JP5474584B2 - Precision hot press mold and its manufacturing method - Google Patents

Precision hot press mold and its manufacturing method Download PDF

Info

Publication number
JP5474584B2
JP5474584B2 JP2010010774A JP2010010774A JP5474584B2 JP 5474584 B2 JP5474584 B2 JP 5474584B2 JP 2010010774 A JP2010010774 A JP 2010010774A JP 2010010774 A JP2010010774 A JP 2010010774A JP 5474584 B2 JP5474584 B2 JP 5474584B2
Authority
JP
Japan
Prior art keywords
mold
precision
metal
hot
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010010774A
Other languages
Japanese (ja)
Other versions
JP2011149048A (en
Inventor
勝 柳本
慶明 松原
洋史 加藤
亮 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010010774A priority Critical patent/JP5474584B2/en
Publication of JP2011149048A publication Critical patent/JP2011149048A/en
Application granted granted Critical
Publication of JP5474584B2 publication Critical patent/JP5474584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属粉末を金型内に充填して300℃以上の高温に保持しつつ、ギアや部品などの形状に精密ホットプレス加工する際に用いる金型およびその製造方法に関するものである。   The present invention relates to a metal mold used in precision hot pressing into a shape of a gear or a part while filling a metal powder in a metal mold and maintaining the temperature at 300 ° C. or higher, and a method for manufacturing the same.

近年、半導体微細加工技術の発達に伴い、それを部品加工に応用して医療用などのマイクロマシンやセンサー用の機械部品の開発やそれらを半導体技術と融合させたMEMS開発が盛んになっている。これらの精密部品では高耐久性、低コスト化を実現すべく金属部品への要求が根強く、また将来の医療高度化や機器の精密化に対応するために、さらなる小型化、高精度化が要求されるようになってきており、超精密金属部品を経済的に製造する方法が求められている。   2. Description of the Related Art In recent years, with the development of semiconductor fine processing technology, development of mechanical parts for medical micromachines and sensors by applying it to parts processing and MEMS development that integrates them with semiconductor technology has become popular. In these precision parts, there is a strong demand for metal parts to achieve high durability and low cost, and further miniaturization and high precision are required to cope with future medical advancement and equipment refinement. Accordingly, there is a need for a method for economically manufacturing ultra-precision metal parts.

これまでのマイクロマシンや精密機械部品の製造方法としては、例えば、特開平6−194832号公報(特許文献1)に開示されているように、液状感光性樹脂を硬化させた母型に無電解メッキ膜を形成させ、その母型をマスターとして表面に電気化学反応で厚メッキを施した後、マスターを剥離させる方法(電鋳)によってバルク金属部品を製造する方法や放射光を利用したX線リソグラフィーと電鋳とを組み合わせた(LIGA)方法などが提案されている。しかし、これらの方法では電鋳部品を取り出すために樹脂やLIGAで作製したモールド型は酸等によって溶融除去させるために再利用ができず、量産プロセスとしては煩雑でコスト高になるといった課題があった。   As a conventional method for manufacturing micromachines and precision machine parts, for example, as disclosed in Japanese Patent Laid-Open No. 6-194432 (Patent Document 1), an electroless plating is applied to a matrix obtained by curing a liquid photosensitive resin. Forming a film, using the matrix as a master, applying a thick plating to the surface by electrochemical reaction, and then peeling the master (electroforming) to produce bulk metal parts and X-ray lithography using synchrotron radiation (LIGA) and the like, which are a combination of electroforming and electroforming, have been proposed. However, in these methods, molds made of resin or LIGA for taking out electroformed parts cannot be reused because they are melted and removed by acid or the like, and there is a problem that the mass production process is complicated and expensive. It was.

