JP5460653B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5460653B2
JP5460653B2 JP2011155296A JP2011155296A JP5460653B2 JP 5460653 B2 JP5460653 B2 JP 5460653B2 JP 2011155296 A JP2011155296 A JP 2011155296A JP 2011155296 A JP2011155296 A JP 2011155296A JP 5460653 B2 JP5460653 B2 JP 5460653B2
Authority
JP
Japan
Prior art keywords
switching element
output terminal
expansion coefficient
linear expansion
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011155296A
Other languages
English (en)
Other versions
JP2013021878A (ja
Inventor
真生 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011155296A priority Critical patent/JP5460653B2/ja
Priority to US13/548,209 priority patent/US8654554B2/en
Publication of JP2013021878A publication Critical patent/JP2013021878A/ja
Application granted granted Critical
Publication of JP5460653B2 publication Critical patent/JP5460653B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/071Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

この発明は、半導体装置に関する。より詳細には、この発明は、スイッチング素子とこれに逆並列に接続されたダイオードとを有する上アーム及び下アームを直列に接続した1つ又は複数のアーム直列回路を備える半導体装置に関する。
スイッチング素子とこれに逆並列に接続されたダイオード(逆並列ダイオード)とを有する上アーム及び下アームを直列に接続したアーム直列回路を備える半導体装置が開発されている。このような半導体装置として、インバータ、コンバータ等が存在する(例えば、特許文献1)。
特許文献1では、パワーモジュール出力端子部の浮遊容量を低減し、これによる充放電電流の抑制を図ることを課題としている(要約)。当該浮遊容量は、コモンモード電流の原因となり、伝導ノイズや放射ノイズを引き起こす(段落[0007])。上記のような課題を解決するため、特許文献1では、IGBT3aのエミッタ電極側に、出力端子となる電極2cを固着又は圧着し、電極2cをモジュール2から直接に外部電極として取り出す。これにより、絶縁基板10を介することなく直接外部と配線することで、浮遊容量を低減しその充放電電流を抑制する(要約)。
特開2010−016947号公報
特許文献1では、出力端子としての電極2cとグラウンド{冷却フィン6及び放熱板8(ベタパターン10dを含む。)}との間の距離は、IGBTチップ3a(上アーム側の正極としての回路パターン10aを含む。)及び絶縁基板10の厚みとなるため、電極2cとグラウンドの間の浮遊容量の低減が不十分となるおそれがある。また、特許文献1では、スイッチング動作に伴ってIGBTチップ3a、3bが発熱した際、IGBTチップ3a、3bと電極2c、負極端子2b、回路パターン10aとの線膨張係数の相違(熱膨張差)による応力(熱応力)の集中により変形が起こり、両者の接合部が破損する可能性がある。
この発明は、このような課題を考慮してなされたものであり、伝導ノイズ及び伝導ノイズをより低減しつつ、破損を防止することが可能な半導体装置を提供することを目的とする。
この発明に係る半導体装置は、第1スイッチング素子及びこれに逆並列に接続された第1ダイオードを有する上アームと、第2スイッチング素子及びこれに逆並列に接続された第2ダイオードを有する下アームとを直列に接続した1つ又は複数のアーム直列回路を備えるものであって、前記アーム直列回路の正極端子及び負極端子の間に前記アーム直列回路の出力端子が配置され、前記正極端子と前記出力端子の間に前記第1スイッチング素子及び前記第1ダイオードが配置されると共に、前記負極端子と前記出力端子の間に前記第2スイッチング素子及び前記第2ダイオードが配置され、前記正極端子及び前記負極端子それぞれの前記出力端子と反対側には絶縁基板を介してグラウンドが配置され、前記正極端子及び前記出力端子の少なくとも一方と前記第1スイッチング素子との間には導電性の第1熱緩衝材が配置されると共に、前記負極端子及び前記出力端子の少なくとも一方と前記第2スイッチング素子との間には導電性の第2熱緩衝材が配置され、前記第1熱緩衝材の線膨張係数は、前記第1スイッチング素子の線膨張係数よりも大きく且つ前記正極端子又は前記出力端子の線膨張係数よりも小さく、前記第2熱緩衝材の線膨張係数は、前記第2スイッチング素子の線膨張係数よりも大きく且つ前記負極端子又は前記出力端子の線膨張係数よりも小さいことを特徴とする。
この発明によれば、正極端子及び出力端子の少なくとも一方と第1スイッチング素子との間には第1熱緩衝材が配置される。これにより、第1熱緩衝材の厚さの分、第1スイッチング素子と第1スイッチング素子側のグラウンドとの距離が大きくなる結果、出力端子と第1スイッチング素子側のグラウンドとの間の浮遊容量を低減することが可能となる。従って、当該浮遊容量に起因するコモンモード電流を低減し、当該コモンモード電流に起因する伝導ノイズ及び放射ノイズを抑制することができる。
同様に、負極端子及び出力端子の少なくとも一方と第2スイッチング素子との間には第2熱緩衝材が配置される。これにより、第2熱緩衝材の厚さの分、第2スイッチング素子と第2スイッチング素子側のグラウンドとの距離が大きくなる結果、出力端子と第2スイッチング素子側のグラウンドとの間の浮遊容量を低減することが可能となる。従って、当該浮遊容量に起因するコモンモード電流を低減し、当該コモンモード電流に起因する伝導ノイズ及び放射ノイズを抑制することができる。
また、この発明によれば、第1熱緩衝材の線膨張係数は、第1スイッチング素子の線膨張係数よりも大きく、正極端子又は出力端子の線膨張係数よりも小さい。このため、第1スイッチング素子が発熱した際において、第1スイッチング素子と正極端子又は出力端子との線膨張係数の違いに起因して第1スイッチング素子と正極端子又は出力端子との接合部に発生する熱応力の集中を緩和させることが可能となり、半導体装置の破損を防止し易くなる。
同様に、第2熱緩衝材の線膨張係数は、第2スイッチング素子の線膨張係数よりも大きく、負極端子又は出力端子の線膨張係数よりも小さい。このため、第2スイッチング素子が発熱した際において、第2スイッチング素子と負極端子又は出力端子との線膨張係数の違いに起因して第2スイッチング素子と負極端子又は出力端子との接合部に発生する熱応力の集中を緩和させることが可能となり、半導体装置の破損を防止し易くなる。
前記第1スイッチング素子及び前記第2スイッチング素子において、正極電極は第1の面に形成され、負極電極は前記第1の面とは反対側の第2の面に形成され、制御電極は前記第1の面又は前記第2の面に形成され、前記第1熱緩衝材及び前記第2熱緩衝材のうち前記制御電極が形成された面に接するものは、前記アーム直列回路の積層方向に見て前記制御電極を避けて形成してもよい。
これにより、制御電極に対して積層方向の空間を形成し、当該空間を介して制御電極への配線部材(ワイヤボンディングやバスバー等)を取り付けることが可能となる。従って、第1熱緩衝材及び第2熱緩衝材のうち制御電極が形成された面に接するものが積層方向に見て制御電極を避けていない場合と比べて、当該配線部材を容易に取り付けることが可能となる。
前記グラウンドはヒートシンクによって構成し、前記第1熱緩衝材及び前記第2熱緩衝材は、接合している前記第1スイッチング素子又は前記第2スイッチング素子から離間する方向に向かって断面積が大きくなる拡大部を備えてもよい。
これにより、第1スイッチング素子又は第2スイッチング素子で発生する熱を離間方向に向かって拡散させ易くすることが可能となる。従って、第1スイッチング素子又は第2スイッチング素子と接合する面の断面積を離間方向に等しくする場合(柱状である場合)と比べて、放熱性の低下を抑制することができる。当該効果は、第1熱緩衝材及び第2熱緩衝材のうち制御電極が形成された面に接するものが、アーム直列回路の積層方向に見て制御電極を避けて形成される場合、特に有効となる。
前記正極端子及び前記出力端子の少なくとも一方と前記第1ダイオードとの間には導電性の第3熱緩衝材が配置されると共に、前記負極端子及び前記出力端子の少なくとも一方と前記第2ダイオードとの間には導電性の第4熱緩衝材が配置され、前記第3熱緩衝材の線膨張係数は、前記第1ダイオードの線膨張係数よりも大きく且つ前記正極端子又は前記出力端子の線膨張係数よりも小さく、前記第4熱緩衝材の線膨張係数は、前記第2ダイオードの線膨張係数よりも大きく且つ前記負極端子又は前記出力端子の線膨張係数よりも小さくてもよい。
これにより、アーム直列回路全体で各接合部の熱応力の集中を緩和させることが可能となり、半導体装置の破損を防止し易くなる。
この発明によれば、正極端子及び出力端子の少なくとも一方と第1スイッチング素子との間には第1熱緩衝材が配置される。これにより、第1熱緩衝材の厚さの分、第1スイッチング素子と第1スイッチング素子側のグラウンドとの距離が大きくなる結果、出力端子と第1スイッチング素子側のグラウンドとの間の浮遊容量を低減することが可能となる。従って、当該浮遊容量に起因するコモンモード電流を低減し、当該コモンモード電流に起因する伝導ノイズ及び放射ノイズを抑制することができる。
同様に、負極端子及び出力端子の少なくとも一方と第2スイッチング素子との間には第2熱緩衝材が配置される。これにより、第2熱緩衝材の厚さの分、第2スイッチング素子と第2スイッチング素子側のグラウンドとの距離が大きくなる結果、出力端子と第2スイッチング素子側のグラウンドとの間の浮遊容量を低減することが可能となる。従って、当該浮遊容量に起因するコモンモード電流を低減し、当該コモンモード電流に起因する伝導ノイズ及び放射ノイズを抑制することができる。
また、この発明によれば、第1熱緩衝材の線膨張係数は、第1スイッチング素子の線膨張係数よりも大きく、正極端子又は出力端子の線膨張係数よりも小さい。このため、第1スイッチング素子が発熱した際において、第1スイッチング素子と正極端子又は出力端子との線膨張係数の違いに起因して第1スイッチング素子と正極端子又は出力端子との接合部に発生する熱応力の集中を緩和させることが可能となり、半導体装置の破損を防止し易くなる。
同様に、第2熱緩衝材の線膨張係数は、第2スイッチング素子の線膨張係数よりも大きく、負極端子又は出力端子の線膨張係数よりも小さい。このため、第2スイッチング素子が発熱した際において、第2スイッチング素子と負極端子又は出力端子との線膨張係数の違いに起因して第2スイッチング素子と負極端子又は出力端子との接合部に発生する熱応力の集中を緩和させることが可能となり、半導体装置の破損を防止し易くなる。
この発明の一実施形態に係る半導体装置としてのインバータを搭載した駆動システムの回路図である。 前記インバータに含まれる1つのアーム直列回路の簡略的な分解斜視図である。 1つの前記アーム直列回路及びその周辺の簡略的な断面図である。 図4Aは、スイッチング素子の第1の面を簡略的に示す外観構成図であり、図4Bは、スイッチング素子の第2の面を簡略的に示す外観構成図である。 1つの前記アーム直列回路に着目して複数の地点での浮遊容量を示す回路図である。 第1変形例に係る半導体装置としてのインバータを搭載した回路の回路図である。 第2変形例に係る半導体装置としてのインバータに含まれる1つのアーム直列回路及びその周辺の簡略的な断面図である。 図8のアーム直列回路の部分拡大断面図である。 第3変形例に係る半導体装置としてのインバータに含まれる1つのアーム直列回路の部分拡大断面図である。
I.一実施形態
A.構成の説明
1.駆動システム10の構成
(1−1)全体構成
図1は、この発明の一実施形態に係る半導体装置としてのインバータ16を搭載した駆動システム10の回路構成図である。
図1に示すように、駆動システム10は、インバータ16に加え、モータ12と、直流電源14(以下「電源14」ともいう。)と、コンデンサ18と、電子制御装置20(以下「ECU20」という。)とを有する。
(1−2)モータ12
モータ12は、3相交流ブラシレス式であり、ECU20に制御されるインバータ16を介して電源14から電力が供給される。そして、当該電力に応じた駆動力を生成する。モータ12は、例えば、車両の走行モータ又は電動パワーステアリング装置のアシスト力生成用のモータに用いることができる。或いは、後述するような別の用途に用いることも可能である。
(1−3)直流電源14
直流電源14は、駆動システム10の用途に応じて適宜選択されるものであり、一次電池又は二次電池のいずれともすることができる。例えば、モータ12が比較的高出力を要する用途で用いられる場合(例えば、車両の走行用モータとして用いられる場合)、電源14は、リチウムイオン2次電池、ニッケル水素2次電池又はキャパシタ等の蓄電装置(エネルギストレージ)とすることができる。また、モータ12が比較的低出力を要する用途で用いられる場合(例えば、車両の電動パワーステアリング装置として用いられる場合)、電源14は、鉛蓄電池等の蓄電装置とすることができる。
(1−4)インバータ16
インバータ16は、3相ブリッジ型の構成とされて、直流/交流変換を行い、電源14からの直流を3相の交流に変換してモータ12に供給する。
図1に示すように、インバータ16は、3相のアーム直列回路30u、30v、30wを有する。U相のアーム直列回路30uは、スイッチング素子34u(以下「上SW素子34u」という。)及び逆並列ダイオード36u(以下「上ダイオード36u」という。)を有する上アーム32uと、スイッチング素子40u(以下「下SW素子40u」という。)及び逆並列ダイオード42u(以下「下ダイオード42u」という。)とを有する下アーム38uとで構成される。
同様に、V相のアーム直列回路30vは、上スイッチング素子34v(以下「上SW素子34v」という。)及び逆並列ダイオード36v(以下「上ダイオード36v」という。)を有する上アーム32vと、下スイッチング素子40v(以下「下SW素子40v」という。)及び逆並列ダイオード42v(以下「下ダイオード42v」という。)を有する下アーム38vとで構成される。W相のアーム直列回路30wは、上スイッチング素子34w(以下「上SW素子34w」という。)と逆並列ダイオード36w(以下「上ダイオード36w」という。)を有する上アーム32wと、下スイッチング素子40w(以下「下SW素子40w」という。)と逆並列ダイオード42w(以下「下ダイオード42w」という。)を有する下アーム38wとで構成される。
上SW素子34u、34v、34wと下SW素子40u、40v、40wは、例えば、1つ又は複数のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)又は絶縁ゲートバイポーラトランジスタ(IGBT)等のスイッチング素子から構成することができる。同様に、上ダイオード36u、36v、36w及び下ダイオード42u、42v、42wはそれぞれ1つ又は複数のダイオードから構成してもよい。
なお、以下では、各アーム直列回路30u、30v、30wをアーム直列回路30と総称し、各上アーム32u、32v、32wを上アーム32と総称し、各下アーム38u、38v、38wを下アーム38と総称し、各上SW素子34u、34v、34wを上SW素子34と総称し、各下SW素子40u、40v、40wを下SW素子40と総称し、各上ダイオード36u、36v、36wを上ダイオード36と総称し、各下ダイオード42u、42v、42wを下ダイオード42と総称する。
各アーム直列回路30において、上アーム32u、32v、32wと下アーム38u、38v、38wの中点44u、44v、44wは、モータ12の巻線46u、46v、46wに連結されている。以下では、中点44u、44v、44wを中点44と総称し、巻線46u、46v、46wを巻線46と総称する。
各上SW素子34及び各下SW素子40は、ECU20からの駆動信号UH、VH、WH、UL、VL、WLにより駆動される。
(1−5)ECU20
ECU20は、図示しない各種センサからの出力値に基づき、モータ12の出力を制御する。ECU20は、ハードウェアの構成として、入出力部、演算部及び記憶部(いずれも図示せず)を有する。
2.インバータ16の詳細
(2−1)全体構成
図2は、1つのアーム直列回路30の簡略的な分解斜視図であり、図3は、1つのアーム直列回路30及びその周辺の簡略的な断面図である。本実施形態では、図2及び図3に示すアーム直列回路30を3組並列に配置することによりインバータ16を構成する(図1参照)。なお、図3中の「P」は正極側を示し、「N」は負極側を示す。
図2及び図3に示すように、アーム直列回路30は、正極端子板50と、負極端子板52と、正極端子板50及び負極端子板52の間に配置された出力端子板54とを有する。正極端子板50、負極端子板52及び出力端子板54はそれぞれ平行である。正極端子板50と出力端子板54の間には上SW素子34及び上ダイオード36が配置され、負極端子板52と出力端子板54の間に下SW素子40及び下ダイオード42が配置される。
また、図3に示すように、正極端子板50及び負極端子板52それぞれの出力端子板54と反対側には第1絶縁基板56及び第2絶縁基板58を介して第1ヒートシンク60及び第2ヒートシンク62が配置されている(図2では図示を省略している。)。第1ヒートシンク60及び第2ヒートシンク62は、インバータ16を冷却するものであり、それぞれグラウンドGNDに接続されている。
さらに、出力端子板54と上SW素子34との間には導電性の第1熱緩衝材64aが配置されると共に、負極端子板52と下SW素子40との間には導電性の第2熱緩衝材64bが配置される。出力端子板54と上ダイオード36との間には導電性の第3熱緩衝材64cが配置されると共に、負極端子板52と下ダイオード42との間には導電性の第4熱緩衝材64dが配置される。
図2及び図3に示すように、各部材は、半田70を介して互いに接合されている。当該接合はろう付け等の接合方法であってもよい。
(2−2)正極端子板50、負極端子板52及び出力端子板54
正極端子板50、負極端子板52及び出力端子板54は、いわゆるバスバー(銅、銅合金又は黄銅等からなる導電性の平板)であり、相対的に高い線膨張係数(例えば、10〜20×10−6/℃)である。例えば、正極端子板50、負極端子板52及び出力端子板54がCu(銅)である場合、その線膨張係数は16.8×10−6/℃である。
(2−3)上SW素子34及び下SW素子40
本実施形態において、上SW素子34と下SW素子40には、同一の仕様のスイッチング素子(例えば、MOSFET又はIGBT)が用いられる。図4A及び図4Bに示すように、本実施形態の上SW素子34と下SW素子40は、第1の面80(ドレイン面)に正極電極82が形成され、第1の面80と反対側の第2の面84(ソース面)に負極電極86及びゲート電極88(制御電極)が形成される。つまり、図4A中の「D」(ドレイン)が正極電極82、図4B中の「S」(ソース)が負極電極86、「G」(ゲート)がゲート電極88となっている。
以下では、上SW素子34と下SW素子40の構成要素を区別するため、上SW素子34の正極電極82、負極電極86、ゲート電極88を、上正極電極82up、上負極電極86up、上ゲート電極88upと呼び、下SW素子40の正極電極82、負極電極86、ゲート電極88を、下正極電極82low、下負極電極86low、下ゲート電極88lowと呼ぶ。
図2及び図3では図示していないが、上正極電極82upは半田70を介して正極端子板50に接合され、上負極電極86upは半田70を介して第1熱緩衝材64aに接合されている。上ゲート電極88upは、信号端子90(図2)を介して信号線92に接続されている。信号線92は、ECU20に接続されている。同様に、下負極電極86lowは半田70を介して第2熱緩衝材64bに接合され、下正極電極82lowは半田70を介して出力端子板54に接合されている。下ゲート電極88lowは、信号端子94(図2)を介して信号線96に接続されている。信号線96は、ECU20に接続されている。
上SW素子34及び下SW素子40は、モールド樹脂等の構成要素まで含めた等価線膨張係数が相対的に低い(例えば、2〜4×10−6/℃)。
(2−4)上ダイオード36及び下ダイオード42
本実施形態において、上ダイオード36と下ダイオード42には、同一の仕様のダイオードが用いられる。図3では、上ダイオード36及び下ダイオード42のアノードが下側に設けられ、カソードが上側に設けられる。
上ダイオード36及び下ダイオード42は、相対的に低い線膨張係数(例えば、2〜4×10−6/℃)である。
(2−5)第1〜第4熱緩衝材64a〜64d
第1〜第4熱緩衝材64a〜64dは、その一方の面に配置される部材と他方の面に配置される部材との間の熱膨張差による熱応力を低減する導電性の部材である。図2に示すように、本実施形態の第1〜第4熱緩衝材64a〜64dは、直方体状である。後述するように、別の形状を採用することもできる。
第1〜第4熱緩衝材64a〜64dは、相対的に中くらいの線膨張係数(例えば、2.5〜10×10−6/℃)である。すなわち、第1〜第4熱緩衝材64a〜64dの線膨張係数は、それぞれ上SW素子34、下SW素子40、上ダイオード36及び下ダイオード42よりも大きく、正極端子板50、負極端子板52及び出力端子板54よりも小さい。例えば、第1〜第4熱緩衝材64a〜第4熱緩衝材64dがMo(モリブデン)である場合、その線膨張係数は、5.1×10−6/℃である。第1〜第4熱緩衝材64a〜64dがW(タングステン)である場合、その線膨張係数は、4.5×10−6/℃である。第1〜第4熱緩衝材64a〜64dがCuMo複合材である場合、その等価線膨張係数は、例えば、7.0×10−6/℃である。第1〜第4熱緩衝材64a〜64dがCIC(銅−インバー−銅)の積層材である場合、その等価線膨張係数は、例えば、2.8×10−6/℃である。
上記のように、上SW素子34及下SW素子40において、ゲート電極88は、負極電極86と同じ第2の面84に形成される。このため、図3では、ゲート電極88は上SW素子34及び下SW素子40の下側の面に形成されている。従って、図3では、第1熱緩衝材64a及び第2熱緩衝材64bの上側の面が、ゲート電極88が形成された面(第2の面84)に接している。図2及び図3にも示すように、第1熱緩衝材64a及び第2熱緩衝材64bのうちゲート電極88が形成された面に接するものは、アーム直列回路30の積層方向に見てゲート電極88を避けて形成される。
(2−6)半田70
半田70は、鉛フリー半田等から構成される。半田70が鉛フリー半田である場合、例えば、Sn(錫)Ag(銀)Cu(銅)系、SnZn(亜鉛)Bi(ビスマス)系、SnCu系、SnAgIn(インジウム)Bi系又はSnZnAl(アルミニウム)系のいずれかを用いることができる。半田70は、相対的に高い線膨張係数(例えば、20〜60×10−6/℃)である。
なお、図2及び図3では、上SW素子34及び下SW素子40の上面側及び下面側に半田70を位置させているが、側面側に位置させてもよい。また、半田70の代わりに、より融点が高いろう材を用いることもできる。
B.浮遊容量
図5は、1つのアーム直列回路30に着目して複数の地点P1〜P3での浮遊容量C1、C21、C22、C3を示す回路図である。以下では、主として、図3及び図5を参照しながら、地点P1〜P3における浮遊容量C1、C21、C22、C3について説明する。
アーム直列回路30を動作させると、地点P1〜P3とグラウンドGND(第1ヒートシンク60及び第2ヒートシンク62)間において、浮遊容量C1、C21、C22、C3が発生する可能性がある。C1は、地点P1(正極端子板50)と第1ヒートシンク60との間の浮遊容量である。C21は、地点P2(出力端子板54)と第1ヒートシンク60との間の浮遊容量であり、C22は、地点P2(出力端子板54)と第2ヒートシンク62との間の浮遊容量である。浮遊容量C21、C22を合成したものを浮遊容量C2という。C3は、地点P3(負極端子板52)と第2ヒートシンク62との間の浮遊容量である。なお、地点P1(正極端子板50)と第2ヒートシンク62との間の浮遊容量、及び地点P3(負極端子板52)と第1ヒートシンク60との間の浮遊容量は無視できる程小さい。
これらの浮遊容量C1〜C3が存在するため、上SW素子34及び下SW素子40のスイッチング時にノイズがグラウンドGND(第1ヒートシンク60又は第2ヒートシンク62)を介してコモン(電源14側又は他の機器側)に伝わり、伝導ノイズ及び放射ノイズが発生する可能性がある(伝導ノイズ及び放射ノイズの発生の仕組みについては、例えば、特開2007−181351号公報の段落[0008]、[0009]参照)。
一般に、キャパシタのインピーダンスXcは、次の式(1)により求められる。
Xc=1/(jωC) ・・・(1)
上記において、jは虚数単位、ωは角周波数[Hz]、Cは静電容量[F]である。
上記式(1)によれば、アーム直列回路30の場合、上SW素子34及び下SW素子40のスイッチング周波数[Hz]が高くなるほど浮遊容量C1〜C3に電流が流れ易くなるが、容量値Cを小さくすることで浮遊容量C1〜C3に電流を流れ難くすることができる。特に、スイッチングにより電位変動が起こる地点P2とグラウンドGNDとの間の浮遊容量C2からコモン側へ流れるコモンモード電流Icomの影響が大きいため、浮遊容量C2のインピーダンスを大きくすることが重要である。
また、一般に、平行平板(極板)間の静電容量C[F]は、次の式(2)により表される。
C=ε・ε・(S/d) ・・・(2)
上記式(2)において、εは、真空の誘電率[F/m]、εは、比誘電率、Sは、極板の面積[m]、dは、平行平板(極板)間の間隙[m]を示す。上記式(2)によれば、平行平板(極板)の間隙dが大きくなるほど、静電容量Cは小さくなる。
第1〜第4熱緩衝材64a〜64dなしに出力端子板54を配置する場合と比べると、本実施形態では、第1〜第4熱緩衝材64a〜64dを介して出力端子板54を配置するため、出力端子板54と第1ヒートシンク60(グラウンドGND)及び出力端子板54と第2ヒートシンク62(グラウンドGND)との距離が長くなる。このため、出力端子板54とグラウンドGND(第1ヒートシンク60及び第2ヒートシンク62)との間隙(上記間隙dに対応)は大きくなる。このため、上記式(2)より、浮遊容量C2は相対的に小さくなる。また、浮遊容量C2が相対的に小さくなると、上記式(1)より、インピーダンスXcが相対的に大きくなる。その結果、コモンモード電流Icomを小さくすることが可能となり、コモンモード電流Icomに起因する伝導ノイズ及び放射ノイズを抑制することができる。
C.上SW素子34、下SW素子40及び上ダイオード36及び下ダイオード42からの熱の作用
上記のように、本実施形態では、出力端子板54と上SW素子34の間に第1熱緩衝材64aが配置され、負極端子板52と下SW素子40の間に第2熱緩衝材64bが配置され、出力端子板54と上ダイオード36の間に第3熱緩衝材64cが配置され、負極端子板52と下ダイオード42の間に第4熱緩衝材64dが配置される。また、正極端子板50、負極端子板52、出力端子板54、上SW素子34、下SW素子40、上ダイオード36、下ダイオード42、第1〜第4熱緩衝材64a〜64dを比較した場合、第1〜第4熱緩衝材64a〜64dの線膨張係数は、それぞれ上SW素子34、下SW素子40、上ダイオード36及び下ダイオード42の線膨張係数より大きく、正極端子板50、負極端子板52及び出力端子板54の線膨張係数より小さい。
従って、上SW素子34がスイッチング動作により発熱した場合、第1熱緩衝材64aの存在により、出力端子板54に上SW素子34からの熱が伝わり難くなる。下SW素子40がスイッチング動作により発熱した場合、第2熱緩衝材64bの存在により、負極端子板52に下SW素子40からの熱が伝わり難くなる。上ダイオード36に電流が流れることにより上ダイオード36が発熱した場合、第3熱緩衝材64cの存在により、出力端子板54に上ダイオード36からの熱が伝わり難くなる。下ダイオード42に電流が流れることにより下ダイオード42が発熱した場合、第4熱緩衝材64dの存在により、負極端子板52に下ダイオード42からの熱が伝わり難くなる。このため、負極端子板52及び出力端子板54の熱膨張を抑制することが可能となる。
加えて、上SW素子34、下SW素子40、上ダイオード36及び下ダイオード42からの熱により負極端子板52及び出力端子板54が膨張した場合、上SW素子34、下SW素子40、上ダイオード36及び下ダイオード42と、負極端子板52及び出力端子板54との熱膨張差による熱応力は、第1〜第4熱緩衝材64a〜64dにより低減される。なお、上SW素子34、下SW素子40、上ダイオード36及び下ダイオード42と、負極端子板52及び出力端子板54との間にはそれぞれ半田70が配置されているが、半田70は相対的に柔らかいため、半田70も熱応力を緩和することが可能である。
D.本実施形態の効果
以上のように、本実施形態によれば、出力端子板54と上SW素子34との間には第1熱緩衝材64aが配置される。これにより、第1熱緩衝材64aの厚さの分、上SW素子34と第1ヒートシンク60(グラウンドGND)との距離が大きくなる結果、出力端子板54と第1ヒートシンク60との間の浮遊容量C21を低減することが可能となる。従って、浮遊容量C21に起因するコモンモード電流Icomを低減し、当該コモンモード電流Icomに起因する伝導ノイズ及び放射ノイズを抑制することができる。
同様に、負極端子板52と下SW素子40との間には第2熱緩衝材64bが配置される。これにより、第2熱緩衝材64bの厚さの分、下SW素子40と第2ヒートシンク62(グラウンドGND)との距離が大きくなる結果、出力端子板54と第2ヒートシンク62との間の浮遊容量C22を低減することが可能となる。従って、当該浮遊容量C22に起因するコモンモード電流Icomを低減し、当該コモンモード電流Icomに起因する伝導ノイズ及び放射ノイズを抑制することができる。
また、本実施形態によれば、第1熱緩衝材64aの線膨張係数は、上SW素子34の線膨張係数よりも大きく、出力端子板54の線膨張係数よりも小さい。このため、上SW素子34が発熱した際において、上SW素子34と出力端子板54との線膨張係数の違いに起因して上SW素子34と出力端子板54との接合部に発生する熱応力の集中を緩和させることが可能となり、インバータ16の破損を防止し易くなる。
同様に、第2熱緩衝材64bの線膨張係数は、下SW素子40の線膨張係数よりも大きく、負極端子板52の線膨張係数よりも小さい。このため、下SW素子40が発熱した際において、下SW素子40と負極端子板52との線膨張係数の違いに起因して下SW素子40と負極端子板52との接合部に発生する熱応力の集中を緩和させることが可能となり、インバータ16の破損を防止し易くなる。
本実施形態によれば、上SW素子34及下SW素子40において、正極電極82は第1の面80に形成され、負極電極86は第1の面80とは反対側の第2の面84に形成され、ゲート電極88は第2の面84に形成され、第1熱緩衝材64a及び第2熱緩衝材64bのうちゲート電極88が形成された面に接するものは、アーム直列回路30の積層方向に見てゲート電極88を避けて形成される。
これにより、ゲート電極88に対して積層方向の空間を形成し、当該空間を介してゲート電極88への信号端子90、94を取り付けることが可能となる。従って、図3における第1熱緩衝材64a及び第2熱緩衝材64bの上側の面が、アーム直列回路30の積層方向に見てゲート電極88を避けていない場合と比べて、信号端子90、94を容易に取り付けることが可能となる。
本実施形態によれば、出力端子板54と上ダイオード36との間には第3熱緩衝材64cが配置されると共に、負極端子板52と下ダイオード42との間には第4熱緩衝材64dが配置され、第3熱緩衝材64cの線膨張係数は、上ダイオード36の線膨張係数よりも大きく、出力端子板54の線膨張係数よりも小さく、第4熱緩衝材64dの線膨張係数は、下ダイオード42の線膨張係数よりも大きく、負極端子板52の線膨張係数よりも小さい。これにより、アーム直列回路30全体で各接合部の熱応力の集中を緩和させることが可能となり、インバータ16の破損を防止し易くなる。
II.変形例
なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
A.インバータ16及び駆動システム10
上記実施形態では、3相ブリッジ式のインバータ16を用いたが、スイッチング素子と逆並列ダイオードとを有する上アーム及び下アームを直列に接続した単相又は多相のアーム直列回路を備えるインバータであれば、これに限らない。例えば、図6に示すように、単相ブリッジ式のインバータ16aに適用することもできる。図6のインバータ16aは、直流電源14からの直流を交流に変換して巻線46a(負荷)及び抵抗110に供給する。
インバータ16aは、2つのアーム直列回路30a、30bを有する。アーム直列回路30aは、スイッチング素子34a(以下「上SW素子34a」という。)及び逆並列ダイオード36a(以下「上ダイオード36a」という。)を有する上アーム32aと、スイッチング素子40a(以下「下SW素子40a」という。)及び逆並列ダイオード42a(以下「下ダイオード42a」という。)とを有する下アーム38aとで構成される。同様に、アーム直列回路30bは、スイッチング素子34b(以下「上SW素子34b」という。)及び逆並列ダイオード36b(以下「上ダイオード36b」という。)を有する上アーム32bと、スイッチング素子40b(以下「下SW素子40b」という。)及び逆並列ダイオード42b(以下「下ダイオード42b」という。)とを有する下アーム38bとで構成される。
インバータ16aにおいても、第1〜第4熱緩衝材64a〜64dを用いることにより出力端子板54をグラウンドGND(第1ヒートシンク60及び第2ヒートシンク62)から離間させることにより、中点44a、44bにおける浮遊容量C21、C22を低減し、伝導ノイズ及び放射ノイズを抑制することが可能となる。加えて、第1〜第4熱緩衝材64a〜64dにより熱応力の集中を緩和させることが可能となり、インバータ16aの破損を防止し易くなる。
上記実施形態及び図6の変形例では、インバータ16、16aに本発明を適用した事例について説明したが、スイッチング素子と逆並列ダイオードとを有する上アーム及び下アームを直列に接続した単相又は多相のアーム直列回路を備える半導体装置であれば、これに限らない。例えば、昇降圧式且つチョッパ型のDC/DCコンバータ(例えば、特開2009−153343号公報の図1及び図9参照)に適用することもできる。
上記実施形態では、駆動システム10のモータ12は、例えば、車両の駆動用又は電動パワーステアリング用のものとしたが、上アーム32と下アーム38の中点44において浮遊容量C2が発生する構成又はアーム直列回路30において熱応力が問題となる構成であれば、これに限らない。例えば、洗濯機、掃除機、エアコンディショナ、冷蔵庫、電磁調理器、交流(AC)サーボ、鉄道車両及びエレベータにおけるモータに用いるものであってもよい。
上記実施形態では、駆動システム10は、モータ12を駆動するものであったが、上アーム32と下アーム38の中点44において浮遊容量C2が発生する構成又はアーム直列回路30において熱応力が問題となる構成であれば、これに限らない。例えば、駆動システム10は、無停電電源装置、太陽光発電又は風力発電用のパワーコンディショナにおけるインバータ(例えば、特開2011−103497号公報の図4参照)に用いることも可能である。
B.第1〜第4熱緩衝材64a〜64d
上記実施形態では、第1熱緩衝材64aを上SW素子34と出力端子板54の間に配置したが、これに限らない。例えば、第1熱緩衝材64aを上SW素子34と正極端子板50の間及び上SW素子34と出力端子板54の間の両方に配置してもよい(すなわち、アーム直列回路30の積層方向に第1熱緩衝材64aを2つ設けてもよい。)。第2〜第4熱緩衝材64b〜64dも同様である。
上記実施形態では、第1〜第4熱緩衝材64a〜64dを直方体状にしたが、第1〜第4熱緩衝材64a〜64dの形状は、これに限らない。例えば、図7及び図8に示す第2変形例に係るインバータ16bのアーム直列回路30のように、第1〜第4熱緩衝材64a〜64dを四角錐台状にしてもよい。この場合、第1熱緩衝材64aは、上SW素子34から出力端子板54に向かって拡がる部位(断面積が大きくなる部位)を有する。これにより、図7の第1熱緩衝材64aと底面及び高さが等しい直方体(柱状体)と比較して、信号端子90の取付けが容易になる。加えて、図7の第1熱緩衝材64aと上面及び高さが等しい直方体(柱状体)と比較して、熱拡散の効果を得ることが可能となる。なお、上記熱拡散の効果を得るためには、図8の四角錐台状の第1熱緩衝材64aにおいて各側面と底面とがなす角(例えば、図8の角α)は、20°以上90°未満の範囲の値とすることが好ましい。図7及び図8の第2熱緩衝材64bについても同様の効果を得ることができる。加えて、熱拡散の効果については、図7及び図8の第3及び第4熱緩衝材64c、64dでも得ることができる。
或いは、図9に一部を示す第3変形例に係るインバータ16cのアーム直列回路30のように、第1熱緩衝材64aの形状を直方体を2つ組み合わせた形状とすることも可能である。すなわち、図9の第1熱緩衝材64aは、出力端子板54側に配置され相対的に大きな直方体100と、上SW素子34側に配置され相対的に小さな直方体102を有する。直方体100は、縦・横・高さのいずれも直方体102よりも大きい。このような構成を有することでも、図7及び図8と同様に、信号端子90の取付けを容易とし且つ熱拡散の効果を得ることが可能となる。なお、上記熱拡散の効果を得るためには、図9の直方体100の底面の端と直方体102の底面の端とを結んだ線と直方体100の底面とがなす角(例えば、図9の角β)は、20°以上90°未満の範囲の値とすることが好ましい。第2〜第4熱緩衝材64b〜64dについても同様の構成とすることができる。
上記実施形態(図3)及び上記各変形例では、4つの熱緩衝材(すなわち、第1〜第4熱緩衝材64a〜64d)を設けたが、上SW素子34及び下SW素子40にのみ熱緩衝材(第1及び第2熱緩衝材64a、64b)を設け、上ダイオード36及び下ダイオード42には熱緩衝材(第3及び第4熱緩衝材64c、64d)を設けない構成も可能である。そのような構成を実現するためには、例えば、上SW素子34及び下SW素子40と比べて、上ダイオード36及び下ダイオード42の厚み(図3の上下方向)を大きくし、その差分に熱緩衝材を設けることができる。或いは、上SW素子34及び下SW素子40に対応する位置では、出力端子板54から遠ざけるように正極端子板50及び負極端子板52を折り曲げることにより熱緩衝材を配置するスペースを形成することも可能である。同様に、上ダイオード36及び下ダイオード42にのみ熱緩衝材(第3及び第4熱緩衝材64c、64d)を設け、上SW素子34及び下SW素子40には熱緩衝材(第1及び第2熱緩衝材64a、64b)を設けない構成も可能である。
上記実施形態(図3)及び上記各変形例では、第1〜第4熱緩衝材64a〜64dの形状を同一又は近似する形状としたが、それぞれを大きく相違させてもよい。例えば、第1及び第2熱緩衝材64a、64bは四角錐台状とし、第3及び第4熱緩衝材64c、64dは直方体状とすることも可能である。ただし、第1及び第2熱緩衝材64a、64bは同一形状であることが好ましく、また、第3及び第4熱緩衝材64c、64dは同一形状であることが好ましい。
また、場合によっては、第1及び第2熱緩衝材64a、64bの一方のみを設けることも可能である。同様に、場合によっては、第3及び第4熱緩衝材64c、64dの一方のみを設けることも可能である。
10…駆動システム 12…モータ
14…直流電源
16、16a〜16c…インバータ(半導体装置)
30、30a、30b、30u、30v、30w…アーム直列回路
32、32a、32b、32u、32v、32w…上アーム
34、34a、34b、34u、34v、34w…上スイッチング素子(第1スイッチング素子)
36、36a、36b、36u、36v、36w…上ダイオード(第1ダイオード)
38、38a、38b、38u、38v、38w…下アーム
40、40a、40b、40u、40v、40w…下スイッチング素子(第2スイッチング素子)
42、42a、42b、42u、42v、42w…下ダイオード(第2ダイオード)
50…正極端子板(正極端子) 52…負極端子板(負極端子)
54…出力端子板(出力端子) 56…第1絶縁基板
58…第2絶縁基板 60…第1ヒートシンク(グラウンド)
62…第2ヒートシンク(グラウンド)
64a…第1熱緩衝材 64b…第2熱緩衝材
64c…第3熱緩衝材 64d…第4熱緩衝材
80…第1の面 82…正極電極
84…第2の面 86…負極電極
88…ゲート電極(制御電極) 90、94…信号端子(配線部材)
100…大きな直方体(拡大部) 102…小さな直方体

Claims (3)

  1. 第1スイッチング素子及びこれに逆並列に接続された第1ダイオードを有する上アームと、第2スイッチング素子及びこれに逆並列に接続された第2ダイオードを有する下アームとを直列に接続した1つ又は複数のアーム直列回路を備える半導体装置であって、
    前記アーム直列回路の積層方向において前記アーム直列回路の正極端子及び負極端子の間に前記アーム直列回路の出力端子が配置され、
    前記積層方向において前記正極端子と前記出力端子の間に前記第1スイッチング素子及び前記第1ダイオードが配置されると共に、前記負極端子と前記出力端子の間に前記第2スイッチング素子及び前記第2ダイオードが配置され、
    前記積層方向において前記正極端子及び前記負極端子それぞれの前記出力端子と反対側には絶縁基板を介してグラウンドが配置され、
    前記第1スイッチング素子及び前記第2スイッチング素子において、正極電極は第1の面に形成され、負極電極は前記第1の面とは反対側の第2の面に形成され、制御電極は前記第2の面に形成され、
    前記積層方向において前記出力端子と前記第1スイッチング素子の前記第2の面との間には導電性の第1熱緩衝材が配置されると共に、前記負極端子と前記第2スイッチング素子の前記第2の面との間には導電性の第2熱緩衝材が配置され、
    前記第1熱緩衝材の線膨張係数は、前記第1スイッチング素子の線膨張係数よりも大きく且つ前記出力端子の線膨張係数よりも小さく、前記第2熱緩衝材の線膨張係数は、前記第2スイッチング素子の線膨張係数よりも大きく且つ前記負極端子の線膨張係数よりも小さく、
    前記第1熱緩衝材は、前記第1スイッチング素子の前記第2の面に対し、前記積層方向に見て前記制御電極を避けた位置で接しており、
    前記第2熱緩衝材は、前記第2スイッチング素子の前記第2の面に対し、前記積層方向に見て前記制御電極を避けた位置で接している
    ことを特徴とする半導体装置。
  2. 第1スイッチング素子及びこれに逆並列に接続された第1ダイオードを有する上アームと、第2スイッチング素子及びこれに逆並列に接続された第2ダイオードを有する下アームとを直列に接続した1つ又は複数のアーム直列回路を備える半導体装置であって、
    前記アーム直列回路の正極端子及び負極端子の間に前記アーム直列回路の出力端子が配置され、
    前記正極端子と前記出力端子の間に前記第1スイッチング素子及び前記第1ダイオードが配置されると共に、前記負極端子と前記出力端子の間に前記第2スイッチング素子及び前記第2ダイオードが配置され、
    前記正極端子及び前記負極端子それぞれの前記出力端子と反対側には絶縁基板を介してグラウンドが配置され、
    前記正極端子及び前記出力端子の少なくとも一方と前記第1スイッチング素子との間には導電性の第1熱緩衝材が配置されると共に、前記負極端子及び前記出力端子の少なくとも一方と前記第2スイッチング素子との間には導電性の第2熱緩衝材が配置され、
    前記第1熱緩衝材の線膨張係数は、前記第1スイッチング素子の線膨張係数よりも大きく且つ前記正極端子又は前記出力端子の線膨張係数よりも小さく、前記第2熱緩衝材の線膨張係数は、前記第2スイッチング素子の線膨張係数よりも大きく且つ前記負極端子又は前記出力端子の線膨張係数よりも小さく、
    前記グラウンドはヒートシンクによって構成されており、
    前記第1熱緩衝材及び前記第2熱緩衝材は、接合している前記第1スイッチング素子又は前記第2スイッチング素子から離間する方向に向かって断面積が大きくなる拡大部を備える
    ことを特徴とする半導体装置。
  3. 請求項1又は2記載の半導体装置において、
    前記正極端子及び前記出力端子の少なくとも一方と前記第1ダイオードとの間には導電性の第3熱緩衝材が配置されると共に、前記負極端子及び前記出力端子の少なくとも一方と前記第2ダイオードとの間には導電性の第4熱緩衝材が配置され、
    前記第3熱緩衝材の線膨張係数は、前記第1ダイオードの線膨張係数よりも大きく且つ前記正極端子又は前記出力端子の線膨張係数よりも小さく、前記第4熱緩衝材の線膨張係数は、前記第2ダイオードの線膨張係数よりも大きく且つ前記負極端子又は前記出力端子の線膨張係数よりも小さい
    ことを特徴とする半導体装置。
JP2011155296A 2011-07-14 2011-07-14 半導体装置 Expired - Fee Related JP5460653B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011155296A JP5460653B2 (ja) 2011-07-14 2011-07-14 半導体装置
US13/548,209 US8654554B2 (en) 2011-07-14 2012-07-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155296A JP5460653B2 (ja) 2011-07-14 2011-07-14 半導体装置

Publications (2)

Publication Number Publication Date
JP2013021878A JP2013021878A (ja) 2013-01-31
JP5460653B2 true JP5460653B2 (ja) 2014-04-02

Family

ID=47518845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155296A Expired - Fee Related JP5460653B2 (ja) 2011-07-14 2011-07-14 半導体装置

Country Status (2)

Country Link
US (1) US8654554B2 (ja)
JP (1) JP5460653B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323895B2 (ja) * 2011-06-23 2013-10-23 本田技研工業株式会社 半導体装置
JP5846929B2 (ja) * 2012-01-23 2016-01-20 カルソニックカンセイ株式会社 パワー半導体モジュール
FR3002683B1 (fr) * 2013-02-28 2016-11-04 Alstom Technology Ltd Convertisseur de puissance comportant une architecture de bras non-alignes
EP3076534B1 (en) * 2013-11-29 2019-01-09 Nissan Motor Co., Ltd Switching device
KR102394542B1 (ko) * 2015-07-30 2022-05-04 현대자동차 주식회사 반도체 패키지 및 그 제조 방법
DE102016110847B4 (de) 2016-06-14 2022-02-17 Auto-Kabel Management Gmbh Leitungsintegrierter Schalter und Verfahren zum Herstellen eines leitungsintegrierten Schalters
CN109451779B (zh) * 2016-07-08 2020-10-16 三菱电机株式会社 半导体装置及电力转换装置
DE102016120778B4 (de) * 2016-10-31 2024-01-25 Infineon Technologies Ag Baugruppe mit vertikal beabstandeten, teilweise verkapselten Kontaktstrukturen
US10770439B2 (en) * 2017-02-13 2020-09-08 Shindengen Electric Manufacturing Co., Ltd. Electronic module
JP6187717B1 (ja) * 2017-02-24 2017-08-30 富士電機株式会社 評価方法、複合評価方法、評価装置、および複合評価装置
JP6191797B1 (ja) * 2017-02-24 2017-09-06 富士電機株式会社 評価方法、推定方法、評価装置、および複合評価装置
JP2018195694A (ja) * 2017-05-17 2018-12-06 株式会社Soken 電力変換器
WO2019064900A1 (ja) * 2017-09-29 2019-04-04 日本電産株式会社 制御装置、モータ、電動パワーステアリング装置
DE102018212443A1 (de) 2018-07-25 2020-01-30 Infineon Technologies Ag Halbleitergehäuse mit passivem elektrischem Bauteil und Verfahren zu dessen Herstellung
DE102018126972A1 (de) * 2018-07-25 2020-01-30 Infineon Technologies Ag Halbleitergehäuse mit überlappenden elektrisch leitfähigen bereichen und verfahren zu dessen herstellung
DE102018212436A1 (de) * 2018-07-25 2020-01-30 Infineon Technologies Ag Halbleitergehäuse mit symmetrisch angeordneten leisungsanschlüssen und verfahren zu dessen herstellung
DE102018212438A1 (de) 2018-07-25 2020-01-30 Infineon Technologies Ag Halbleitergehäuse mit elektromagnetischer abschirmstruktur und verfahren zu dessen herstellung
EP3690939A1 (en) * 2019-01-30 2020-08-05 Infineon Technologies AG Semiconductor arrangements
DE102019204889A1 (de) * 2019-04-05 2020-10-08 Robert Bosch Gmbh Elektronische Schaltungseinheit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2232199C (en) * 1997-04-22 2000-02-22 Kabushiki Kaisha Toshiba Power converter with voltage drive switching element
JP3460973B2 (ja) * 1999-12-27 2003-10-27 三菱電機株式会社 電力変換装置
FI116492B (fi) * 2003-10-30 2005-11-30 Abb Oy Menetelmä ja järjestely vaihtosuuntaajan yhteydessä
JP4575034B2 (ja) * 2004-06-03 2010-11-04 株式会社東芝 インバータ装置
JP5407198B2 (ja) * 2008-07-02 2014-02-05 富士電機株式会社 電力変換装置のパワーモジュール
JP5100674B2 (ja) * 2009-01-30 2012-12-19 株式会社東芝 インバータ装置
JP2011114176A (ja) * 2009-11-27 2011-06-09 Mitsubishi Electric Corp パワー半導体装置
JP5387620B2 (ja) * 2011-05-31 2014-01-15 株式会社安川電機 電力変換装置、半導体装置および電力変換装置の製造方法

Also Published As

Publication number Publication date
JP2013021878A (ja) 2013-01-31
US20130016548A1 (en) 2013-01-17
US8654554B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
JP5460653B2 (ja) 半導体装置
JP5407198B2 (ja) 電力変換装置のパワーモジュール
JP5323895B2 (ja) 半導体装置
JP5447453B2 (ja) スイッチングモジュール
JP4920677B2 (ja) 電力変換装置およびその組み立て方法
JP5520889B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JP4973059B2 (ja) 半導体装置及び電力変換装置
JP5846123B2 (ja) パワーモジュール
JP4661645B2 (ja) パワー半導体モジュール
JP6169250B2 (ja) 電力用半導体装置
JP6429721B2 (ja) 電力変換装置及び鉄道車両
JP6610568B2 (ja) 半導体装置
JPWO2016084180A1 (ja) 半導体モジュールおよび半導体駆動装置
WO2020184053A1 (ja) 半導体装置
JP5338830B2 (ja) 半導体装置
JP2014229782A (ja) 半導体装置および半導体装置の製造方法
JP5100535B2 (ja) 電力半導体モジュールおよびこれを備えた半導体電力変換装置
JP2013038848A (ja) 半導体装置
CN110622307B (zh) 半导体模块以及电力变换装置
JP2013182964A (ja) 半導体装置
JPWO2018180580A1 (ja) 半導体装置および電力変換装置
JP6721066B2 (ja) 電力変換装置
JP6811762B2 (ja) 電力変換装置、及び、これを備える冷凍サイクル装置
JP2010177573A (ja) 半導体装置
JP6372433B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees