JP5468476B2 - Thermal insulation structure for cylinder bore wall and internal combustion engine - Google Patents

Thermal insulation structure for cylinder bore wall and internal combustion engine Download PDF

Info

Publication number
JP5468476B2
JP5468476B2 JP2010146048A JP2010146048A JP5468476B2 JP 5468476 B2 JP5468476 B2 JP 5468476B2 JP 2010146048 A JP2010146048 A JP 2010146048A JP 2010146048 A JP2010146048 A JP 2010146048A JP 5468476 B2 JP5468476 B2 JP 5468476B2
Authority
JP
Japan
Prior art keywords
cylinder bore
cooling water
bore wall
flow path
heat retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010146048A
Other languages
Japanese (ja)
Other versions
JP2012007584A (en
Inventor
和晃 西尾
章宏 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2010146048A priority Critical patent/JP5468476B2/en
Publication of JP2012007584A publication Critical patent/JP2012007584A/en
Application granted granted Critical
Publication of JP5468476B2 publication Critical patent/JP5468476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関のシリンダブロックのシリンダボア壁の溝状冷却水流路側の壁面に接触させて配置される保温構造体及びそれを備える内燃機関に関する。   The present invention relates to a heat retaining structure disposed in contact with a wall surface of a cylinder bore wall of a cylinder block of an internal combustion engine on the groove-like cooling water flow path side, and an internal combustion engine including the same.

内燃機関では、ボア内のピストンの上死点で燃料の爆発が起こり、その爆発によりピストンが押し下げられるという構造上、シリンダボア壁の上側は温度が高くなり、下側は温度が低くなる。そのため、シリンダボア壁の上側と下側では、熱変形量に違いが生じ、上側は大きく膨張し、一方、下側の膨張が小さくなる。   In the internal combustion engine, fuel explosion occurs at the top dead center of the piston in the bore, and the piston is pushed down by the explosion, so that the temperature is high on the upper side of the cylinder bore wall and the temperature is lower on the lower side. Therefore, there is a difference in the amount of thermal deformation between the upper side and the lower side of the cylinder bore wall, and the upper side expands greatly, while the lower side expansion decreases.

その結果、ピストンのシリンダボア壁との摩擦抵抗が大きくなり、これが、燃費を下げる要因となっているので、シリンダボア壁の上側と下側とで熱変形量の違いを少なくすることが求められている。   As a result, the frictional resistance with the cylinder bore wall of the piston increases, and this is a factor that lowers fuel consumption. Therefore, it is required to reduce the difference in thermal deformation between the upper side and the lower side of the cylinder bore wall. .

そこで、従来より、シリンダボア壁の壁温を均一にするために、溝状冷却水流路内にスペーサーを設置し、溝状冷却水流路内の冷却水の水流を調節して、冷却水によるシリンダボア壁の上側の冷却効率と及び下側の冷却効率を制御することが試みられてきた。例えば、特許文献1には、内燃機関のシリンダブロックに形成された溝状冷却用熱媒体流路内に配置されることで該溝状冷却用熱媒体流路内を複数の流路に区画する流路区画部材であって、前記溝状冷却用熱媒体流路の深さに満たない高さに形成され、前記溝状冷却用熱媒体流路内をボア側流路と反ボア側流路とに分割する壁部となる流路分割部材と、前記流路分割部材から前記溝状冷却用熱媒体流路の開口部方向に向けて形成され、かつ先端縁部が前記溝状冷却用熱媒体流路の一方の内面を越えた形に可撓性材料で形成されていることにより、前記溝状冷却用熱媒体流路内への挿入完了後は自身の撓み復元力により前記先端縁部が前記内面に対して前記溝状冷却用熱媒体流路の深さ方向の中間位置にて接触することで前記ボア側流路と前記反ボア側流路とを分離する可撓性リップ部材と、を備えたことを特徴とする内燃機関冷却用熱媒体流路区画部材が開示されている。   Therefore, conventionally, in order to make the wall temperature of the cylinder bore wall uniform, a spacer is installed in the grooved cooling water flow path, and the flow of the cooling water in the grooved cooling water flow path is adjusted so that the cylinder bore wall caused by the cooling water Attempts have been made to control the cooling efficiency on the upper side and the cooling efficiency on the lower side. For example, in Patent Document 1, the groove-shaped cooling heat medium flow path is partitioned into a plurality of flow paths by being arranged in a groove-shaped cooling heat medium flow path formed in a cylinder block of an internal combustion engine. A channel partition member formed at a height less than the depth of the groove-shaped cooling heat medium flow channel, and the bore-side flow channel and the anti-bore side flow channel in the groove-shaped cooling heat medium flow channel And a flow path dividing member that is a wall portion that is divided into the groove-shaped cooling heat medium flow path, and a leading edge of the groove-shaped cooling heat. By being formed of a flexible material so as to extend beyond one inner surface of the medium flow path, the leading edge portion is caused by its own bending restoring force after completion of insertion into the groove-shaped cooling heat medium flow path. Is in contact with the inner surface at an intermediate position in the depth direction of the groove-shaped cooling heat medium channel, and the bore-side channel and the A flexible lip member, the internal combustion engine cooling heat medium flow passage partition member comprising the disclosed which separates the bore side flow path.

特開2008−31939号公報(特許請求の範囲)JP 2008-31939 A (Claims)

ところが、引用文献1の内燃機関冷却用熱媒体流路区画部材によれば、ある程度のシリンダボア壁の壁温の均一化が図れるので、シリンダボア壁の上側と下側との熱変形量の違いを少なくすることができるものの、近年、更に、シリンダボア壁の上側と下側とで熱変形量の違いを少なくすることが求められている。   However, according to the heat medium flow path partition member for cooling the internal combustion engine of the cited document 1, the wall temperature of the cylinder bore wall can be made uniform to some extent, so that the difference in the amount of thermal deformation between the upper side and the lower side of the cylinder bore wall is reduced. In recent years, however, it has been demanded to further reduce the difference in thermal deformation between the upper side and the lower side of the cylinder bore wall.

従って、本発明の課題は、シリンダボア壁の壁温の均一性が高い保温構造体及びこれを備える内燃機関を提供することにある。   Accordingly, an object of the present invention is to provide a heat retaining structure having high uniformity in wall temperature of a cylinder bore wall and an internal combustion engine including the same.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、窓枠形状の接触面を有すると共に、該接触面で囲まれるくり抜き状の空間部を備えたシリンダボア壁の保温構造体を、溝状冷却水流路側のシリンダボア壁に該接触面が接触するように設置して、該空間部に冷却水を封じ込めば、冷却水が温水となり、温水と接触する部分のシリンダボア壁が保温され、シリンダボア壁の壁温の均一化が図れることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have developed a cylinder bore wall having a window frame-shaped contact surface and a hollow space surrounded by the contact surface. If the thermal insulation structure is installed so that the contact surface is in contact with the cylinder bore wall on the groove-like cooling water flow path side and the cooling water is sealed in the space, the cooling water becomes warm water, and the cylinder bore wall in the part that contacts the warm water The present invention has been completed by discovering that the temperature of the cylinder bore can be maintained and the wall temperature of the cylinder bore wall can be made uniform.

すなわち、本発明は、内燃機関のシリンダブロックのシリンダボア壁の溝状冷却水流路内に設置されるものであって、板状体である凹状の背面部材と、該背面部材の周縁部に形成され溝状冷却水流路側の壁面に接するためのゴム材質からなる窓枠状の接触面を有する桟部材と、該桟部材と該背面部材で囲まれ且つ所定の奥行きを有する空間部とを備えることを特徴とするシリンダボア壁の保温構造体を提供するものである。 That is, the present invention is installed in a groove-like cooling water flow path of a cylinder bore wall of a cylinder block of an internal combustion engine, and is formed on a concave back member that is a plate-like body and a peripheral portion of the back member. A crosspiece member having a window frame-like contact surface made of a rubber material for contacting a wall surface on the groove-like cooling water flow path side , and a space portion surrounded by the crosspiece member and the back member and having a predetermined depth. A cylinder bore wall heat insulating structure is provided.

また、本発明は、前記シリンダボア壁の保温構造体を、該溝状冷却水流路側のシリンダボア壁の壁面と該接触面が接するようにして、設置されることを特徴とする内燃機関を提供するものである。   Further, the present invention provides an internal combustion engine characterized in that the heat insulation structure of the cylinder bore wall is installed so that the wall surface of the cylinder bore wall on the grooved cooling water flow path side is in contact with the contact surface. It is.

本発明によれば、内燃機関のシリンダボア壁の壁温の均一性を高くすることができる。そのため、本発明によれば、シリンダボア壁の上側と下側とで熱変形量の違いを少なくすることができる。   According to the present invention, the uniformity of the wall temperature of the cylinder bore wall of the internal combustion engine can be increased. Therefore, according to the present invention, the difference in the amount of thermal deformation between the upper side and the lower side of the cylinder bore wall can be reduced.

本発明のシリンダボア壁の保温構造体がシリンダブロックに設置されている状態を示す模式的な平面図である。It is a typical top view which shows the state in which the heat insulation structure of the cylinder bore wall of this invention is installed in the cylinder block. 図1のx−x線断面図である。It is the xx sectional view taken on the line of FIG. 図1に示す中のシリンダブロックの斜視図である。It is a perspective view of the cylinder block in FIG. 図1に示すシリンダボア壁の保温構造体の模式的な平面図である。FIG. 2 is a schematic plan view of a heat retaining structure for a cylinder bore wall shown in FIG. 1. 図4のy−y線断面図である。FIG. 5 is a cross-sectional view taken along line yy of FIG. 4. 図4の保温構造体を接触面側から見た正面図である。It is the front view which looked at the heat retention structure of FIG. 4 from the contact surface side. 図4の保温構造体を接触面とは反対側から見た裏面図である。It is the reverse view which looked at the heat retention structure of FIG. 4 from the opposite side to a contact surface. 他の実施の形態例の保温構造体の正面図である。It is a front view of the heat retention structure of another embodiment. 図8の保温構造体の背面図である。It is a rear view of the heat retention structure of FIG. 固定部材の一部である金属基板の正面図である。It is a front view of the metal substrate which is a part of fixing member. 図8のX-X線で切断した部分の断面図(但し、樹脂成形支持体の記載は省略)である。Sectional view of the cutting portion with X 3 -X 3 line in FIG. 8 (however, the description of the resin molded support is omitted) is. 図8のX-X線で切断した部分の断面図である。It is a cross-sectional view of a cut part X 4 -X 4 line in FIG. 保温構造体の設置位置を示す図である。It is a figure which shows the installation position of a heat retention structure. シリンダボア壁の周方向を示す図である。It is a figure which shows the circumferential direction of a cylinder bore wall. 実施例及び比較例におけるシリンダボア壁の溝状冷却水流路側の壁面の温度分布を示す図。The figure which shows the temperature distribution of the wall surface at the side of the groove-shaped cooling water flow path of the cylinder bore wall in an Example and a comparative example.

本発明の第1の実施の形態におけるシリンダボア壁の保温構造体(以下、単に「保温構造体」とも言う。)及び本発明の内燃機関について、図1〜図7を参照して説明する。図1は、本例の保温構造体がシリンダブロックに設置されている状態を示す模式的な平面図であり、図2は、図1のx−x線断面図であり、図3は、図1に示す中のシリンダブロックの斜視図であり、図4は、図1に示すシリンダボア壁の保温構造体の模式的な平面図であり、図5は、図1のx−x線で切った保温構造体の断面図であり、図6は、図4の保温構造体を接触面側から見た正面図であり、図7は、図4の保温構造体を接触面とは反対側から見た裏面図である。なお、図1に示すシリンダブロックには、実際には複数の保温構造体が設置されるが、図1では、そのうちの1つを記載し、他の記載を省略した。また、図2では、二点鎖線より下側部分については、記載を省略した。なお、図2において、保温構造体は溝状冷却水流路の高さ方向のほぼ全体に亘って配置されているが、実際には、溝状冷却水流路の高さ方向の下方2/3に設置される。   A cylinder bore wall heat retaining structure (hereinafter also simply referred to as “heat retaining structure”) and an internal combustion engine of the present invention in a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic plan view showing a state in which the heat insulation structure of this example is installed in a cylinder block, FIG. 2 is a sectional view taken along line xx in FIG. 1, and FIG. 1 is a perspective view of the inside cylinder block shown in FIG. 1, FIG. 4 is a schematic plan view of a heat retaining structure of the cylinder bore wall shown in FIG. 1, and FIG. 5 is cut along line xx in FIG. 6 is a cross-sectional view of the heat insulation structure, FIG. 6 is a front view of the heat insulation structure of FIG. 4 as viewed from the contact surface side, and FIG. 7 is a view of the heat insulation structure of FIG. FIG. In the cylinder block shown in FIG. 1, a plurality of heat retaining structures are actually installed, but in FIG. 1, one of them is shown and the other description is omitted. Moreover, in FIG. 2, description was abbreviate | omitted about the lower part from the dashed-two dotted line. In FIG. 2, the heat retaining structure is arranged over almost the entire height direction of the grooved cooling water flow path, but actually, in the lower 2/3 of the grooved cooling water flow path in the height direction. Installed.

図1及び図3に示すように、保温構造体1aが設置される車両搭載用内燃機関のオープンデッキ型のシリンダブロック11には、ピストンが上下するためのボア12、及び冷却水を流すための溝状冷却水流路14が形成されている。そして、該ボア12と該溝状冷却水流路14とを区切る壁が、シリンダボア壁13である。また、該シリンダブロック11には、該溝状冷却水流路11へ冷却水を供給するための冷却水供給口15及び冷却水を該溝状冷却水流路11から排出するための冷却水排出口16が形成されている。   As shown in FIGS. 1 and 3, an open deck type cylinder block 11 of a vehicle-mounted internal combustion engine in which a heat retaining structure 1 a is installed is provided with a bore 12 for moving a piston up and down, and a cooling water flow. A grooved cooling water flow path 14 is formed. A wall that divides the bore 12 and the grooved coolant flow path 14 is a cylinder bore wall 13. The cylinder block 11 has a cooling water supply port 15 for supplying cooling water to the grooved cooling water channel 11 and a cooling water discharge port 16 for discharging cooling water from the grooved cooling water channel 11. Is formed.

図4〜図7に示すように、保温構造体1aは、シリンダボア壁13に接するゴム材質からなる窓枠状の接触面5aと、接触面5aで囲まれ且つ所定の奥行きを有する空間部6aとを備える。該窓枠状の接触面5aは、該シリンダボア壁13の壁面に接することができるように、該シリンダボア壁13の壁面に沿った形状となっている。   As shown in FIGS. 4 to 7, the heat retaining structure 1 a includes a window frame-shaped contact surface 5 a made of a rubber material in contact with the cylinder bore wall 13, and a space portion 6 a surrounded by the contact surface 5 a and having a predetermined depth. Is provided. The window frame-shaped contact surface 5 a has a shape along the wall surface of the cylinder bore wall 13 so as to be in contact with the wall surface of the cylinder bore wall 13.

窓枠状とは、本例では、図6に例示されるように、上桟部51aと、下桟部53aと、右桟部54aと、左桟部52aで枠状に形成されたものを言う。枠形状は、四角形(図6)に限定されず、例えば円形、楕円形、多角形などであってもよい。枠形状が四角形の場合、それぞれの桟部の幅寸法は、保温構造体1aの材質、接触面圧等により適宜決定されるが、窓枠状の接触面と溝状冷却水流路14の壁面17との接触により冷却水が内部6aに侵入し難いシール性を付与できるものとする。また、枠形状が四角形の場合、内周の角55をアール形状とすれば、窓枠状の接触面と溝状冷却水流路14の壁面17との接触面積を減らして、シール性を高めることができる。   In this example, the window frame shape is a frame formed by an upper beam portion 51a, a lower beam portion 53a, a right beam portion 54a, and a left beam portion 52a as illustrated in FIG. say. The frame shape is not limited to a quadrangle (FIG. 6), and may be, for example, a circle, an ellipse, or a polygon. When the frame shape is a quadrangle, the width dimension of each crosspiece is appropriately determined depending on the material of the heat retaining structure 1a, the contact surface pressure, and the like, but the window frame-shaped contact surface and the wall surface 17 of the groove-shaped cooling water channel 14 It is possible to provide a sealing property that prevents the cooling water from entering the inside 6a by contact with the inside. Further, when the frame shape is a quadrangle, if the inner peripheral corner 55 is rounded, the contact area between the window frame-shaped contact surface and the wall surface 17 of the groove-shaped cooling water channel 14 is reduced, and the sealing performance is improved. Can do.

窓枠状の接触面5aと溝状冷却水流路14の壁面17との接触は、ゴム材質が適宜の接触面圧により、壁面17に当接するものであるため、冷却水の浸入を完全に阻止するようなシール性はなく、僅かな冷却水の浸入を許容する。このような接触により、保温構造体1aを溝状冷却水流路14内に設置し、その後、エンジンを駆動させ、冷却水が流れると、水圧と水流により、冷却水が空間部6aに除々に流入することになる。   The contact between the window-frame-shaped contact surface 5a and the wall surface 17 of the groove-shaped cooling water flow path 14 is a rubber material that comes into contact with the wall surface 17 by an appropriate contact surface pressure, and thus completely prevents the entrance of cooling water. Therefore, a slight amount of cooling water is allowed to enter. By such contact, the heat insulating structure 1a is installed in the grooved cooling water flow path 14, and then the engine is driven. When the cooling water flows, the cooling water gradually flows into the space 6a by the water pressure and the water flow. Will do.

空間部6aは、接触面5aで囲まれ且つ所定の奥行きwを有するものである。すなわち、窓枠状の接触面5aで囲まれる窓部61aは、非貫通である。保温構造体1aは、窓枠状の桟部材51a〜54aと背面部材56が貼り合わされて、窓部61aの凹部(空間部6a)を形成する。所定の奥行きwは、本例では桟部材51a〜54aの厚み寸法となる。窓部61aの凹部は、溝状冷却水流路14の壁面17と接触しないため、保温構造体1aが溝状冷却水流路14内に装着された場合、溝状冷却水流路14の壁面17と窓枠状の桟部51a〜54aと背面部56とで、空間部6aが形成されることになる。このような空間部6aには、エンジン駆動後、除々に冷却水が流れ込み、満杯となって冷却水が封じ込まれ、その後は冷却水の出入りが実質的に無いため、温水が封じ込まれた状態となり、保温を促進する効果が高まる。また、本発明の保温構造体は、冷却水が該溝状冷却水流路側のシリンダボア壁の壁面に直接接触することを防ぐことができる。内部空間5aの容積は、一概に決定できず、エンジンの機種、耐久条件及びエンジンの燃焼域等を考慮して適宜決定される。   The space 6a is surrounded by the contact surface 5a and has a predetermined depth w. That is, the window portion 61a surrounded by the window frame-shaped contact surface 5a is non-penetrating. In the heat retaining structure 1a, the window frame-shaped crosspiece members 51a to 54a and the back member 56 are bonded together to form a concave portion (space portion 6a) of the window portion 61a. The predetermined depth w is the thickness dimension of the crosspiece members 51a to 54a in this example. Since the recessed portion of the window portion 61a does not contact the wall surface 17 of the groove-shaped cooling water flow channel 14, when the heat retaining structure 1a is mounted in the groove-shaped cooling water flow channel 14, the wall surface 17 of the groove-shaped cooling water flow channel 14 and the window The space 6a is formed by the frame-shaped crosspieces 51a to 54a and the back surface 56. In such a space 6a, after the engine is driven, the cooling water gradually flows and becomes full and the cooling water is sealed. After that, since the cooling water does not substantially enter and exit, the warm water is sealed. It becomes a state and the effect which promotes heat retention increases. In addition, the heat retaining structure of the present invention can prevent the cooling water from directly contacting the wall surface of the cylinder bore wall on the groove-like cooling water flow path side. The volume of the internal space 5a cannot be determined unconditionally, and is appropriately determined in consideration of the model of the engine, durability conditions, the combustion region of the engine, and the like.

本発明の保温構造体では、該溝状冷却水流路側のシリンダボア壁の壁面に接する面である該窓枠状の接触面の表面形状は、該溝状冷却水流路側のシリンダボア壁の壁面の形状と合致するように、シリンダブロックの形態例毎に、適宜調節される。   In the heat retaining structure of the present invention, the surface shape of the window frame-shaped contact surface, which is a surface in contact with the wall surface of the cylinder bore wall on the grooved cooling water flow path side, is the shape of the wall surface of the cylinder bore wall on the grooved cooling water flow path side. It adjusts suitably for every form example of a cylinder block so that it may correspond.

本発明の保温構造体の材質は、ゴムである。ゴムとしては、エチレンプロピレンジエンゴム(EPDM)、ニトリルブタジエンゴム(NBR)が挙げられ、この中、エチレンプロピレンジエンゴム(EPDM)が耐ロングライフクーラント性(以下、「耐LLC性」と言う。)及び耐熱性という点で好ましい。   The material of the heat retaining structure of the present invention is rubber. Examples of the rubber include ethylene propylene diene rubber (EPDM) and nitrile butadiene rubber (NBR). Among them, ethylene propylene diene rubber (EPDM) has long life coolant resistance (hereinafter referred to as “LLC resistance”). And preferable in terms of heat resistance.

保温構造体の材質が上記のゴムであれば、冷却水流路内において、−10℃〜150℃、特に−40℃〜200℃の温度で、且つ10年以上の長期間の環境において、十分な安定性を維持しつつ本願発明の作用効果を奏し、また、LLCによる腐食の問題も生じない。   If the material of the heat retaining structure is the above rubber, it is sufficient in a cooling water flow path at a temperature of −10 ° C. to 150 ° C., particularly −40 ° C. to 200 ° C., and in a long-term environment of 10 years or more. The effects of the present invention can be achieved while maintaining stability, and the problem of corrosion due to LLC does not occur.

また、本発明の保温構造体は、形状を保持するために、保温構造体の内部又は該接触面とは反対の裏面に、補強材を有してもよい。   Moreover, in order to maintain the shape, the heat retaining structure of the present invention may have a reinforcing material inside the heat retaining structure or on the back surface opposite to the contact surface.

本発明の保温構造体は、該固定部材により、該接触面が該シリンダボア壁に接するように固定される。図1、図2、図4〜図7に示す形態例では、窓枠状の接触面5aが、該シリンダボア壁13の該溝状冷却水流路14側の壁面17に接するように、該保温構造体1a及び該固定部材2aが、該溝状冷却水流路14内に設置されている。   The heat retaining structure of the present invention is fixed by the fixing member so that the contact surface is in contact with the cylinder bore wall. In the embodiment shown in FIGS. 1, 2, and 4 to 7, the heat retaining structure is configured such that the window frame-like contact surface 5 a contacts the wall surface 17 of the cylinder bore wall 13 on the grooved coolant flow channel 14 side. The body 1a and the fixing member 2a are installed in the grooved cooling water flow path 14.

該固定部材2aは、該連結部3a及び該対壁接触部4aからなる。該対壁接触部4aは、該シリンダボア壁13とは反対側の該溝状冷却水流路14の壁面18に接するので、該対壁接触部4aの接触面の表面形状は、該壁面18の形状である。該連結部3aは、該保温構造体1aと該対壁接触部とを連結するものである。そして、該連結部3aは、図7に示すように、冷却水が流れる方向21に上り傾斜の形状であることが、冷却水が流れた時に、冷却水の水流で、該保温構造体1a及び該対壁接触部4aに、該溝状冷却水流路14の下方に向かって押し付けられる力が加えられるので、該保温構造体1aが、該シリンダボア壁13に押し付けられ固定され易くなる点で好ましい。なお、図7では、該連結部3aの輪郭を点線で示した。   The fixing member 2a includes the connecting portion 3a and the opposite wall contact portion 4a. Since the facing wall contact portion 4a is in contact with the wall surface 18 of the grooved cooling water flow path 14 on the opposite side to the cylinder bore wall 13, the surface shape of the contacting surface of the facing wall contact portion 4a is the shape of the wall surface 18. It is. The connecting portion 3a connects the heat retaining structure 1a and the opposite wall contact portion. As shown in FIG. 7, the connecting portion 3 a has an upwardly inclined shape in the direction 21 in which the cooling water flows. When the cooling water flows, the heat retaining structure 1 a and the heat retaining structure 1 a Since the force pressed toward the lower side of the groove-like cooling water flow path 14 is applied to the opposite wall contact portion 4a, it is preferable in that the heat retaining structure 1a is easily pressed and fixed to the cylinder bore wall 13. In FIG. 7, the outline of the connecting portion 3a is indicated by a dotted line.

本発明の保温構造体において、該固定部材としては、図1、図2、図4〜図7に示す形態例に限定されるものではなく、例えば、図8〜図12に示すようなものであってもよい。図8〜図12において、図1、図2、図4〜図7と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。すなわち、保温構造体1bにおいて、保温構造体1aと異なる点は、固定部材及び保温構造体の固定方法である。   In the heat retaining structure of the present invention, the fixing member is not limited to the embodiment shown in FIGS. 1, 2, and 4 to 7, for example, as shown in FIGS. 8 to 12. There may be. 8 to 12, the same components as those in FIGS. 1, 2, and 4 to 7 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, the heat retaining structure 1b is different from the heat retaining structure 1a in the fixing member and the method for fixing the heat retaining structure.

保温構造体1bは、保温構造体1aと同様に、シリンダボア壁の溝状冷却水流路側の壁面形状に沿った内側がくり抜かれた凹状の窓枠状のものであるが、シリンダボア壁と非接触の凹部の底面はSUS板等耐LLC性と耐熱性にすぐれた金属基板40aである。すなわち、保温構造体1bは、金属基板40aに固定されている。保温構造体1bと金属基板40aを固定するには、先ず保温構造体1bである表面部材と、中心部材である金属基板40aと、表面部材と同じ材質の裏面部材11bの都合3パーツを準備する。3パーツはいずれもシリンダボア壁の溝状冷却水流路側の壁面形状に沿った凹状である。金属基板40aは、平面視での形状が保温構造体1bの大きさ(図10中、破線401で示される四角形)より小さく、窓部(凹部)の大きさ(破線402で示される四角形)より大きい凹状の板状体である。また、金属基板40aは、周縁部に、接着用の貫通穴46を多数有し、左右方向の中央には上下に2つの位置決め用の貫通穴45を有している。   Similar to the heat retaining structure 1a, the heat retaining structure 1b has a concave window frame shape in which the inside along the wall surface shape of the cylinder bore wall on the grooved coolant flow channel side is hollow, but is not in contact with the cylinder bore wall. The bottom surface of the recess is a metal substrate 40a having excellent LLC resistance and heat resistance, such as a SUS plate. That is, the heat retaining structure 1b is fixed to the metal substrate 40a. In order to fix the heat retaining structure 1b and the metal substrate 40a, first, three parts are prepared: a surface member that is the heat retaining structure 1b, a metal substrate 40a that is a central member, and a back member 11b that is made of the same material as the surface member. . All of the three parts are concave along the wall shape of the cylinder bore wall on the groove-like cooling water flow path side. The shape of the metal substrate 40a in plan view is smaller than the size of the heat retaining structure 1b (a quadrangle indicated by a broken line 401 in FIG. 10), and from the size of a window (recess) (a quadrangle indicated by a broken line 402). It is a large concave plate-like body. In addition, the metal substrate 40a has a large number of through holes 46 for bonding at the peripheral edge, and has two through holes 45 for positioning at the top and bottom in the center in the left-right direction.

金属基板40aに保温構造体1bを固定するには、裏面部材11bを作業台の上に載せ、裏面部材11bの上に金属基板40aを載置する。この際、位置決め用の貫通穴45を裏面部材11bの左右方向の中心位置にくるようにセットする。次いで、表面部材である保温構造体1bを上から載置する。すなわち、金属基板40aを保温構造体1bと裏面部材11bで挟みこむようにして固定する。これにより、保温構造体1bと金属基板40aは一体化すると共に、溝状冷却水流路に設置された後は、冷却水を封じ込む空間部6aを形成する。   In order to fix the heat retaining structure 1b to the metal substrate 40a, the back member 11b is placed on the work table, and the metal substrate 40a is placed on the back member 11b. At this time, the positioning through hole 45 is set so as to come to the center position in the left-right direction of the back surface member 11b. Next, the heat retaining structure 1b, which is a surface member, is placed from above. That is, the metal substrate 40a is fixed so as to be sandwiched between the heat retaining structure 1b and the back surface member 11b. Thereby, the heat retaining structure 1b and the metal substrate 40a are integrated, and after being installed in the groove-like cooling water flow path, a space 6a for containing the cooling water is formed.

保温構造体1bの固定部材2bは、金属基板40aと、窓枠状の樹脂成形支持体2cと、帯状の留め金31a、31b、32からなる。窓枠状の樹脂成形支持体2cは、保温構造体1bよりやや大きいシリンダボア壁の溝状冷却水流路側の壁面形状に沿った凹状体であり、中央には貫通穴50cを、上部には3つの帯状の留め金31a、31b、32の上部先端が係合するスリット50aを、下部には3つの帯状の留め金31a、31b、32の下部先端が係合するスリット50bをそれぞれ有している。   The fixing member 2b of the heat retaining structure 1b includes a metal substrate 40a, a window frame-shaped resin molded support 2c, and belt-shaped clasps 31a, 31b, and 32. The window frame-shaped resin-molded support 2c is a concave body along the wall shape of the grooved coolant flow channel side of the cylinder bore wall that is slightly larger than the heat retaining structure 1b, and has a through hole 50c at the center and three holes at the top. The upper end of the belt-shaped clasps 31a, 31b, 32 is engaged with a slit 50a, and the lower portion has a slit 50b with which the lower ends of the three band-shaped clasps 31a, 31b, 32 are engaged.

帯状の留め金32は、金属基板40aを窓枠状の樹脂成形支持体2cに固定する機能を付与するものであり、中央部で金属基板40aと溶着し、上下両側部には左右方向における中央部のスリット50a、50bに係合する湾曲部を有している。帯状の留め金31a、31bは、保温構造体1bを固定する窓枠状の樹脂成形支持体2cを、溝状冷却水流路14内に安定して固定するものであり、中央部で金属基板40aと溶着し、上下両側は大きく湾曲してバネ構造を呈し、その先端は左右のスリット50a、50bに係合するフック状となっている。   The band-shaped clasp 32 gives the function of fixing the metal substrate 40a to the window frame-shaped resin molding support 2c, and is welded to the metal substrate 40a at the center, and the center in the left-right direction on both the upper and lower sides. It has a curved part engaged with slits 50a and 50b of the part. The band-shaped clasps 31a and 31b are for stably fixing the window frame-shaped resin molded support 2c for fixing the heat retaining structure 1b in the groove-shaped cooling water flow path 14, and the metal substrate 40a at the center. The upper and lower sides are greatly curved to form a spring structure, and the tip thereof has a hook shape that engages with the left and right slits 50a and 50b.

そして、2つの帯状の留め金31a、31bの上部先端のフック及び帯状の留め金32の上部先端の湾曲部をスリット50aに係止させ、2つの帯状の留め金31a、31bの下部先端のフック及び帯状の留め金32の下部先端の湾曲部をスリット50bに係止させることで、窓枠状の樹脂成形支持体2cに、保温構造体1bを固定させ、更には、保温構造体1bを固定する窓枠状の樹脂成形支持体2cを、溝状冷却水流路14内に安定に固定させている。これにより、ボアの径方向及び冷却水の流れ方向の動きを規制でき、設置安定性が高まる。   Then, the hooks at the upper ends of the two band-shaped clasps 31a and 31b and the curved portions at the upper ends of the band-shaped clasps 32 are engaged with the slit 50a, and the hooks at the lower ends of the two band-shaped clasps 31a and 31b. And the curved portion at the lower end of the belt-shaped clasp 32 is locked to the slit 50b, thereby fixing the heat retaining structure 1b to the window frame-shaped resin molded support 2c, and further fixing the heat retaining structure 1b. The window frame-shaped resin molded support 2c to be fixed is stably fixed in the groove-shaped cooling water flow path 14. Thereby, the movement of the radial direction of a bore and the flow direction of a cooling water can be controlled, and installation stability increases.

保温構造体1bを、溝状冷却水流路14に挿入する際、帯状の留め金31a、31bの両端のフック部が、対壁に接しつつ狭い溝状冷却水流路14の形状に抗して挿入される。この際、保温構造体1bの窓枠状の接触面5bは、シリンダボア壁の溝状冷却水流路14側の壁面に当接している。帯状の留め金31a、31bのバネ力により、保温構造体1bの窓枠状の接触面が、当該壁面により強く押されるため、シール性が向上し、当該壁面と、保温構造体1bの4つの縁部と、金属基板40aとで囲まれた内部空間に冷却水が侵入することを防止する。また、当該内部空間には、冷却水が封じ込まれ、冷却水の出入りが実質的に無いため、冷却水が温められ、温水が封じ込まれた状態となり、保温を促進する効果が高まる。このように、保温構造体1bが設置されている内燃機関においても、保温構造体1aと同様に、冷却水がシリンダボア壁に直接接触することを防止するので、保温促進するシリンダボア壁の下側部分の温度が、上側部分と同程度まで保温することができる。   When the heat retaining structure 1b is inserted into the grooved cooling water flow path 14, the hook portions at both ends of the band-shaped clasps 31a and 31b are inserted against the shape of the narrow grooved cooling water flow path 14 in contact with the opposite wall. Is done. At this time, the window frame-like contact surface 5b of the heat retaining structure 1b is in contact with the wall surface of the cylinder bore wall on the groove-like cooling water flow path 14 side. Due to the spring force of the belt-shaped clasps 31a and 31b, the window frame-like contact surface of the heat retaining structure 1b is strongly pressed by the wall surface, so that the sealing performance is improved, and the wall surface and the four heat retaining structures 1b Cooling water is prevented from entering the internal space surrounded by the edge and the metal substrate 40a. Moreover, since the cooling water is sealed in the internal space and the cooling water does not substantially enter and exit, the cooling water is warmed and the warm water is sealed, and the effect of promoting heat retention is enhanced. Thus, also in the internal combustion engine in which the heat retaining structure 1b is installed, the lower portion of the cylinder bore wall that promotes heat retention is prevented because the cooling water is prevented from coming into direct contact with the cylinder bore wall, similarly to the heat retaining structure 1a. Can be kept at the same temperature as the upper portion.

なお、これらの固定部材は、あくまでも形態例であり、該保温構造体の接触面が該シリンダボア壁の壁面に接するように、該保温構造体を該シリンダボア壁に固定できるものであればよい。   Note that these fixing members are merely examples, and any member can be used as long as the heat retaining structure can be fixed to the cylinder bore wall so that the contact surface of the heat retaining structure is in contact with the wall surface of the cylinder bore wall.

なお、本発明の保温構造体の全体形状及び該固体部材の形状は、該溝状冷却水流路に冷却水が流れるのを妨げる形状でなければ、特に制限されない。   The overall shape of the heat retaining structure of the present invention and the shape of the solid member are not particularly limited as long as the shape does not hinder cooling water from flowing through the groove-shaped cooling water flow path.

本発明の内燃機関は、内燃機関のシリンダブロックのシリンダボア壁の溝状冷却水流路側の壁面に接するためのゴム材質からなる窓枠状の接触面と、該接触面で囲まれ且つ所定の奥行きを有する空間部とを備える保温構造体が、該溝状冷却水流路側のシリンダボア壁の壁面に該接触面で接するようにして、設置されているものである。   An internal combustion engine of the present invention includes a window frame-like contact surface made of a rubber material for contacting a wall surface of a cylinder bore wall of a cylinder block of an internal combustion engine on the side of a grooved cooling water flow path, and is surrounded by the contact surface and has a predetermined depth. A heat insulating structure including a space portion is provided so as to be in contact with the wall surface of the cylinder bore wall on the groove-like cooling water flow path side at the contact surface.

本発明の内燃機関では、本発明の保温構造体により、該シリンダボア壁の周方向の全部が覆われていてもよいが、本発明の保温構造体を設置するときの作業性、熱膨張率による変形、費用対効果、設置部より下流側での水流れ淀みによる保温効果等を考慮して、図13に示すように、該シリンダボア壁の周方向の一部に、本発明の保温構造体に覆われていない部分があってもよい。なお、図13では、黒く塗りつぶした部分が、保温構造体1の設置位置を示す。また、該シリンダボア壁の周方向23とは、図14に示すように、該シリンダボア壁13の外周を囲む方向であり、該シリンダボア壁13を横から見たときの該シリンダボア壁13の左右方向である。図14中、(A)は該シリンダボア壁13のみを示す平面図であり、(B)は該シリンダボア壁13のみを示す正面図である。   In the internal combustion engine of the present invention, the heat insulation structure of the present invention may cover the entire circumferential direction of the cylinder bore wall. However, depending on workability and thermal expansion coefficient when installing the heat insulation structure of the present invention. Considering deformation, cost-effectiveness, heat retention effect due to water flow stagnation downstream from the installation part, etc., as shown in FIG. 13, the heat insulation structure of the present invention is formed on a part of the circumferential direction of the cylinder bore wall. There may be uncovered parts. In FIG. 13, the blackened portion indicates the installation position of the heat retaining structure 1. Further, as shown in FIG. 14, the circumferential direction 23 of the cylinder bore wall is a direction surrounding the outer circumference of the cylinder bore wall 13, and in the left-right direction of the cylinder bore wall 13 when the cylinder bore wall 13 is viewed from the side. is there. 14A is a plan view showing only the cylinder bore wall 13 and FIG. 14B is a front view showing only the cylinder bore wall 13.

本発明の内燃機関において、該シリンダボア壁の上下方向において、本発明の保温構造体の空間部の設置位置は、すなわち、温水が当たる部分は、該溝状冷却水流路の下方2/3に相当する領域である。シリンダボア壁においては、上死点では温度が高く、下死点では温度が低いため、温度の低い溝状冷却水流路14の下方2/3に相当する領域を保温すれば、シリンダボア壁の壁温を概ね均一にできる。   In the internal combustion engine of the present invention, in the vertical direction of the cylinder bore wall, the installation position of the space portion of the heat retaining structure of the present invention, that is, the portion where the hot water hits corresponds to the lower 2/3 of the grooved cooling water flow path It is an area to do. In the cylinder bore wall, the temperature is high at the top dead center and the temperature is low at the bottom dead center. Therefore, if the region corresponding to the lower 2/3 of the low-temperature groove-like cooling water flow path 14 is kept warm, the wall temperature of the cylinder bore wall Can be made substantially uniform.

本発明の保温構造体は、エンジン組立時、溝状冷却水流路内に挿入される。この時、冷却水は入っていない。次いで、溝状冷却水流路内に冷却水が注入されるが、この程度では保温構造体の空間部に冷却水は浸入しない。次いで、エンジンを駆動すると冷却水は毎分100リットル程度、溝状冷却水流路内に流れ込み、満杯となって空間部に冷却水が封じ込まれ、その後は冷却水の出入りが実質的に無いため、温水が封じ込まれた状態となり、保温を促進する効果が高まる。このため、温水が当たるシリンダボア壁の下側部分は、燃料が爆発する上側部分に比べ、温度がそれほど低くならず、シリンダボア壁の上側部分と下側部分とでは、温度差が大きくならない。   The heat retaining structure of the present invention is inserted into the groove-shaped cooling water flow path when the engine is assembled. At this time, cooling water is not contained. Next, the cooling water is injected into the grooved cooling water flow path, but at this level, the cooling water does not enter the space of the heat retaining structure. Next, when the engine is driven, the cooling water flows into the groove-shaped cooling water flow path at about 100 liters per minute, becomes full and the cooling water is sealed in the space, and thereafter the cooling water does not substantially enter and exit. The hot water is sealed, and the effect of promoting heat retention is enhanced. For this reason, the temperature of the lower part of the cylinder bore wall where the hot water hits is not much lower than that of the upper part where the fuel explodes, and the temperature difference does not increase between the upper part and the lower part of the cylinder bore wall.

従来の内燃機関では、該シリンダボア壁の下側部分は、燃料が爆発する上側部分に比べ、温度が低いため、冷却水により冷却され易い。そのため、該シリンダボア壁の上側部分と下側部分とでは、温度差が大きくなる。   In the conventional internal combustion engine, the lower part of the cylinder bore wall has a lower temperature than the upper part where the fuel explodes, and is thus easily cooled by the cooling water. Therefore, a temperature difference becomes large between the upper part and the lower part of the cylinder bore wall.

それに対して、本発明の保温構造体が設置されている内燃機関では、封じ込まれた冷却水が暖められて温水となり、保温を促進すると共に、冷却水が該シリンダボア壁に直接接触することが防がれるので、該シリンダボア壁の下側部分の温度が、上側部分と同程度まで保温することができる。   On the other hand, in the internal combustion engine in which the heat retaining structure of the present invention is installed, the enclosed cooling water is warmed to become warm water, promoting heat retention, and the cooling water may directly contact the cylinder bore wall. Therefore, the temperature of the lower part of the cylinder bore wall can be kept at the same level as the upper part.

なお、本発明の内燃機関は、該シリンダブロック、該保温構造体及び該固定部材の他に、ピストン、シリンダヘッド、ヘッドガスケット等を有する。   The internal combustion engine of the present invention includes a piston, a cylinder head, a head gasket, and the like in addition to the cylinder block, the heat retaining structure, and the fixing member.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

実施例
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
参考例1
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
Reference example 1

(壁面との密着性等の確認試験)
図8〜図12に示す形状であって、下記仕様の保温構造体を作成した。この保温構造体を、図2に示す形状であって、下記仕様の試験用3気筒内燃機関の観察窓付きシリンダブロックのシリンダボア壁周りに形成される溝状冷却水流路内に設置し、冷却水を毎分100リットルで流した。冷却水を流した後、保温構造体が冷却水の流れで動くか否か、保温構造体の接触面が溝状冷却水流路側の壁面に密着しているか否かを、保温構造体の空間部に冷却水が満たされたか否かを連続して、観察窓から観察した。その結果、保温構造体は、シリンダボア壁に十分密着し、冷却水の流れの中で動くことはなかった。また、保温構造体の空間部に冷却水が満たされていたことは、試験後、冷却水を排水して取り出したところで、内部が濡れていたこと等により確認した。
(Confirmation test for adhesion to wall surface)
A heat insulating structure having the shape shown in FIGS. 8 to 12 and having the following specifications was prepared. This heat retaining structure is installed in a groove-shaped cooling water flow path formed around the cylinder bore wall of a cylinder block with an observation window of a test three-cylinder internal combustion engine having the following specifications as shown in FIG. Was run at 100 liters per minute. After flowing the cooling water, whether or not the heat retaining structure moves with the flow of the cooling water, and whether the contact surface of the heat retaining structure is in close contact with the wall surface on the grooved cooling water flow path side or not Whether or not the cooling water was filled was continuously observed from the observation window. As a result, the heat retaining structure was in close contact with the cylinder bore wall and did not move in the flow of cooling water. In addition, the fact that the cooling water was filled in the space of the heat retaining structure was confirmed by the fact that the interior was wet after draining and removing the cooling water after the test.

(保温構造体)
・材質;エチレン-プロピレン-ジエン共重合ゴム
・空間部の高さ、幅、奥行き;20mm、40mm、2mm
(Insulation structure)
・ Material: Ethylene-propylene-diene copolymer rubber ・ Height, width, depth of space: 20mm, 40mm, 2mm

(試験用内燃機関)
・溝状冷却水流路の流路幅;8.4mm
・溝状冷却水流路の流路高さ(上下方向の高さ);90mm
・保温構造体の空間部の設置位置;下端が溝状冷却水流路の下方から5mmの位置
・供給冷却水温度;20〜40℃
(Test internal combustion engine)
-Channel width of grooved cooling water channel; 8.4mm
-Channel height (vertical height) of grooved cooling water channel: 90mm
-Installation position of the space part of the heat retaining structure; a position where the lower end is 5 mm from below the grooved cooling water flow path-Supply cooling water temperature: 20-40 ° C

(数値流体力学的解析結果)
冷却水の流れが安定した状態及び保温構造体の空間部は温水ではなく、保温構造体のベタ当たりであることを解析条件として、公知の数値流体力学的(Computational Fluid Dynamics)解析を行った。その結果を図15に示す。図15中、中央の温度分布は3気筒の中、真ん中のシリンダボア壁面のもの、左側及び右側の温度分布はこれに隣接するシリンダボア壁面のものである。また、図15中、参考例1の符号Aは過冷却防止部材が密着している部分である。なお、参考例1の解析では、空間部の温水は考慮されていないが、空間部の容積が小さいため、対流による温水の流れも小さい。また、冷却水はすぐに温度が上がり熱的に飽和状態となる。従って、空間部の温水の影響を考慮した解析結果においては、保温構造体のベタ当たりの場合と概ね同様のものと考えられる。ベタ当たりとは、空間部の無い全面ゴム部材のものをボア壁面に全面接触させたものを言う。なお、図15中、参考例1の符号Aは保温構造体の当たり部分である。
(Numerical hydrodynamic analysis results)
A known Computational Fluid Dynamics analysis was performed on the condition that the flow of the cooling water was stable and that the space portion of the heat retaining structure was not warm water but a solid surface of the heat retaining structure. The result is shown in FIG. In FIG. 15, the temperature distribution at the center is that of the cylinder bore wall surface in the middle of the three cylinders, and the temperature distribution on the left and right sides is that of the cylinder bore wall surface adjacent thereto. Further, in FIG. 15, reference numeral A in Reference Example 1 is a portion where the overcooling prevention member is in close contact. In the analysis of Reference Example 1, the hot water in the space is not taken into account, but since the volume of the space is small, the flow of hot water due to convection is also small. Further, the temperature of the cooling water immediately rises and becomes thermally saturated. Therefore, in the analysis result in consideration of the influence of the hot water in the space portion, it is considered that it is almost the same as the case where the heat retaining structure is solid. The term “per-solid” refers to a whole rubber member having no space portion that is in full contact with the bore wall surface. In addition, in FIG. 15, the code | symbol A of the reference example 1 is a contact part of a heat retention structure.

比較例1
保温構造体の使用を省略した以外は、参考例1と同様の方法により、数値流体力学的解析を行った。その結果を図15に示す。
Comparative Example 1
A numerical hydrodynamic analysis was performed by the same method as in Reference Example 1 except that the use of the heat retaining structure was omitted. The result is shown in FIG.

比較例2
保温構造体に代えて、特開2008−31939号公報に記載の可撓性リップ部材(スペーサー部材)を使用した以外は、参考例1と同様の方法により、数値流体力学的解析を行った。比較例2は、参考例1の保温構造体を設置した部分において、冷却水量を制限したものである。その結果を図15に示す。
Comparative Example 2
Numerical fluid dynamic analysis was performed by the same method as in Reference Example 1 except that a flexible lip member (spacer member) described in JP-A-2008-31939 was used instead of the heat retaining structure. The comparative example 2 restrict | limits the amount of cooling water in the part in which the heat insulation structure of the reference example 1 was installed. The result is shown in FIG.

図15の結果から明らかなように、保温構造体が接触する壁面において、参考例1は比較例1及び2に比べて、6〜8℃上昇し、当該壁面の保温効果が高いことが判る。また、参考例1では、シリンダボア壁の溝状冷却水流路側の壁面の温度は、上下方向において、5℃の差であり、概ね均一であることが判る。   As is apparent from the results of FIG. 15, it can be seen that the reference example 1 is 6 to 8 ° C. higher than Comparative Examples 1 and 2 on the wall surface with which the heat retaining structure is in contact, and the heat retaining effect of the wall surface is high. Further, in Reference Example 1, it can be seen that the temperature of the wall surface of the cylinder bore wall on the grooved coolant flow channel side is substantially uniform with a difference of 5 ° C. in the vertical direction.

本発明によれば、内燃機関のシリンダボア壁の上側と下側との変形量の違いを少なくすることができるので、ピストンの摩擦を低くすることができるため、省燃費の内燃機関を提供できる。   According to the present invention, since the difference in deformation amount between the upper side and the lower side of the cylinder bore wall of the internal combustion engine can be reduced, the friction of the piston can be reduced, so that a fuel-saving internal combustion engine can be provided.

1a、1b 保温構造体
2a、2b 固定部材
2c 窓枠状の樹脂成形支持体
3a 連結部
4a、31b 対壁接触部
5a、5b 接触面
6a 空間部
11 シリンダブロック
12 ボア
13 シリンダボア壁
14 溝状冷却水流路
15 冷却水供給口
16 冷却水排出口
17 シリンダボア壁13の溝状冷却水流路14側の壁面
18 シリンダボア壁13とは反対側の溝状冷却水流路14の壁面
21 冷却水が流れる方向
22 埋め込み部
23 該シリンダボア壁の周方向
31a、31b、32 帯状の留め金
40a 金属基板
61a 窓部
1a, 1b Thermal insulation structure 2a, 2b Fixing member 2c Window frame-shaped resin-molded support 3a Connection portions 4a, 31b Wall contact portions 5a, 5b Contact surface 6a Space portion 11 Cylinder block 12 Bore 13 Cylinder bore wall 14 Groove cooling Water channel 15 Cooling water supply port 16 Cooling water discharge port 17 Wall surface 18 on the grooved cooling water channel 14 side of the cylinder bore wall 13 Wall surface 21 of the grooved cooling water channel 14 on the opposite side of the cylinder bore wall 13 Direction 22 in which the cooling water flows Embedded portion 23 Circumferential directions 31a, 31b, 32 of the cylinder bore wall Band-shaped clasp 40a Metal substrate 61a Window portion

Claims (5)

内燃機関のシリンダブロックのシリンダボア壁の溝状冷却水流路内に設置されるものであって、板状体である凹状の背面部材と、該背面部材の周縁部に形成され溝状冷却水流路側の壁面に接するためのゴム材質からなる窓枠状の接触面を有する桟部材と、該桟部材と該背面部材で囲まれ且つ所定の奥行きを有する空間部とを備えることを特徴とするシリンダボア壁の保温構造体。 It is installed in a groove-like cooling water flow path of a cylinder bore wall of a cylinder block of an internal combustion engine, and is formed in a concave back member that is a plate-like body and a groove-like cooling water flow path side formed on a peripheral portion of the back member. A cylinder bore wall comprising: a crosspiece member having a window frame-shaped contact surface made of a rubber material for contacting a wall surface; and a space portion surrounded by the crosspiece member and the back member and having a predetermined depth. Thermal insulation structure. 前記ゴム材質が、エチレンプロピレンジエンゴムであることを特徴とする請求項1記載のシリンダボア壁の保温構造体 The heat insulating structure for a cylinder bore wall according to claim 1, wherein the rubber material is ethylene propylene diene rubber . 前記背面部材が、金属基板である請求項1又は2記載のシリンダボア壁の保温構造体。The heat retaining structure for a cylinder bore wall according to claim 1 or 2, wherein the back member is a metal substrate. 請求項1〜3のいずれか1項に記載のシリンダボア壁の保温構造体を、前記溝状冷却水流路側のシリンダボア壁の壁面と前記接触面が接するようにして、設置されることを特徴とする内燃機関。 The cylinder bore wall heat insulation structure according to any one of claims 1 to 3, wherein the contact surface is in contact with a wall surface of the cylinder bore wall on the groove-like cooling water flow path side. Internal combustion engine. 前記シリンダボア壁の保温構造体の空間部の上下方向の設置範囲が、前記溝状冷却水流路の下方2/3に相当する領域であることを特徴とする請求項記載の内燃機関。 The internal combustion engine according to claim 4 , wherein an installation range in a vertical direction of a space portion of the heat retaining structure on the cylinder bore wall is a region corresponding to a lower 2/3 of the grooved coolant flow path.
JP2010146048A 2010-06-28 2010-06-28 Thermal insulation structure for cylinder bore wall and internal combustion engine Active JP5468476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146048A JP5468476B2 (en) 2010-06-28 2010-06-28 Thermal insulation structure for cylinder bore wall and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146048A JP5468476B2 (en) 2010-06-28 2010-06-28 Thermal insulation structure for cylinder bore wall and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012007584A JP2012007584A (en) 2012-01-12
JP5468476B2 true JP5468476B2 (en) 2014-04-09

Family

ID=45538394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146048A Active JP5468476B2 (en) 2010-06-28 2010-06-28 Thermal insulation structure for cylinder bore wall and internal combustion engine

Country Status (1)

Country Link
JP (1) JP5468476B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650504B2 (en) * 2010-11-19 2015-01-07 ニチアス株式会社 Thermal insulation structure for cylinder bore wall, internal combustion engine and automobile
JP5948268B2 (en) * 2013-03-15 2016-07-06 ニチアス株式会社 Insulating member for cylinder bore wall
JP6198303B2 (en) * 2013-07-01 2017-09-20 内山工業株式会社 Spacer
JP6249751B2 (en) * 2013-12-11 2017-12-20 ダイハツ工業株式会社 Water jacket spacer
JP6199911B2 (en) * 2014-03-31 2017-09-20 トヨタ自動車株式会社 Water jacket spacer
JP6340234B2 (en) * 2014-04-11 2018-06-06 ニチアス株式会社 Cylinder bore wall insulation, internal combustion engine and automobile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256661A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Cooling structure of cylinder block
JP2007309221A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Internal combustion engine cooling mechanism, method for forming preheating channel and separating member
JP4851258B2 (en) * 2006-07-31 2012-01-11 トヨタ自動車株式会社 Heat medium passage partition member for cooling internal combustion engine, internal combustion engine cooling mechanism, and internal combustion engine cooling mechanism forming method

Also Published As

Publication number Publication date
JP2012007584A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5468476B2 (en) Thermal insulation structure for cylinder bore wall and internal combustion engine
WO2011162096A1 (en) Heat retention member for cylinder bore wall, internal combustion engine, and automobile
JP2012007478A (en) Supercooling preventing member for cylinder bore wall and internal combustion engine
JP5830134B2 (en) Overcooling prevention member for cylinder bore wall and internal combustion engine
US8919302B2 (en) Cooling structure for internal combustion engine
JP6128294B2 (en) Water jacket spacer
JP5650504B2 (en) Thermal insulation structure for cylinder bore wall, internal combustion engine and automobile
JP5064475B2 (en) Internal combustion engine cooling structure
US10378419B2 (en) Water jacket spacer
JP5948268B2 (en) Insulating member for cylinder bore wall
US10808595B2 (en) Engine cooling system for vehicle
JP2005256661A (en) Cooling structure of cylinder block
JP2007247590A (en) Water jacket spacer and method for installing water jacket spacer
JP5064469B2 (en) Internal combustion engine cooling structure
JP6216731B2 (en) Insulating member for cylinder bore wall, internal combustion engine and automobile
JP2011106399A (en) Cooling structure for internal combustion engine
JP5064470B2 (en) Internal combustion engine cooling structure
JP5118729B2 (en) Internal combustion engine cooling passage structure
JP2017067075A (en) Heat insulation member for cylinder bore wall, internal combustion engine, and automobile
JP5830049B2 (en) Assembling method of heat retaining member of cylinder bore wall
JP2012189064A (en) Water jacket with spacer
JP5064473B2 (en) Internal combustion engine cooling structure
JP5064472B2 (en) Internal combustion engine cooling structure
KR101047684B1 (en) A cylinder block assembly having a wet liner
JP2011106391A (en) Cooling structure for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5468476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250