これらの課題に対し、近年では金属ガラス粉末を精密加工素材として利用することが提案されている。金属ガラスは金属溶湯を超急冷せずとも非晶質組織が得られる合金で、その非晶質金属固体を加熱すると明確なガラス遷移温度と結晶化温度を示すことが特徴である。金属ガラスを精密加工するには特開平11−71602号公報(特許文献2)に開示されているように、金属ガラス素材をガラス遷移温度以上、結晶化温度以下の極めて粘性流動性に優れた温度領域で加工することがポイントである。その方法として、精密加工された金型に金属ガラス粉末を充填して該金型全体をガラス遷移温度以上、結晶化温度以下の温度に保持することによって充填された金属ガラス粉末を粘性流動性に優れた状態にして固化成形する方法などがある。
特開平6−194832号公報 特開平11−71602号公報
In recent years, it has been proposed to use metallic glass powder as a precision processing material for these problems. Metallic glass is an alloy that can produce an amorphous structure without supercooling the molten metal, and is characterized by a clear glass transition temperature and crystallization temperature when the amorphous metallic solid is heated. For precision processing of metallic glass, as disclosed in JP-A-11-71602 (Patent Document 2), the temperature of the metallic glass material is extremely excellent in viscous fluidity above the glass transition temperature and below the crystallization temperature. The point is to process in the area. As a method, the metal glass powder filled into the precision-processed metal mold is filled with the metal glass powder, and the entire metal mold is maintained at a temperature not lower than the glass transition temperature and not higher than the crystallization temperature. There are methods such as solidification molding in an excellent state.
Japanese Patent Laid-Open No. 6-194432 JP-A-11-71602

一方、Fe基、Ni基、Co基など工業的に安価な金属を合金成分とする金属ガラス粉末は、殆どの成分が300℃以上のガラス遷移温度を示すため、ホットプレスで該粉末を固化成形する場合は300℃以上で高荷重の繰返し使用に耐える物性と、ワイヤ放電加工によって所望の部品形状に従った金型形状に加工できるという優れた放電加工性を有する金型材を用いることが求められている。   On the other hand, metal glass powders that use industrially inexpensive metals such as Fe group, Ni group, Co group, etc. as alloy components are solidified and molded by hot pressing because most components exhibit a glass transition temperature of 300 ° C or higher. In this case, it is required to use a die material having physical properties that can withstand repeated use of a high load at 300 ° C. or higher and excellent electric discharge machining property that can be processed into a die shape according to a desired part shape by wire electric discharge machining. ing.

一般的に金型材として使用される超硬材(WC−Co)は、300℃以上の高温ではタングステンが酸化されるため高温での繰返し使用には不適である。そのため高温・高荷重ホットプレス用金型としては高温でも軟化し難い合金組織中に耐摩耗性を有する炭化物が分散したFe基合金である熱間金型用工具鋼やCo基合金であるCo−Cr−W−C系合金鋼(ステライト合金)が一般的に使用されている。   In general, a cemented carbide (WC-Co) used as a mold material is not suitable for repeated use at a high temperature because tungsten is oxidized at a high temperature of 300 ° C. or higher. Therefore, as a high temperature / high load hot press mold, tool steel for hot mold, which is an Fe-based alloy in which carbide having wear resistance is dispersed in an alloy structure which is not easily softened even at high temperature, or Co--, which is a Co-based alloy. Cr-WC alloy steel (stellite alloy) is generally used.

しかし、工具鋼をはじめとする特殊鋼は所望の合金成分を電気炉で溶解した後、鋳型中で固める。さらに塑性加工が可能な成分については該鋳塊を圧延する。いずれの製造方法においても、鋼中に存在する炭化物は大半が10μm以上の大きさであり、さらには、100μm以上の巨大炭化物も存在する場合がある。大きな炭化物が存在する箇所をワイヤ放電加工すると合金組織と炭化物との被放電加工速度差が生じるため、特に精密加工するために直径の細いワイヤを用いた場合にはワイヤの断線が起こり易く加工効率が極めて悪い。また、加工できた場合でも、金属組織と炭化物組織との放電面段差や加工面粗さの違いなどが生じるなど、大きな炭化物はワイヤ放電によって金型を精密加工する際の障害になっていた。   However, special steels such as tool steel are hardened in a mold after melting desired alloy components in an electric furnace. Further, the ingot is rolled for components that can be plastically processed. In any of the manufacturing methods, most of the carbides present in the steel have a size of 10 μm or more, and there may be a giant carbide of 100 μm or more. When electrical discharge machining is performed at locations where large carbides exist, there is a difference in the discharge machining speed between the alloy structure and carbide, so wire breakage is likely to occur, especially when thin diameter wires are used for precision machining. Is extremely bad. Further, even when the machining can be performed, large carbides have been an obstacle to precision machining of the mold by wire discharge, such as a difference in discharge surface between the metal structure and the carbide structure and a difference in surface roughness.

上述したような問題を解消するために、発明者らは、鋭意検討を重ねた結果、金型素材中の炭化物円換算直径を金型加工に用いるワイヤ直径の1/5以下にすることによって、極めて優れたワイヤ放電加工性が発揮できることを見出した。これによって、高温・高荷重での繰返し使用に適した熱間金型用工具鋼やCo−Cr−W−C系合金鋼を工業的に精密金型に加工でき、金属ガラス粉末などの精密ホットプレス金型として使用できる。   In order to solve the problems as described above, the inventors have made extensive studies, and as a result, the carbide circle equivalent diameter in the mold material is set to 1/5 or less of the wire diameter used for mold processing. It has been found that extremely excellent wire electric discharge machinability can be exhibited. This makes it possible to process hot mold tool steel and Co-Cr-WC-based alloy steel suitable for repeated use at high temperatures and high loads into industrial precision molds. Can be used as a press die.

その発明の要旨とするところは、
(1)300℃以上の温度に保持して金属粉末の固化成形を行う際に用いる精密金型において、精密金型はステライト合金からなり、金型素材中に析出している炭化物の最大円換算粒径が該金型を放電加工する際に用いるワイヤ直径の1/5以下であり、炭化物の最大円換算粒径が10.0μm未満であることを特徴とする精密ホットプレス用金型。
The gist of the invention is that
(1) In precision molds used when solidifying and molding metal powder while maintaining a temperature of 300 ° C. or higher, the precision mold is made of stellite alloy and converted into the maximum circle of carbides precipitated in the mold material. Ri der 1/5 of the wire diameter used when the particle diameter is electrical discharge machining mold, the precision hot press mold the maximum equivalent circle diameter of the carbides is equal to or less than 10.0 [mu] m.

(2)前記(1)に記載の精密金型の製造において、該金型合金成分の金属粉末を金属製カプセルに充填した後、熱間押出し、または熱間静水圧プレス(HIP)で固化成形した素材であることを特徴とする精密ホットプレス用金型の製造方法。
(3)前記(1)に記載の金型によって精密ホットプレス成形される金属粉末が金属ガラス合金粉末であることを特徴とする精密ホットプレス用金型である
(2) In the production of the precision mold as described in (1) above, the metal powder of the mold alloy component is filled in a metal capsule, and then hot extrusion or solidification molding by hot isostatic pressing (HIP). A method for producing a mold for precision hot pressing, characterized in that the material is made of a material.
(3) it is a precision hot press mold, wherein the metal powder to be the precision hot press molded by the mold according is metallic glass alloy powder (1).

上記円換算粒径とは、不定形状の炭化物について顕微鏡写真等を使って画像処理等によってその面積を計算し、同じ面積を持つ円の直径を算出した値であり、最大円換算粒径とは、前述の方法で算出した多くの炭化物円換算粒径のうちの最大値である。 The above-mentioned circle-converted particle size is a value obtained by calculating the area of an irregularly shaped carbide by image processing using a micrograph or the like, and calculating the diameter of a circle having the same area. , Which is the maximum value among many carbide equivalent particle diameters calculated by the method described above.

以上述べたように、本発明により、金属ガラス合金粉末などの精密ホットプレス成形する際に用いる金型において、高温・高荷重に耐える物性を持つ金属金型素材をワイヤ放電加工することによって被成形形状に合わせた精密なダイやパンチ形状に加工することができる。また、これによって、金型素材の課題から困難であった精密ホットプレス成形部材の工業化が容易に図られる極めて優れた効果を奏するものである。   As described above, according to the present invention, a metal mold material having physical properties that can withstand high temperature and high load is formed by wire electric discharge machining in a mold used for precision hot press molding such as metal glass alloy powder. It can be processed into a precise die or punch shape according to the shape. In addition, this produces an extremely excellent effect that the precision hot press molded member, which has been difficult due to the problem of the mold material, can be easily industrialized.

以下、本発明について詳細に説明する。
本発明において、300℃以上の温度に限定した理由は、Fe基、Ni基、Co基など工業的に安価な金属を合金成分とする金属ガラス粉末は、殆どの成分が300℃以上のガラス遷移温度を示すため、ホットプレスで該粉末を固化成形する際に用いる金型は300℃以上で高荷重の繰返し使用に耐える物性が必要であることから、その下限を300℃とした。
Hereinafter, the present invention will be described in detail.
In the present invention, the reason why the temperature is limited to 300 ° C. or higher is that a metal glass powder having an alloy component of an industrially inexpensive metal such as Fe group, Ni group, Co group, etc., has a glass transition in which most components are 300 ° C. or higher. In order to indicate the temperature, the mold used when solidifying and molding the powder by hot pressing needs to have physical properties that can withstand repeated use under a high load at 300 ° C. or higher, so the lower limit was set to 300 ° C.

また、金型素材中に析出している炭化物の最大円換算粒径が該金型を放電加工する際に用いるワイヤ直径の1/5以下とした理由は、ワイヤ直径の1/5を超えると、ワイヤ切れが頻繁に発生し、また、放電面の平滑度も悪いことから、ワイヤ放電加工性を十分に発揮することが出来ないことから、その上限を1/5とした。好ましくは1/10とする。さらに、ワイヤ径を300μm以下としたのは、300μmを超えるとワイヤが太すぎて、本発明が対象としているような精密部品成形が可能な金型の加工ができないためであり、また、30μm未満のワイヤは機械的強度が不足しているためワイヤ放電加工に適した素材を加工する場合でもワイヤ切れが頻発するため、30〜300μmとした。好ましくは、30〜100μmとする。   Moreover, the reason why the maximum circle-converted particle size of the carbides precipitated in the mold material is 1/5 or less of the wire diameter used when the mold is subjected to electric discharge machining is that it exceeds 1/5 of the wire diameter. Since the wire breakage frequently occurs and the smoothness of the discharge surface is poor, the wire discharge processability cannot be fully exhibited, so the upper limit was set to 1/5. Preferably it is 1/10. Further, the reason why the wire diameter is set to 300 μm or less is that if the wire diameter exceeds 300 μm, the wire is too thick to process a mold capable of forming a precision part as intended by the present invention, and less than 30 μm. Since the wire of this wire has insufficient mechanical strength, the wire breakage frequently occurs even when a material suitable for wire electric discharge machining is processed. Preferably, it shall be 30-100 micrometers.

さらに、固化成形された鋼中に存在する炭化物の最大円換算粒径が10.0μm未満とした理由は、10.0μm以上の大きな炭化物が存在する箇所が存在する箇所をワイヤ放電加工すると合金組織と炭化物との被放電加工速度差が生じるため、特に精密加工するために直径の細いワイヤを用いた場合にはワイヤの断線が起こり易く加工効率が極めて悪い。また、加工できた場合でも、金属組織と炭化物組織との放電面段差や加工面粗さの違いなどが生じるなど、大きな炭化物はワイヤ放電によって金型を精密加工する際の障害になることから、10.0μm未満とした。好ましくは8.0μm未満とする。   Furthermore, the reason why the maximum circle-converted particle size of carbides present in solidified steel is less than 10.0 μm is that when a portion where large carbides of 10.0 μm or more are present is wire EDM, the alloy structure Therefore, when a wire with a small diameter is used for precision machining, the wire is likely to break, and the machining efficiency is extremely poor. Also, even if it can be processed, such as differences in the discharge surface step and roughness of the processed surface between the metal structure and the carbide structure, such as large carbide is an obstacle to precision machining of the mold by wire discharge, The thickness was less than 10.0 μm. Preferably it is less than 8.0 μm.

以下、本発明について実施例によって具体的に説明する。
ステライトNo.1相当の合金(Co−30Cr−12W−2.5C)について、溶解容量2kgのアルミナ坩堝中に、その合金組成になるように調整した各原料を挿入し、誘導溶解炉にて溶解した後、そのまま冷却して鋳造品を作製した。一方、アルミナ坩堝中で同様に溶解した後、下部に設けた直径2mmの穴から出した溶湯にアルゴンガスを吹き付けることによって、上記合金組成の粉末を作製した。作製された粉末の平均粒径は80μmであった。
Hereinafter, the present invention will be specifically described with reference to examples.
Stellite No. About 1 equivalent alloy (Co-30Cr-12W-2.5C), each raw material adjusted so as to have the alloy composition was inserted into an alumina crucible having a melting capacity of 2 kg, and after melting in an induction melting furnace, The cast product was produced by cooling as it was. On the other hand, after melt | dissolving similarly in an alumina crucible, the powder of the said alloy composition was produced by spraying argon gas to the molten metal extracted from the hole of diameter 2mm provided in the lower part. The average particle size of the produced powder was 80 μm.

上記して得られた合金組成の粉末を熱間静水圧プレスして得られた粉末を内径50mm、深さ50mm、カプセルの肉厚2mmの軟鋼製カプセルに充填した後、熱間静水圧装置に該カプセルを挿入し、1050℃で2時間保持することによって100%密度の成形耐を得た。また、熱間押出しプレス品は外形150mm、長さ400mmの軟鋼製ビレット中に作られた内径50mm、長さ50mmの空間中に得られた粉末を充填封入し、ビレットを1050℃に加熱して直径50mmに押出し成形した後、ビレットから粉末成形部分を切出しすることによって成形体を得た。得られた成形体を回転エメリー歯で切断、断面観察した写真を図1に示す。   The powder obtained by hot isostatic pressing the powder of the alloy composition obtained above is filled into a soft steel capsule having an inner diameter of 50 mm, a depth of 50 mm, and a capsule thickness of 2 mm, and then placed in a hot isostatic press. The capsule was inserted and held at 1050 ° C. for 2 hours to obtain a molding resistance of 100% density. The hot extrusion press product is filled with powder obtained in a 50 mm inner diameter, 50 mm long space made in a mild steel billet with an outer diameter of 150 mm and a length of 400 mm, and the billet is heated to 1050 ° C. After extrusion molding to a diameter of 50 mm, a molded body was obtained by cutting out a powder molding portion from the billet. FIG. 1 shows a photograph of the obtained molded body cut with a rotating emery tooth and observed in cross section.

図1は、熱間押出し材、熱間静水圧プレス材から粉末成形部分を切出し得られた成形体を切断、鋳造材と比較して断面観察した組織顕微鏡写真である。図1(a)、(b)は本発明に係る粉末成形品であって、図1(a)は粉末押出し品の場合の組織断面であり、図1(b)は熱間静水圧プレス品の場合の組織断面である。これに対し、図1(c)は、従来の鍛造品の場合の組織断面であり、大きな炭化物が存在していることが分かる。本発明の粉末押出および熱間静水圧プレスの場合は、いずれも従来の鍛造品に比べて炭化物が微細状態であり、特に粉末押出品の組織断面の場合には、炭化物が最も微細化されていることが分かる。   FIG. 1 is a micrograph of a structure obtained by cutting a molded body obtained by cutting a powder molded portion from a hot extruded material and a hot isostatic pressing material, and observing a cross section compared with the cast material. 1 (a) and 1 (b) are powder molded products according to the present invention, FIG. 1 (a) is a cross-sectional structure of a powder extruded product, and FIG. 1 (b) is a hot isostatic press product. It is a structure cross section in the case of. On the other hand, FIG. 1C is a structural cross section in the case of a conventional forged product, and it can be seen that large carbides are present. In the case of the powder extrusion and the hot isostatic press according to the present invention, the carbide is in a finer state than the conventional forged product, and particularly in the case of the cross section of the powder extruded product, the carbide is most refined. I understand that.

Figure 0005474584
また、各成形体の炭化物の粒径とワイヤ直径並びに炭化物の最大円換算粒径とワイヤ直径比の場合におけるワイヤ放電結果を表1に示す。
Figure 0005474584
Further, Table 1 shows the wire discharge results in the case of the carbide particle diameter and wire diameter of each molded body, and the maximum circle-converted particle diameter and wire diameter ratio of the carbide.

表1に、得られた各成形体と各種直径の異なるワイヤを用いてワイヤ放電切断した結果について各成形体の炭化物の状況について示す。ワイヤ放電したときのワイヤ切れ状況については、全く発生しない場合を◎、発生が殆ど見られなかった場合を○、散発した場合を△、頻繁に発生した場合を×で評価した。また、放電面の平滑度については、良好なものを○、やや劣るものを△、悪いものを×で評価した。   Table 1 shows the state of carbides in each molded body as a result of wire discharge cutting using the obtained molded bodies and wires having various diameters. As for the wire breakage condition when the wire was discharged, ◎ was evaluated when it did not occur at all, ◯ when almost no occurrence was observed, △ when scattered, and × when it occurred frequently. Further, regarding the smoothness of the discharge surface, a good one was evaluated as ◯, a slightly inferior one as Δ, and a bad one as ×.

表1に示すように、No.1〜11を本発明例とし、No.12〜17は比較例とした。比較例No.12は、熱間静水圧プレスであるが、炭化物の最大円換算粒径とワイヤ直径の比が1/5以上であるために、ワイヤ切れが散発した。比較例No.13、14は、固化成形方法が鋳造法のため、炭化物の最大粒径が600μmと大きく、かつ炭化物の最大円換算粒径とワイヤ直径の比が1/5以上であるために、ワイヤ切れが散発し、また、放電面の平滑度も悪かった。   As shown in Table 1, no. 1 to 11 are examples of the present invention. 12 to 17 were comparative examples. Comparative Example No. No. 12 is a hot isostatic press, but since the ratio between the maximum circle-converted particle diameter of carbide and the wire diameter is 1/5 or more, wire breakage occurred sporadically. Comparative Example No. In Nos. 13 and 14, since the solidification molding method is a casting method, the maximum particle size of carbide is as large as 600 μm, and the ratio of the maximum equivalent circular particle size of carbide to the wire diameter is 1/5 or more. It was scattered and the smoothness of the discharge surface was also poor.

比較例No.15〜17は、比較例No.13、14と同様に、固化成形方法が鋳造法のため、炭化物の最大粒径が600μmと大きく、平均粒径も300μm以上と大きく、かつ炭化物の最大円換算粒径とワイヤ直径の比が1/5以上から大きくはずれているために、ワイヤ切れが頻発し、また、放電面の平滑度もやや劣る。これに対し、本発明例であるNo.1〜11は、本発明の条件を満たしていることから、いずれの特性も優れていることが分かる。   Comparative Example No. 15-17 are Comparative Example No. Similarly to 13 and 14, since the solidification molding method is a casting method, the maximum particle diameter of carbide is as large as 600 μm, the average particle diameter is as large as 300 μm or more, and the ratio of the maximum circle-converted particle diameter of carbide and wire diameter is 1. Since it is greatly deviated from / 5 or more, wire breakage occurs frequently, and the smoothness of the discharge surface is slightly inferior. On the other hand, No. which is an example of the present invention. Since 1-11 satisfy | fills the conditions of this invention, it turns out that all the characteristics are excellent.

以上のように、熱間金型用工具鋼、ステライト合金等をガスアトマイス粉末を軟鋼カプセル中に封入して熱間押出し、熱間静水圧プレス等で固化成形し、所望の素材形状に切出した成形材をワイヤ放電で精密加工を行い、金属ガラス粉末などの熱間精密固化成形用金型として使用する場合に、精密加工部品加工用金型に加工するためにワイヤ放電加工を行うとステライト合金等の中の巨大炭化物がワイヤ放電を阻害するためにワイヤ切れや加工精度が悪くなるこもなく、耐熱摩耗性と精密加工性を兼ね備えることができるという優れた効果を奏するものである。   As described above, hot die tool steel, stellite alloy, etc., gas atomized powder enclosed in mild steel capsules, hot extruded, solidified by hot isostatic pressing, etc., molded into the desired material shape When the material is precision processed by wire discharge and used as a mold for hot precision solidification molding of metal glass powder, etc., if wire electrical discharge processing is performed to form a precision processing part processing mold, stellite alloy etc. Since the giant carbide in the wire hinders the wire discharge, the wire breakage and the processing accuracy do not deteriorate, and it has an excellent effect that it can have both heat-resistant wear resistance and precision workability.

熱間押出し材、熱間静水圧プレス材から粉末成形部分を切出し得られた成形体を切断、鋳造材と比較して断面観察した組織顕微鏡写真である。It is the structure | microscope microscope picture which cut | disconnected the molded object obtained by cutting out the powder-molded part from the hot extrusion material and the hot isostatic pressing material, and observed the cross section compared with the casting material.

Claims (3)

300℃以上の温度に保持して金属粉末の固化成形を行う際に用いる精密金型において、精密金型はステライト合金からなり、金型素材中に析出している炭化物の最大円換算粒径が該金型を放電加工する際に用いるワイヤ直径の1/5以下であり、炭化物の最大円換算粒径が10.0μm未満であることを特徴とする精密ホットプレス用金型。 In precision molds used when solidifying and molding metal powder while maintaining a temperature of 300 ° C. or higher, the precision mold is made of a stellite alloy, and the maximum circle-equivalent particle diameter of carbides precipitated in the mold material is Ri der 1/5 of the wire diameter to be used for electrical discharge machining mold, the precision hot press mold the maximum equivalent circle diameter of the carbides is equal to or less than 10.0 [mu] m. 請求項1に記載の精密金型の製造において、該金型合金成分の金属粉末を金属製カプセルに充填した後、熱間押出し、または熱間静水圧プレス(HIP)で固化成形した素材であることを特徴とする精密ホットプレス用金型の製造方法。 2. The precision mold according to claim 1, wherein the metal powder of the mold alloy component is filled into a metal capsule and then hot extruded or solidified by hot isostatic pressing (HIP). A method of manufacturing a mold for precision hot pressing characterized by the above. 請求項1に記載の金型によって精密ホットプレス成形される金属粉末が金属ガラス合金粉末であることを特徴とする精密ホットプレス用金型。 2. A metal mold for precision hot press, wherein the metal powder to be precision hot press molded by the mold according to claim 1 is a metal glass alloy powder.
JP2010010774A 2010-01-21 2010-01-21 Precision hot press mold and its manufacturing method Expired - Fee Related JP5474584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010774A JP5474584B2 (en) 2010-01-21 2010-01-21 Precision hot press mold and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010774A JP5474584B2 (en) 2010-01-21 2010-01-21 Precision hot press mold and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011149048A JP2011149048A (en) 2011-08-04
JP5474584B2 true JP5474584B2 (en) 2014-04-16

Family

ID=44536296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010774A Expired - Fee Related JP5474584B2 (en) 2010-01-21 2010-01-21 Precision hot press mold and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5474584B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3409801T3 (en) * 2017-06-01 2023-12-04 Deutsche Edelstahlwerke Specialty Steel GmbH & Co.KG Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271817B2 (en) * 2000-02-14 2009-06-03 本田技研工業株式会社 Electric sintering die
JP4746310B2 (en) * 2004-11-30 2011-08-10 住友電工ハードメタル株式会社 Mold

Also Published As

Publication number Publication date
JP2011149048A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US10487934B2 (en) Systems and methods for implementing robust gearbox housings
US9868150B2 (en) Systems and methods for fabricating structures including metallic glass-based materials using low pressure casting
US8293031B2 (en) Magnesium alloy and the respective manufacturing method
JP4231780B2 (en) Centrifugal casting of nickel-base superalloys with improved surface quality, structural integrity, and mechanical properties under isotropic graphite molds under vacuum
WO2019239655A1 (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
JP4733498B2 (en) FORGED MOLDED PRODUCT, ITS MANUFACTURING METHOD, FORGED MOLDING DEVICE AND FORGED PRODUCT MANUFACTURING SYSTEM
JPWO2010122960A1 (en) High strength copper alloy
JP2006233320A (en) High strength magnesium alloy material and its production method
JP2010106363A (en) Age precipitation type copper alloy, copper alloy material, copper alloy component and method for producing copper alloy material
JP5548578B2 (en) High strength magnesium alloy wire and manufacturing method thereof, high strength magnesium alloy component, and high strength magnesium alloy spring
JP5474584B2 (en) Precision hot press mold and its manufacturing method
KR101219766B1 (en) Middle Temperature Roll manufactured by Vertical or Horizontal Centrifugal Casting and the Method for manufactured the Same
JPWO2011145194A1 (en) Heat-resistant cast iron short metal fiber and method for producing the same
JPH0254401B2 (en)
JP2015147980A (en) Al ALLOY CASTING AND METHOD FOR PRODUCING THE SAME
CN102438764B (en) Method for producing elongate products made of titanium
WO2018061540A1 (en) HOT EXTRUSION-MOLDING METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY AND PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY EXTRUSION MATERIAL
KR20220030182A (en) Methdo of manufacturing cobalt-based alloy structure and cobalt-based alloy structure obtained by the same
CN113458303A (en) Beryllium-copper alloy ring and manufacturing method thereof
JP6800482B2 (en) Magnesium alloy manufacturing method
JP2011125887A (en) Cast plate for magnesium alloy tip, and its manufacturing method
WO2017110813A1 (en) High-hardness high-toughness powder
JP5856764B2 (en) Hypereutectic aluminum-silicon alloy rolled sheet molded product and method for producing the same
JP2021088743A (en) Metal thin plate material and method for manufacturing metal thin plate
JP2007332413A (en) HIGH STRENGTH Co BASE METAL GLASS ALLOY HAVING EXCELLENT WORKABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5474584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees