipe that surrounds and surrounds the lower surface of the upper beam, and is arranged with a predetermined clearance from the lower surface of the upper beam so that the center and both ends of the column abut against the inner peripheral surface when bending deformation occurs in the column. It is characterized by having.

請求項に記載の発明によれば、上方の梁から、中間層の梁やスラブが取り除かれて部材長が長くされた柱に加わる荷重により、柱に曲げ座屈変形が生じたとき、柱の中央部及び両端部の外周が周囲を囲む鋼管の内周に当り、柱のそれ以上の変形が鋼管の剛性と強度で拘束される。この結果、部材長が長くされた柱の座屈が抑制される。 According to the first aspect of the present invention, when a bending buckling deformation occurs in the column due to a load applied to the column whose member length is increased by removing the intermediate beam or slab from the upper beam, the column The outer peripheries of the central part and both end parts of the steel plate contact the inner perimeter of the surrounding steel pipe, and further deformation of the column is restricted by the rigidity and strength of the steel pipe. As a result, the buckling of the column whose member length is increased is suppressed.

また、鋼管の上端部は、上方の梁の下面と所定の隙間が開けられており、上方の梁の荷重は直接には鋼管に加わらず、下方のスラブ又は下方の梁を通じて柱に伝達される。
このように、鋼管が上方の梁と縁が切られていることで、鋼管が座屈することなく、柱の座屈を抑制できる。
In addition, the upper end of the steel pipe has a predetermined gap with the lower surface of the upper beam, and the load of the upper beam is not directly applied to the steel pipe but is transmitted to the column through the lower slab or the lower beam. .
Thus, buckling of a pillar can be suppressed, without a steel pipe buckling because a steel pipe has an edge with the upper beam cut.

請求項2に記載の発明に係る建物は、梁が接続される柱と、上方の梁と下方の梁又は梁上のスラブの間にある前記柱を所定の隙間を開けて周囲を囲み、前記上方の梁の下面と所定の隙間を開けて配置され、前記柱に曲げ変形が生じたとき前記柱の中央部及び両端部が内周面と当接する鋼管と、前記鋼管に設けられ、前記上方の梁と前記下方の梁又は梁上のスラブの間に設けられた中間層梁を支持する梁支持部と、前記下方の梁又は梁上のスラブに設けられ、前記鋼管の下端部を支持する鋼管支持部材と、を有することを特徴としている。 The building according to the invention of claim 2 surrounds the column with a predetermined gap between the column to which the beam is connected and the upper beam and the lower beam or the slab on the beam, A steel pipe disposed at a predetermined gap from the lower surface of the upper beam and having a central portion and both end portions of the column abutting against an inner peripheral surface when bending deformation occurs in the column; A beam support portion for supporting an intermediate beam provided between the lower beam and the lower beam or the slab on the beam, and a lower support portion of the steel pipe provided on the lower beam or the slab on the beam. And a steel pipe support member.

請求項2に記載の発明によれば、鋼管が梁支持部で中間層梁を支持しており、鋼管支持部材が鋼管の下端部を支持している。
これにより、中間層梁から伝えられる荷重は、鋼管、鋼管支持部材及び下方のスラブ又は下方の梁を通じて柱に伝えられる。
According to invention of Claim 2, the steel pipe is supporting the intermediate | middle layer beam by the beam support part, and the steel pipe support member is supporting the lower end part of the steel pipe.
Thereby, the load transmitted from the intermediate layer beam is transmitted to the column through the steel pipe, the steel pipe support member, and the lower slab or the lower beam.

請求項3の発明は、請求項1又は2に記載の建物において、前記鋼管は、前記鋼管を周方向に分割した分割部材で、前記柱を外から囲んで接合したことを特徴としている。
請求項3に記載の発明によれば、鋼管は、周方向に分割された分割部材とされている。この分割部材で、既築建物の柱を外から囲んで接合することで、座屈補強できる。
According to a third aspect of the present invention, in the building according to the first or second aspect, the steel pipe is a divided member obtained by dividing the steel pipe in a circumferential direction, and is joined by surrounding the column from the outside.
According to invention of Claim 3, the steel pipe is made into the division member divided | segmented into the circumferential direction. With this divided member, buckling can be reinforced by surrounding and joining the pillars of the existing building.

請求項4の発明は、請求項1〜3のいずれか1項に記載の建物において、前記柱は、既存建物の柱であることを特徴としている。
これにより、分割部材で既築建物の柱を外から囲んで接合することができる。
Invention of Claim 4 is the building of any one of Claims 1-3 , The said pillar is a pillar of the existing building, It is characterized by the above-mentioned.
Thereby, the pillar of an existing building can be enclosed and joined from the outside with a division member.

本発明は、上記構成としてあるので、柱の座屈が抑制できる。   Since the present invention is configured as described above, it is possible to suppress column buckling.

(第1の実施の形態)
第1の実施の形態に係る柱構造8は、柱10と柱10を囲む鋼管16とを有している。
図1に示すように、柱10は、上方の梁12と下方の梁15を支持し(図示は省略)、梁12と梁15には、それぞれ上方のスラブ13と下方のスラブ14が設けられている。
(First embodiment)
The column structure 8 according to the first embodiment includes a column 10 and a steel pipe 16 surrounding the column 10.
As shown in FIG. 1, the column 10 supports the upper beam 12 and the lower beam 15 (not shown), and the beam 12 and the beam 15 are provided with an upper slab 13 and a lower slab 14, respectively. ing.

図1に示す建物27の改築前は、梁12とスラブ14の間に中間層梁48、50が設けられ、中間層梁48、50は柱10で支持されていた。また、中間層梁48、50にはスラブ49、51が設けられ3層構成とされていた。   Before the reconstruction of the building 27 shown in FIG. 1, intermediate layer beams 48 and 50 were provided between the beam 12 and the slab 14, and the intermediate layer beams 48 and 50 were supported by the pillar 10. In addition, the intermediate layer beams 48 and 50 are provided with slabs 49 and 51 to form a three-layer structure.

改築によりスラブ49、51及び中間層梁48、50を取り除き、吹き抜け構造としている。このため、柱10の部材長は長くなり、3層分の高さが部材長となっている。   The slabs 49 and 51 and the intermediate layer beams 48 and 50 are removed by renovation, and a blow-off structure is formed. For this reason, the member length of the pillar 10 is long, and the height of three layers is the member length.

柱10は、断面形状を問わず、広く利用されている断面形状の型鋼やCFT(コンクリート充填柱)で構成されている。
鋼管16はボックス状の断面形状とされ、柱10の表面から所定の隙間dを開けて、柱10の周囲を囲んでいる。
The column 10 is made of a section steel or CFT (concrete-filled column) having a widely used cross-sectional shape regardless of the cross-sectional shape.
The steel pipe 16 has a box-shaped cross-sectional shape, and surrounds the periphery of the column 10 with a predetermined gap d from the surface of the column 10.

なお、柱10と鋼管16の隙間には、柱10と鋼管16を接続する接続部材は取付けられていない。これにより、鋼管16は柱10を囲んだ状態で、水平方向に隙間dの距離を移動できる。   In addition, the connection member which connects the pillar 10 and the steel pipe 16 is not attached to the clearance gap between the pillar 10 and the steel pipe 16. Thereby, the steel pipe 16 can move the distance of the gap d in the horizontal direction in a state of surrounding the column 10.

また、鋼管16は、座屈による柱10の水平方向の変形を抑制できる剛性と強度を備えており、スラブ14の上面から、梁12の下面と所定の隙間hを開けた高さまでの間に渡る部材長とされている。鋼管16は柱10を囲んだ状態で、上下方向に隙間hの距離を移動できる。   Further, the steel pipe 16 has rigidity and strength capable of suppressing horizontal deformation of the column 10 due to buckling, and between the upper surface of the slab 14 and the height at which a predetermined gap h is opened from the lower surface of the beam 12. It is assumed that the length of the crossing member. The steel pipe 16 can move the distance h in the vertical direction while surrounding the column 10.

これにより、図2に示すように、柱10に加わる軸力Nにより柱10に曲げ変形が生じたとき、柱10の外周10aが周囲を囲む鋼管16の内周16aの中央部及び両端部の3箇所に当る。鋼管16は、柱10の水平方向の変形を抑制できる剛性と強度を備えているため、柱10を鋼管16で拘束するので、柱10が座屈に至ることはない。   Thus, as shown in FIG. 2, when the column 10 is bent and deformed by the axial force N applied to the column 10, the outer periphery 10 a of the column 10 is surrounded by the central portion and both end portions of the inner periphery 16 a of the steel pipe 16 surrounding the periphery. Hit three places. Since the steel pipe 16 has rigidity and strength that can suppress deformation in the horizontal direction of the column 10, the column 10 is restrained by the steel pipe 16, so that the column 10 does not buckle.

なお、鋼管16の上端部と上方の梁12の下面に開けられた隙間hにより、鋼管16が上方の梁12の荷重を直接に受けることはなく、鋼管16が軸力Nで変形することはない。
上述したように、柱構造8とすることで柱10の座屈が抑制され、既存建物を高階層のスケルトン構造に改築できる。
The steel pipe 16 is not directly subjected to the load of the upper beam 12 due to the gap h opened at the upper end of the steel pipe 16 and the lower surface of the upper beam 12, and the steel pipe 16 is deformed by the axial force N. Absent.
As described above, the pillar structure 8 can suppress buckling of the pillar 10 and can remodel an existing building into a high-level skeleton structure.

なお、以上は、既存建物における中間層梁48、50及びスラブ49、51の2層分を取り除く例について説明したが、2層分に限定されることはなく、柱10の部材長単位で柱構造8とすればよい。   In the above, an example in which the intermediate layer beams 48 and 50 and the slabs 49 and 51 in the existing building are removed has been described. However, the present invention is not limited to the two layers, and the column is in units of the member length of the column 10. The structure 8 may be used.

ここで、鋼管16で柱10を囲む方法について説明する。
図3(A)に示すように、先ず、鋼管16は、予め周方向に分割した第1鋼管56と、第2鋼管57の分割部材とされている。第1鋼管56と第2鋼管57に分割することで、既築建物の柱10を外から囲み、囲んだ状態で接合することができる。
第1鋼管56と第2鋼管57は、いずれも、各辺の長さが柱10の幅Dより大きく、柱10の周囲に所定の隙間dが確保できる寸法でL字状に形成されている。
Here, a method of surrounding the column 10 with the steel pipe 16 will be described.
As shown in FIG. 3A, first, the steel pipe 16 is a divided member of a first steel pipe 56 and a second steel pipe 57 that are divided in advance in the circumferential direction. By dividing | segmenting into the 1st steel pipe 56 and the 2nd steel pipe 57, the pillar 10 of an existing building can be enclosed from the outside, and it can join in the enclosed state.
Each of the first steel pipe 56 and the second steel pipe 57 is formed in an L shape with dimensions such that the length of each side is larger than the width D of the column 10 and a predetermined gap d can be secured around the column 10. .

次に、第1鋼管56と第2鋼管57で既築建物の柱10を外側から囲み、接合部を溶接接合する。
即ち、第1鋼管56の端部56Tと第2鋼管57の側面57S、及び第1鋼管56の側面56Sと第2鋼管57の端部57Tを突き合わせて溶接接合する。
これにより、鋼管16で既築建物の柱10を囲むことができる。
Next, the pillar 10 of the existing building is surrounded from the outside by the first steel pipe 56 and the second steel pipe 57, and the joint portion is welded.
That is, the end portion 56T of the first steel pipe 56 and the side surface 57S of the second steel pipe 57, and the side surface 56S of the first steel pipe 56 and the end portion 57T of the second steel pipe 57 are abutted and welded.
Thereby, the pillar 10 of the existing building can be surrounded by the steel pipe 16.

なお、分割方法は、図3(A)に限定されることはなく、図3(B)に示すように、柱10の3つの側面を囲む第1鋼管65と、柱10の1つの側面を囲む第2鋼管66の2つに分割してもよい。また、図示は省略するが柱10の4つの側面に対応させて、4つの平板部分に分割することも可能である。   The dividing method is not limited to FIG. 3A. As shown in FIG. 3B, the first steel pipe 65 surrounding the three side surfaces of the column 10 and one side surface of the column 10 are arranged. You may divide | segment into two of the 2nd steel pipe 66 to surround. Although not shown, it can be divided into four flat plate portions corresponding to the four side surfaces of the pillar 10.

いずれの分割であっても、分割部材で柱10を囲み、柱10を囲んだ後にそれぞれ接合部で接合し、鋼管16とする。これにより、接合された鋼管16で既築建物の柱10の座屈を抑制できる。   In any of the divisions, the pillar 10 is surrounded by the dividing member, and after the pillar 10 is enclosed, the steel pipe 16 is joined by the joint portion. Thereby, the buckling of the pillar 10 of an existing building can be suppressed with the joined steel pipe 16.

なお、以上説明した鋼管16は、ボックス状の断面形状として説明したが、ボックス状に限定されることはなく、柱10の断面形状に対応して選択すればよい。例えば柱10の断面形状が円形の場合には、断面形状が円形の鋼管がよい。   In addition, although the steel pipe 16 demonstrated above was demonstrated as a box-shaped cross-sectional shape, it is not limited to a box shape, What is necessary is just to select according to the cross-sectional shape of the pillar 10. FIG. For example, when the cross-sectional shape of the column 10 is circular, a steel pipe having a circular cross-sectional shape is preferable.

(第2の実施の形態)
第2の実施の形態に係る柱構造28は、第1の実施の形態とは反対に、吹き抜け構造の既存建物を改築して中間層梁を追加する場合の柱構造である。
(Second Embodiment)
Contrary to the first embodiment, the column structure 28 according to the second embodiment is a column structure in the case where an existing building with a blow-off structure is remodeled and an intermediate layer beam is added.

図4に示すように、柱構造28は、柱10と柱10を囲む鋼管26を有している。第1の実施の形態と共通する部分の説明は省略する。
柱10は、3層分の高さの部材長とされ、上方の梁12と下方の梁15を支持している(図示は省略)。梁12と梁15には、それぞれスラブ13、14が設けられている。
As shown in FIG. 4, the column structure 28 includes a column 10 and a steel pipe 26 surrounding the column 10. Descriptions of parts common to the first embodiment are omitted.
The column 10 has a length of three layers, and supports the upper beam 12 and the lower beam 15 (not shown). The beams 12 and 15 are provided with slabs 13 and 14, respectively.

また、上方の梁12と下方のスラブ14の間には中間層梁18、20が設けられ、中間層梁18、20には、それぞれスラブ17、19が設けられている。   Further, intermediate layer beams 18 and 20 are provided between the upper beam 12 and the lower slab 14, and the intermediate layer beams 18 and 20 are provided with slabs 17 and 19, respectively.

鋼管26は、ボックス状の断面形状とされ、所定の隙間dを開けて柱10の周囲を囲んでいる。また、鋼管26の下端部は、スラブ14の上面に設けられた支持ピース24に支持され、梁12の下面と所定の隙間hを開けた高さまでの部材長とされている。   The steel pipe 26 has a box-like cross-sectional shape, and surrounds the periphery of the column 10 with a predetermined gap d. Further, the lower end portion of the steel pipe 26 is supported by a support piece 24 provided on the upper surface of the slab 14, and has a member length up to a height at which a predetermined gap h is opened from the lower surface of the beam 12.

支持ピース24は、矩形枠を分割して構成されており、柱10の両側から柱10を囲んでスラブ14の上面に配置される。   The support piece 24 is configured by dividing a rectangular frame, and is disposed on the upper surface of the slab 14 so as to surround the column 10 from both sides of the column 10.

鋼管26は、中間層梁18、20を支持する軸力を備え、鋼管26と中間層梁18、20の仕口部には、鋼管26の肉厚を外周方向に所定の高さで厚くした、増厚部21、22が設けられている。
増厚部21は中間層梁18の端部と接合され、増厚部22は中間層梁20の端部と接合される。
The steel pipe 26 has an axial force that supports the intermediate layer beams 18 and 20, and the thickness of the steel pipe 26 is increased at a predetermined height in the outer circumferential direction at the joint portion of the steel pipe 26 and the intermediate layer beams 18 and 20. Thickening portions 21 and 22 are provided.
The thickened portion 21 is joined to the end portion of the intermediate layer beam 18, and the thickened portion 22 is joined to the end portion of the intermediate layer beam 20.

図5に示すように、増厚部22は、内径が鋼管26の内径と同じとされ、鋼管26より肉厚が厚い、長さLの筒で形成されている。増厚部22の長さLは、中間層梁20の成とスラブ19の厚さを合計した厚さWより大きい寸法とされ、中間層梁20との接合強度を確保している。   As shown in FIG. 5, the thickened portion 22 is formed of a cylinder having a length L, the inner diameter of which is the same as the inner diameter of the steel pipe 26, and the wall thickness is thicker than that of the steel pipe 26. The length L of the thickened portion 22 is larger than the total thickness W of the intermediate layer beam 20 and the thickness of the slab 19, and the bonding strength with the intermediate layer beam 20 is ensured.

なお増厚部22の両端は1階分の長さの鋼管26の端部と突合せ溶接で接合する。
次に、増厚部22と中間層梁20の接合は、増厚部22の外周面に中間層梁20の端部を突き当て、溶接で接合する(突当部P)。若しくは、アングル材60を利用して、増厚部22と中間層梁20をボルト接合する(接合部Q)。
Note that both ends of the thickened portion 22 are joined to the end portion of the steel pipe 26 having a length of one floor by butt welding.
Next, the thickened portion 22 and the intermediate layer beam 20 are joined by abutting the end portion of the intermediate layer beam 20 on the outer peripheral surface of the thickened portion 22 and joining by welding (abutting portion P). Alternatively, using the angle member 60, the thickened portion 22 and the intermediate layer beam 20 are bolted (joined portion Q).

これにより、中間層梁18、20を鋼管26で支持することができる。
これにより、中間層梁18、20の荷重が、鋼管26、支持ピース24、スラブ14、梁15を通じて柱10に伝達される。
Thereby, the intermediate layer beams 18 and 20 can be supported by the steel pipe 26.
Thereby, the load of the intermediate layer beams 18 and 20 is transmitted to the column 10 through the steel pipe 26, the support piece 24, the slab 14, and the beam 15.

なお、支持ピース24は、柱10の側面に直接固定してもよい。これにより、支持ピース24の上面で鋼管26の下端を支持し、支持ピース24がスラブ14、梁15を介さずに、荷重を直接柱10に伝達できる。   The support piece 24 may be directly fixed to the side surface of the column 10. Thereby, the lower end of the steel pipe 26 is supported on the upper surface of the support piece 24, and the support piece 24 can transmit the load directly to the column 10 without passing through the slab 14 and the beam 15.

このように、柱構造28は、改築で追加された中間層梁18、20の荷重を鋼管26で支持し、柱10に新たな荷重を加えることはない。これにより、柱10に座屈が生じることはなく、吹き抜け構造として設計された建物に中間層梁18、20を追加できる。   As described above, the column structure 28 supports the load of the intermediate layer beams 18 and 20 added by the renovation by the steel pipe 26, and does not apply a new load to the column 10. Thereby, the buckling does not occur in the column 10, and the intermediate layer beams 18 and 20 can be added to the building designed as an atrium structure.

次に柱構造28の荷重変形特性の確認結果を説明する。
図6に示すように、荷重変形特性の試験装置30は、第2の実施の形態に係る柱構造28を中央部に配置している。
Next, the confirmation result of the load deformation characteristics of the column structure 28 will be described.
As shown in FIG. 6, the load deformation characteristic test apparatus 30 has the column structure 28 according to the second embodiment disposed at the center.

柱10は、下部が試験装置30の下部支持部38に固定され、上部が上部支持部36に固定されている。
鋼管26の増厚部21、22には中間層梁18、20の一端が接合され、中間層梁18、20の他端は、柱構造28の両側に設けられた中間支持柱34に取付けられている。なお、中間層梁18、20にはスラブは設けられていない。
The column 10 has a lower portion fixed to the lower support portion 38 of the test apparatus 30 and an upper portion fixed to the upper support portion 36.
One end of the intermediate layer beams 18, 20 is joined to the thickened portions 21, 22 of the steel pipe 26, and the other end of the intermediate layer beams 18, 20 is attached to intermediate support columns 34 provided on both sides of the column structure 28. ing. In addition, the slab is not provided in the intermediate layer beams 18 and 20.

中間支持柱34の上端と上部支持部36の上側端部は荷重伝達部33で連結されている。荷重伝達部33の端部と中間支持柱34の上端は第1ピン40で、支持柱34の下端と設置面に設けられた基礎支持部39は第2ピン42で、中間支持柱34と中間層梁18、20の端部は第3ピン44でそれぞれ回動自在に接合されている。   The upper end of the intermediate support column 34 and the upper end of the upper support portion 36 are connected by a load transmitting portion 33. The end of the load transmitting portion 33 and the upper end of the intermediate support column 34 are the first pins 40, and the lower end of the support column 34 and the foundation support 39 provided on the installation surface are the second pins 42, The ends of the layer beams 18 and 20 are joined by a third pin 44 so as to be rotatable.

荷重伝達部33の上部には荷重付加部32が取付けられ、荷重付加部32により荷重伝達部33に荷重が加えられる。上部支持部36は、柱10を固定した状態で、加えられた荷重に従い柱の上部に変形を加える。   A load adding portion 32 is attached to the upper portion of the load transmitting portion 33, and a load is applied to the load transmitting portion 33 by the load adding portion 32. The upper support portion 36 deforms the upper portion of the column according to the applied load in a state where the column 10 is fixed.

具体的には、荷重付加部32は、柱10に軸力Nを加えた状態で水平力Qを付加する。
水平力Qの付加は、例えば右方向への変位を+、左方向への変位を−として、荷重伝達部33を通じて荷重付加部32の水平方向の移動により行う。このとき、下部支持部38は設置面に固定されており移動しない。これにより、下部支持部38と上部支持部36の間には変位が生じ、柱10が変形角θで変形する。
Specifically, the load applying unit 32 applies the horizontal force Q in a state where the axial force N is applied to the column 10.
The addition of the horizontal force Q is performed by moving the load adding portion 32 in the horizontal direction through the load transmitting portion 33, for example, assuming that the displacement in the right direction is + and the displacement in the left direction is −. At this time, the lower support portion 38 is fixed to the installation surface and does not move. Thereby, displacement arises between the lower support part 38 and the upper support part 36, and the pillar 10 deform | transforms with the deformation angle (theta).

このとき、中間支持柱34は、上端が第1ピン40で、下端が第2ピン42で接続されているため、中間支持柱34の移動は、柱10と同じように移動する。これに伴い、中間層梁18、20も、高さ方向の距離に比例して左右に移動し、実際の地震を想定した荷重変形特性が確認できる。   At this time, the intermediate support column 34 is connected in the same manner as the column 10 because the upper end of the intermediate support column 34 is connected to the first pin 40 and the lower end is connected to the second pin 42. Along with this, the intermediate layer beams 18 and 20 also move to the left and right in proportion to the distance in the height direction, and the load deformation characteristics assuming an actual earthquake can be confirmed.

なお、変形角θは、鋼管26の表面に複数個取付けた変位計で計測している。
次に、試験結果について説明する。一例として軸力比(N/Q)が0.6のときの試験結果を図7に示す。図7において、横軸Rは変形角θ(1/1000rad)であり、縦軸Qは水平力(KN)である。
The deformation angle θ is measured by a displacement meter attached to the surface of the steel pipe 26.
Next, test results will be described. As an example, a test result when the axial force ratio (N / Q) is 0.6 is shown in FIG. In FIG. 7, the horizontal axis R is the deformation angle θ (1/1000 rad), and the vertical axis Q is the horizontal force (KN).

図7に示すように、加えた水平力Qに直線状に比例して変形角θが増大しており、柱10が座屈することなく、軸力Nを受けた状態で水平力Qの変化に追従していることがわかる。   As shown in FIG. 7, the deformation angle θ increases linearly in proportion to the applied horizontal force Q, and the horizontal force Q changes in a state where the column 10 receives axial force N without buckling. You can see that it is following.

なお、軸力Nは柱10が座屈する大きさであり、鋼管16が設けられていない場合の柱10は、水平力Qを加えなくて、軸力Nを加えたのみの段階で座屈する。   In addition, the axial force N is a magnitude | size which the pillar 10 buckles, and the pillar 10 in case the steel pipe 16 is not provided buckles in the step which only applied the axial force N without applying the horizontal force Q.

また、図示は省略するが、中間層梁18、20が設けられていない場合でも、加えた水平力Qに直線状に比例して変形角θが増大し、柱10が座屈なく、水平力Qの変化に追従していることを確認している。   Although illustration is omitted, even if the intermediate layer beams 18 and 20 are not provided, the deformation angle θ increases in proportion to the applied horizontal force Q in a straight line, the column 10 is not buckled, and the horizontal force It is confirmed that the change in Q is followed.

(第3の実施の形態)
第3の実施の形態に係る柱構造46は、第2の実施の形態で説明した増厚部21、22に替えて、鋼管52に設けたダイアフラムで中間層梁18、20を支持する構成である。第2の実施の形態と異なる点についてのみ説明する。
(Third embodiment)
The column structure 46 according to the third embodiment is configured to support the intermediate layer beams 18 and 20 with a diaphragm provided in the steel pipe 52 instead of the thickened portions 21 and 22 described in the second embodiment. is there. Only differences from the second embodiment will be described.

図8に示すように、第3の実施の形態に係る柱構造46は、柱10と柱10を囲む鋼管52を有している。
鋼管52は、ボックス状とされ、柱10の表面から所定の隙間dを開けて、柱10を囲んでいる。鋼管52の外周面の中間層梁20との仕口部には、ダイアフラム54が取付けられている。
As illustrated in FIG. 8, the column structure 46 according to the third embodiment includes a column 10 and a steel pipe 52 that surrounds the column 10.
The steel pipe 52 has a box shape and surrounds the pillar 10 with a predetermined gap d from the surface of the pillar 10. A diaphragm 54 is attached to a joint portion between the outer peripheral surface of the steel pipe 52 and the intermediate layer beam 20.

ダイアフラム54は、中間層梁20と同じ成でフランジが台形状のH型鋼とされ、鋼管52と接合する側のフランジ幅が鋼管52の幅Dより大きく、中間層梁20との接合部においては中間層梁20とのフランジ幅と同じ寸法で形成されている。   The diaphragm 54 is an H-shaped steel having the same structure as the intermediate layer beam 20 and having a trapezoidal flange. The flange width on the side to be joined to the steel pipe 52 is larger than the width D of the steel pipe 52. It is formed with the same dimension as the flange width with the intermediate layer beam 20.

ダイアフラム54は、鋼管52の4つの側面から、中間層梁20の方向に向けて、部材長Sで延出されている。
ダイアフラム54の、フランジ幅が広い側に端部を鋼管52の表面に溶接接合し、鋼管52の幅Dより大きい部分は、隣接するダイアフラム54の端部同士で接合されている。
The diaphragm 54 extends from the four side surfaces of the steel pipe 52 toward the intermediate layer beam 20 with a member length S.
The end of the diaphragm 54 is welded to the surface of the steel pipe 52 on the wide flange width side, and the portion of the steel pipe 52 that is larger than the width D is joined at the ends of the adjacent diaphragms 54.

ダイアフラム54の、フランジ幅が狭い側の端部は中間層梁20の先端部と隙間を有してほぼ突き合わされ、突き合わされた状態で、ウェブ同士はスプライスプレート62を利用してボルト接合され、フランジ同士はスプライスプレート64を利用してボルト接合されている。   The end of the diaphragm 54 on the side with the narrow flange width is almost abutted with the end of the intermediate beam 20 with a gap, and in the abutted state, the webs are bolted together using the splice plate 62, The flanges are bolted together using a splice plate 64.

これにより、中間層梁20から伝えられる荷重は、ダイアフラムを介して鋼管52に伝えられ、鋼管52から支持ピース24(図4参照)及び下方のスラブ14又は下方の梁15を介して柱10に伝えられる。   Thereby, the load transmitted from the intermediate layer beam 20 is transmitted to the steel pipe 52 through the diaphragm, and from the steel pipe 52 to the column 10 through the support piece 24 (see FIG. 4) and the lower slab 14 or the lower beam 15. Reportedly.

なお、中間層梁18と鋼管52の仕口も同じ構成である。
また、上方のスラブ13が梁12で支持され、下方のスラブ14が梁15で支持されているとして説明したが、スラブ13、14を設けないで梁12、15のみの構成でもよい。また、梁がないスラブ構成でもよい。
The joints of the intermediate layer beam 18 and the steel pipe 52 have the same configuration.
Further, the upper slab 13 is supported by the beam 12 and the lower slab 14 is supported by the beam 15, but the configuration of only the beams 12 and 15 may be provided without providing the slabs 13 and 14. Moreover, the slab structure without a beam may be sufficient.

本発明の第1の実施の形態に係る柱構造の基本構成を示す図である。It is a figure showing the basic composition of the pillar structure concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る柱構造の座屈の抑制原理を示す図である。It is a figure which shows the suppression principle of the buckling of the column structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る分割鋼管構造の基本構成を示す図である。It is a figure which shows the basic composition of the division | segmentation steel pipe structure which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る柱構造の基本構成を示す図である。It is a figure which shows the basic composition of the pillar structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る柱構造の増厚部の詳細を示す図である。It is a figure which shows the detail of the thickening part of the column structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る柱構造の性能検証装置を示す図である。It is a figure which shows the performance verification apparatus of the column structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る柱構造の性能検証結果を示す図である。It is a figure which shows the performance verification result of the column structure which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る柱構造のダイアフラムの詳細を示す図である。It is a figure which shows the detail of the diaphragm of the column structure which concerns on the 3rd Embodiment of this invention. 従来例の柱構造の基本構成を示す図である。It is a figure which shows the basic composition of the column structure of a prior art example.

符号の説明Explanation of symbols

8 柱構造(第1実施形態)
10 柱
12 梁(上方)
13 スラブ(上方)
14 スラブ(下方)
15 梁(下方)
16 鋼管(第1実施形態)
17 スラブ(中間層)
18 梁(中間層)
19 スラブ(中間層)
20 梁(中間層)
21 調速器(増厚部)
22 調速器(増厚部)
24 支持ピース(鋼管支持部材)
26 鋼管(第2実施形態)
28 柱構造(第2実施形態)
46 柱構造(第3実施形態)
56 第1鋼管(分割鋼管)
57 第2鋼管(分割鋼管)
d 所定の隙間
h 所定の隙間
8 pillar structure (first embodiment)
10 pillars 12 beams (above)
13 Slab (upper)
14 Slab (downward)
15 Beam (downward)
16 Steel pipe (first embodiment)
17 Slab (middle layer)
18 Beam (middle layer)
19 Slab (middle layer)
20 Beam (middle layer)
21 Speed governor (thickening part)
22 Speed governor (thickening part)
24 Support piece (steel pipe support member)
26 Steel pipe (second embodiment)
28 Column structure (second embodiment)
46 Column structure (third embodiment)
56 1st steel pipe (split steel pipe)
57 Second steel pipe (split steel pipe)
d Predetermined gap h Predetermined gap

Claims (4)

中間層の梁やスラブが取り除かれて部材長が長くされた柱と、
上方の梁と下方の梁又は梁上のスラブの間にある前記柱を所定の隙間を開けて周囲を囲み、前記上方の梁の下面と所定の隙間を開けて配置され、前記柱に曲げ変形が生じたとき前記柱の中央部及び両端部が内周面と当接する鋼管と、
を有する建物。
Columns with longer member lengths by removing intermediate layer beams and slabs ,
The column located between the upper beam and the lower beam or the slab on the beam is surrounded by a predetermined gap and is arranged with a predetermined gap from the lower surface of the upper beam, and is bent and deformed to the column. A steel pipe in which the central part and both end parts of the pillar are in contact with the inner peripheral surface when
Having a building.
梁が接続される柱と、
上方の梁と下方の梁又は梁上のスラブの間にある前記柱を所定の隙間を開けて周囲を囲み、前記上方の梁の下面と所定の隙間を開けて配置され、前記柱に曲げ変形が生じたとき前記柱の中央部及び両端部が内周面と当接する鋼管と、
前記鋼管に設けられ、前記上方の梁と前記下方の梁又は梁上のスラブの間に設けられた中間層梁を支持する梁支持部と、
前記下方の梁又は梁上のスラブに設けられ、前記鋼管の下端部を支持する鋼管支持部材と、
を有する建物。
A column to which the beam is connected;
The column located between the upper beam and the lower beam or the slab on the beam is surrounded by a predetermined gap and is arranged with a predetermined gap from the lower surface of the upper beam, and is bent and deformed to the column. A steel pipe in which the central part and both end parts of the pillar are in contact with the inner peripheral surface when
A beam support provided on the steel pipe and supporting an intermediate beam provided between the upper beam and the lower beam or a slab on the beam;
A steel pipe support member provided on the lower beam or a slab on the beam, and supporting a lower end of the steel pipe;
Having a building.
前記鋼管は、前記鋼管を周方向に分割した分割部材で、前記柱を外から囲んで接合したことを特徴とする請求項1又は2に記載の建物。   The building according to claim 1 or 2, wherein the steel pipe is a divided member obtained by dividing the steel pipe in a circumferential direction, and is joined by surrounding the column from the outside. 前記柱は、既存建物の柱であることを特徴とする請求項1〜3のいずれか1項に記載の建物。   The building according to claim 1, wherein the pillar is a pillar of an existing building.
JP2008067805A 2008-03-17 2008-03-17 building Expired - Fee Related JP5483666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067805A JP5483666B2 (en) 2008-03-17 2008-03-17 building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067805A JP5483666B2 (en) 2008-03-17 2008-03-17 building

Publications (2)

Publication Number Publication Date
JP2009221755A JP2009221755A (en) 2009-10-01
JP5483666B2 true JP5483666B2 (en) 2014-05-07

Family

ID=41238810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067805A Expired - Fee Related JP5483666B2 (en) 2008-03-17 2008-03-17 building

Country Status (1)

Country Link
JP (1) JP5483666B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197506B2 (en) * 2013-09-05 2017-09-20 株式会社大林組 Damping structure and structure
JP5832561B2 (en) * 2014-01-24 2015-12-16 三菱重工業株式会社 Steel structure and seismic retrofitting method
CN103835524B (en) * 2014-03-09 2017-01-25 湖南金海钢结构股份有限公司 Load-bearing floor steel beam section diminishing method according to design change
JP5794550B1 (en) * 2014-04-11 2015-10-14 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building
JP7155488B2 (en) * 2017-08-07 2022-10-19 株式会社竹中工務店 Structural Seismic Reinforcement Structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263767A (en) * 1985-09-17 1987-03-20 清水建設株式会社 Reinforcement structure of reinforced concrete pillar
JPH0742759B2 (en) * 1990-10-12 1995-05-10 川鉄建材工業株式会社 Double steel pipe type structural member for truss
JP3522415B2 (en) * 1995-10-23 2004-04-26 独立行政法人土木研究所 Steel tube column reinforcement structure
JP2000291136A (en) * 1999-04-06 2000-10-17 Sumitomo Metal Ind Ltd High damping steel pipe column
JP2002180535A (en) * 2000-12-14 2002-06-26 Kajima Corp Member bearing reinforcing axial tension
JP4468595B2 (en) * 2001-01-09 2010-05-26 三井住友建設株式会社 CFT structural pillar
JP4192125B2 (en) * 2004-07-16 2008-12-03 新日鉄エンジニアリング株式会社 Seismic reinforcement structure for existing steel structures
JP2006265848A (en) * 2005-03-22 2006-10-05 Sus Corp Support structure

Also Published As

Publication number Publication date
JP2009221755A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5483666B2 (en) building
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
KR20170015872A (en) Steel Beam connecting structure
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP2020041319A (en) Joint structure of main structure and brace
JP6163731B2 (en) Seismic walls and structures
JP6836835B2 (en) Column-beam joint structure
JP6954222B2 (en) Construction method of beam end joint structure and beam end joint structure
JP5532852B2 (en) Steel pipe concrete pillar
JP5774979B2 (en) Column structure
JP7070890B2 (en) Joint structure
JP5654060B2 (en) Damper brace and damping structure
JP6645328B2 (en) Joint structure of H-section steel and H-section steel used therefor
JP2018091081A (en) Reinforcement structure of beam-column joint
JP5318298B1 (en) Beam joint structure
JP6934290B2 (en) Truss frame
WO2018012495A1 (en) Beam-column connection structure
JP6783045B2 (en) How to design column-beam joint structure and column-beam joint structure
JP7095836B2 (en) Building structure
JP7393861B2 (en) frame structure
JP4559793B2 (en) Multi-story shear wall
JP7495309B2 (en) Ladder-type load-bearing wall structure and portal structure
JP2018172859A (en) Box section column and column-beam connection structure
JP5042615B2 (en) Building unit and unit building using the same
JP7036365B2 (en) Buckling stiffening brace mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5483666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees