JP5461318B2 - Solar water heating system - Google Patents

Solar water heating system Download PDF

Info

Publication number
JP5461318B2
JP5461318B2 JP2010138468A JP2010138468A JP5461318B2 JP 5461318 B2 JP5461318 B2 JP 5461318B2 JP 2010138468 A JP2010138468 A JP 2010138468A JP 2010138468 A JP2010138468 A JP 2010138468A JP 5461318 B2 JP5461318 B2 JP 5461318B2
Authority
JP
Japan
Prior art keywords
heat medium
heat
hot water
temperature
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010138468A
Other languages
Japanese (ja)
Other versions
JP2012002442A (en
Inventor
明 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2010138468A priority Critical patent/JP5461318B2/en
Priority to AU2011202789A priority patent/AU2011202789B2/en
Publication of JP2012002442A publication Critical patent/JP2012002442A/en
Application granted granted Critical
Publication of JP5461318B2 publication Critical patent/JP5461318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、太陽熱集熱器で集熱した太陽熱を利用して貯湯タンクに給水された水を加熱し、この貯湯タンクに貯湯された湯水を給湯使用する太陽熱利用給湯システムに関する。   The present invention relates to a solar hot water supply system that uses solar heat collected by a solar heat collector to heat water supplied to a hot water storage tank, and uses the hot water stored in the hot water storage tank.

従来、省エネルギー化の観点から、太陽熱を利用して熱媒を加熱する太陽熱集熱器と、貯湯タンクと、太陽熱集熱器と貯湯タンクとの間で熱媒を循環する熱媒循環管路と、熱媒循環管路内で熱媒を循環させる循環ポンプと、貯湯タンクの下流側に貯湯タンクから出湯される湯水を所定温度まで加熱する給湯器などの補助熱源機とを備えた太陽熱利用給湯システムが知られている。この種の太陽熱利用給湯システムにおいては、循環ポンプにより太陽熱集熱器で加熱された熱媒を熱媒循環管路で貯湯タンクに導き、貯湯タンク内で給水された水と加熱された熱媒とを熱交換することにより湯水を貯湯し、熱媒によって加熱された貯湯タンク内の湯水の温度が低い場合、給湯運転時に補助熱源機を作動させて、所定温度まで昇温させた湯水を出湯端末に供給している。   Conventionally, from the viewpoint of energy saving, a solar heat collector that heats a heat medium using solar heat, a hot water storage tank, and a heat medium circulation pipe that circulates the heat medium between the solar heat collector and the hot water storage tank, A solar-powered hot water supply comprising a circulation pump for circulating the heat medium in the heat medium circulation pipe and an auxiliary heat source device such as a water heater for heating hot water discharged from the hot water storage tank to a predetermined temperature downstream of the hot water storage tank The system is known. In this type of solar hot water supply system, a heat medium heated by a solar heat collector by a circulation pump is led to a hot water storage tank by a heat medium circulation pipe, and water supplied in the hot water storage tank and heated heat medium When hot water is stored by exchanging heat, and the temperature of the hot water in the hot water tank heated by the heat medium is low, the auxiliary heat source unit is activated during hot water supply operation, and the hot water heated to a predetermined temperature is discharged To supply.

しかしながら、太陽熱集熱器による集熱量は、天候に左右される。そのため、曇天や雨天などの太陽熱が十分に得られない場合に循環ポンプを駆動させると、循環ポンプを駆動させるための消費電力量よりも集熱量が少なくなる場合があり、省エネルギー化のために太陽熱を利用する意義が失われるという問題がある。   However, the amount of heat collected by the solar heat collector depends on the weather. Therefore, if the circulation pump is driven when solar heat such as cloudy or rainy weather cannot be obtained sufficiently, the amount of heat collected may be less than the amount of power consumed to drive the circulation pump. There is a problem that the significance of using is lost.

このため、例えば、貯湯タンク近傍に熱媒温度を検知する熱媒温度検知器を、貯湯タンク内に湯水の温度を検知する水温度検知器をそれぞれ設け、熱媒温度検知器で検知された熱媒温度と、水温度検知器で検知された湯水の温度との温度差に基づいて、循環ポンプの駆動、停止を行なうことが提案されている(特許文献1)。   For this reason, for example, a heat medium temperature detector for detecting the temperature of the heat medium is provided in the vicinity of the hot water storage tank, and a water temperature detector for detecting the temperature of the hot water is provided in the hot water storage tank, and the heat detected by the heat medium temperature detector. It has been proposed to drive and stop the circulation pump based on the temperature difference between the medium temperature and the temperature of hot water detected by a water temperature detector (Patent Document 1).

特開2004−44952号公報JP 2004-44952 A

しかしながら、特許文献1の太陽熱利用給湯システムでは、貯湯タンク近傍の熱媒温度と貯湯タンク内の湯水の温度との温度差が基準温度以上である場合、循環ポンプを駆動し続ける一方、温度差が基準温度未満である場合、循環ポンプを停止するだけであり、そのため温度差が基準温度以上であれば、温度差に拘らず、一定の流量で熱媒が循環されることとなる。集熱運転に伴って熱媒温度と貯湯タンク内の湯水の温度との温度差が小さくなるため、貯湯タンク内の湯水の温度は上がり難くなるが、そのような状態でも熱媒温度と湯水の温度との温度差が基準温度以上であるときに、同じ熱媒流量で熱媒を循環させると、貯湯タンクで十分に集熱できないまま熱媒を循環させることとなり、効率的な集熱運転が行なえないという問題がある。   However, in the solar water heating system of Patent Document 1, when the temperature difference between the temperature of the heat medium in the vicinity of the hot water storage tank and the temperature of the hot water in the hot water storage tank is equal to or higher than the reference temperature, the circulation pump continues to be driven while the temperature difference is When the temperature is lower than the reference temperature, the circulation pump is only stopped. Therefore, if the temperature difference is equal to or higher than the reference temperature, the heat medium is circulated at a constant flow rate regardless of the temperature difference. The temperature difference between the heat transfer medium temperature and the temperature of the hot water in the hot water storage tank becomes smaller along with the heat collection operation, so that the temperature of the hot water in the hot water storage tank is difficult to rise. When the temperature difference from the temperature is equal to or higher than the reference temperature, if the heat medium is circulated at the same heat medium flow rate, the heat medium is circulated without sufficient heat collection in the hot water storage tank. There is a problem that can not be done.

また、特許文献1では、屋外に設置される太陽熱集熱器から離れた箇所にある貯湯タンク近傍に設けられた熱媒温度検知器により熱媒温度を検知し、該熱媒温度と水温度検知器で検知された湯水の温度との温度差が基準温度以上であれば循環ポンプの駆動を開始するため、循環ポンプを駆動していない状態では、貯湯タンク近傍の熱媒温度検知器で検知される熱媒温度の上昇は熱媒循環管路内の熱媒及び配管自体による伝熱のみに因るものとなる。その結果、太陽熱集熱器で太陽熱が集熱され始めているにも拘らず、貯湯タンク近傍の熱媒温度は一定時間上昇しないことから、集熱運転が早期に開始されず、効率的な集熱運転を行うことができないという問題がある。この場合、常時、低回転数で循環ポンプを駆動することや太陽熱集熱器近傍に日射センサを設けることも考えられるが、前者では、集熱量が十分に得られない場合にも循環ポンプが駆動されるため、省エネルギー化に反することとなり、後者では、熱媒温度が貯湯タンク内の湯水の温度に比べて十分に高くない場合でも、太陽の光度が基準値以上であれば熱媒が循環されるため、集熱効率が低いだけでなく、貯湯タンク内の湯水の温度の低下を招く場合がある。   Moreover, in patent document 1, a heat-medium temperature detector detects the heat-medium temperature by the heat-medium temperature detector provided in the hot water storage tank vicinity in the location away from the solar heat collector installed outdoors, and this heat-medium temperature and water temperature detection If the temperature difference between the hot and cold water detected by the water heater is higher than the reference temperature, the circulation pump starts to be driven. Therefore, when the circulation pump is not driven, the heat medium temperature detector near the hot water tank is detected. The increase in the temperature of the heating medium is due only to heat transfer in the heating medium circulation pipe and the piping itself. As a result, even though solar heat is starting to be collected by the solar heat collector, the heat medium temperature in the vicinity of the hot water storage tank does not rise for a certain period of time, so the heat collection operation is not started early and efficient heat collection. There is a problem that driving cannot be performed. In this case, it is conceivable to always drive the circulation pump at a low rotational speed or to provide a solar radiation sensor in the vicinity of the solar heat collector. However, in the former case, the circulation pump is driven even when a sufficient amount of heat collection cannot be obtained. In the latter case, even if the heat medium temperature is not sufficiently higher than the temperature of the hot water in the hot water storage tank, the heat medium is circulated if the solar light intensity is above the reference value. Therefore, not only the heat collection efficiency is low, but also the temperature of the hot water in the hot water storage tank may be lowered.

さらに、特許文献1のように集熱運転時における貯湯タンク内の湯水の温度を測定する場合、一定時間循環ポンプを駆動しなければ、貯湯タンク内の湯水の温度が上昇しないため、太陽熱が不十分で集熱量が少ないにも拘らず、熱媒温度と湯水の温度との温度差の測定のために、循環ポンプを駆動させる必要がある。   Furthermore, when measuring the temperature of the hot water in the hot water storage tank during the heat collecting operation as in Patent Document 1, the temperature of the hot water in the hot water storage tank does not increase unless the circulation pump is driven for a certain period of time. In spite of the sufficient amount of heat collection, it is necessary to drive the circulation pump in order to measure the temperature difference between the heat medium temperature and the hot water temperature.

また、病院などの施設では、患者の入浴時間が定められているため、短時間内に大量に湯水を使用する場合を考慮して、大型の貯湯タンクを有する給湯システムが用いられている。このような大型の貯湯タンクを有する太陽熱利用給湯システムでは、太陽熱集熱器による集熱は貯湯タンク内の湯水の温度を大幅に上昇させるためでなく、予熱程度の予備的に利用されることから、集熱運転を行っても貯湯タンク内の湯水の温度が上昇し難く、貯湯タンク内の湯水の温度上昇幅に基づいて正確に集熱量を算出できないという問題がある。さらに、上記のような施設では、入浴などの湯水が大量に使用される場合だけでなく、手洗いなどの少量の湯水が使用される場合もある。そのため、最大流量と最小流量との差が大きく、高精度で湯水の流量を計測することが困難であり、集熱量を正確に把握することが難しい。   In addition, since a bathing time for a patient is determined in a facility such as a hospital, a hot water supply system having a large hot water storage tank is used in consideration of a case where a large amount of hot water is used within a short time. In such a solar-powered hot water supply system having a large hot water storage tank, the heat collected by the solar heat collector is not used to significantly increase the temperature of the hot water in the hot water storage tank, but is preliminarily used for preheating. The temperature of the hot water in the hot water storage tank hardly rises even when the heat collecting operation is performed, and there is a problem that the amount of heat collection cannot be accurately calculated based on the temperature rise width of the hot water in the hot water storage tank. Furthermore, in the above facilities, not only a large amount of hot water such as bathing is used, but a small amount of hot water such as hand washing may be used. Therefore, the difference between the maximum flow rate and the minimum flow rate is large, it is difficult to measure the flow rate of hot water with high accuracy, and it is difficult to accurately grasp the heat collection amount.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、省エネルギー化のために太陽熱を効率よく集熱することができる太陽熱利用給湯システムを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a solar water heating system that can efficiently collect solar heat for energy saving.

本発明は、太陽熱を利用して熱媒を加熱する太陽熱集熱器と
湯水を貯湯する貯湯タンクと、
前記太陽熱集熱器から熱媒を前記貯湯タンクに送る熱媒循環往路、前記貯湯タンク内に配設された熱交換部、及び前記貯湯タンクから前記太陽熱集熱器に熱媒を戻す熱媒循環復路を有する熱媒循環管路と、
前記熱媒循環管路内の熱媒を循環させる循環ポンプと、
前記熱媒循環往路または前記熱媒循環復路の前記太陽熱集熱器近傍に設けられた集熱器側熱媒温度検知器と、
前記熱媒循環往路の前記貯湯タンク近傍に設けられた入側熱媒温度検知器と、
前記熱媒循環復路の前記貯湯タンク近傍に設けられた出側熱媒温度検知器と
前記熱媒循環管路内の熱媒流量を計測する熱媒流量計と、
前記貯湯タンクの給水口近傍に設けられた給水温度検知器と、
前記太陽熱集熱器による集熱運転を制御する制御装置とを備える太陽熱利用給湯システムであって、
前記制御装置は、前記集熱器側熱媒温度検知器で検知される集熱器側熱媒温度Tm0と前記給水温度検知器で検知される給水温度Tw0との温度差(Tm0−Tw0)が所定の開始温度Tn0以上である場合に、前記循環ポンプを駆動して集熱運転を開始し、
集熱運転中、前記入側熱媒温度検知器により検知される入側熱媒温度Tinと前記出側熱媒温度検知器により検知される出側熱媒温度Toutとの温度差(Tin−Tout)、前記熱媒流量計によって計測される熱媒流量V、熱媒の比熱C、及び熱媒の比重dの積[(Tin−Tout)×V×C×d]から求められる熱媒から貯湯タンクに供給される集熱量が、前記循環ポンプの駆動に必要な消費電力量以上となるように前記循環ポンプの回転数を制御する太陽熱利用給湯システムである。
The present invention includes a solar heat collector that heats a heat medium using solar heat, a hot water storage tank that stores hot water,
A heat medium circulation forward path for sending a heat medium from the solar heat collector to the hot water storage tank, a heat exchanging portion disposed in the hot water storage tank, and a heat medium circulation for returning the heat medium from the hot water tank to the solar heat collector A heating medium circulation pipe having a return path;
A circulation pump for circulating the heat medium in the heat medium circulation line;
A heat collector side heat medium temperature detector provided in the vicinity of the solar heat collector of the heat medium circulation forward path or the heat medium circulation return path;
An inlet-side heat medium temperature detector provided in the vicinity of the hot water storage tank of the heat medium circulation outward path;
An outlet-side heat medium temperature detector provided in the vicinity of the hot water storage tank of the heat medium circulation return path, a heat medium flow meter for measuring the heat medium flow rate in the heat medium circulation pipe,
A water temperature detector provided in the vicinity of the water supply port of the hot water storage tank;
A solar-powered hot water supply system comprising a control device for controlling a heat collecting operation by the solar heat collector,
The control device has a temperature difference (Tm0-Tw0) between a collector-side heat medium temperature Tm0 detected by the collector-side heat medium temperature detector and a feed water temperature Tw0 detected by the feed water temperature detector. When the temperature is equal to or higher than a predetermined start temperature Tn0, the circulation pump is driven to start a heat collecting operation,
During the heat collecting operation, a temperature difference (Tin−Tout) between the input side heat medium temperature Tin detected by the input side heat medium temperature detector and the output side heat medium temperature Tout detected by the output side heat medium temperature detector. ), Hot water storage from the heat medium determined from the product [(Tin−Tout) × V × C × d] of the heat medium flow rate V measured by the heat medium flow meter, the specific heat C of the heat medium, and the specific gravity d of the heat medium The solar-powered hot water supply system controls the number of revolutions of the circulation pump so that the amount of heat collected supplied to the tank is equal to or greater than the amount of power consumption required for driving the circulation pump.

太陽熱集熱器近傍に集熱器側熱媒温度検知器を設けることにより、太陽熱集熱器の集熱による熱媒の温度上昇を早期に検知することができる。また、太陽熱集熱器近傍に設けられた集熱器側熱媒温度検知器で検知される集熱器側熱媒温度Tm0と、貯湯タンクの給水口近傍に設けられた給水温度検知器で検知される給水温度Tw0との温度差(Tm0−Tw0)が所定の開始温度Tn0以上であるときに集熱運転を開始すれば、エネルギー的に不経済な集熱運転を避けることができるとともに、冬季などで屋外に設置される太陽熱集熱器近傍の熱媒温度が給水温度よりも低い場合の集熱運転による貯湯タンク内の湯水の温度の低下を防止することができる。   By providing the collector-side heat medium temperature detector in the vicinity of the solar heat collector, the temperature increase of the heat medium due to the heat collection of the solar heat collector can be detected at an early stage. Also, detected by the collector-side heat medium temperature Tm0 detected by the collector-side heat medium temperature detector provided in the vicinity of the solar heat collector and the supply water temperature detector provided in the vicinity of the water supply port of the hot water storage tank. If the heat collection operation is started when the temperature difference (Tm0-Tw0) from the supplied water temperature Tw0 is equal to or higher than the predetermined start temperature Tn0, it is possible to avoid the energy-efficient heat collection operation and the winter season Thus, it is possible to prevent a decrease in the temperature of hot water in the hot water storage tank due to the heat collecting operation when the temperature of the heat medium near the solar heat collector installed outdoors is lower than the water supply temperature.

また、上記太陽熱利用給湯システムによれば、集熱運転中、貯湯タンク近傍の熱媒循環往路に設けられた入側熱媒温度検知器により検知される入側熱媒温度Tinと貯湯タンク近傍の熱媒循環復路に設けられた出側熱媒温度検知器により検知される出側熱媒温度Toutとの温度差(Tin−Tout)、及び熱媒循環管路を循環する熱媒流量を利用して集熱量が算出されるから、温度変化の小さい貯湯タンク内の湯水の温度や高精度の流量計を利用することなく、より正確に熱媒から貯湯タンク内に供給された集熱量を算出することができる。そして、集熱運転中は、上記で算出された集熱量が、循環ポンプの駆動に必要な消費電力量以上となるように循環ポンプの回転数が制御されるから、太陽熱から得られるエネルギーを効率よく集熱することができ、省エネルギー化を図ることができる。   Further, according to the solar water heating system, the inlet side heat medium temperature Tin detected by the inlet side heat medium temperature detector provided in the heat medium circulation path near the hot water tank and the vicinity of the hot water tank during the heat collecting operation. Utilizing the temperature difference (Tin-Tout) from the outlet side heat medium temperature Tout detected by the outlet side heat medium temperature detector provided in the heat medium circulation return path, and the flow rate of the heat medium circulating in the heat medium circulation line Therefore, the amount of heat collected from the heating medium into the hot water storage tank can be calculated more accurately without using the temperature of the hot water in the hot water storage tank where the temperature change is small or using a high-accuracy flow meter. be able to. During the heat collection operation, the rotational speed of the circulation pump is controlled so that the heat collection amount calculated above is equal to or greater than the power consumption necessary for driving the circulation pump. Heat can be collected well and energy can be saved.

上記太陽熱利用給湯システムにおいて、前記集熱運転開始から所定時間経過後の前記集熱器側熱媒温度検知器で検知される初期集熱器側熱媒温度Tm1と前記給水温度検知器で検知される初期給水温度Tw1との温度差(Tm1−Tw1)が所定の継続運転温度Tn1未満である場合、前記制御装置は、前記循環ポンプの駆動を停止してもよい。   In the solar water heating system, the initial heat collector side heat medium temperature Tm1 detected by the heat collector side heat medium temperature detector after a predetermined time has elapsed from the start of the heat collecting operation and the water supply temperature detector. When the temperature difference (Tm1−Tw1) from the initial feed water temperature Tw1 is less than a predetermined continuous operation temperature Tn1, the control device may stop driving the circulation pump.

太陽熱集熱器は屋外に配置されており、また太陽熱集熱器と貯湯タンクとを繋ぐ熱媒循環管路は一定の長さを有するため、貯湯タンク近傍の熱媒温度は太陽熱集熱器近傍の熱媒温度よりも通常低温となっている。このため、太陽熱集熱器近傍の集熱器側熱媒温度Tm0と給水温度Tw0との温度差(Tm0−Tw0)が所定の開始温度Tn0以上であることが検知されて、集熱運転が開始されても、循環ポンプの駆動により熱媒を一定量循環させると、熱媒循環管路内の熱媒温度が効率的な集熱運転を行うに不十分な温度まで低下する場合がある。これに対して、上記太陽熱利用給湯システムによれば、集熱運転が開始されてから所定時間経過後の初期集熱器側熱媒温度Tm1と初期給水温度Tw1とを比較し、これらの温度差(Tm1−Tw1)が所定の継続運転温度Tn1未満である場合、循環ポンプの駆動が停止されるから、エネルギー的に不経済な集熱運転を早期に中止することができる。   The solar heat collector is located outdoors, and the heat medium circulation line connecting the solar heat collector and the hot water storage tank has a certain length, so the temperature of the heat medium near the hot water tank is near the solar heat collector. Usually, the temperature is lower than the heating medium temperature. For this reason, it is detected that the temperature difference (Tm0-Tw0) between the collector-side heat medium temperature Tm0 and the feed water temperature Tw0 in the vicinity of the solar collector is equal to or higher than a predetermined start temperature Tn0, and the heat collection operation is started. However, if a certain amount of heat medium is circulated by driving the circulation pump, the temperature of the heat medium in the heat medium circulation pipe may be lowered to a temperature that is insufficient for efficient heat collection operation. On the other hand, according to the above-mentioned solar heat utilization hot water supply system, the initial collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 after the elapse of a predetermined time after the start of the heat collecting operation are compared, and the temperature difference therebetween. When (Tm1-Tw1) is lower than the predetermined continuous operation temperature Tn1, the driving of the circulation pump is stopped, so that the energy-uneconomic heat collection operation can be stopped early.

上記太陽熱利用給湯システムは、
前記熱媒循環管路は、前記熱媒循環往路と前記熱媒循環復路とをバイパスするバイパス路を有しており、
前記熱媒循環往路または前記熱媒循環復路の前記バイパス路との接続部よりも前記貯湯タンク側に設けられ、前記貯湯タンクへの熱媒の流れを連通/遮断する第1開閉弁と、
前記バイパス路に設けられ、前記バイパス路における熱媒の流れを連通/遮断する第2開閉弁とをさらに有し、
前記制御装置は、前記集熱運転開始時に、前記第1開閉弁を閉弁し、前記第2開閉弁を開弁することにより、前記熱媒が前記貯湯タンクに流通せず、前記バイパス路を流通するように熱媒循環経路を切り替え、
前記熱媒循環経路が切替えられた後、前記初期集熱器側熱媒温度Tm1と前記初期給水温度Tw1との差(Tm1−Tw1)が前記所定の継続運転温度Tn1以上である場合、前記第1開閉弁を開弁することにより、前記熱媒が前記貯湯タンクに流通するように熱媒循環経路を切り替えて、集熱運転を継続し、
前記初期集熱器側熱媒温度Tm1と前記初期給水温度Tw1との差(Tm1−Tw1)が前記所定の継続運転温度Tn1未満である場合、前記循環ポンプの駆動を停止してもよい。
The above solar water heating system is
The heating medium circulation pipeline has a bypass path that bypasses the heating medium circulation outward path and the heating medium circulation return path,
A first on-off valve provided on the hot water storage tank side than a connection portion with the bypass path of the heat medium circulation forward path or the heat medium circulation return path, and communicates / blocks the flow of the heat medium to the hot water storage tank;
A second on-off valve that is provided in the bypass passage and communicates / blocks the flow of the heat medium in the bypass passage;
The control device closes the first on-off valve and opens the second on-off valve at the start of the heat collecting operation, so that the heat medium does not flow to the hot water storage tank, and the bypass passage is opened. Switch the heat medium circulation path to circulate,
When the difference (Tm1−Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is equal to or higher than the predetermined continuous operation temperature Tn1 after the heat medium circulation path is switched, 1 Opening the on-off valve switches the heat medium circulation path so that the heat medium flows through the hot water storage tank, and continues the heat collecting operation.
When the difference (Tm1-Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is less than the predetermined continuous operation temperature Tn1, the driving of the circulation pump may be stopped.

上記太陽熱利用給湯システムによれば、集熱運転開始時に、熱媒が貯湯タンク内を流通せず、バイパス路を流通するように熱媒循環経路が切替えられるから、貯湯タンク内での熱媒と給水された水との熱交換が行なわれない状態で熱媒を循環させることができる。そのため、熱媒循環管路を循環する熱媒の温度変化が少なく、早期に熱媒が効率的な集熱運転を行うことができる温度を有しているかどうかを判断できる。そして、熱媒が貯湯タンクを流通せず、バイパス路を流通している状態で、初期集熱器側熱媒温度Tm1と初期給水温度Tw1との温度差(Tm1−Tw1)が所定の継続運転温度Tn1以上であれば、熱媒が貯湯タンクに流通するように熱媒循環経路が切り替られて、集熱運転が継続されるから、循環ポンプの駆動を停止することなく、円滑に集熱運転を行うことができる。一方、熱媒が貯湯タンクを流通せず、バイパス路を流通している状態で、初期集熱器側熱媒温度Tm1と初期給水温度Tw1との温度差(Tm1−Tw1)が所定の継続運転温度Tn1未満であれば、循環ポンプの駆動が停止されるから、エネルギー的に不経済な集熱運転を早期に中止することができる。   According to the hot water supply system using solar heat, the heat medium circulation path is switched so that the heat medium does not circulate in the hot water storage tank and flows in the bypass path at the start of the heat collecting operation. The heat medium can be circulated in a state where heat exchange with the supplied water is not performed. Therefore, it is possible to determine whether or not the temperature change of the heat medium circulating through the heat medium circulation pipe line is small and the heat medium has a temperature at which efficient heat collection operation can be performed at an early stage. And the temperature difference (Tm1-Tw1) of the initial collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is a predetermined continuous operation in a state where the heat medium does not circulate through the hot water storage tank and circulates in the bypass passage. If the temperature is above Tn1, the heat medium circulation path is switched so that the heat medium flows into the hot water storage tank, and the heat collection operation is continued. Therefore, the heat collection operation is smoothly performed without stopping the operation of the circulation pump. It can be performed. On the other hand, the temperature difference (Tm1-Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is a predetermined continuous operation in a state where the heat medium does not circulate through the hot water storage tank but circulates in the bypass passage. If it is less than temperature Tn1, since the drive of a circulation pump will be stopped, the energy-uneconomic heat collection operation can be stopped at an early stage.

上記太陽熱利用給湯システムにおいて、前記集熱量が、前記循環ポンプを最小回転数で駆動したときの最低消費電力量未満である場合、前記制御装置は、前記循環ポンプの駆動を停止してもよい。   In the solar thermal hot water supply system, the control device may stop driving the circulation pump when the amount of heat collection is less than a minimum power consumption when the circulation pump is driven at a minimum rotation speed.

上記太陽熱利用給湯システムによれば、循環ポンプの最低消費電力量よりも集熱量が少ない場合に循環ポンプの駆動が停止されるから、天候の変化により十分な集熱量が得られない場合のエネルギー的に不経済な集熱運転を中止することができる。   According to the above solar water heating system, since the circulation pump is stopped when the amount of heat collected is less than the minimum power consumption of the circulation pump, the energy consumption when sufficient heat collection cannot be obtained due to weather changes. It is possible to stop the heat collection operation that is uneconomical.

上記太陽熱利用給湯システムにおいて、前記集熱量が、前記循環ポンプを最小回転数で駆動したときの最低消費電力量未満であり、且つ前記集熱量を所定回数分積算した積算集熱量が、前記消費電力量を所定回数分積算した積算消費電力量未満である場合、前記制御装置は、前記循環ポンプの駆動を停止してもよい。   In the solar water heating system, the heat collection amount is less than a minimum power consumption amount when the circulation pump is driven at a minimum rotation speed, and an integrated heat collection amount obtained by integrating the heat collection amount by a predetermined number of times is the power consumption amount. When the amount is less than the integrated power consumption obtained by integrating the amount by a predetermined number of times, the control device may stop driving the circulation pump.

上記太陽熱利用給湯システムによれば、集熱運転中の集熱量が、循環ポンプを最小回転数で駆動したときの最低消費電力量未満であり、且つ積算集熱量が積算消費電力量未満である場合に循環ポンプの駆動が停止されるため、一時的な曇天により短時間内の集熱量が低下しても、所定回数分の積算集熱量が積算消費電力量以上であれば循環ポンプが停止されないから、循環ポンプの頻繁な駆動・停止を避けることができ、円滑な集熱運転を行うことができる。   According to the solar water heating system, the amount of heat collected during the heat collecting operation is less than the minimum power consumption when the circulation pump is driven at the minimum rotation speed, and the accumulated heat collection amount is less than the accumulated power consumption. Since the circulation pump is stopped at this time, even if the amount of heat collected within a short period of time decreases due to temporary cloudy weather, the circulation pump will not be stopped if the accumulated amount of heat collected for a predetermined number of times is equal to or greater than the accumulated power consumption. Therefore, frequent driving / stopping of the circulation pump can be avoided, and smooth heat collecting operation can be performed.

以上説明したように、本発明によれば、太陽熱を効率よく集熱することができ、省エネルギー化に適した太陽熱利用給湯システムを提供することができる。   As described above, according to the present invention, it is possible to efficiently collect solar heat, and to provide a solar hot water supply system suitable for energy saving.

図1は、本発明の実施の形態に係る太陽熱利用給湯システムの一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of a solar water heating system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る太陽熱利用給湯システムで集熱運転を行う場合の制御動作を示すフロー図である。FIG. 2 is a flowchart showing a control operation in the case of performing a heat collecting operation in the solar heat utilizing hot water supply system according to the embodiment of the present invention.

以下に、本発明の実施の形態に係る太陽熱利用給湯システムについて、図面を参照しながら説明する。   Below, the solar-heating hot water supply system which concerns on embodiment of this invention is demonstrated, referring drawings.

図1に示すように、本実施の形態の太陽熱利用給湯システムは、太陽熱集熱器1、貯湯タンク2、貯湯タンク2から出湯される湯水を必要に応じて加熱する給湯器等の補助熱源機3、システム全体の運転や給湯温度を設定したり、集熱運転時の実効集熱量を表示するリモコン4、太陽熱集熱器1と貯湯タンク2との間で熱媒が循環する熱媒循環管路7、及び集熱運転や給湯運転等を制御する制御装置10などを備えている。なお、補助熱源機3としては給湯器に代えて電気ヒータなどを用いてもよい。   As shown in FIG. 1, the solar-powered hot water supply system according to the present embodiment includes an auxiliary heat source device such as a hot water heater that heats hot water discharged from a solar heat collector 1, a hot water storage tank 2, and a hot water storage tank 2 as necessary. 3. Remote control 4 for setting the operation of the entire system and hot water supply temperature, displaying the effective amount of heat collection during heat collection operation, and heat medium circulation pipe for circulating the heat medium between the solar heat collector 1 and the hot water storage tank 2 The control apparatus 10 etc. which control the path | route 7, and a heat collection operation, a hot water supply operation, etc. are provided. In addition, as the auxiliary heat source unit 3, an electric heater or the like may be used instead of the water heater.

太陽熱集熱器1は、集合住宅のベランダや建物の屋根などに設置されるもので、板状の集熱パネル1aを備えており、その内部に熱媒を循環させる内部流路を有している。この内部流路は、熱媒循環管路7の一部を構成している。   The solar heat collector 1 is installed on a veranda of an apartment house or a roof of a building, and includes a plate-like heat collecting panel 1a, and has an internal flow path for circulating a heat medium therein. Yes. This internal flow path constitutes a part of the heat medium circulation conduit 7.

貯湯タンク2は、耐食性に優れた金属(例えば、ステンレス)製のタンクで、外周部に断熱材を有しており、下部に水を給水する給水管5と接続された給水口を、上部に湯水を出湯する出湯管6と接続された出湯口を有している。また、貯湯タンク2は、貯湯タンク2内の下部の給水口近傍に給水温度を検知するための給水サーミスタ(給水温度検知器)20aと、貯湯タンク内の中間部と最上部の湯水の温度をそれぞれ検知するための貯湯タンクサーミスタ20b,20cとを備えている。これらサーミスタ20a,20b,20cの検知信号は、それぞれ常時制御装置10に出力され、各検知温度は、集熱運転や給湯運転の制御に利用される。   The hot water storage tank 2 is a tank made of metal (for example, stainless steel) excellent in corrosion resistance, has a heat insulating material on the outer peripheral portion, and has a water supply port connected to a water supply pipe 5 for supplying water at the lower portion at the upper portion. It has a hot water outlet connected to a hot water outlet pipe 6 for hot water. The hot water storage tank 2 has a water supply thermistor (water supply temperature detector) 20a for detecting the temperature of the water supply in the vicinity of the lower water supply port in the hot water storage tank 2, and the temperature of the middle and uppermost hot water in the hot water storage tank. The hot water storage tank thermistors 20b and 20c for detecting each are provided. The detection signals of the thermistors 20a, 20b, and 20c are always output to the control device 10, and the detected temperatures are used for controlling the heat collecting operation and the hot water supply operation.

給水管5には、上流側から順に、給水元弁51、減圧弁52、混合用の給水温度を検知する入水温サーミスタ53、逆止弁54、及び排水弁55が配設されている。減圧弁52は、貯湯タンク2への給水圧を調整する弁であり、貯湯タンク2内の湯水が減少した場合、減圧弁52の下流側圧力が低下し、それに応じて貯湯タンク2内の圧力を維持するため、貯湯タンク2に水が給水される。入水温サーミスタ53の検知信号は、制御装置10に出力される。   In the water supply pipe 5, a water supply source valve 51, a pressure reducing valve 52, an incoming water temperature thermistor 53 that detects the supply water temperature for mixing, a check valve 54, and a drain valve 55 are arranged in this order from the upstream side. The pressure reducing valve 52 is a valve that adjusts the water supply pressure to the hot water storage tank 2, and when the hot water in the hot water storage tank 2 decreases, the pressure on the downstream side of the pressure reducing valve 52 decreases, and the pressure in the hot water storage tank 2 accordingly. Therefore, water is supplied to the hot water storage tank 2. The detection signal of the incoming water temperature thermistor 53 is output to the control device 10.

貯湯タンク2と補助熱源機3とは出湯管6を介して接続されている。出湯管6には、貯湯タンク2と補助熱源機3との間で、上流側から順に、圧力逃がし弁61、電磁弁62、混合弁63、水量センサ64、及び混合サーミスタ65が配設されている。水量センサ64は出湯管6内の流量を検知し、その検知信号は制御装置10に出力される。また、混合サーミスタ65は、出湯管6内の湯水の温度を検知し、その検知信号は制御装置10に出力される。   The hot water storage tank 2 and the auxiliary heat source unit 3 are connected via a hot water discharge pipe 6. A pressure relief valve 61, a solenoid valve 62, a mixing valve 63, a water amount sensor 64, and a mixing thermistor 65 are disposed in the hot water discharge pipe 6 in order from the upstream side between the hot water storage tank 2 and the auxiliary heat source unit 3. Yes. The water amount sensor 64 detects the flow rate in the tap water pipe 6, and the detection signal is output to the control device 10. Further, the mixing thermistor 65 detects the temperature of the hot water in the tap pipe 6, and the detection signal is output to the control device 10.

出湯管6に設けられている混合弁63には、給水管5から分岐された混合用給水管9が分岐接続されている。混合弁63は、貯湯タンク2から出湯される湯水の温度に応じて、貯湯タンク2から出湯された湯水と混合用給水管9を介して給水管5から給水された水とを混合する弁であり、制御装置10からの信号に応じて、その開度が調整される。   A mixing water supply pipe 9 branched from the water supply pipe 5 is branched and connected to the mixing valve 63 provided in the hot water discharge pipe 6. The mixing valve 63 is a valve that mixes hot water discharged from the hot water storage tank 2 with water supplied from the water supply pipe 5 via the mixing water supply pipe 9 according to the temperature of the hot water discharged from the hot water storage tank 2. Yes, the opening degree is adjusted according to the signal from the control device 10.

熱媒循環管路7は、太陽熱集熱器1で加熱された熱媒を貯湯タンク2に送る熱媒循環往路7aと、貯湯タンク2内で給水された水と加熱された熱媒との間で熱交換を行う熱交換部7bと、熱交換により冷却された熱媒を太陽熱集熱器1に戻す熱媒循環復路7cと、貯湯タンク2外に位置する熱媒循環往路7aと熱媒循環復路7cとを連通するバイパス路7dとから構成されている。熱交換部7bは、貯湯タンク2内の下方で屈曲された配管から構成されている。熱媒としては、従来公知のプロピレングリコールなどを含有する不凍液が使用される。   The heat medium circulation pipe 7 is provided between the heat medium circulation forward path 7a for sending the heat medium heated by the solar heat collector 1 to the hot water storage tank 2, and the water supplied in the hot water storage tank 2 and the heated heat medium. A heat exchange section 7b for exchanging heat, a heat medium circulation return path 7c for returning the heat medium cooled by the heat exchange to the solar heat collector 1, a heat medium circulation forward path 7a located outside the hot water storage tank 2, and a heat medium circulation The bypass path 7d communicates with the return path 7c. The heat exchanging portion 7 b is constituted by a pipe bent at the lower side in the hot water storage tank 2. As the heat medium, a conventionally known antifreeze containing propylene glycol or the like is used.

熱媒循環往路7aには、太陽熱集熱器1と貯湯タンク2との間で、上流側から順に、太陽熱集熱器1近傍の熱媒の温度を検知する集熱器側熱媒サーミスタ(集熱器側熱媒温度検知器)71と、貯湯タンク2に流入する熱媒の入側熱媒温度を検知する入側熱媒サーミスタ(入側熱媒温度検知器)72と、貯湯タンク2への熱媒の流れを連通/遮断する第1熱動弁(第1開閉弁)73とが設けられている。集熱器側熱媒サーミスタ71は、太陽熱集熱器1近傍の熱媒循環往路7aに設けられており、入側熱媒サーミスタ72は、貯湯タンク2近傍で、バイパス路7dとの接続部よりも上流側に設けられており、第1熱動弁73はバイパス路7dとの接続部と貯湯タンク2との間に設けられている。なお、集熱器側熱媒サーミスタ71は、熱媒循環復路7cに設けられてもよい。第1熱動弁73は、後述する集熱運転の開始初期以外では常開している開閉弁であり、制御装置10からの信号に応じて、開閉され、それによって貯湯タンク2への熱媒の流れが連通/遮断される。なお、第1熱動弁73は、熱媒循環復路7cのバイパス路7dとの接続部と貯湯タンク2との間に設けてもよい。集熱器側熱媒サーミスタ71の検知信号は常時制御装置10に出力されており、入側熱媒サーミスタ72の検知信号は、集熱運転時に制御装置10に出力される。   In the heat medium circulation path 7 a, a heat collector side heat medium thermistor (collector) that detects the temperature of the heat medium near the solar heat collector 1 in order from the upstream side between the solar heat collector 1 and the hot water storage tank 2. Heater side heat medium temperature detector (71), inlet side heat medium thermistor (input side heat medium temperature detector) 72 for detecting the inlet side heat medium temperature of the heat medium flowing into hot water tank 2, and hot water tank 2 A first thermal valve (first on-off valve) 73 is provided for communicating / blocking the flow of the heat medium. The heat collector side heat medium thermistor 71 is provided in the heat medium circulation forward path 7a in the vicinity of the solar heat collector 1, and the inlet side heat medium thermistor 72 is in the vicinity of the hot water storage tank 2 from the connection with the bypass path 7d. Is also provided on the upstream side, and the first thermal valve 73 is provided between the connecting portion with the bypass passage 7 d and the hot water storage tank 2. The heat collector-side heat medium thermistor 71 may be provided in the heat medium circulation return path 7c. The first thermal valve 73 is an open / close valve that is normally open except at the beginning of the heat collection operation described later, and is opened / closed in response to a signal from the control device 10, thereby heat medium to the hot water storage tank 2. The flow is communicated / blocked. Note that the first thermal valve 73 may be provided between the connecting portion of the heat medium circulation return path 7 c with the bypass path 7 d and the hot water storage tank 2. The detection signal of the heat collector side heat medium thermistor 71 is always output to the control device 10, and the detection signal of the input side heat medium thermistor 72 is output to the control device 10 during the heat collecting operation.

熱媒循環復路7cには、貯湯タンク2と太陽熱集熱器1との間で、上流側から順に、貯湯タンク2から戻る熱媒の出側熱媒温度を検知する出側熱媒サーミスタ(出側熱媒温度検知器)74と、熱媒を貯留するための膨張タンク75と、熱媒流量を計測する熱媒流量センサ(熱媒流量計)76と、循環ポンプPとが配設されている。出側熱媒サーミスタ74は、貯湯タンク2近傍で、熱媒循環復路7cとバイパス路7dとの接続部よりも下流側に配設されており、出側熱媒サーミスタ74及び熱媒流量センサ76の検知信号は、集熱運転時に制御装置10に出力される。   In the heating medium circulation return path 7c, an outlet side heating medium thermistor (outlet) for detecting the outlet side heating medium temperature of the heating medium returning from the hot water tank 2 in order from the upstream side between the hot water tank 2 and the solar heat collector 1 is provided. (Side heat medium temperature detector) 74, an expansion tank 75 for storing the heat medium, a heat medium flow sensor (heat medium flow meter) 76 for measuring the heat medium flow rate, and a circulation pump P are provided. Yes. The outlet-side heat medium thermistor 74 is disposed in the vicinity of the hot water storage tank 2 and on the downstream side of the connection portion between the heat-medium circulation return path 7c and the bypass path 7d, and the outlet-side heat medium thermistor 74 and the heat medium flow rate sensor 76. Is output to the control device 10 during the heat collecting operation.

バイパス路7dには、バイパス路7dにおける熱媒の流れを連通/遮断する第2熱動弁(第2開閉弁)77が配設されており、制御装置10からの信号に応じて、開閉され、それによって熱媒の流れが連通/遮断される。   The bypass passage 7d is provided with a second thermal valve (second on-off valve) 77 that communicates / blocks the flow of the heat medium in the bypass passage 7d, and is opened and closed according to a signal from the control device 10. Thereby, the flow of the heat medium is communicated / blocked.

循環ポンプPは、商用電源である電源供給部(図示せず)と接続された制御基板33を介して印加される制御装置10からの電力により駆動される。   The circulation pump P is driven by electric power from the control device 10 applied via a control board 33 connected to a power supply unit (not shown) that is a commercial power supply.

補助熱源機3は、給湯用加熱ユニット31と、給湯用加熱ユニット31の動作を制御する制御基板33とを備えている。給湯用加熱ユニット31には、給湯用熱交換器311及び給湯用ガスバーナ312とが内蔵されている。   The auxiliary heat source unit 3 includes a hot water supply heating unit 31 and a control board 33 that controls the operation of the hot water supply heating unit 31. The hot water supply heating unit 31 includes a hot water supply heat exchanger 311 and a hot water supply gas burner 312.

給湯用熱交換器311は、出湯管6と接続されている。給湯用熱交換器311は、給湯運転が行われる場合に、必要に応じて給湯用ガスバーナ312が点火されて加熱され、該給湯用熱交換器311で流入した湯水が熱交換されることにより、給湯管Lから浴室などに設けられたカランやシャワヘッド等の出湯端末に所定の給湯設定温度を有する給湯水が供給される。   The hot water supply heat exchanger 311 is connected to the hot water outlet pipe 6. When the hot water supply operation is performed, the hot water supply heat exchanger 311 is ignited and heated as necessary, and the hot water flowing in the hot water supply heat exchanger 311 is heat-exchanged. Hot water supply water having a predetermined hot water supply set temperature is supplied from a hot water supply pipe L to a hot water outlet terminal such as a currant or shower head provided in a bathroom or the like.

本実施の形態の太陽熱利用給湯システムで給湯運転が行われる場合、出湯端末が開栓されると、混合用給水管9から混合弁63を介して出湯管6に水が供給される。水量センサ64で所定流量以上の流水が検知されると、制御装置10は出湯管6に設けられた電磁弁62を開弁する。電磁弁62が開弁されると、貯湯タンク2から湯水が出湯管6に出湯される。そして、リモコン4の給湯温度設定スイッチを操作することにより制御装置10に入力された出湯端末で要求される温度よりも貯湯タンク2の貯湯タンクサーミスタ20cで検知される湯水の温度が高い場合、制御装置10により混合弁63の開度が調整されて、湯水と混合用給水管9から給水される水とが所定割合で混合され、給湯用加熱ユニット31を作動させることなく、出湯端末に所定温度の給湯水が供給される。一方、貯湯タンク2内から出湯される湯水の温度が出湯端末で要求される温度よりも低い場合、制御装置10は混合弁63の開度を所定割合に調整し、給湯用加熱ユニット31を作動させ、給湯用ガスバーナ312を点火する。そして、貯湯タンク2から出湯された湯水は混合弁63で水が混合された後、給湯用熱交換器311で加熱され、所定温度の給湯水が出湯端末に供給される。   When the hot water supply operation is performed in the solar heat utilizing hot water supply system of the present embodiment, when the hot water outlet terminal is opened, water is supplied from the mixing water supply pipe 9 to the hot water discharge pipe 6 through the mixing valve 63. When flowing water of a predetermined flow rate or more is detected by the water amount sensor 64, the control device 10 opens the electromagnetic valve 62 provided in the hot water discharge pipe 6. When the solenoid valve 62 is opened, hot water is discharged from the hot water storage tank 2 to the hot water discharge pipe 6. When the hot water temperature detected by the hot water storage tank thermistor 20c of the hot water storage tank 2 is higher than the temperature required at the hot water terminal input to the control device 10 by operating the hot water supply temperature setting switch of the remote controller 4, the control is performed. The opening degree of the mixing valve 63 is adjusted by the device 10 so that the hot water and the water supplied from the mixing water supply pipe 9 are mixed at a predetermined ratio, and the hot water supply heating unit 31 is not operated, and a predetermined temperature is applied to the outlet terminal. Hot water is supplied. On the other hand, when the temperature of the hot water discharged from the hot water storage tank 2 is lower than the temperature required at the hot water terminal, the control device 10 adjusts the opening of the mixing valve 63 to a predetermined ratio and operates the hot water supply heating unit 31. The hot water supply gas burner 312 is ignited. The hot water discharged from the hot water storage tank 2 is mixed with water by the mixing valve 63 and then heated by the hot water supply heat exchanger 311 to supply hot water at a predetermined temperature to the hot water terminal.

制御装置10は、マイクロコンピュータを主体として構成されており、図示しないROMには予め設定された集熱運転を実行するための集熱運転プログラム、集熱量計算プログラム、使用される熱媒の比熱C(J/kg・K)及び熱媒の比重d(kg/m)、並びに循環ポンプPの回転数に応じた消費電力量が記憶されているとともに、給湯運転を行う給湯運転部、集熱運転を行なう集熱運転部、タイマなどを備えている。また、制御装置10は、補助熱源機3内の制御基板33、循環ポンプP、水量センサ64、既述した各サーミスタ20a,20b,20c,53,65,71,72,74、熱動弁73,77、熱媒流量センサ76、電磁弁62、混合弁63などと接続されているとともに、浴室などに配置されたリモコン4と補助熱源機3内の制御基板33を介して接続されている。 The control device 10 is mainly composed of a microcomputer, and a heat collection operation program for executing a heat collection operation set in advance in a ROM (not shown), a heat collection amount calculation program, and a specific heat C of the heat medium used. (J / kg · K), the specific gravity d (kg / m 3 ) of the heat medium, and the power consumption corresponding to the number of rotations of the circulation pump P are stored, and the hot water supply operation unit for performing the hot water supply operation, the heat collection It is equipped with a heat collection operation unit for operation and a timer. The control device 10 includes a control board 33 in the auxiliary heat source unit 3, a circulation pump P, a water amount sensor 64, each thermistor 20a, 20b, 20c, 53, 65, 71, 72, 74, and a thermal valve 73. , 77, the heat medium flow sensor 76, the electromagnetic valve 62, the mixing valve 63, and the like, and is connected to the remote control 4 disposed in the bathroom or the like via the control board 33 in the auxiliary heat source unit 3.

リモコン4は、図示しない運転スイッチ、給湯温度設定スイッチなどの操作スイッチと、集熱運転時に太陽熱による集熱量から循環ポンプを駆動するために消費された消費電力量を減じた実効集熱量や、給湯設定温度、貯湯タンク2内の湯量などを表示するディスプレイを備えている。   The remote controller 4 includes an operation switch (not shown) such as an operation switch and a hot water supply temperature setting switch, an effective heat collection amount obtained by subtracting the amount of power consumed to drive the circulation pump from the amount of heat collected by solar heat during heat collection operation, A display for displaying the set temperature, the amount of hot water in the hot water storage tank 2, and the like is provided.

次に、本実施の形態の太陽熱利用給湯システムにおいて、集熱運転が行われる場合の制御動作を、図2のフロー図に基づいて具体的に説明する。   Next, in the solar hot water supply system of the present embodiment, the control operation when the heat collecting operation is performed will be specifically described based on the flowchart of FIG.

リモコン4の運転スイッチがオン操作されると、制御装置10は、集熱器側熱媒サーミスタ71から出力される集熱器側熱媒温度Tm0(K)と給水サーミスタから出力される給水温度Tw0(K)との温度差(Tm0−Tw0)が一定時間(例えば、10秒)、所定の開始温度Tn0(例えば、10K)以上を示すかどうかを判断し(ST1)、温度差(Tm0−Tw0)が開始温度Tn0以上である場合(ST1でYes)、集熱運転プログラムを起動し、循環ポンプPを最大回転数で駆動して、集熱運転を開始する(ST2)。これにより、太陽熱集熱器1の集熱による熱媒の温度上昇を早期に検知することができる。また、太陽熱集熱器1近傍に設けられた集熱器側熱媒サーミスタ71で検知される集熱器側熱媒温度Tm0と貯湯タンク2の給水口近傍に設けられた給水サーミスタ20aで検知される給水温度Tw0との温度差(Tm0−Tw0)が所定の開始温度Tn0以上であるときに集熱運転が開始されるため、エネルギー的に不経済な集熱運転を避けることができるとともに、集熱運転による貯湯タンク2内の湯水の温度の低下を防止することができる。   When the operation switch of the remote controller 4 is turned on, the control device 10 causes the heat collector side heat medium temperature Tm0 (K) output from the heat collector side heat medium thermistor 71 and the water supply temperature Tw0 output from the water supply thermistor. It is determined whether the temperature difference (Tm0-Tw0) from (K) is equal to or higher than a predetermined start temperature Tn0 (eg, 10K) for a certain time (eg, 10 seconds) (ST1), and the temperature difference (Tm0-Tw0) is determined. ) Is equal to or higher than the start temperature Tn0 (Yes in ST1), the heat collection operation program is started, the circulation pump P is driven at the maximum rotation speed, and the heat collection operation is started (ST2). Thereby, the temperature rise of the heat medium by the heat collection of the solar heat collector 1 can be detected at an early stage. Further, the heat collector side heat medium temperature Tm0 detected by the heat collector side heat medium thermistor 71 provided near the solar heat collector 1 and the water supply thermistor 20a provided near the water supply port of the hot water storage tank 2 are detected. Since the heat collection operation is started when the temperature difference (Tm0-Tw0) from the feed water temperature Tw0 is equal to or higher than the predetermined start temperature Tn0, it is possible to avoid the energy-efficient heat collection operation and It is possible to prevent the temperature of hot water in the hot water storage tank 2 from being lowered due to thermal operation.

集熱運転が開始されると、制御装置10は、熱媒流量センサ76から出力される熱媒流量Vが集熱運転を行うのに必要な所定流量Va以上であるかどうかを判定し(ST3)、熱媒流量Vが所定流量Va未満である場合(ST3でNo)、制御装置10は循環ポンプPの駆動を停止して、集熱運転を中止する(ST16)。これにより、循環ポンプPの不調や熱媒循環管路7の目詰まり等により熱媒が正常に循環していない場合の集熱運転を回避することができる。この場合、さらにリモコン4から熱媒の循環の異常を報知させてもよい。   When the heat collection operation is started, the control device 10 determines whether or not the heat medium flow rate V output from the heat medium flow sensor 76 is equal to or higher than a predetermined flow rate Va necessary for performing the heat collection operation (ST3). ) When the heat medium flow rate V is less than the predetermined flow rate Va (No in ST3), the control device 10 stops driving the circulation pump P and stops the heat collecting operation (ST16). Thereby, the heat collection operation when the heat medium is not normally circulated due to the malfunction of the circulation pump P or the clogging of the heat medium circulation pipe 7 can be avoided. In this case, an abnormality in the circulation of the heat medium may be further notified from the remote controller 4.

一方、熱媒流量Vが所定流量Va以上である場合(ST3でYes)、制御装置10は、熱媒が貯湯タンク2を流通せず、バイパス路7dを流通するように熱媒循環往路7aに設けられた第1熱動弁73を閉弁し、バイパス路7dに設けられた第2熱動弁77を開弁する(ST4)。これにより、熱媒は、図1の破線太矢印で示される短絡熱媒循環経路で熱媒循環管路7を循環する。このように、集熱運転開始時に、熱媒が貯湯タンク2内を流通せず、バイパス路7dを流通する短絡熱媒循環経路に熱媒循環経路を切替えることにより、貯湯タンク2内で熱媒と給水された水との熱交換が行なわれない状態で熱媒が熱媒循環管路7を循環するから、熱媒循環管路7内の熱媒温度の変化が少なく、早期に熱媒が効率的な集熱運転を行うことができる温度を有しているかどうかを判断できる。   On the other hand, when the heat medium flow rate V is equal to or higher than the predetermined flow rate Va (Yes in ST3), the control device 10 passes the heat medium circulation forward path 7a so that the heat medium does not flow through the hot water storage tank 2 but flows through the bypass path 7d. The provided first thermal valve 73 is closed, and the second thermal valve 77 provided in the bypass passage 7d is opened (ST4). As a result, the heat medium circulates through the heat medium circulation pipe 7 in the short-circuit heat medium circulation path indicated by the broken-line thick arrow in FIG. Thus, at the start of the heat collecting operation, the heat medium does not flow in the hot water storage tank 2, but the heat medium circulation path is switched to the short-circuit heat medium circulation path that flows through the bypass path 7d. Since the heat medium circulates through the heat medium circulation pipe 7 in a state where heat exchange between the water and the supplied water is not performed, there is little change in the temperature of the heat medium in the heat medium circulation pipe 7, and the heat medium is quickly introduced. It can be determined whether or not the temperature is such that efficient heat collection operation can be performed.

熱媒循環経路が短絡熱媒循環経路に切替えられると、制御装置10は、所定時間(例えば、30秒)、熱媒を循環させ(ST5)、その熱媒の循環状態で、集熱器側熱媒サーミスタ71から出力される初期集熱器側熱媒温度Tm1(K)と給水サーミスタ20aから出力される初期給水温度Tw1(K)とを比較し、これらの温度差(Tm1−Tw1)が所定の継続運転温度Tn1(例えば、5K)以上であるかどうかを判定する(ST6)。すなわち、集熱運転は集熱器側熱媒温度Tm0と給水温度Tw0との温度差(Tm0−Tw0)が所定の開始温度Tn0以上である場合に開始されるが、集熱運転開始時の太陽熱集熱器1から離れた箇所の熱媒循環管路7内の熱媒の温度は集熱器側熱媒温度Tm0よりも通常低いため、集熱運転開始初期の熱媒の循環によって熱媒の温度が効率的な集熱運転を行うのに不十分な温度まで低下する場合がある。従って、集熱運転開始初期から所定時間経過した後の初期集熱器側熱媒温度Tm1と初期給水温度Tw1とを比較することにより、より確実に集熱運転を継続すべきかどうかを判断することができる。   When the heat medium circulation path is switched to the short-circuit heat medium circulation path, the control device 10 circulates the heat medium for a predetermined time (for example, 30 seconds) (ST5), and in the circulation state of the heat medium, the collector side The initial collector side heat medium temperature Tm1 (K) output from the heat medium thermistor 71 is compared with the initial feed water temperature Tw1 (K) output from the feed water thermistor 20a, and the temperature difference (Tm1-Tw1) is obtained. It is determined whether the temperature is equal to or higher than a predetermined continuous operation temperature Tn1 (for example, 5K) (ST6). That is, the heat collection operation is started when the temperature difference (Tm0-Tw0) between the heat collector side heat medium temperature Tm0 and the feed water temperature Tw0 is equal to or higher than a predetermined start temperature Tn0. Since the temperature of the heat medium in the heat medium circulation pipe 7 at a location away from the heat collector 1 is usually lower than the heat collector side heat medium temperature Tm0, the heat medium is circulated by circulating the heat medium at the beginning of the heat collecting operation. The temperature may drop to a temperature that is insufficient for efficient heat collection operation. Therefore, it is determined whether or not the heat collection operation should be continued more reliably by comparing the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 after a predetermined time has elapsed from the beginning of the heat collection operation. Can do.

初期集熱器側熱媒温度Tm1と初期給水温度Tw1との温度差(Tm1−Tw1)が継続運転温度Tn1未満である場合(ST6でNo)、集熱運転を継続すると、集熱量よりも消費電力量が多くなる虞があると判断できるから、制御装置10は、循環ポンプPの駆動を停止して、集熱運転を終了する(ST16)。これにより、エネルギー的に不経済な集熱運転を早期に中止することができる。   When the temperature difference (Tm1−Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is less than the continuous operation temperature Tn1 (No in ST6), if the heat collection operation is continued, it is consumed more than the amount of heat collected Since it can be determined that the amount of electric power may increase, the control device 10 stops driving the circulation pump P and ends the heat collection operation (ST16). Thereby, the heat collection operation which is uneconomical in energy can be stopped early.

一方、初期集熱器側熱媒温度Tm1と初期給水温度Tw1との温度差(Tm1−Tw1)が継続運転温度Tn1以上である場合(ST6でYes)、太陽熱集熱器1で集熱運転を行うに十分な集熱が行なわれていると判断できるから、制御装置10は、熱媒が貯湯タンク2を流通するように、第1熱動弁73を開弁し、第2熱動弁77を閉弁する(ST7)。これにより、循環ポンプPが停止されることなく、円滑に集熱運転が継続され、熱媒は、図1の実線太矢印で示される定常熱媒循環経路で熱媒循環管路7を循環する。なお、この場合、第2熱動弁77は開弁状態のまま維持しておいてもよい。   On the other hand, when the temperature difference (Tm1-Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is equal to or higher than the continuous operation temperature Tn1 (Yes in ST6), the solar heat collector 1 performs the heat collection operation. Since it can be determined that sufficient heat collection is performed, the control device 10 opens the first thermal valve 73 and the second thermal valve 77 so that the heat medium flows through the hot water storage tank 2. Is closed (ST7). As a result, the heat collection operation is smoothly continued without stopping the circulation pump P, and the heat medium circulates through the heat medium circulation pipe 7 in the steady heat medium circulation path indicated by the solid line thick arrow in FIG. . In this case, the second thermal valve 77 may be kept open.

初期集熱器側熱媒温度Tm1と初期給水温度Tw1との温度差(Tm1−Tw1)が継続運転温度Tn1以上であり(ST6でYes)、集熱運転が継続可能と判断された場合、制御装置10は、所定時間(例えば、1分)内の熱媒流量センサ76から出力される熱媒流量Vと、所定時間経過時の入側熱媒サーミスタ72から出力される入側熱媒温度Tinと、出側熱媒サーミスタ74から出力される出側熱媒温度Toutとを計測する。そして、集熱量計算プログラムに基づき、これらの値と、熱媒の比熱C及び比重dとを積算して、集熱量Qiを算出する(ST9)。これにより、温度変化の小さい貯湯タンク2内の湯水の温度や高精度の流量計を利用することなく、より正確に熱媒から貯湯タンク2内に供給された集熱量を算出することができる。   When the temperature difference (Tm1−Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is equal to or higher than the continuous operation temperature Tn1 (Yes in ST6), it is determined that the heat collection operation can be continued. The apparatus 10 includes a heat medium flow rate V output from the heat medium flow rate sensor 76 within a predetermined time (for example, 1 minute), and an input side heat medium temperature Tin output from the input side heat medium thermistor 72 when the predetermined time elapses. And the outlet side heat medium temperature Tout output from the outlet side heat medium thermistor 74 are measured. Then, based on the heat collection amount calculation program, these values and the specific heat C and specific gravity d of the heat medium are integrated to calculate the heat collection amount Qi (ST9). Accordingly, the amount of heat collected from the heat medium into the hot water storage tank 2 can be calculated more accurately without using the temperature of the hot water in the hot water storage tank 2 with a small temperature change or a high-precision flowmeter.

次に、算出された所定時間内の集熱量Qiが、循環ポンプPを最小回転数で駆動したときの最低消費電力量Rmin以上であるかどうかが判断され(ST10)、集熱量Qiが最低消費電力量Rmin以上であれば(ST10でYes)、制御装置10は、ROMに記憶された循環ポンプPの回転数と消費電力量の関係から、循環ポンプPを駆動する消費電力量Riが算出された集熱量Qi以下となるように、循環ポンプPの回転数を制御する(ST11)。例えば、所定時間経過時の入側熱媒温度Tinと出側熱媒温度Toutとの温度差(Tin−Tout)が5(K)、熱媒の比熱Cが3,600(J/kg・K)、熱媒の比重dが1,050(kg/m)、熱媒流量Vが0.0002(m/sec)である場合、1分間の集熱量Qiは、226,800J(=5×3,600×1,050×0.002×60)となる。従って、この算出された集熱量Qiよりも循環ポンプPの消費電力量Riが低くなるように、ROMに記憶された使用する循環ポンプPの能力(回転数と消費電力量の関係)に応じて循環ポンプPの回転数が制御される。これにより、太陽熱によって加熱された熱媒から貯湯タンク2に供給される集熱量Qi以下の消費電力量Riで循環ポンプPが駆動されるから、効率的に集熱運転を行うことができる。なお、集熱運転中、貯湯タンク2内の湯水の温度が上昇し、入側熱媒温度Tinと出側熱媒温度Toutとの温度差(Tin−Tout)が小さくなるため、集熱量Qiが低下し、それに伴って循環ポンプPの回転数が低下されて、消費電力量Riは低下していくが、循環ポンプPを最小回転数で回転させたときの最低消費電力量Rminよりも集熱量Qiが多い場合、最低消費電力量Rminでの循環ポンプPの駆動が維持される。 Next, it is determined whether or not the calculated heat collection amount Qi within a predetermined time is equal to or greater than the minimum power consumption Rmin when the circulation pump P is driven at the minimum rotation speed (ST10), and the heat collection amount Qi is the minimum consumption. If it is equal to or greater than the power amount Rmin (Yes in ST10), the control device 10 calculates the power consumption amount Ri for driving the circulation pump P from the relationship between the rotational speed of the circulation pump P and the power consumption amount stored in the ROM. The rotational speed of the circulation pump P is controlled so as to be equal to or less than the heat collection amount Qi (ST11). For example, the temperature difference (Tin−Tout) between the inlet side heat medium temperature Tin and the outlet side heat medium temperature Tout after a predetermined time is 5 (K), and the specific heat C of the heat medium is 3,600 (J / kg · K). ), When the specific gravity d of the heat medium is 1,050 (kg / m 3 ) and the heat medium flow rate V is 0.0002 (m 3 / sec), the heat collection amount Qi per minute is 226,800 J (= 5) × 3,600 × 1,050 × 0.002 × 60). Therefore, according to the capacity of the circulating pump P to be used (relationship between the rotational speed and the power consumption) stored in the ROM so that the power consumption Ri of the circulation pump P is lower than the calculated heat collection amount Qi. The rotation speed of the circulation pump P is controlled. Thereby, since the circulation pump P is driven by the power consumption amount Ri not more than the heat collection amount Qi supplied from the heat medium heated by solar heat to the hot water storage tank 2, the heat collection operation can be performed efficiently. During the heat collecting operation, the temperature of the hot water in the hot water storage tank 2 rises, and the temperature difference (Tin−Tout) between the inlet side heat medium temperature Tin and the outlet side heat medium temperature Tout becomes small. Along with this, the rotational speed of the circulation pump P is reduced, and the power consumption Ri decreases. However, the amount of heat collected is less than the minimum power consumption Rmin when the circulation pump P is rotated at the minimum rotational speed. When Qi is large, the circulation pump P is driven at the minimum power consumption Rmin.

集熱量Qiに基づき循環ポンプPの回転数が制御されると、制御装置10は、算出された集熱量Qiと循環ポンプPの消費電力量Riを記憶し(ST12)、さらに集熱量Qiと消費電力量Riとを比較して、その差を実効集熱量Eiとして、リモコン4に所定時間毎に出力する(ST13)。これにより、使用者は集熱運転による実際のエネルギー節約量を認識することができる。   When the rotational speed of the circulation pump P is controlled based on the heat collection amount Qi, the control device 10 stores the calculated heat collection amount Qi and the power consumption amount Ri of the circulation pump P (ST12), and further collects the heat collection amount Qi and consumption. The power amount Ri is compared, and the difference is output as an effective heat collection amount Ei to the remote controller 4 every predetermined time (ST13). Thereby, the user can recognize the actual energy saving amount by the heat collection operation.

次に、制御装置10は、貯湯タンク2内の最上部に設けた貯湯タンクサーミスタ20cから出力される湯水の温度が出湯禁止温度Th(例えば、60℃)以上となっているかどうかを判断し(ST14)、湯水の温度が出湯禁止温度Th以上である場合(ST14でYes)、集熱運転の継続によって高温の湯水が出湯することを防止するため、循環ポンプPの駆動を停止する(ST16)。   Next, the control device 10 determines whether or not the temperature of the hot water output from the hot water storage tank thermistor 20c provided at the top of the hot water storage tank 2 is equal to or higher than the hot water prohibition temperature Th (for example, 60 ° C.) ( ST14) When the temperature of the hot water is equal to or higher than the hot water prohibition temperature Th (Yes in ST14), the driving of the circulation pump P is stopped in order to prevent hot hot water from being discharged due to the continuation of the heat collecting operation (ST16). .

一方、貯湯タンク2内の湯水の温度が出湯禁止温度Th未満である場合(ST14でNo)、ST8に戻り、上記と同様の動作により次の所定時間内の集熱量Qi+1を算出して、集熱運転を継続する。   On the other hand, when the temperature of the hot water in the hot water storage tank 2 is lower than the hot water prohibition temperature Th (No in ST14), the process returns to ST8, and the heat collection amount Qi + 1 in the next predetermined time is calculated by the same operation as described above to collect the hot water. Continue thermal operation.

集熱運転中、算出された集熱量Qiが、循環ポンプPを最小回転数で駆動したときの最低消費電力量Rmin未満となった場合(ST10でNo)、制御装置10は、記憶された直近の所定回数分(例えば、5回分)の集熱量Qiを合計した積算集熱量ΣQiと、それに対応する循環ポンプPの消費電力量Riを合計した積算消費電力量ΣRiとを比較し、積算集熱量ΣQiが積算消費電力量ΣRi以上であるかどうかを判定する(ST15)。そして、積算集熱量ΣQiが積算消費電力量ΣRi以上である場合(ST15でYes)、ST8に戻り、集熱運転を継続する。すなわち、一時的な曇天により太陽熱集熱器1で加熱される熱媒の温度が低下する場合があるため、短時間内の集熱量Qiが低下したことに基づき、循環ポンプPの駆動を停止しても、その後、曇天から晴天に変わり、集熱量が増加すると、再度循環ポンプPを駆動させる必要がある。このため、単一の集熱量Qiのみに基づいて集熱運転の継続を判断する場合、循環ポンプPの駆動・停止を頻繁に行なわなければならないという不都合がある。これに対して、上記のように集熱量Qiが最低消費電力量Rmin未満であっても、所定回数分の積算集熱量ΣQiが積算消費電力量ΣRi以上である場合、循環ポンプPの駆動が継続されるから、円滑な集熱運転を行うことができる。なお、積算集熱量ΣQiが積算消費電力量ΣRi未満である場合(ST15でNo)、一定時間、太陽熱集熱器1による集熱が継続して十分に行なわれていないと判断できるから、制御装置10は循環ポンプPの駆動を停止して、集熱運転を中止する。   When the calculated heat collection amount Qi becomes less than the minimum power consumption Rmin when the circulation pump P is driven at the minimum rotational speed during the heat collection operation (No in ST10), the control device 10 The accumulated heat collection amount ΣQi obtained by summing the heat collection amount Qi for a predetermined number of times (for example, 5 times) and the accumulated power consumption amount ΣRi obtained by summing the corresponding power consumption amount Ri of the circulation pump P are compared. It is determined whether or not ΣQi is greater than or equal to the integrated power consumption ΣRi (ST15). If the accumulated heat collection amount ΣQi is equal to or greater than the accumulated power consumption amount ΣRi (Yes in ST15), the process returns to ST8 and the heat collection operation is continued. That is, since the temperature of the heat medium heated by the solar heat collector 1 may decrease due to temporary cloudy weather, the circulation pump P is stopped based on the decrease in the amount of heat collected Qi within a short time. However, after that, when the amount of heat collection increases from cloudy to sunny, it is necessary to drive the circulation pump P again. For this reason, when it is determined to continue the heat collection operation based on only the single heat collection amount Qi, there is an inconvenience that the circulation pump P must be frequently driven and stopped. On the other hand, even if the heat collection amount Qi is less than the minimum power consumption amount Rmin as described above, the circulation pump P continues to be driven if the accumulated heat collection amount ΣQi for a predetermined number of times is equal to or greater than the cumulative power consumption amount ΣRi. Therefore, a smooth heat collecting operation can be performed. Note that when the accumulated heat collection amount ΣQi is less than the accumulated power consumption amount ΣRi (No in ST15), it can be determined that the heat collection by the solar heat collector 1 is not performed sufficiently for a certain period of time. 10 stops the driving of the circulation pump P and stops the heat collecting operation.

(その他の実施の形態)
(1)上記実施の形態では、集熱パネルのみを有する太陽熱集熱器が用いられているが、集熱パネルと太陽電池パネルなどの発電パネルの両方を備えた太陽熱集熱器を用いてもよい。これによれば、さらに省エネルギー化を図ることができる。
(Other embodiments)
(1) In the said embodiment, although the solar-heat collector which has only a heat collection panel is used, even if it uses a solar-heat collector provided with both heat collection panels and power generation panels, such as a solar cell panel. Good. According to this, further energy saving can be achieved.

(2)上記実施の形態では、集熱量が循環ポンプを最小回転数で駆動したときの最低消費電力量未満である場合、さらに積算集熱量と積算消費電力量とを比較して、集熱運転の継続が判断されているが、積算集熱量と積算消費電力量とを比較することなく、循環ポンプの駆動を停止してもよい。 (2) In the above embodiment, when the heat collection amount is less than the minimum power consumption amount when the circulating pump is driven at the minimum rotation speed, the integrated heat collection amount and the integrated power consumption amount are further compared, and the heat collection operation is performed. However, the circulation pump may be stopped without comparing the integrated heat collection amount and the integrated power consumption amount.

(3)上記実施の形態では、太陽熱集熱器のみにより熱媒を加熱しているが、さらに熱媒循環管路を加熱するヒータや熱交換器を熱媒循環管路に隣接して設けてもよい。 (3) In the above embodiment, the heating medium is heated only by the solar heat collector, but a heater or a heat exchanger for heating the heating medium circulation pipe is further provided adjacent to the heating medium circulation pipe. Also good.

1 太陽熱集熱器
2 貯湯タンク
4 リモコン(表示装置)
7 熱媒循環管路
7a 熱媒循環往路
7b 熱交換部
7c 熱媒循環復路
7d バイパス路
10 制御装置
20a 給水サーミスタ(給水温度検知器)
71 集熱器側熱媒サーミスタ(集熱器側熱媒温度検知器)
72 入側熱媒サーミスタ(入側熱媒温度検知器)
73 第1熱動弁(第1開閉弁)
74 出側熱媒サーミスタ(出側熱媒温度検知器)
76 熱媒流量センサ
77 第2熱動弁(第2開閉弁)
P 循環ポンプ
1 Solar collector 2 Hot water storage tank 4 Remote control (display device)
7 Heat medium circulation pipe 7a Heat medium circulation forward path 7b Heat exchange part 7c Heat medium circulation return path 7d Bypass path 10 Controller 20a Water supply thermistor (feed water temperature detector)
71 Heat Collector Thermistor (Heat Collector Temperature Detector)
72 Inlet heat medium thermistor (Inlet heat medium temperature detector)
73 First thermal valve (first on-off valve)
74 Outlet heat medium thermistor (Outside heat medium temperature detector)
76 Heat medium flow sensor 77 Second thermal valve (second on-off valve)
P Circulation pump

Claims (5)

太陽熱を利用して熱媒を加熱する太陽熱集熱器と
湯水を貯湯する貯湯タンクと、
前記太陽熱集熱器から熱媒を前記貯湯タンクに送る熱媒循環往路、前記貯湯タンク内に配設された熱交換部、及び前記貯湯タンクから前記太陽熱集熱器に熱媒を戻す熱媒循環復路を有する熱媒循環管路と、
前記熱媒循環管路内の熱媒を循環させる循環ポンプと、
前記熱媒循環往路または前記熱媒循環復路の前記太陽熱集熱器近傍に設けられた集熱器側熱媒温度検知器と、
前記熱媒循環往路の前記貯湯タンク近傍に設けられた入側熱媒温度検知器と、
前記熱媒循環復路の前記貯湯タンク近傍に設けられた出側熱媒温度検知器と
前記熱媒循環管路内の熱媒流量を計測する熱媒流量計と、
前記貯湯タンクの給水口近傍に設けられた給水温度検知器と、
前記太陽熱集熱器による集熱運転を制御する制御装置とを備える太陽熱利用給湯システムであって、
前記制御装置は、前記集熱器側熱媒温度検知器で検知される集熱器側熱媒温度Tm0と前記給水温度検知器で検知される給水温度Tw0との温度差(Tm0−Tw0)が所定の開始温度Tn0以上である場合に、前記循環ポンプを駆動して集熱運転を開始し、
集熱運転中、前記入側熱媒温度検知器により検知される入側熱媒温度Tinと前記出側熱媒温度検知器により検知される出側熱媒温度Toutとの温度差(Tin−Tout)、前記熱媒流量計によって計測される熱媒流量V、熱媒の比熱C、及び熱媒の比重dの積[(Tin−Tout)×V×C×d]から求められる熱媒から貯湯タンクに供給される集熱量が、前記循環ポンプの駆動に必要な消費電力量以上となるように前記循環ポンプの回転数を制御する太陽熱利用給湯システム。
A solar collector that heats the heat medium using solar heat, a hot water storage tank that stores hot water,
A heat medium circulation forward path for sending a heat medium from the solar heat collector to the hot water storage tank, a heat exchanging portion disposed in the hot water storage tank, and a heat medium circulation for returning the heat medium from the hot water tank to the solar heat collector A heating medium circulation pipe having a return path;
A circulation pump for circulating the heat medium in the heat medium circulation line;
A heat collector side heat medium temperature detector provided in the vicinity of the solar heat collector of the heat medium circulation forward path or the heat medium circulation return path;
An inlet-side heat medium temperature detector provided in the vicinity of the hot water storage tank of the heat medium circulation outward path;
An outlet-side heat medium temperature detector provided in the vicinity of the hot water storage tank of the heat medium circulation return path, a heat medium flow meter for measuring the heat medium flow rate in the heat medium circulation pipe,
A water temperature detector provided in the vicinity of the water supply port of the hot water storage tank;
A solar-powered hot water supply system comprising a control device for controlling a heat collecting operation by the solar heat collector,
The control device has a temperature difference (Tm0-Tw0) between a collector-side heat medium temperature Tm0 detected by the collector-side heat medium temperature detector and a feed water temperature Tw0 detected by the feed water temperature detector. When the temperature is equal to or higher than a predetermined start temperature Tn0, the circulation pump is driven to start a heat collecting operation,
During the heat collecting operation, a temperature difference (Tin−Tout) between the input side heat medium temperature Tin detected by the input side heat medium temperature detector and the output side heat medium temperature Tout detected by the output side heat medium temperature detector. ), Hot water storage from the heat medium determined from the product [(Tin−Tout) × V × C × d] of the heat medium flow rate V measured by the heat medium flow meter, the specific heat C of the heat medium, and the specific gravity d of the heat medium A solar-powered hot water supply system that controls the number of revolutions of the circulation pump so that the amount of collected heat supplied to the tank is equal to or greater than the amount of power consumption required for driving the circulation pump.
前記集熱運転開始から所定時間経過後の前記集熱器側熱媒温度検知器で検知される初期集熱器側熱媒温度Tm1と前記給水温度検知器で検知される初期給水温度Tw1との温度差(Tm1−Tw1)が所定の継続運転温度Tn1未満である場合、前記制御装置は、前記循環ポンプの駆動を停止する請求項1に記載の太陽熱利用給湯システム。   The initial collector side heat medium temperature Tm1 detected by the collector side heat medium temperature detector after the elapse of a predetermined time from the start of the heat collection operation and the initial feed water temperature Tw1 detected by the feed water temperature detector. The solar-powered hot water supply system according to claim 1, wherein when the temperature difference (Tm1-Tw1) is less than a predetermined continuous operation temperature Tn1, the control device stops driving the circulation pump. 前記熱媒循環管路は、前記熱媒循環往路と前記熱媒循環復路とをバイパスするバイパス路を有しており、
前記熱媒循環往路または前記熱媒循環復路の前記バイパス路との接続部よりも前記貯湯タンク側に設けられ、前記貯湯タンクへの熱媒の流れを連通/遮断する第1開閉弁と、
前記バイパス路に設けられ、前記バイパス路における熱媒の流れを連通/遮断する第2開閉弁とをさらに有し、
前記制御装置は、前記集熱運転開始時に、前記第1開閉弁を閉弁し、前記第2開閉弁を開弁することにより、前記熱媒が前記貯湯タンクに流通せず、前記バイパス路を流通するように熱媒循環経路を切り替え、
前記熱媒循環経路が切替えられた後、前記初期集熱器側熱媒温度Tm1と前記初期給水温度Tw1との差(Tm1−Tw1)が前記所定の継続運転温度Tn1以上である場合、前記第1開閉弁を開弁することにより、前記熱媒が前記貯湯タンクに流通するように熱媒循環経路を切り替えて、集熱運転を継続し、
前記初期集熱器側熱媒温度Tm1と前記初期給水温度Tw1との差(Tm1−Tw1)が前記所定の継続運転温度Tn1未満である場合、前記循環ポンプの駆動を停止する請求項2に記載の太陽熱利用給湯システム。
The heating medium circulation pipeline has a bypass path that bypasses the heating medium circulation outward path and the heating medium circulation return path,
A first on-off valve provided on the hot water storage tank side than a connection portion with the bypass path of the heat medium circulation forward path or the heat medium circulation return path, and communicates / blocks the flow of the heat medium to the hot water storage tank;
A second on-off valve that is provided in the bypass passage and communicates / blocks the flow of the heat medium in the bypass passage;
The control device closes the first on-off valve and opens the second on-off valve at the start of the heat collecting operation, so that the heat medium does not flow to the hot water storage tank, and the bypass passage is opened. Switch the heat medium circulation path to circulate,
When the difference (Tm1−Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is equal to or higher than the predetermined continuous operation temperature Tn1 after the heat medium circulation path is switched, 1 Opening the on-off valve switches the heat medium circulation path so that the heat medium flows through the hot water storage tank, and continues the heat collecting operation.
3. The driving of the circulation pump is stopped when a difference (Tm1−Tw1) between the initial heat collector side heat medium temperature Tm1 and the initial feed water temperature Tw1 is lower than the predetermined continuous operation temperature Tn1. Solar hot water supply system.
前記集熱量が、前記循環ポンプを最小回転数で駆動したときの最低消費電力量未満である場合、前記制御装置は、前記循環ポンプの駆動を停止する請求項1〜3のいずれか1項に記載の太陽熱利用給湯システム。   4. The control device according to claim 1, wherein the control device stops driving the circulation pump when the amount of heat collection is less than a minimum power consumption amount when the circulation pump is driven at a minimum rotation speed. The solar water heating system described. 前記集熱量が、前記循環ポンプを最小回転数で駆動したときの最低消費電力量未満であり、且つ前記集熱量を所定回数分積算した積算集熱量が、前記消費電力量を所定回数分積算した積算消費電力量未満である場合、前記制御装置は、前記循環ポンプの駆動を停止する請求項1〜3のいずれか1項に記載の太陽熱利用給湯システム。
The heat collection amount is less than the minimum power consumption when the circulating pump is driven at the minimum number of revolutions, and the integrated heat collection amount obtained by integrating the heat collection amount by a predetermined number of times integrates the power consumption amount by a predetermined number of times. The solar-powered hot water supply system according to any one of claims 1 to 3, wherein the control device stops driving the circulation pump when the power consumption is less than the integrated power consumption.
JP2010138468A 2010-06-17 2010-06-17 Solar water heating system Active JP5461318B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010138468A JP5461318B2 (en) 2010-06-17 2010-06-17 Solar water heating system
AU2011202789A AU2011202789B2 (en) 2010-06-17 2011-06-10 Solar heat-utilizing water heater system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138468A JP5461318B2 (en) 2010-06-17 2010-06-17 Solar water heating system

Publications (2)

Publication Number Publication Date
JP2012002442A JP2012002442A (en) 2012-01-05
JP5461318B2 true JP5461318B2 (en) 2014-04-02

Family

ID=45534637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138468A Active JP5461318B2 (en) 2010-06-17 2010-06-17 Solar water heating system

Country Status (2)

Country Link
JP (1) JP5461318B2 (en)
AU (1) AU2011202789B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201331526A (en) * 2012-01-20 2013-08-01 Your Home Tech Ltd Forced circulation control method for solar water heater
CN102692080A (en) * 2012-05-18 2012-09-26 潘永良 New type solar water heater with electric heating function and electric heating control method
JP6064671B2 (en) * 2012-06-29 2017-01-25 パナソニックIpマネジメント株式会社 Tank system and control method thereof
JP5981880B2 (en) * 2013-05-22 2016-08-31 リンナイ株式会社 Heat pump system
JP5975956B2 (en) * 2013-09-06 2016-08-23 三菱電機株式会社 Abnormality notification method in water heater and water heater
CN103499144B (en) * 2013-10-16 2016-03-30 无锡艾科瑞思产品设计与研究有限公司 A kind of water heater
CN103954058B (en) * 2014-05-15 2015-08-05 南京师范大学 The real-time thermoregulating system of solar energy hot water supply
JP6548925B2 (en) * 2015-03-19 2019-07-24 株式会社東芝 Solar heat collection system
CN105258368A (en) * 2015-08-21 2016-01-20 苏州斯卡柏通讯技术有限公司 Solar water heater control system
CN106524288A (en) * 2016-09-20 2017-03-22 芜湖市晨曦新型建材科技有限公司 Intelligent full-automatic control solar heating system
CN106940092B (en) * 2017-03-24 2019-04-09 广州安博检测有限公司 A kind of solar thermal collector thermal efficiency open loop water system
JP7237889B2 (en) * 2020-07-13 2023-03-13 矢崎エナジーシステム株式会社 Heat collection system and its control method
CN113757777B (en) * 2021-10-11 2023-07-04 盐城工学院 Hot water time control and temperature control supply system for civil house
CN113883590B (en) * 2021-11-10 2023-05-26 西安建筑科技大学 Flexible control method and system for solar heating
KR102654304B1 (en) * 2023-09-21 2024-04-02 박명군 Solar Thermal Storage System
KR102619543B1 (en) * 2023-09-21 2023-12-28 박명군 Remote control multi-line solar thermal pump station
KR102654305B1 (en) * 2023-09-21 2024-04-02 박명군 pumpstation
KR102654306B1 (en) * 2023-09-21 2024-04-02 박명군 The pump station including the control of the thermal storage tank and circulating heated water
KR102619542B1 (en) * 2023-09-21 2023-12-28 박명군 Remotely monitored solar thermal pump station

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152556A (en) * 1984-08-22 1986-03-15 Sharp Corp Solar heat collecting device
DE19705008A1 (en) * 1997-02-10 1998-08-13 Harald Friedrich Solar heating control system e.g. for water
JP2002181393A (en) * 2000-10-04 2002-06-26 Sekisui Chem Co Ltd Hot-water supplier utilizing solar heat
JP3968643B2 (en) * 2002-04-16 2007-08-29 株式会社ノーリツ Solar water heater
JP2004044952A (en) * 2002-07-12 2004-02-12 Showa Denko Kk Solar heat collecting device and its operating method
JP2007132555A (en) * 2005-11-08 2007-05-31 Daiwa House Ind Co Ltd Solar energy assisted system
US7708010B2 (en) * 2007-03-05 2010-05-04 Taco Inc. Solar heating systems
JP5322532B2 (en) * 2008-08-06 2013-10-23 株式会社長府製作所 Hot water heating method
JP5115452B2 (en) * 2008-11-10 2013-01-09 株式会社デンソー Hot water storage water heater

Also Published As

Publication number Publication date
JP2012002442A (en) 2012-01-05
AU2011202789B2 (en) 2013-06-20
AU2011202789A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5461318B2 (en) Solar water heating system
US9400122B2 (en) Solar thermal system
KR101160795B1 (en) Water heater with automatic controller
JP5462009B2 (en) Solar water heating system
JP4362118B2 (en) Hot water storage water heater
JP4513754B2 (en) Hybrid hot water supply system
JP4839141B2 (en) Heat pump water heater
JP5491878B2 (en) Hot water storage hot water supply system using solar heat
JP5537971B2 (en) Solar water heating system
JP4875970B2 (en) Heat pump water heater
JP5472178B2 (en) Hot water heater
JP5546264B2 (en) Solar water heater
JP2011149660A (en) Solar heat hot water supply device
JP5604119B2 (en) Hot water storage hot water supply system
JPH08152193A (en) Hot water supplying device
JP5606140B2 (en) Heat source device, heating device, freeze prevention control method thereof, and freeze prevention control program
JP2002147870A (en) Solar water heater
GB2486491A (en) Water heating system and a method of supplying hot water
JP5869365B2 (en) Solar water heating system
JP4148909B2 (en) Heat pump water heater / heater
JP3909312B2 (en) Heat pump water heater
JP6625813B2 (en) Hot water storage system
JP5537966B2 (en) Solar water heater
JP5606141B2 (en) Heat source device and hot water supply device
JP5462007B2 (en) Solar water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250