JP5483045B2 - Process for producing hydrocarbons from carbon monoxide and hydrogen - Google Patents

Process for producing hydrocarbons from carbon monoxide and hydrogen Download PDF

Info

Publication number
JP5483045B2
JP5483045B2 JP2008161147A JP2008161147A JP5483045B2 JP 5483045 B2 JP5483045 B2 JP 5483045B2 JP 2008161147 A JP2008161147 A JP 2008161147A JP 2008161147 A JP2008161147 A JP 2008161147A JP 5483045 B2 JP5483045 B2 JP 5483045B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
reaction
manganese
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008161147A
Other languages
Japanese (ja)
Other versions
JP2010001241A (en
Inventor
和久 村田
清美 岡部
功 高原
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008161147A priority Critical patent/JP5483045B2/en
Publication of JP2010001241A publication Critical patent/JP2010001241A/en
Application granted granted Critical
Publication of JP5483045B2 publication Critical patent/JP5483045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、一酸化炭素と水素から炭化水素混合物を製造する、いわゆるフィッシャー・トロプシュ反応(FT)を利用した炭化水素の製造方法の改良に関する。   The present invention relates to an improvement in a hydrocarbon production method utilizing a so-called Fischer-Tropsch reaction (FT) for producing a hydrocarbon mixture from carbon monoxide and hydrogen.

石油を原料とする軽油等の製造方法は、原油の精製・分離工程を経るのが通常である。他方、石油資源の枯渇の懸念やCO2削減の必要性と共に、非化石系原料とりわけバイオマスのガス化と得られる合成ガスの液化を経た合成燃料製造方法いわゆるBTL技術(超クリーンディーゼル燃料)の開発が、今後ますます必要になると予想されている。 In general, a method for producing light oil or the like using petroleum as a raw material undergoes a refining / separation process of crude oil. On the other hand, development of so-called BTL technology (ultra-clean diesel fuel), a method for producing synthetic fuel through gasification of non-fossil raw materials, especially biomass, and liquefaction of the resulting synthesis gas, along with concerns about the depletion of petroleum resources and the need to reduce CO 2 However, it is expected to become more and more necessary in the future.

バイオマスとしては、木質系、農業や一般廃棄物系、海洋系などの多岐にわたる原料が想定されているが、その資源は分散しており合成は小規模が想定される。   As biomass, a wide variety of raw materials such as woody, agricultural, general waste, and marine are assumed, but the resources are dispersed and the synthesis is assumed to be small.

小規模BTLに用いるフィッシャー・トロプシュ合成反応(FT)の触媒(FT触媒)としては、一設備での触媒使用量が少なくて済むかわりに、最終的に炭素数C10-C20程度の比較的流動性のよい灯軽油分をシンプルなプロセスにて合成することが求められているが、この場合、FT触媒反応で生成した高級ワックスは別途水素化分解触媒により分解して所望の灯軽油分等に変換するのが通例であった(特許文献1)。
このような二段法の具体例として、最近、FT触媒としてCo/SiO2系触媒を、水素化分解触媒として(Pd/SiO2+ZSM-5)またはPt/ZSM-5触媒を連続して用い、ワックスの水素化分解を行う方法が提案されている(非特許文献1及び2)。
As a Fischer-Tropsch synthesis reaction (FT) catalyst (FT catalyst) used for small-scale BTL, the amount of catalyst used in one facility is small, but the final fluidity is about C10-C20. In this case, the high-grade wax produced by the FT catalytic reaction is separately decomposed with a hydrocracking catalyst and converted to the desired kerosene oil content, etc. It was customary to do (Patent Document 1).
As a specific example of such a two-stage method, recently, a Co / SiO 2 catalyst as an FT catalyst and a (Pd / SiO 2 + ZSM-5) or Pt / ZSM-5 catalyst as a hydrocracking catalyst have been continuously used. A method for hydrocracking wax has been proposed (Non-Patent Documents 1 and 2).

しかしながら、この方法では、Co/SiO2系FT触媒の速度に対して、水素化分解触媒の速度が速いため、FT生成物が過度に分解され、主としてC10以下のガソリン留分が生成してしまう。また逆に水素化分解能が弱い触媒を用いた場合には、シュルツ−フローリー型(炭素数の増加と共に生成量が連続的に減少)の分布となり、C20以上の生成物が減少せず、実用的な灯軽油分を選択的に一段で得ることは極めて困難であった。 However, in this method, the speed of the hydrocracking catalyst is higher than the speed of the Co / SiO 2 -based FT catalyst, so the FT product is excessively decomposed and a gasoline fraction of C10 or less is mainly produced. . On the other hand, when a catalyst with weak hydrogenation resolution is used, it is a Schulz-Flory type (the amount of product continuously decreases as the number of carbon atoms increases), and the product of C20 or higher does not decrease and is practical. It was extremely difficult to selectively obtain a kerosene oil oil in a single stage.

米国特許公開第2005092653号公報US Patent Publication No. 2005092653 Catal. Today, 84 59-65 (2003)Catal. Today, 84 59-65 (2003) Int. J. Chem. Reactor Eng., 5, A78 (2007).Int. J. Chem. Reactor Eng., 5, A78 (2007).

本発明は、フィッシャー・トロプシュ反応を利用して一酸化炭素と水素から炭化水素を製造するにおいて、特有なFT触媒と水素化分解触媒を組み合わせることにより、見かけ上1段で炭素数C20以下程度の良質な灯軽油分を合成する新規な方法を提供することを目的とする。   The present invention uses a Fischer-Tropsch reaction to produce hydrocarbons from carbon monoxide and hydrogen. By combining a specific FT catalyst and a hydrocracking catalyst, the apparent number of carbon atoms is about C20 or less in one stage. An object is to provide a novel method for synthesizing a high quality kerosene oil component.

本発明者らは、前記課題を解決すべく種々の触媒群について鋭意研究を重ねた結果、ルテニウム系のFT触媒と、ゼオライト系の水素化分解触媒を組み合わせることにより、FT及び水素化分解の反応速度が最適となり、C5-C20程度の灯軽油分が選択的に生成することを見いだし、本発明を完成するに至った。
すなわち、この出願は以下の発明を提供するものである。
〈1〉フィッシャー・トロプシュ反応を利用して一酸化炭素と水素から炭化水素を製造するにおいて、
フィッシャー・トロプシュ合成反応触媒と水素化分解触媒を直列に配置し、前記フィッシャー・トロプシュ合成反応触媒としてアルミナに1〜15重量%のルテニウム及び1〜20重量%のマンガンを担持させた触媒を用い、前記水素化分解触媒としてゼオライトにルテニウムを担持させた触媒を用いることを特徴とする炭化水素の製造方法。
As a result of intensive studies on various catalyst groups in order to solve the above problems, the present inventors have combined a ruthenium-based FT catalyst with a zeolite-based hydrocracking catalyst to achieve a reaction of FT and hydrocracking. The speed was optimized, and it was found that a kerosene oil component of about C5-C20 was selectively produced, and the present invention was completed.
That is, this application provides the following inventions.
<1> In producing hydrocarbons from carbon monoxide and hydrogen using the Fischer-Tropsch reaction,
Fischer-Tropsch synthesis reaction catalyst and hydrocracking catalyst are arranged in series, and the Fischer-Tropsch synthesis reaction catalyst is a catalyst in which 1-15 wt% ruthenium and 1-20 wt% manganese are supported on alumina , A method for producing hydrocarbons, wherein a catalyst in which ruthenium is supported on zeolite is used as the hydrocracking catalyst.

本発明のフィッシャー・トロプシュ反応を利用して一酸化炭素と水素から炭化水素を製造する方法は、フィッシャー・トロプシュ合成反応触媒としてルテニウム系触媒を、水素化分解触媒としてゼオライト触媒を用いたことから、FT生成物が過度に分解され、C10以下のガソリン留分が生成することを抑制でき、また逆に水素化分解能が弱い触媒を用いた場合に惹起するC20以上の生成物が減少しないという問題点を克服し、FT及び水素化分解の反応速度を最適な範囲とすることができるので、C5-C20程度の良質な灯軽油分が選択的に簡便に合成することができる。   The method for producing hydrocarbons from carbon monoxide and hydrogen using the Fischer-Tropsch reaction of the present invention uses a ruthenium-based catalyst as a Fischer-Tropsch synthesis reaction catalyst and a zeolite catalyst as a hydrocracking catalyst. The problem is that the FT product is excessively decomposed and the generation of gasoline fractions of C10 or less can be suppressed, and conversely the products of C20 or more caused by using a catalyst with weak hydrogenation resolution do not decrease. Thus, the reaction rate of FT and hydrocracking can be adjusted to an optimal range, so that a high quality kerosene oil component of about C5-C20 can be selectively and easily synthesized.

本発明のフィッシャー・トロプシュ反応を利用して一酸化炭素と水素から炭化水素を製造する方法は、フィッシャー・トロプシュ合成反応触媒としてルテニウム系触媒を、水素化分解触媒としてゼオライト触媒を用いることを特徴とする。   The method for producing hydrocarbons from carbon monoxide and hydrogen using the Fischer-Tropsch reaction of the present invention is characterized by using a ruthenium-based catalyst as a Fischer-Tropsch synthesis reaction catalyst and a zeolite catalyst as a hydrocracking catalyst. To do.

ルテニウム系FT触媒としては、ルテニウム化合物を固体酸化物担体に担持し、焼成したものが用いられる。
この場合のルテニウム化合物としては、水や有機溶媒などに可溶なものが好ましく、塩化ルテニウム、臭化ルテニウムなどのハロゲン化ルテニウム、酸化ルテニウム(IV)、水酸化ルテニウム(III)などの無機ルテニウム化合物、アセチルアセトナトルテニウム、ヘキサアンミンルテニウム(II)塩化物などのルテニウム錯体化合物、ドデカカルボニル三ルテニウム、ジクロロトリス(トリフェニルフォスフィン)ルテニウムルテニウム有機金属錯体化合物、などが例示される。
As the ruthenium-based FT catalyst, a ruthenium compound supported on a solid oxide carrier and calcined is used.
In this case, the ruthenium compound is preferably soluble in water or an organic solvent, such as ruthenium halides such as ruthenium chloride and ruthenium bromide, ruthenium oxide (IV), and inorganic ruthenium compounds such as ruthenium (III) hydroxide. And ruthenium complex compounds such as acetylacetonatoruthenium and hexaammineruthenium (II) chloride, dodecacarbonyl triruthenium, dichlorotris (triphenylphosphine) ruthenium ruthenium organometallic complex compounds, and the like.

ルテニウムを担持するシリカ系酸化物としては、アモルファスシリカ、ポーラスシリカ、Cariact系シリカ、MCM系シリカ(MCM-41、MCM-22など)、FSM系シリカ(FSM-16など)、などが例示される。またこれらのシリカ系多孔性酸化物にはチタン、アルミニウム、バナジウム、ニオブ、タンタル、ホウ素、ジルコニウムなどの元素を含有するものも含まれる。またアルミナ酸化物としては、α-アルミナ、β-アルミナ、γ-アルミナなどが例示され、この内、γ-アルミナが特に好ましい。   Examples of the silica-based oxide supporting ruthenium include amorphous silica, porous silica, Cariact silica, MCM silica (MCM-41, MCM-22, etc.), FSM silica (FSM-16, etc.), etc. . These silica-based porous oxides include those containing elements such as titanium, aluminum, vanadium, niobium, tantalum, boron, and zirconium. Examples of the alumina oxide include α-alumina, β-alumina, and γ-alumina, and among these, γ-alumina is particularly preferable.

シリカ又はアルミナ担持ルテニウム触媒は、さらにマンガン化合物で修飾して用いることができる。この時のマンガン化合物としては、フッ化マンガン、塩化マンガン、臭化マンガン、過塩素酸マンガンなどのハロゲン化マンガン、酸化マンガン、水酸化マンガン、硫酸マンガン、硝酸マンガン、リン酸マンガン、酢酸マンガンなどの無機マンガン化合物、トリス(2,4-ペンタジオナト)マンガン、ヘキサシアノマンガン(III)酸カリウムなどのマンガン錯化合物、ドデカカルボニル二マンガン、トリカルボニル(シクロペンタジエニル)マンガン(I)などの有機金属マンガン化合物、などを挙げることができる。   The ruthenium catalyst supported on silica or alumina can be further modified with a manganese compound. Examples of manganese compounds at this time include manganese halides such as manganese fluoride, manganese chloride, manganese bromide, and manganese perchlorate, manganese oxide, manganese hydroxide, manganese sulfate, manganese nitrate, manganese phosphate, and manganese acetate. Inorganic manganese compounds, manganese complex compounds such as tris (2,4-pentadionato) manganese and potassium hexacyanomanganese (III), organometallic manganese compounds such as dodecacarbonyl dimanganese and tricarbonyl (cyclopentadienyl) manganese (I) , Etc.

本発明のFT合成用触媒の調製方法としては、担体であるアルミナ又はシリカなどの固体酸化物に、マンガン化合物を担持後焼成し、さらに、得られたMn修飾シリカ又はアルミナ酸化物に、ルテニウム化合物を担持し焼成する2段担持法で行われる。マンガン及びルテニウムの担持方法は、含浸法、incipient wetness法、こんねい法、沈殿法などが例示され、沈殿法に用いる沈殿剤としては、アンモニア水、水酸化ナトリウム、尿素などの塩基性化合物が用いられる。マンガン化合物を担持させたアルミナ又はシリカの焼成温度は、300〜900℃、好ましくは500〜700℃程度である。マンガンの担持量は、任意であるが、マンガン金属として、担体酸化物100g当たり、0.001〜50g、好ましくは1〜20gである。また、マンガン化合物を担持させたアルミナ又はシリカへのルテニウムの担持方法は、マンガンの担持方法と同じであり、担持後の焼成温度は200〜600℃、好ましくは250〜400℃程度である。これ以上高温では、ルテニウム粒子が凝集し、FT活性が低下するため好ましくない。
ルテニウムの担持量は、任意であるが、ルテニウム金属として、担体酸化物100g当たり、0.001〜30g、好ましくは1〜15gである。
As a method for preparing the catalyst for FT synthesis of the present invention, a manganese compound is supported on a solid oxide such as alumina or silica, which is a support, and then fired. Further, the obtained Mn-modified silica or alumina oxide is further converted into a ruthenium compound. It is carried out by a two-stage loading method in which is supported and fired. Examples of methods for supporting manganese and ruthenium include impregnation method, incipient wetness method, kneading method, precipitation method, etc. Basic compounds such as ammonia water, sodium hydroxide and urea are used as the precipitating agent for the precipitation method. It is done. The firing temperature of alumina or silica supporting a manganese compound is about 300 to 900 ° C, preferably about 500 to 700 ° C. The amount of manganese supported is arbitrary, but it is 0.001 to 50 g, preferably 1 to 20 g per 100 g of the carrier oxide as manganese metal. Further, the method of supporting ruthenium on alumina or silica supporting a manganese compound is the same as the method of supporting manganese, and the firing temperature after supporting is about 200 to 600 ° C., preferably about 250 to 400 ° C. Higher temperatures are not preferred because ruthenium particles aggregate and FT activity decreases.
The amount of ruthenium supported is arbitrary, but it is 0.001 to 30 g, preferably 1 to 15 g per 100 g of the carrier oxide as ruthenium metal.

上記ルテニウム(Ru)系触媒は、鉄系やコバルト(Co)系よりも高活性、高ワックス生成性などが特長であり、触媒の使用量を一層減らせる可能性があるだけでなく、つぎに述べる特定な水素化分解触媒との併用により、見かけ上1段で流動性のよい灯軽油留分を収率よく製造することも可能となる。   The ruthenium (Ru) -based catalyst is characterized by higher activity and higher wax generation than iron-based and cobalt (Co) -based catalysts, which can reduce the amount of catalyst used. The combined use with the specific hydrocracking catalyst to be described makes it possible to produce a kerosene oil fraction that is apparently one-stage and good in fluidity with good yield.

本発明では、上記ルテニウム系FT触媒と組み合わせる水素化触媒として、ゼオライトを用いる。
ゼオライトとしては、8員環から12員環の中小細孔を持つものが代表的であり、8員環ではチャバサイト、エリオナイト、A型、10員環では、ZSM−5、フェリエライト、ZSM−11、アルミノリン酸型(AlPO−11)、12員環では、モルデナイト、ZSM−12、ベータ、ホージャサイト、アルミノリン酸型(AlPO−5)などが例示される。シリカ/アルミナ比(Si/Al2)は1〜5000、好ましくは10〜300、さらに50以下が特に好ましい。
In the present invention, zeolite is used as a hydrogenation catalyst combined with the ruthenium-based FT catalyst.
Zeolite having a small and medium pore from an 8-membered ring to a 12-membered ring is typical, and in the 8-membered ring, chabasite, erionite, A-type, 10-membered ring, ZSM-5, ferrierite, ZSM -11 aluminophosphate type (AlPO 4 -11), the 12-membered ring, mordenite, ZSM-12, beta, faujasite, aluminophosphate type (AlPO 4 -5), etc. are exemplified. The silica / alumina ratio (Si / Al2) is 1 to 5000, preferably 10 to 300, and more preferably 50 or less.

このゼオライトには、ルテニウム又はパラジウムを担持させることもできる。これらの金属は、単独もしくは2種以上の混合物として用いることができる。   This zeolite can also support ruthenium or palladium. These metals can be used alone or as a mixture of two or more.

ルテニウム化合物としては、上記のルテニウム系FT触媒の場合と同様に、水や有機溶媒などに可溶なものが好ましく、塩化ルテニウム、臭化ルテニウムなどのハロゲン化ルテニウム、酸化ルテニウム(IV)、水酸化ルテニウム(III)などの無機ルテニウム化合物、アセチルアセトナトルテニウム、ヘキサアンミンルテニウム(II)塩化物などのルテニウム錯体化合物、ドデカカルボニル三ルテニウム、ジクロロトリス(トリフェニルフォスフィン)ルテニウムルテニウム有機金属錯体化合物、などが例示される。   As in the case of the ruthenium-based FT catalyst, the ruthenium compound is preferably soluble in water or an organic solvent, such as ruthenium halides such as ruthenium chloride and ruthenium bromide, ruthenium oxide (IV), hydroxide. Inorganic ruthenium compounds such as ruthenium (III), ruthenium complex compounds such as acetylacetonatoruthenium, hexaammineruthenium (II) chloride, dodecacarbonyl triruthenium, dichlorotris (triphenylphosphine) ruthenium ruthenium organometallic complex compounds, etc. Is exemplified.

パラジウム化合物としては、塩化パラジウム(II)、ヨウ化パラジウムなどのハロゲン化パラジウム、酸化パラジウム、酢酸パラジウム、硫酸パラジウム、硝酸パラジウムなどの無機パラジウム化合物、アセチルアセトパラジウム、テトラアンミンパラジウム(II)塩化物、テトラクロロパラジウム(II)酸ナトリウム、テトラアンミンパラジウムニトロシルなどのパラジウム錯体化合物、テトラキス(トリフェニルフォスフィン)パラジウム(0)、ジクロロ(1,5-シクロオクタジエン)パラジウム(II)などのパラジウム有機金属錯体化合物、などが例示される。   Examples of the palladium compound include palladium chloride (II), palladium halides such as palladium iodide, palladium oxide, palladium acetate, palladium sulfate, palladium nitrate, and other inorganic palladium compounds, acetylacetopalladium, tetraammine palladium (II) chloride, tetra Palladium complex compounds such as sodium chloropalladium (II) and tetraamminepalladium nitrosyl; palladium organometallic complex compounds such as tetrakis (triphenylphosphine) palladium (0) and dichloro (1,5-cyclooctadiene) palladium (II) , Etc. are exemplified.

ルテニウムやパラジウムのゼオライトへの担持方法は、ルテニウム系FT触媒の場合と同じようにすればよく、担持後の焼成温度は200〜900℃、好ましくは400〜700℃程度である。ルテニウムまたはパラジウムの担持量は、任意であるが、各金属として、担体酸化物100g当たり、0.001〜30g、好ましくは0.1〜10gである。   The loading method of ruthenium or palladium on the zeolite may be the same as in the case of the ruthenium-based FT catalyst, and the firing temperature after loading is about 200 to 900 ° C, preferably about 400 to 700 ° C. The supported amount of ruthenium or palladium is arbitrary, but is 0.001 to 30 g, preferably 0.1 to 10 g, per 100 g of the carrier oxide as each metal.

本発明の炭化水素合成法は、気相及び液相のいずれで行うこともできるが、触媒と生成炭化水素の分離を簡便に行うためには、気相系が好ましい。反応器への触媒の充填はFT触媒、水素化分解触媒の順に行われ、同一の反応管でも、連続した2本の反応管でも可能である。
反応温度は、FTと水素化分解反応では異なるようにするのが好ましく、FTの反応温度は、50〜400℃、好ましくは180〜300℃の条件下であり、また水素化分解は、100〜500℃、好ましくは250〜400℃である。
反応圧力は任意であり、0.01Mpa〜100Mpa、好ましくは0.05MPa〜5MPaである。FT反応により合成ガスが消費され水素不足になり、十分な水素化分解が行われなくなることを回避するために、FT反応後に水素を追加することも可能である。さらに反応に先立ち、FTと水素化分解触媒共に水素化処理を行う必要がある。この場合の水素化条件は、温度100〜600℃、好ましくは180〜400℃である。水素圧力は任意であり、0.01Mpa〜100Mpa、好ましくは0.05MPa〜5MPaである。
The hydrocarbon synthesis method of the present invention can be carried out either in the gas phase or in the liquid phase, but in order to easily separate the catalyst and the produced hydrocarbon, a gas phase system is preferred. The catalyst is charged into the reactor in the order of FT catalyst and hydrocracking catalyst, and can be the same reaction tube or two continuous reaction tubes.
The reaction temperature is preferably different between FT and hydrocracking reaction. The reaction temperature of FT is 50 to 400 ° C, preferably 180 to 300 ° C. 500 ° C., preferably 250 to 400 ° C.
The reaction pressure is arbitrary and is 0.01 MPa to 100 MPa, preferably 0.05 MPa to 5 MPa. Hydrogen can be added after the FT reaction in order to avoid that the synthesis gas is consumed due to the FT reaction, resulting in a shortage of hydrogen and insufficient hydrocracking. Further, prior to the reaction, it is necessary to perform a hydrogenation treatment for both FT and the hydrocracking catalyst. The hydrogenation conditions in this case are a temperature of 100 to 600 ° C., preferably 180 to 400 ° C. The hydrogen pressure is arbitrary and is 0.01 MPa to 100 MPa, preferably 0.05 MPa to 5 MPa.

本発明のFT反応に用いる合成ガスは、リサーチグレードのものだけでなく、バイオマスや石炭などのガス化により得られた合成ガスを用いることもできる。水素とCOの比は、1から3程度が好ましいが、化学量論比の約2が特に好ましい。ただしバイオマス由来の硫化水素などの硫黄分は、FT触媒に悪影響を与えるので、事前に10ppb程度まで除去することが好ましい。また反応に関係ないガスを混合させることもできる。この場合の不活性ガスとしては、窒素やアルゴンなどの不活性ガス、CO2メタンまたは水蒸気が用いられる。 The synthesis gas used for the FT reaction of the present invention is not limited to a research grade, but can also be a synthesis gas obtained by gasification of biomass, coal, or the like. The ratio of hydrogen to CO is preferably about 1 to 3, but a stoichiometric ratio of about 2 is particularly preferred. However, since sulfur content such as biomass-derived hydrogen sulfide adversely affects the FT catalyst, it is preferably removed to about 10 ppb in advance. Further, a gas unrelated to the reaction can be mixed. As the inert gas in this case, an inert gas such as nitrogen or argon, CO 2 methane, or water vapor is used.

次に本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

実施例1
固定床流通式反応装置の反応管の上層部に5wt%Ru-5wt%Mn/γ-Al2O3(0.5g)(FT触媒)を、また下層部に2wt%Ru/H-ZSM-5(0.2g)(水素化分解触媒)を導入し、両方の触媒を水素1.5MPa、200℃で5時間水素還元を行った。還元終了後、室温に冷却し、合成ガス(水素/CO/窒素=60/30/10(vol.%))1.2MPaを導入して、W/F=6.61 cat.g・h/molで反応させた。反応温度はFT反応220℃、水素化分解330℃とした。CO転化率およびC5+選択率は3時間毎にガス分析を行い、以下の式に従って計算した。27時間反応後、トラップ(高圧及び常圧(氷))に蓄積した生成物を分析し、C5-C20とC21+を算出した。ここでガスクロ分析で検出されたC37までを全生成物を仮定した。以上の結果として、CO転化率25.4%、メタン3.8%、C5-C20 90.3%、C21+ 0.17%を得た。(表1)
Example 1
5wt% Ru-5wt% Mn / γ-Al 2 O 3 (0.5g) (FT catalyst) in the upper layer of the reaction tube of the fixed bed flow reactor, and 2wt% Ru / H-ZSM-5 in the lower layer (0.2 g) (hydrocracking catalyst) was introduced, and both catalysts were subjected to hydrogen reduction at 1.5 MPa of hydrogen at 200 ° C. for 5 hours. After reduction, cool to room temperature, introduce synthesis gas (hydrogen / CO / nitrogen = 60/30/10 (vol.%)) 1.2 MPa, and react at W / F = 6.61 cat.gh/mol I let you. The reaction temperature was 220 ° C. for FT reaction and 330 ° C. for hydrogenolysis. The CO conversion rate and the C5 + selectivity were analyzed according to the following formula after gas analysis every 3 hours. After the reaction for 27 hours, the product accumulated in the trap (high pressure and normal pressure (ice)) was analyzed, and C5-C20 and C21 + were calculated. Here, all products up to C37 detected by gas chromatography analysis were assumed. As a result, a CO conversion rate of 25.4%, methane 3.8%, C5-C20 90.3%, and C21 + 0.17% were obtained. (Table 1)

CO転化率、選択率(C5+、C5-C20、C21+)便宜的に以下のように計算した。
CO 転化率 = (1- ([CO]out/[N2]out)/([CO]in/[N2]in)) x 100
C5+選択率=100-((Σ[Cn]*n (n=1-4))/([CO]in *([CO conversion]/100)))*100
C5-C20選択率=[C5+] * ([C5-C20]/[C5-C37])
C21+選択率= [C5+] - [C5-C20]
ここで、[CO]in, [CO]out, [N2]in, [N2]out はCO及び窒素の入り口ガス組成、Cnは炭素数nの炭化水素の量を表す。
CO conversion and selectivity (C5 +, C5-C20, C21 +) were calculated as follows for convenience.
CO conversion rate = (1- ([CO] out / [N 2 ] out ) / ([CO] in / [N 2 ] in )) x 100
C5 + selectivity = 100-((Σ [Cn] * n (n = 1-4)) / ([CO] in * ([CO conversion] / 100))) * 100
C5-C20 selectivity = [C5 +] * ([C5-C20] / [C5-C37])
C21 + selectivity = [C5 +]-[C5-C20]
Here, [CO] in , [CO] out , [N 2 ] in , [N 2 ] out represent CO and nitrogen inlet gas compositions, and Cn represents the amount of hydrocarbons having n carbon atoms.

参考例1
水素化分解触媒として、2wt%Pd/H-ZSM-5(0.2g)を用いた以外は実施例1と同様な合成反応を行った。その結果、CO転化率24.7%、メタン4.33%、C5-C20 84.0%、C21+ 0.44%を得た(表1)。C21+の選択率は2wt%Ru/H-ZSM-5触媒の場合と同程度に少なかった。
Reference example 1
The same synthesis reaction as in Example 1 was performed except that 2 wt% Pd / H-ZSM-5 (0.2 g) was used as the hydrocracking catalyst. As a result, CO conversion 24.7%, methane 4.33%, C5-C20 84.0%, C21 + 0.44% were obtained (Table 1). The selectivity of C21 + was as low as that of 2wt% Ru / H-ZSM-5 catalyst.

比較例1
水素化分解触媒を用いない以外は実施例1と同様な合成反応を行った。その結果、CO転化率36.4%、メタン3.88%、C5-C20 76.5%、C21+ 14.8%を得た(表1)。C21+の選択率は14.8%と多く、ワックスの分解が効率よく起こらないことが分かった。
Comparative Example 1
A synthesis reaction similar to that in Example 1 was performed except that the hydrocracking catalyst was not used. As a result, CO conversion rate 36.4%, methane 3.88%, C5-C20 76.5%, C21 + 14.8% were obtained (Table 1). The selectivity of C21 + was as high as 14.8%, indicating that wax decomposition did not occur efficiently.

参考例2
水素化分解触媒として金属を担持しないH-ZSM-5(0.2g)を用いた以外は実施例1と同様な合成反応を行った。その結果、CO転化率45.6%、メタン6.94%、C5-C20 82.2%、C21+ 0.58%を得た(表1)。C21+の選択率は依然として少ないことが分かった。
Reference example 2
The same synthesis reaction as in Example 1 was carried out except that H-ZSM-5 (0.2 g) not supporting metal was used as the hydrocracking catalyst. As a result, CO conversion 45.6%, methane 6.94%, C5-C20 82.2%, C21 + 0.58% were obtained (Table 1). It was found that the selectivity of C21 + is still low.

比較例2
FT触媒として、20wt%Co/SiO2を用いた以外は実施例1と同様な合成反応を行った。その結果、CO転化率24.6%、メタン14.7%、C5-C20 70.6%、C21+ 7.19%を得た(表1)。Co系FT触媒とRu系水素化分解触媒の組み合わせでは、メタンが多く、C21+が7%以上も残っており、この組み合わせ触媒は有効ではないことが分かった。
Comparative Example 2
The same synthesis reaction as in Example 1 was performed except that 20 wt% Co / SiO 2 was used as the FT catalyst. As a result, CO conversion 24.6%, methane 14.7%, C5-C20 70.6%, C21 + 7.19% were obtained (Table 1). In the combination of Co-based FT catalyst and Ru-based hydrocracking catalyst, there was much methane and C21 + remained at 7% or more, and this combination catalyst was found to be ineffective.

参考例3
水素化分解触媒として、Si/Al2比50のH-ZSM-5に担持したPd/H-ZSM-5(50)を用いた以外は実施例1と同様な合成反応を行った。その結果、CO転化率44.9%、メタン5.65%、C5-C20 72.3%、C21+ 2.08%を得た(表1)。
Reference example 3
The same synthesis reaction as in Example 1 was performed except that Pd / H-ZSM-5 (50) supported on H-ZSM-5 having a Si / Al2 ratio of 50 was used as the hydrocracking catalyst. As a result, CO conversion rate 44.9%, methane 5.65%, C5-C20 72.3%, C21 + 2.08% were obtained (Table 1).

比較例3
水素化分解触媒として、Pd/ZrO2を用いた以外は実施例1と同様な合成反応を行った。その結果、CO転化率27.6%、メタン3.72%、C5-C20 78.3%、C21+ 14.3%を得た(表1)。C21+が比較例1の場合と同程度の14%も残存し、この組み合わせ触媒は有効でないことが分かった。
Comparative Example 3
The same synthesis reaction as in Example 1 was performed except that Pd / ZrO2 was used as the hydrocracking catalyst. As a result, CO conversion 27.6%, methane 3.72%, C5-C20 78.3%, C21 + 14.3% were obtained (Table 1). C21 + remained as much as 14% as in Comparative Example 1, indicating that this combined catalyst is not effective.

Figure 0005483045
Figure 0005483045

Claims (1)

フィッシャー・トロプシュ反応を利用して一酸化炭素と水素から炭化水素を製造するにおいて、
フィッシャー・トロプシュ合成反応触媒と水素化分解触媒を直列に配置し、前記フィッシャー・トロプシュ合成反応触媒としてアルミナに1〜15重量%のルテニウム及び1〜20重量%のマンガンを担持させた触媒を用い、前記水素化分解触媒としてゼオライトにルテニウムを担持させた触媒を用いることを特徴とする炭化水素の製造方法。
In producing hydrocarbons from carbon monoxide and hydrogen using the Fischer-Tropsch reaction,
Fischer-Tropsch synthesis reaction catalyst and hydrocracking catalyst are arranged in series, and the Fischer-Tropsch synthesis reaction catalyst is a catalyst in which 1-15 wt% ruthenium and 1-20 wt% manganese are supported on alumina , A method for producing hydrocarbons, wherein a catalyst in which ruthenium is supported on zeolite is used as the hydrocracking catalyst.
JP2008161147A 2008-06-20 2008-06-20 Process for producing hydrocarbons from carbon monoxide and hydrogen Expired - Fee Related JP5483045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161147A JP5483045B2 (en) 2008-06-20 2008-06-20 Process for producing hydrocarbons from carbon monoxide and hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161147A JP5483045B2 (en) 2008-06-20 2008-06-20 Process for producing hydrocarbons from carbon monoxide and hydrogen

Publications (2)

Publication Number Publication Date
JP2010001241A JP2010001241A (en) 2010-01-07
JP5483045B2 true JP5483045B2 (en) 2014-05-07

Family

ID=41583256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161147A Expired - Fee Related JP5483045B2 (en) 2008-06-20 2008-06-20 Process for producing hydrocarbons from carbon monoxide and hydrogen

Country Status (1)

Country Link
JP (1) JP5483045B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973086B1 (en) 2010-10-28 2011-07-05 Chevron U.S.A. Inc. Process of synthesis gas conversion to liquid hydrocarbon mixtures using alternating layers of synthesis gas conversion catalyst and hydrocracking catalyst
US11525097B2 (en) 2010-02-08 2022-12-13 Fulcrum Bioenergy, Inc. Feedstock processing systems and methods for producing fischer-tropsch liquids and transportation fuels
EP2534122A4 (en) 2010-02-08 2013-12-18 Fulcrum Bioenergy Inc Processes for economically converting municipal solid waste into ethanol
US8519011B2 (en) 2010-10-28 2013-08-27 Chevron U.S.A. Inc. Process of synthesis gas conversion to liquid hydrocarbon mixtures using alternating layers of synthesis gas conversion catalyst, hydrocracking and hydroisomerization catalyst

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192834A (en) * 1982-05-04 1983-11-10 Res Assoc Petroleum Alternat Dev<Rapad> Preparation of hydrocarbon
JPS621783A (en) * 1985-06-28 1987-01-07 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbon
JPS62109888A (en) * 1985-11-06 1987-05-21 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbon
JPS63241099A (en) * 1987-03-27 1988-10-06 Mitsubishi Kasei Corp Production of high calorie gas
JPH0687975B2 (en) * 1991-02-26 1994-11-09 工業技術院長 Catalyst for the production of heavy aliphatic hydrocarbons
DZ1708A1 (en) * 1992-08-18 2002-02-17 Shell Int Research Process for the preparation of hydrocarbon fuels.
JP3135419B2 (en) * 1993-06-10 2001-02-13 宇部興産株式会社 Wax recipe
JP3648430B2 (en) * 2000-04-04 2005-05-18 トヨタ自動車株式会社 Synthesis method of lower isoparaffin from synthesis gas
US6472441B1 (en) * 2000-07-24 2002-10-29 Chevron U.S.A. Inc. Methods for optimizing Fischer-Tropsch synthesis of hydrocarbons in the distillate fuel and/or lube base oil ranges
JP4118494B2 (en) * 2000-08-22 2008-07-16 独立行政法人石油天然ガス・金属鉱物資源機構 Process for producing hydrocarbons
JP4660039B2 (en) * 2001-09-28 2011-03-30 独立行政法人石油天然ガス・金属鉱物資源機構 Process for producing hydrocarbons by Fischer-Tropsch process in the presence of carbon dioxide
ATE498670T1 (en) * 2003-07-04 2011-03-15 Shell Int Research METHOD FOR PRODUCING A FISCHER-TROPSCH PRODUCT
JP4324865B2 (en) * 2004-03-25 2009-09-02 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing hydrocarbon fuel oil

Also Published As

Publication number Publication date
JP2010001241A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
Martínez-Vargas et al. Recent advances in bifunctional catalysts for the Fischer–Tropsch process: one-stage production of liquid hydrocarbons from syngas
US9168515B2 (en) High-selectivity catalyst for production of high-quality gasoline fractions from syngas and its preparation method
KR100903439B1 (en) Preparation method of direct synthesis of light hydrocarbons from natural gas
JP4955541B2 (en) Method for producing gas oil by catalytic cracking of Fischer-Tropsch products
RU2562459C2 (en) Method of producing light olefins from synthesis gas
US11660587B2 (en) Catalysts and process for liquid hydrocarbon fuel production
EP2067762A1 (en) Process for the production of hydrocarbons
JPH0631321B2 (en) Method for producing middle distillate
TW201038723A (en) Dewaxing catalysts and processes
US8685231B2 (en) Process for conversion of paraffinic feedstock
TWI296614B (en) Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst
CN102365347A (en) Process of synthesis gas conversion to liquid fuels using synthesis gas conversion catalyst and noble metal-promoted acidic zeolite hydrocracking-hydroisomerization catalyst
Suárez París et al. Catalytic conversion of biomass-derived synthesis gas to fuels
JP5483045B2 (en) Process for producing hydrocarbons from carbon monoxide and hydrogen
CN103562351A (en) Process and system for reducing the olefin content of a fischer-tropsch product stream
JP2006528992A (en) Production method of gasoline
US9404048B2 (en) Catalysts and process for liquid hydrocarbon fuel production
CN102918137A (en) Process and system for reducing the olefin content of a fischer-tropsch product stream
JP4791167B2 (en) Hydrorefining method
US9290700B2 (en) Method for preparing synthetic liquid hydrocarbons from CO and H2
US11932815B2 (en) Conversion of synthesis gas to liquid fuels
CN105038844A (en) Processes for production of liquid fuel
CN111117699B (en) Hydrogenation method for producing high-quality jet fuel
JP2005320379A (en) Method for producing liquid hydrocarbon
AU2007231959B2 (en) Method of hydrocracking wax

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5483045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees