JP5461636B2 - Turbine split ring - Google Patents

Turbine split ring Download PDF

Info

Publication number
JP5461636B2
JP5461636B2 JP2012184803A JP2012184803A JP5461636B2 JP 5461636 B2 JP5461636 B2 JP 5461636B2 JP 2012184803 A JP2012184803 A JP 2012184803A JP 2012184803 A JP2012184803 A JP 2012184803A JP 5461636 B2 JP5461636 B2 JP 5461636B2
Authority
JP
Japan
Prior art keywords
turbine
split ring
seal plate
divided body
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012184803A
Other languages
Japanese (ja)
Other versions
JP2012237318A (en
Inventor
正幸 ▲高▼濱
正雄 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012184803A priority Critical patent/JP5461636B2/en
Publication of JP2012237318A publication Critical patent/JP2012237318A/en
Application granted granted Critical
Publication of JP5461636B2 publication Critical patent/JP5461636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、ガスタービンにおいてタービン動翼の先端(チップ)から半径方向外側に略一定の距離を保つようにして周方向に配設される環状のタービン分割環に関するものである。   The present invention relates to an annular turbine split ring disposed in a circumferential direction so as to maintain a substantially constant distance radially outward from a tip (tip) of a turbine rotor blade in a gas turbine.

ガスタービンにおいてタービン動翼の先端から半径方向外側に略一定の距離を保つようにして周方向に配設される環状のタービン分割環としては、例えば、特許文献1に開示されたものが知られている。   As an annular turbine split ring disposed in the circumferential direction so as to maintain a substantially constant distance radially outward from the tip of the turbine rotor blade in a gas turbine, for example, the one disclosed in Patent Document 1 is known. ing.

特開2000−257447号公報JP 2000-257447 A

ガスタービン分割環を構成する複数の分割体は、周方向に沿って配置されており、隣り合う分割体間の隙間は、一の分割体におけるタービン動翼の回転方向後方側に位置する端部の側面に形成された溝と、一の分割体に隣接する他の分割体におけるタービン動翼の回転方向前方側に位置する端部の側面に形成された溝との間にシール板が挿入されることにより封止される。また、これにより、隣り合う分割体は周方向に連結され全体として環状の分割環を形成するようになっている。しかしながら、特許文献1に開示された分割体により構成される分割環では、シール板が分割体に対して固定されていないため、タービン動翼の回転によって巻き込まれた高温ガス流によって、分割体の溝周辺に酸化減肉や振動、磨耗などが重畳して生じた場合、シール板が溝内から抜け出して脱落してしまう恐れがある。また、シール板が脱落すると、シール機能低下によってガスタービン全体の効率が低下したり、高温ガスの逆流や漏れ込みによって他の部品にも酸化減肉、焼損、溶融、欠落が生じる恐れがある。あるいは、飛散したシール板によって他の部品が破損する等の悪影響(二次的被害)を及ぼす恐れがある。   The plurality of divided bodies constituting the gas turbine divided ring are arranged along the circumferential direction, and the gap between the adjacent divided bodies is an end located on the rear side in the rotational direction of the turbine rotor blade in one divided body. A seal plate is inserted between the groove formed on the side surface of the blade and the groove formed on the side surface of the end portion located on the front side in the rotational direction of the turbine rotor blade in the other divided body adjacent to the one divided body. Is sealed. Moreover, by this, the adjacent division bodies are connected in the circumferential direction so as to form an annular division ring as a whole. However, in the split ring constituted by the split body disclosed in Patent Document 1, since the seal plate is not fixed to the split body, the high-temperature gas flow entrained by the rotation of the turbine blades causes the split body to If oxidation thinning, vibration, wear, etc. occur in the vicinity of the groove, the seal plate may come out of the groove and fall off. In addition, if the seal plate is dropped, the efficiency of the entire gas turbine may be reduced due to a reduction in the sealing function, and oxidation loss, burning, melting, or loss may occur in other parts due to the backflow or leakage of high-temperature gas. Alternatively, there is a risk of adverse effects (secondary damage) such as damage of other parts due to the scattered seal plate.

本発明は、上記の事情に鑑みてなされたもので、シール板が溝内から抜け出して、シール板が脱落してしまうことを防止することができるタービン分割環を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a turbine split ring that can prevent the seal plate from falling out of the groove and falling off the seal plate.

本発明は、上記課題を解決するため、以下の手段を採用した。
本発明に係るタービン分割環は、燃焼器で発生した高温ガスが吹き付けられるタービン動翼の半径方向外側に、前記タービン動翼の先端から略一定の隙間を空けて複数の分割体を環状に配設して形成され、隣り合う前記分割体の対向する側面に形成された溝内にシール部材を挿入することにより、前記側面間の隙間を封止するタービン分割環であって、前記シール部材が、前記分割体における、前記分割体の半径方向内側を回転する前記タービン動翼の回転方向前方側に位置する端部に対してのみ、ポンチングにより固定されており、前記ポンチングは、前記シール部材の半径方向外側に実施されている。
The present invention employs the following means in order to solve the above problems.
In the turbine split ring according to the present invention, a plurality of divided bodies are annularly arranged with a substantially constant gap from the tip of the turbine rotor blade on the radially outer side of the turbine rotor blade to which the high temperature gas generated in the combustor is blown. A turbine split ring that seals a gap between the side surfaces by inserting a seal member into a groove formed on an opposite side surface of the adjacent divided body. The split body is fixed by punching only to an end portion of the turbine rotor blade that rotates inward in the radial direction of the split body and positioned on the front side in the rotational direction. The punching of the seal member Implemented radially outward .

本発明に係るタービン分割環によれば、シール板等のシール部材が分割体に対して固定されているので、シール部材の溝内からの抜け出しを防止することができて、シール部材の脱落を防止することができる。また、これによりシール機能やガスタービン効率の低下、又は、高温ガス逆流や飛散したシール部材による二次的被害を未然に防止することができる。
また、本発明に係るタービン分割環によれば、シール板等のシール部材が、お互いに隣接する分割体間の隙間にタービン動翼の回転によって巻き込まれる高温ガスによる熱伝達率の上昇の影響を受け難い、各分割体におけるタービン動翼の回転方向前方側に位置する端部に固定されている。一方、各分割体におけるタービン動翼の回転方向後方側に位置する端部は、隣接する分割体間の隙間にタービン動翼の回転によって巻き込まれる高温ガスによる熱伝達率の上昇の影響を最も受け易いために、高温ガスによる酸化減肉や焼損、溶融、欠落等が生じ易い。よって、各分割体におけるタービン動翼の回転方向後方側に位置する端部に固定されている場合よりも、前方側に位置する端部に固定されている方がシール板の固定がより緩み難く、溝内からの抜け出しをより確実に防止することができて、シール板の脱落をより確実に防止することができる。
さらに、本発明に係るタービン分割環によれば、分割体の溝にシール板などのシール部材を挿入した状態で、溝の開口端周辺に位置する側面の一部をポンチングにより塑性変形させることによりシール板を分割体に固定するので、高価な装置を必要とすることなく安価に、また、現地において短時間で容易に実施することができる。
According to the turbine split ring according to the present invention, since the seal member such as the seal plate is fixed to the split body, the seal member can be prevented from coming out of the groove, and the seal member can be prevented from falling off. Can be prevented. Further, this can prevent a secondary function damage due to a sealing function and gas turbine efficiency lowering, or a hot gas backflow or scattered seal member.
Further, according to the turbine split ring according to the present invention, the influence of the increase in heat transfer coefficient due to the high temperature gas entrained by the rotation of the turbine blades in the seal member such as a seal plate in the gap between the adjacent divided bodies. It is difficult to receive, and is fixed to an end portion located on the front side in the rotational direction of the turbine rotor blade in each divided body. On the other hand, the end located on the rear side in the rotation direction of the turbine blades in each divided body is most affected by the increase in heat transfer coefficient due to the high temperature gas entrained by the rotation of the turbine blades in the gap between the adjacent divided bodies. Therefore, oxidation thinning due to high-temperature gas, burnout, melting, and loss are likely to occur. Therefore, it is more difficult to loosen the seal plate when it is fixed to the end portion located on the front side than to the end portion located on the rear side in the rotational direction of the turbine rotor blade in each divided body. Further, slipping out of the groove can be prevented more reliably, and the seal plate can be more reliably prevented from falling off.
Furthermore, according to the turbine split ring according to the present invention, in a state where a seal member such as a seal plate is inserted into the groove of the divided body, a part of the side surface located around the opening end of the groove is plastically deformed by punching. Since the sealing plate is fixed to the divided body, it can be easily carried out at a low cost and in a short time without requiring an expensive device.

本発明に係るタービン分割環によれば、シール板等のシール部材を分割体に対して固定したので、シール部材が溝内から抜け出して、シール部材が脱落してしまうことを防止することができるという効果を奏する。また、シール機能やガスタービン効率の低下、又は、高温ガス逆流や飛散したシール部材による二次的被害を未然に防止することができるという効果を奏する。   According to the turbine split ring according to the present invention, since the seal member such as the seal plate is fixed to the split body, it is possible to prevent the seal member from falling out of the groove and falling off. There is an effect. Further, it is possible to prevent the secondary damage caused by the sealing function and gas turbine efficiency lowering, or the hot gas backflow or the scattered sealing member.

本発明に係るタービン分割環を備えたガスタービンの要部断面図である。It is principal part sectional drawing of the gas turbine provided with the turbine split ring which concerns on this invention. 本発明の一実施形態に係るタービン分割環の断面図である。It is sectional drawing of the turbine division ring which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタービン分割環を回転軸の軸方向から見た断面図である。It is sectional drawing which looked at the turbine division ring which concerns on one Embodiment of this invention from the axial direction of the rotating shaft. 図3の要部拡大図である。It is a principal part enlarged view of FIG.

以下、本発明の一実施形態に係るタービン分割環について、図1から図4を参照しながら説明する。
図1は本発明に係るタービン分割環を備えたガスタービンの要部断面図、図2は本実施形態に係るタービン分割環の断面図、図3は本実施形態に係るタービン分割環を回転軸の軸方向から見た断面図、図4は図3の要部拡大図である。
Hereinafter, a turbine split ring according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
FIG. 1 is a cross-sectional view of a main part of a gas turbine provided with a turbine split ring according to the present invention, FIG. 2 is a cross-sectional view of a turbine split ring according to the present embodiment, and FIG. 3 is a rotating shaft of the turbine split ring according to the present embodiment. FIG. 4 is an enlarged view of an essential part of FIG. 3.

図1に示すように、本実施形態に係るタービン分割環が適用されるガスタービン1は、燃焼器(図示せず)で発生させた高温ガスを、矢印2の方向に供給し、タービン動翼3,4に吹き付けてこれらタービン動翼3,4を回転させて、熱エネルギーを機械的な回転エネルギーに変換して動力を発生させるものである。
タービン動翼3,4は、回転軸の周囲に取り付けられたプラットフォーム5に固定されている。これらタービン動翼3、4は、ガスタービン1の回転軸の周方向に沿って複数枚設けられており、ガスタービン1の軸方向上流側(図1において左側)から下流側(図1において右側)に流れる高温ガスを受けて、プラットフォーム5とともに回転する。タービン動翼3,4の上流側には、タービン静翼6,7が配置されている。これらタービン静翼6,7は、タービン動翼3,4と同様、回転軸の周方向に沿って複数枚設けられている。また、タービン動翼3,4の半径方向外側には、タービン動翼3,4の先端(チップ)から略一定の隙間f(図2参照)を空けてタービン分割環(以下「分割環」という。)8が設けられている。分割環8は、例えば、コバルト合金からなり、複数の分割体8a(図3参照)で構成されている。
As shown in FIG. 1, a gas turbine 1 to which a turbine split ring according to the present embodiment is applied supplies high-temperature gas generated by a combustor (not shown) in the direction of arrow 2, and turbine blades The turbine rotor blades 3 and 4 are rotated by spraying on 3 and 4 to convert heat energy into mechanical rotation energy to generate power.
The turbine rotor blades 3 and 4 are fixed to a platform 5 attached around the rotating shaft. A plurality of these turbine rotor blades 3 and 4 are provided along the circumferential direction of the rotating shaft of the gas turbine 1, and from the upstream side (left side in FIG. 1) to the downstream side (right side in FIG. 1) of the gas turbine 1. ), And rotates with the platform 5. Turbine stationary blades 6 and 7 are arranged on the upstream side of the turbine rotor blades 3 and 4. As with the turbine rotor blades 3 and 4, a plurality of these turbine stationary blades 6 and 7 are provided along the circumferential direction of the rotating shaft. Further, on the outer side in the radial direction of the turbine rotor blades 3 and 4, a substantially constant gap f (see FIG. 2) is provided from the tip (tip) of the turbine rotor blades 3 and 4, and a turbine split ring (hereinafter referred to as “split ring”). .) 8 is provided. The split ring 8 is made of, for example, a cobalt alloy and includes a plurality of split bodies 8a (see FIG. 3).

図2に示すように、翼環9には、分割環8に向かって開口する流路10が形成されており、この流路10内には、ガスタービン1の外部に設けられた空気供給源(図示せず)から供給された空気、又は圧縮機(図示せず)から抽出された空気が冷却媒体として矢印12の方向に流されるようになっている。また、翼環9には、遮熱環11が取り付けられており、遮熱環11には、分割環8及びインピンジメント板13が取り付けられている。インピンジメント板13は、翼環9と分割環8との間に配置されており、流路10からその外周面(半径方向外側の周面)に吹き出された空気を通すための複数個の冷却孔14を備えている。各分割体8aは、外周面15の軸方向上流側(図2において左側)及び下流側(図2において右側)にそれぞれフランジ16を有しており、これらフランジ16を介して遮熱環11に取り付けられている。各分割体8aには、外周面15の軸方向上流側から分割体8aの内部をガスタービン1の軸方向と略平行に延びて下流側の周方向に沿う端面17に貫通する冷却通路18が複数本設けられている。   As shown in FIG. 2, the blade ring 9 is formed with a flow path 10 that opens toward the split ring 8, and an air supply source provided outside the gas turbine 1 is provided in the flow path 10. Air supplied from (not shown) or air extracted from a compressor (not shown) is made to flow in the direction of arrow 12 as a cooling medium. Further, a heat shield ring 11 is attached to the blade ring 9, and a split ring 8 and an impingement plate 13 are attached to the heat shield ring 11. The impingement plate 13 is disposed between the blade ring 9 and the split ring 8, and a plurality of coolings for passing air blown from the flow path 10 to the outer peripheral surface (radially outer peripheral surface). A hole 14 is provided. Each of the divided bodies 8a has flanges 16 on the upstream side (left side in FIG. 2) and the downstream side (right side in FIG. 2) of the outer peripheral surface 15, and the heat shield ring 11 is connected via these flanges 16 respectively. It is attached. Each divided body 8a has a cooling passage 18 extending from the upstream side in the axial direction of the outer peripheral surface 15 through the end surface 17 along the circumferential direction on the downstream side, extending substantially parallel to the axial direction of the gas turbine 1. A plurality are provided.

図3に示すように、分割環8を構成する複数の分割体8aは、周方向に沿って配置されている。そして、隣り合う分割体8aは、一の分割体8aにおけるタービン動翼3の回転方向(矢印28で示す)から見て後方側に位置する端部領域19の側面20に形成された溝21と、一の分割体に隣接する他の分割体8aにおけるタービン動翼3の回転方向28から見て前方側に位置する端部領域22の側面23に形成された溝24との間にシール板(シール部材)25が挿入されることにより周方向に連結され、全体として環状の分割環8を形成する。シール板25は、分割体8a同士を連結するとともに、一の分割体8aの側面20と他の分割体8aの側面23との間に形成された隙間26から空気および高温ガスが漏れるのを防ぐシール部材である。なお、シール部材と溝の断面形状はそれぞれ、矩形に限らず円形や楕円、半円、T字、十字等の形状でもよく、複数の様々な形状を組み合わせても構わない。   As shown in FIG. 3, the plurality of divided bodies 8 a constituting the divided ring 8 are arranged along the circumferential direction. And the adjacent division body 8a has the groove | channel 21 formed in the side surface 20 of the edge part area | region 19 located in the back side seeing from the rotation direction (indicated by arrow 28) of the turbine rotor blade 3 in one division body 8a. A seal plate (between the groove 24 formed in the side surface 23 of the end region 22 located on the front side when viewed from the rotational direction 28 of the turbine rotor blade 3 in the other divided body 8a adjacent to the one divided body ( The sealing member 25 is inserted in the circumferential direction to form an annular split ring 8 as a whole. The seal plate 25 connects the divided bodies 8a to each other and prevents air and high-temperature gas from leaking from the gap 26 formed between the side surface 20 of one divided body 8a and the side surface 23 of the other divided body 8a. It is a sealing member. The cross-sectional shapes of the seal member and the groove are not limited to a rectangle, but may be a circle, an ellipse, a semicircle, a T-shape, a cross, or the like, or a plurality of various shapes may be combined.

また、図4に示すように遮熱環11に組み付けられる前の段階の分割体8a単品の一方の溝24にシール板25を挿入した状態で、溝24の開口端周辺に位置する側面23の一部をポンチ(punch)等の器具を使用して少なくとも1箇所以上に塑性変形(ポンチング)27を加えることにより、他の分割体8aにおけるタービン動翼3の回転方向28の前方側に位置する端部22のみにシール板25が固定される(作業1)。その後、隙間26を隔てて側面23に対向する側面20に形成され、シール板25が固定されていない状態である一の分割体8aの溝21に、上述した他の分割体8aの端部22に固定された状態のシール板25を挿入する(作業2)。この際、一の分割体8aの端部22にはシール板25が既に作業1により固定されていてもよいし、あるいは、作業1〜2を完了した後に一の分割体8aの端部22にシール板25をあらためて固定してもよい。上記一連の作業を繰り返しながら、各分割体を周方向に沿って環状に配置されるように組み立てて分割環8を形成する。この際のポンチング27はシール板25の半径方向外側及び内側に位置する側面のいずれか一方又は両方に実施してもよいが、外側の方が隙間26に巻き込まれる高温ガスの熱影響を受け難いため、酸化減肉や焼損、溶融、欠落によりポンチング27の固定が緩み難いのでより好ましい。
なお、図4中の符号27は、ポンチングにより凹んだ塑性変形部を示している。また、図面の簡略化を図るため、図3及び図4にはインピンジメント板13を示していない。
In addition, as shown in FIG. 4, the side surface 23 positioned around the open end of the groove 24 in a state where the seal plate 25 is inserted into one groove 24 of the single divided body 8 a before being assembled to the heat shield ring 11. A part is placed on the front side in the rotational direction 28 of the turbine rotor blade 3 in the other divided body 8a by applying plastic deformation (punching) 27 to at least one place using an instrument such as a punch. The seal plate 25 is fixed only to the end portion 22 (operation 1). Thereafter, the end portion 22 of the other divided body 8a described above is formed in the groove 21 of the one divided body 8a that is formed on the side surface 20 facing the side surface 23 with a gap 26 therebetween and in which the seal plate 25 is not fixed. The sealing plate 25 in a state fixed to is inserted (operation 2). At this time, the seal plate 25 may be already fixed to the end portion 22 of the one divided body 8a by the operation 1, or after the operations 1 and 2 are completed, the seal plate 25 is attached to the end portion 22 of the one divided body 8a. The seal plate 25 may be fixed again. While repeating the above-described series of operations, the divided bodies are assembled so as to be annularly arranged along the circumferential direction to form the divided ring 8. The punching 27 at this time may be carried out on one or both of the radially outer side and the inner side surface of the seal plate 25, but the outer side is less susceptible to the thermal influence of the hot gas caught in the gap 26. For this reason, the fixing of the punching 27 is difficult to loosen due to oxidation thinning, burning, melting, and loss, which is more preferable.
In addition, the code | symbol 27 in FIG. 4 has shown the plastic deformation part dented by punching. In order to simplify the drawing, the impingement plate 13 is not shown in FIGS. 3 and 4.

本実施形態に係る分割環8によれば、シール板25が分割体8aの端部22にポンチング27により固定されているので、シール板25の溝24内からの抜け出しを防止することができて、シール板25の脱落を防止することができる。
また、本実施形態に係る分割環8によれば、シール板25が、お互いに隣接する分割体間の隙間26にタービン動翼3の回転によって高温ガスが巻き込まれ、それによる熱伝達率の上昇の影響を受け難い、各分割体8aにおけるタービン動翼3の回転方向28から見て前方側に位置する端部22に固定されているので、高温ガスによる熱伝達率の上昇の影響を受け易いために酸化減肉や焼損、溶融、欠落等が生じ易い、各分割体8aにおける回転方向28の後方側に位置する端部19に固定されている場合よりも、シール板25の固定が緩み難く、溝24内からの抜け出しをより確実に防止することができて、シール板25の脱落をより確実に防止することができる。
さらに、本実施形態に係る分割環8を具備したガスタービン1によれば、シール板25の溝24内からの抜け出しが防止され、シール板25の脱落が防止されることとなるので、ガスタービン1全体の効率低下や二次的被害を未然に防止して信頼性を向上させることができ、ガスタービン全体の保守点検間隔を長期化させることができると共に、ガスタービン全体の保守点検費用を低減させることができる。
According to the split ring 8 according to the present embodiment, since the seal plate 25 is fixed to the end portion 22 of the split body 8a by the punching 27, it is possible to prevent the seal plate 25 from coming out of the groove 24. Further, the seal plate 25 can be prevented from falling off.
Further, according to the split ring 8 according to the present embodiment, the seal plate 25 is entrained by the high temperature gas by the rotation of the turbine rotor blade 3 in the gap 26 between the adjacent split bodies, thereby increasing the heat transfer coefficient. Since it is fixed to the end 22 located on the front side when viewed from the rotational direction 28 of the turbine rotor blade 3 in each divided body 8a, it is easily affected by an increase in heat transfer coefficient due to the high-temperature gas. Therefore, the seal plate 25 is less likely to be loosened than the case where it is fixed to the end portion 19 located on the rear side in the rotational direction 28 of each divided body 8a, which is likely to cause oxidation thinning, burnout, melting, and loss. Further, it is possible to more reliably prevent the seal 24 from coming out of the groove 24, and it is possible to more reliably prevent the seal plate 25 from falling off.
Furthermore, according to the gas turbine 1 including the split ring 8 according to the present embodiment, the seal plate 25 is prevented from coming out of the groove 24 and the seal plate 25 is prevented from falling off. (1) It is possible to improve the reliability by preventing the overall efficiency drop and secondary damage, and to extend the maintenance interval of the entire gas turbine and reduce the maintenance cost of the entire gas turbine. Can be made.

なお、本発明は上述した実施形態に限定されるものではなく、シール板25は隣接する分割体8aの少なくともどちらか一方に固定されていればシール板25の脱落を防止することができるので、溝21の開口端周辺に位置する側面20の一部がポンチ等の器具を使用して塑性変形させられることにより、一の分割体8aにおける回転方向28の後方側に位置する端部19に固定されるようにしてもよい。
また、シール板25は、溝24の開口端周辺に位置する側面23及び溝21の開口端周辺に位置する側面20それぞれの一部がポンチ等の器具を使用して塑性変形させられることにより、一の分割体8aの端部19及び他の分割体8aの端部22の両者にそれぞれ固定されるようにしてもよい。
The present invention is not limited to the above-described embodiment, and the seal plate 25 can be prevented from falling off if the seal plate 25 is fixed to at least one of the adjacent divided bodies 8a. A part of the side surface 20 located around the opening end of the groove 21 is plastically deformed by using a tool such as a punch, so that it is fixed to the end portion 19 located on the rear side in the rotational direction 28 of the one divided body 8a. You may be made to do.
In addition, the seal plate 25 is plastically deformed by using a tool such as a punch to partially deform the side surface 23 positioned around the opening end of the groove 24 and the side surface 20 positioned around the opening end of the groove 21. You may make it fix to both the edge part 19 of the one division body 8a, and the edge part 22 of the other division body 8a, respectively.

さらに、上述した実施形態では、シール板25が、溝24の開口端周辺に位置する側面23及び/又は溝21の開口端周辺に位置する側面20の一部をポンチ等の器具を使用して塑性変形させることにより、一の分割体8aの端部19及び/又は他の分割体8aの端部22に固定されるものについて説明した。しかし、本発明はこのようなポンチング27による固定に限定されるものではなく、締まり嵌め(焼き嵌め、冷やし嵌め)やボルト、リベット、ピン、ロー付、点溶接等の溶接、あるいは、これらの組合せによってもシール板25を分割体8aに固定することができる。   Furthermore, in the above-described embodiment, the seal plate 25 uses a device such as a punch on the side surface 23 located around the open end of the groove 24 and / or a part of the side surface 20 located around the open end of the groove 21. A description has been given of what is fixed to the end 19 of one divided body 8a and / or the end 22 of another divided body 8a by plastic deformation. However, the present invention is not limited to such fixing by the punching 27, but is an interference fit (shrink fit, cold fit), welding such as bolts, rivets, pins, brazing, spot welding, or a combination thereof. Also, the seal plate 25 can be fixed to the divided body 8a.

1 ガスタービン
3 タービン動翼
8 タービン分割環
8a 分割体
19 端部
20 側面
21 溝
22 端部
23 側面
24 溝
25 シール板(シール部材)
26 隙間
27 変形部(ポンチング)
28 タービン動翼回転方向
DESCRIPTION OF SYMBOLS 1 Gas turbine 3 Turbine rotor blade 8 Turbine division ring 8a Divided body 19 End part 20 Side face 21 Groove 22 End part 23 Side face 24 Groove 25 Seal plate (seal member)
26 Clearance 27 Deformation part (punching)
28 Turbine blade rotation direction

Claims (1)

燃焼器で発生した高温ガスが吹き付けられるタービン動翼の半径方向外側に、前記タービン動翼の先端から略一定の隙間を空けて複数の分割体を環状に配設して形成され、隣り合う前記分割体の対向する側面に形成された溝内にシール部材を挿入することにより、前記側面間の隙間を封止するタービン分割環であって、
前記シール部材が、前記分割体における、前記分割体の半径方向内側を回転する前記タービン動翼の回転方向前方側に位置する端部に対してのみ、ポンチングにより固定されており、
前記ポンチングは、前記シール部材の半径方向外側に実施されていることを特徴とするタービン分割環。
A plurality of divided bodies are annularly arranged on the radially outer side of the turbine rotor blade to which the high-temperature gas generated in the combustor is blown, with a substantially constant gap from the tip of the turbine rotor blade, and adjacent to each other. A turbine split ring that seals a gap between the side surfaces by inserting a seal member into a groove formed on the opposite side surface of the divided body,
The seal member is fixed by punching only to an end portion of the divided body that is located on the front side in the rotational direction of the turbine rotor blade that rotates inward in the radial direction of the divided body .
The turbine split ring , wherein the punching is performed on a radially outer side of the seal member .
JP2012184803A 2012-08-24 2012-08-24 Turbine split ring Active JP5461636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184803A JP5461636B2 (en) 2012-08-24 2012-08-24 Turbine split ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184803A JP5461636B2 (en) 2012-08-24 2012-08-24 Turbine split ring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008195147A Division JP5075756B2 (en) 2008-07-29 2008-07-29 gas turbine

Publications (2)

Publication Number Publication Date
JP2012237318A JP2012237318A (en) 2012-12-06
JP5461636B2 true JP5461636B2 (en) 2014-04-02

Family

ID=47460406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184803A Active JP5461636B2 (en) 2012-08-24 2012-08-24 Turbine split ring

Country Status (1)

Country Link
JP (1) JP5461636B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158637A1 (en) 2016-03-15 2017-09-21 株式会社 東芝 Turbine and turbine stator blade
FR3063103B1 (en) * 2017-02-22 2021-06-25 Safran Aircraft Engines ASSEMBLY FOR GAS TURBINE, ASSOCIATED GAS TURBINE

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892497A (en) * 1974-05-14 1975-07-01 Westinghouse Electric Corp Axial flow turbine stationary blade and blade ring locking arrangement
US4688988A (en) * 1984-12-17 1987-08-25 United Technologies Corporation Coolable stator assembly for a gas turbine engine
US5374161A (en) * 1993-12-13 1994-12-20 United Technologies Corporation Blade outer air seal cooling enhanced with inter-segment film slot
JPH08114101A (en) * 1994-10-19 1996-05-07 Hitachi Ltd Shroud device for gas turbine
JP3999395B2 (en) * 1999-03-03 2007-10-31 三菱重工業株式会社 Gas turbine split ring
US6340285B1 (en) * 2000-06-08 2002-01-22 General Electric Company End rail cooling for combined high and low pressure turbine shroud
JP2002213207A (en) * 2001-01-15 2002-07-31 Mitsubishi Heavy Ind Ltd Gas turbine segment
US6883807B2 (en) * 2002-09-13 2005-04-26 Seimens Westinghouse Power Corporation Multidirectional turbine shim seal
JP4285134B2 (en) * 2003-07-04 2009-06-24 株式会社Ihi Shroud segment
US7596954B2 (en) * 2004-07-09 2009-10-06 United Technologies Corporation Blade clearance control
US7217081B2 (en) * 2004-10-15 2007-05-15 Siemens Power Generation, Inc. Cooling system for a seal for turbine vane shrouds
JP4460471B2 (en) * 2005-02-09 2010-05-12 株式会社日立製作所 Gas turbine sealing device
US7958735B2 (en) * 2006-12-21 2011-06-14 Power Systems Manufacturing, Llc Turbine static structure for reduced leakage air

Also Published As

Publication number Publication date
JP2012237318A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
US9115596B2 (en) Blade outer air seal having anti-rotation feature
US8419356B2 (en) Turbine seal assembly
JP6154675B2 (en) Transition duct for gas turbine
JP6031116B2 (en) Asymmetric radial spline seals for gas turbine engines
EP2990608B1 (en) Rotor blade and gas turbine equipped with same
JP5367497B2 (en) Steam turbine
JP5235602B2 (en) Control of the clearance at the blade tip in a high-pressure turbine of a turbine engine
US8807927B2 (en) Clearance flow control assembly having rail member
US10895156B2 (en) Turbomachine arrangement with a platform cooling device for a blade of a turbomachine
WO2016031393A1 (en) Gas turbine exhaust member, and exhaust chamber maintenance method
WO2016021330A1 (en) Stator blade, gas turbine, split ring, method for modifying stator blade, and method for modifying split ring
JP6650849B2 (en) gas turbine
JP6423144B2 (en) Integrated cover bucket assembly
EP2634373A1 (en) Arrangement for a turbomachine
JP5461636B2 (en) Turbine split ring
JP5075756B2 (en) gas turbine
JP2013139874A (en) Compliant plate seal for use by rotating machine and method of assembling rotating machine
JP5679246B1 (en) High-temperature component of gas turbine, gas turbine including the same, and method for manufacturing high-temperature component of gas turbine
JP5314188B2 (en) Rotor of axial-flow turbomachine that cools blades
JP2009191850A (en) Steam turbine engine and method of assembling the same
JP4395716B2 (en) Seal plate structure
CN111226023B (en) Rim sealing device
JP5039657B2 (en) Turbine split ring and cooling method thereof
JP2004150325A (en) Turbine blade ring structure
US11174753B2 (en) Guide vane for a turbomachine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R151 Written notification of patent or utility model registration

Ref document number: 5461636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350