JP5460487B2 - Ofdm信号受信装置および中継装置 - Google Patents

Ofdm信号受信装置および中継装置 Download PDF

Info

Publication number
JP5460487B2
JP5460487B2 JP2010145666A JP2010145666A JP5460487B2 JP 5460487 B2 JP5460487 B2 JP 5460487B2 JP 2010145666 A JP2010145666 A JP 2010145666A JP 2010145666 A JP2010145666 A JP 2010145666A JP 5460487 B2 JP5460487 B2 JP 5460487B2
Authority
JP
Japan
Prior art keywords
unit
delay profile
delay
equalization
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010145666A
Other languages
English (en)
Other versions
JP2012010203A (ja
Inventor
知明 竹内
啓之 濱住
一彦 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2010145666A priority Critical patent/JP5460487B2/ja
Publication of JP2012010203A publication Critical patent/JP2012010203A/ja
Application granted granted Critical
Publication of JP5460487B2 publication Critical patent/JP5460487B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)
  • Radio Relay Systems (AREA)

Description

本発明は、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式を用いるデジタル放送またはデジタル伝送のOFDM信号受信装置に関し、特に、デジタル放送、無線LANなどにおいて、遅延時間がGI(Guard Interval:ガードインターバル)長を越えるマルチパスを受信する環境であっても、OFDM信号を正しく受信するOFDM信号受信装置に関する。
図8は、従来技術における通常のOFDM信号受信装置の構成を示すブロック図である。このOFDM信号受信装置200は、周波数変換部211、A/D(Analog/Digital)変換部212、直交復調部213、GI除去部214、FFT(Fast Fourier Transform:高速フーリエ変換)部215、チャネル推定部216、チャネル等化部217、デマッピング部218およびパラレルシリアル変換部219を備えている。OFDM信号受信装置200は、送信元から受信点までの伝送路の遅延広がりがGI長以内の場合、受信したOFDM信号のチャネル等化を行うことができる。これに対し、伝送路の遅延広がりがGI長を越える場合には、シンボル間干渉およびキャリヤ間干渉により、受信特性が著しく損なわれてしまう。
図9は、従来技術における、遅延時間がGI長を越えるマルチパスをキャンセル可能なOFDM信号受信装置の構成を示すブロック図である。このOFDM信号受信装置201は、周波数変換部211、A/D変換部212、直交復調部213、減算器220、適応フィルタ部221、FFT部215、チャネル推定部216、チャネル等化部217、デマッピング部218、パラレルシリアル変換部219、マッピング部222、除算器223およびフィルタ係数制御部224を備えている。フィルタ係数制御部224は、送信元から受信点までの伝送路のチャネル応答のうち、主波成分を除いたインパルス応答を適応フィルタ221に与え、減算器220は、受信したOFDM信号から適応フィルタ部221の出力信号を減じることによりマルチパスをキャンセルする。これにより、遅延時間がGI長を越えるマルチパスをキャンセルすることができる。しかし、このOFDM信号受信装置201では、より長い遅延時間のマルチパスをキャンセルするために、適応フィルタ部221の次数を大きくしなければならないという問題がある。また、主波よりも早く到来するマルチパス(先行波)をキャンセルするためには、図9に示した構成に加えて、さらに、先行波をキャンセルするための適応フィルタ部が必要となるという問題がある。
図9に示したOFDM信号受信装置201は、時間領域においてマルチパスをキャンセルするものであるが、周波数領域においてマルチパスを等化するOFDM信号受信装置も知られている(特許文献1を参照)。
特許文献1のOFDM信号受信装置は、窓処理手段が、復調する有効シンボルよりも時間的に前および後の有効シンボルも時間窓に含まれるように通常よりも長い窓処理を行い、FFT手段が、窓処理後の時間領域の信号をFFTして周波数領域の信号に変換し、周波数特性等化手段が、時間的に遅れて到着するマルチパスおよび時間的に早く到着するマルチパスを等化する。これにより、GI長を越えるマルチパスによる歪みを等化することができる。
特開2004−343546号公報
前述のとおり、特許文献1のOFDM信号受信装置は、図8に示したOFDM信号受信装置200では受信不能となってしまう大きさのGI長を越えるマルチパスを等化することができる。しかしながら、特許文献1のOFDM信号受信装置では、遅延プロファイル上で、雑音成分やキャリヤ間干渉およびシンボル間干渉による干渉成分に埋もれてしまうような、低レベルであるものの遅延時間がGI長を越える遅延波が存在する場合、受信したOFDM信号の周波数特性歪みを等化することが困難であった。
本発明は、かかる問題を解決するためになされたものであり、その目的は、低レベルであるものの遅延時間がGI長を越えるため、受信特性を著しく劣化させる遅延波を等化可能なOFDM信号受信装置、および前記OFDM信号受信装置を用いて上位局波を良好かつ安定に中継する中継装置を提供することにある。
前記目的を達成するために、本発明によるOFDM信号受信装置は、OFDM信号を受信して復調し、ビット列を出力するOFDM信号受信装置であって、前記OFDM信号を直交復調して算出された等価ベースバンド信号をFFTし、等化係数を用いてキャリヤ間隔の2のべき乗分の1の周波数間隔で等化し、IFFTして時間領域の等価ベースバンド信号を出力する周波数領域等化部と、前記周波数領域等化部により出力された時間領域の等価ベースバンド信号からGIを除去した後にFFTしてキャリヤシンボルを生成し、前記キャリヤシンボルに基づいてチャネル推定を行ってチャネル応答を生成し、前記キャリヤシンボルおよびチャネル応答からチャネル等化後のキャリヤシンボルを生成し、OFDM復調によりビット列を出力するOFDM復調部と、前記周波数領域等化部にて用いる等化係数を算出する等化係数算出部と、を備え、前記等化係数算出部が、周波数特性算出部、等化誤差算出部、遅延プロファイル算出部および領域変換部を有し、前記周波数特性算出部が、前記チャネル等化後のキャリヤシンボルからシンボル再生後のキャリヤシンボルを生成し、前記FFTにより生成されたキャリヤシンボルを前記シンボル再生後のキャリヤシンボルで除算して第1の周波数特性を求め、前記第1の周波数特性を前記チャネル応答で除算して第2の周波数特性を求め、前記等化誤差算出部が、前記第2の周波数特性から主波成分を除去して等化誤差を求め、前記遅延プロファイル算出部が、前記等化誤差に基づいて遅延プロファイルを算出し、前記領域変換部が、前記遅延プロファイルをFFTし、前記周波数領域等化部にて用いる等化係数を求め、前記遅延プロファイル算出部が、前記等化誤差を時間領域の等化誤差に変換するIFFT部、前記時間領域の等化誤差に適応係数を乗算する乗算部、単位更新時間前の遅延プロファイルを入力し、前記遅延プロファイルに、前記乗算部により乗算された等化誤差を加算して遅延プロファイルを更新する加算部、前記更新された遅延プロファイルを、前記単位更新時間遅延させて出力する第1の遅延部、前記第1の遅延部の出力する遅延プロファイルに対し、その素波ごとの分散を算出する分散算出部、および、前記遅延プロファイルの素波ごとの分散に基づいて、前記第1の遅延部の出力する遅延プロファイルに対し、その振幅を小さくするリーク処理を施し、前記リーク処理後の遅延プロファイルを、前記単位更新時間前の遅延プロファイルとして前記加算部に出力するリーク処理部を有することを特徴とする。
また、本発明によるOFDM信号受信装置は、前記リーク処理部が、前記遅延プロファイルの素波ごとの分散と予め定められたしきい値とを比較し、前記分散が前記しきい値よりも大きい場合に、前記第1の遅延部の出力する遅延プロファイルに対し、その振幅を小さくするリーク処理を施し、リーク処理後の遅延プロファイルを前記加算部に出力し、前記分散が前記しきい値以下の場合に、前記第1の遅延部の出力する遅延プロファイルに対しリーク処理を施すことなく、前記遅延プロファイルを前記加算部に出力することを特徴とする。
また、本発明によるOFDM信号受信装置は、前記分散算出部が、前記第1の遅延部の出力する遅延プロファイルを、前記単位更新時間遅延させて出力する第2の遅延部、前記第2の遅延部の出力する遅延プロファイルの振幅、および前記第1の遅延部の出力する遅延プロファイルの振幅を算出する振幅算出部、前記振幅の小さい方の遅延プロファイルを、前記振幅の大きい方の遅延プロファイルで除算する除算器、前記除算結果を同期加算する同期加算部、定数1から前記同期加算結果を減じる減算器、および、前記減算結果の振幅を、前記遅延プロファイルの素波ごとの分散として算出する振幅算出部を有することを特徴とする。
さらに、本発明による中継装置は、前記OFDM信号受信装置を用いることを特徴とする。
以上のように、本発明のOFDM信号受信装置によれば、低レベルであるものの遅延時間がGI長を越えるため、受信特性を著しく劣化させる遅延波を受信した場合であっても、この遅延波による周波数特性歪みを等化することができる。また、本発明の中継装置によれば、前記OFDM信号受信装置を用いるようにしたから、上位局波を良好かつ安定に中継することができる。
本発明の実施形態によるOFDM信号受信装置の構成を示すブロック図である。 分散算出部の第1の構成を示すブロック図である。 分散算出部の第2の構成を示すブロック図である。 リーク処理部の構成を示すブロック図である。 リーク処理部の処理を説明する図である。 リーク処理部の処理を説明する図である。 本発明の実施形態によるOFDM信号受信装置を用いた中継装置の構成を示すブロック図である。 従来技術における通常のOFDM信号受信装置の構成を示すブロック図である。 従来技術における、遅延時間がGI長を越えるマルチパスをキャンセル可能なOFDM信号受信装置の構成を示すブロック図である。 低レベルなGI越えマルチパス波が多数存在する受信環境における遅延プロファイルを示す図である。 (a)は、図8のOFDM信号受信装置による等化後の受信信号のコンスタレーションを示す図である。(b)は、図9のOFDM信号受信装置による等化後の受信信号のコンスタレーションを示す図である。(c)は、図1のOFDM信号受信装置による等化後の受信信号のコンスタレーションを示す図である。
以下、本発明を実施するための形態について、図面を参照して説明する。本発明は、遅延プロファイルの素波ごとの分散を求め、この素波ごとの分散に基づいて遅延プロファイルに含まれる雑音成分等(雑音成分、キャリヤ間干渉およびシンボル間干渉による干渉成分)と遅延波(雑音成分等に埋もれてしまう低レベル、かつ遅延時間がGI長を越える遅延波)とを区別し、雑音成分等に対し振幅を小さくするためのリーク処理を施し、遅延波に対しリーク処理を施さないようにすることにより、雑音成分等が抑制され、かつ遅延波成分が出現する遅延プロファイルを生成し、この遅延プロファイルから算出した等化係数を用いて、受信したOFDM信号の周波数特性を等化することを特徴とする。これにより、低レベルであるものの遅延時間がGI長を越えるため、受信特性を著しく劣化させる遅延波を受信した場合であっても、この遅延波による周波数特性歪みを等化することができる。
〔OFDM信号受信装置の構成〕
まず、本発明の実施形態によるOFDM信号受信装置の構成について説明する。図1は、本発明の実施形態によるOFDM信号受信装置の構成を示すブロック図である。このOFDM信号受信装置1は、周波数領域等化部10、OFDM復調部20および等化係数算出部30を備えている。なお、周波数領域等化部10の前段に、図示しないBPF(Band Pass Filter:バンドパスフィルタ)、周波数変換部、A/D変換部および直交復調部を備えている。
図示しない周波数変換部は、OFDM信号受信装置1が受信したOFDM信号を、BPFを介して入力し、入力信号をIF信号に周波数変換する。周波数変換部の出力するIF信号はA/D変換部へ入力される。図示しないA/D変換部は、周波数変換部から入力されるIF信号をデジタルIF信号にA/D変換する。A/D変換部の出力するデジタルIF信号は直交復調部に入力される。図示しない直交復調部は、A/D変換部から入力されるデジタルIF信号を直交復調し、等価ベースバンド信号を出力する。直交復調部の出力する等価ベースバンド信号は周波数領域等化部10へ入力される。
周波数領域等化部10は、等化係数算出部30から入力される等化係数を用いて、直交復調部から入力される等価ベースバンド信号を周波数領域において等化し、時間領域の等価ベースバンド信号を出力する。周波数領域等化部10の出力する時間領域の等価ベースバンド信号はOFDM復調部20へ入力される。
OFDM復調部20は、周波数領域等化部10から入力される時間領域の等化ベースバンド信号をOFDM復調し、ビット列を外部へ出力すると共に、FFT後のキャリヤシンボル、チャネル推定により算出されたチャネル応答、およびデマッピング後のパラレル信号を等化係数算出部30へ出力する。
等化係数算出部30は、OFDM復調部20から入力されるキャリヤシンボル、チャネル応答およびパラレル信号を用いて、雑音成分等が抑制され、かつ遅延波成分が出現する遅延プロファイルを生成し、この遅延プロファイルから等化係数を算出し、周波数領域等化部10へ出力する。
〔周波数領域等化部〕
次に、周波数領域等化部10について詳細に説明する。図1に示すように、周波数領域等化部10は、FFT部11、等化部12およびIFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部13を備えている。
FFT部11は、直交復調部から入力される等価ベースバンド信号を、OFDM信号のFFTサイズに対し2のべき乗倍のサイズのポイント数でFFTし、周波数領域信号に変換する。FFT部11の出力する周波数領域信号は等化部12へ入力される。
等化部12は、FFT部11から入力される周波数領域信号を、等化係数算出部30から入力される等化係数で除算し、周波数特性歪みを等化する。すなわち、等化部12は、キャリヤ間隔の2のべき乗分の1の周波数間隔で等化する。等化部12の出力する、周波数特性歪みが等化された周波数領域信号はIFFT部13へ入力される。
IFFT部13は、等化部12から入力される、周波数特性歪みが等化された周波数領域信号を、FFT部11と同じサイズ(OFDM信号のFFTサイズに対し2のべき乗倍のサイズ)のポイント数でIFFTし、時間領域信号(時間領域の等価ベースバンド信号)に変換する。IFFT部13の出力する時間領域の等価ベースバンド信号はOFDM復調部20へ入力される。
〔OFDM復調部〕
次に、OFDM復調部20について詳細に説明する。OFDM復調部20は、図1に示すように、GI除去部21、FFT部22、チャネル推定部23、チャネル等化部24、デマッピング部25およびパラレルシリアル変換部(P/S変換部)26を備えている。
GI除去部21は、周波数領域等化部10から入力される時間領域の等価ベースバンド信号からGIを除去し、OFDM信号の有効シンボル期間に相当する時間幅の等価ベースバンド信号を出力する。GI除去部21の出力する有効シンボル期間の等価ベースバンド信号はFFT部22へ入力される。FFT部22は、GI除去部21から入力される有効シンボル期間の等価ベースバンド信号をOFDM信号のFFTサイズでFFTし、キャリヤシンボルに変換する。FFT部22の出力するキャリヤシンボルは3分配され、チャネル等化部24、チャネル推定部23および等化係数算出部30へ入力される。
チャネル推定部23は、FFT部22から入力されるキャリヤシンボルに基づいて、チャネル応答を推定する。チャネル推定部23の出力するチャネル応答は2分配され、一方がチャネル等化部24へ、他方が等化係数算出部30へ出力される。具体的には、チャネル推定部23は、キャリヤシンボルのうちの予め決められたシンボル番号およびサブキャリヤ番号のキャリヤシンボルとして伝送されたパイロット信号(受信パイロット信号)を抽出し、この受信パイロット信号を、予め決められた振幅および位相を持つパイロット信号(送信パイロット信号)で除算し、パイロット信号が伝送されるシンボルおよびサブキャリヤにおけるチャネル応答を求める。そして、チャネル推定部23は、このチャネル応答をシンボル方向およびサブキャリヤ方向に補間し、OFDM信号の全サブキャリヤにおけるチャネル応答を算出して出力する。
チャネル等化部24は、FFT部22から入力されるキャリヤシンボルを、チャネル推定部23から入力されるチャネル応答で除算し、チャネル等化を行う。チャネル等化部24の出力する等化後のキャリヤシンボルはデマッピング部25へ入力される。
デマッピング部25は、チャネル等化部24から入力される等化後のキャリヤシンボルをデマッピングし、送信されたキャリヤシンボルを推定して複数ビットからなるパラレル信号を生成する。デマッピング部25の出力するパラレル信号は2分配され、一方がパラレルシリアル変換部26へ、他方が等化係数算出部30へ出力される。パラレルシリアル変換部26は、デマッピング部25から入力されるパラレル信号をシリアル信号に変換し、ビット列を外部へ出力する。
〔等化係数算出部〕
次に、等化係数算出部30について詳細に説明する。等化係数算出部30は、図1に示すように、周波数特性算出部40、等化誤差算出部31、遅延プロファイル算出部50および領域変換部60を備えている。
周波数特性算出部40は、OFDM復調部20から入力されるキャリヤシンボル、チャネル応答およびパラレル信号に基づいて、等化後の周波数特性を算出する。周波数特性算出部40の出力する等化後の周波数特性は等化誤差算出部31へ入力される。
等化誤差算出部31は、周波数特性算出部40から入力される等化後の周波数特性から1を減じ、すなわち、等化後の周波数特性から主波に相当するDC成分を除去し、等化誤差(マルチパスによる歪みの残差を示す周波数特性)を求める。ここで、周波数特性算出部40から入力される等化後の周波数特性は、主波の振幅および位相が正規化されているから、等化誤差算出部31による等化後の周波数特性から主波成分を除去する処理は、全てのキャリヤシンボルにおける複素の周波数特性から単純にDC成分を減算するだけでよい。つまり、等化誤差算出部31は、任意の複素信号(I,Q)から、主波成分(1,0)を減算することにより、等化誤差を求めることができる。等化誤差算出部31の出力する等化誤差は遅延プロファイル算出部50へ入力される。
遅延プロファイル算出部50は、等化誤差算出部31から入力される等化誤差を用いて、雑音成分等が抑制され、かつ遅延波成分が出現する遅延プロファイルを算出する。遅延プロファイル算出部50の出力する遅延プロファイルは領域変換部60へ入力される。
領域変換部60はFFT部61を備えており、FFT部61は、遅延プロファイル算出部50から入力される遅延プロファイルを、FFT部11と同じサイズ(OFDM信号のFFTサイズに対し2のべき乗倍のサイズ)のポイント数でFFTし、時間領域の遅延プロファイルを周波数領域の等化係数に変換する。領域変換部60の出力する等化係数は周波数領域等化部10へ入力される。
具体的には、遅延プロファイル算出部50は、等化誤差をIFFTして時間領域に変換し、これを単位更新前の遅延プロファイルに加算していくことにより、遅延プロファイルを更新していく。この際、単位更新前の遅延プロファイルに含まれる雑音成分等(雑音成分、キャリヤ間干渉およびシンボル間干渉による成分)と遅延波(雑音成分等に埋もれてしまう低レベル、かつ遅延時間がGI長を越える遅延波)とを分散によって区別し、雑音成分等に対し振幅を小さくするためのリーク処理を施し、遅延波に対してはリーク処理を施さない。これにより、雑音成分等が抑制され、かつ実際に伝搬路に存在する遅延波が出現する遅延プロファイルが算出されるようになる。そして、周波数領域等化部10により遅延波の周波数特性歪みが徐々に等化され、等化誤差算出部31により算出される等化誤差は徐々に小さくなる。したがって、このような処理が繰り返し行われることにより、遅延プロファイル算出部50により、雑音成分等が除去された正確な遅延プロファイルが算出され、周波数領域等化部10において、遅延波による周波数特性歪みが確実に等化されるようになる。
(周波数特性算出部)
次に、等化係数算出部30の周波数特性算出部40について詳細に説明する。周波数特性算出部40は、図1に示すように、マッピング部41、除算器42および除算器43を備えている。
マッピング部41は、OFDM復調部20から入力されるパラレル信号をマッピングしてキャリヤ変調し、キャリヤシンボルを再生する。マッピング部41の出力するシンボル再生後のキャリヤシンボルは除算器42へ出力される。除算器42は、OFDM復調部20から入力されるキャリヤシンボルを、マッピング部41から入力されるシンボル再生後のキャリヤシンボルで除算し、等化後の周波数特性を算出する。除算器42の出力する等化後の周波数特性は除算器43へ入力される。除算器43は、除算器42から入力される等化後の周波数特性を、OFDM復調部20から入力されるチャネル応答で除算し、GI内マルチパスによる歪みが分離された周波数特性を出力する。除算器43の出力する、GI内マルチパスによる歪みが分離された周波数特性(等化後の周波数特性)は等化誤差算出部31へ入力される。なお、OFDM復調部20のデマッピング部25および周波数特性算出部40のマッピング部41の処理は、デマッピング部25が入力するキャリヤシンボルを、当該キャリヤシンボルに最も近い既知の送信シンボルに置き換える処理であり、等化誤差および白色雑音を除去するという利点がある。しかしながら、周波数特性算出部40は、必ずしもマッピング部41を備える必要はなく、デマッピング部25からパラレル信号を入力する代わりに、チャネル等化部24からチャネル等化後のキャリヤシンボルを入力するようにしてもよい。この場合、除算器42は、OFDM復調部20のFFT部22から入力したキャリヤシンボルを、チャネル等化後のキャリヤシンボルで除算し、等化後の周波数特性を算出する。
(遅延プロファイル算出部)
次に、等化係数算出部30の遅延プロファイル算出部50について詳細に説明する。遅延プロファイル算出部50は、図1に示すように、IFFT部51、適応係数乗算器52、加算器53、遅延部54、分散算出部55およびリーク処理部56を備えている。
IFFT部51は、等化誤差算出部31から入力される等化誤差をIFFTし、時間領域の等化誤差に変換する。IFFT部51の出力する時間領域の等化誤差は適応係数乗算器52へ入力される。適応係数乗算器52は、IFFT部51から入力される時間領域の等化誤差に所定の適応係数を乗算する。適応係数乗算器52の出力する時間領域の等化誤差は加算器53へ入力される。
加算器53は、適応係数乗算器52から入力される時間領域の等化誤差に、リーク処理部56から入力される遅延プロファイルを加算し、遅延プロファイルを更新して出力する。加算器53の出力する遅延プロファイルは2分配され、一方が領域変換部60へ、他方が遅延部54へ入力される。遅延部54は、加算器53から入力される遅延プロファイルを、単位更新時間遅延させて出力する。遅延部54の出力する遅延プロファイルは2分配され、一方がリーク処理部56へ、他方が分散算出部55へ入力される。
分散算出部55は、遅延部54から入力される遅延プロファイルについて、素波ごとの分散を算出する。分散算出部55の出力する素波ごとの分散はリーク処理部56へ入力される。リーク処理部56は、遅延部54から入力される遅延プロファイルに対して、分散算出部55から入力される素波ごとの分散に基づいてリーク処理を施す。リーク処理部56の出力する遅延プロファイルは加算器53へ入力される。
(分散算出部)
次に、等化係数算出部30の遅延プロファイル算出部50に備えた分散算出部55について詳細に説明する。前述のとおり、分散算出部55は、遅延部54から入力される遅延プロファイルについて、遅延プロファイルp(n)の素波ごとの分散v(n)を、以下の式により算出する。
Figure 0005460487
ここで、nは、FFTサイズN未満の離散時間を示す整数であり、以下を満たす。
Figure 0005460487
また、p(n,t)は、時刻tにおける遅延プロファイルp(n)を示し、以下、明示する必要のない場合tは省略する。また、
Figure 0005460487
は、遅延プロファイルp(n)の平均値を示し、以下の式により算出される。Tは、分散を算出するための時間幅を示す。
Figure 0005460487
分散算出部55により算出される分散v(n)は、雑音成分等の場合は大きい値になり、遅延波成分の場合は小さい値になる。これは、雑音成分等は、ランダム成分であって時間方向には無相関であり、遅延波成分は、所定の時間位置に出現するからである。このように、分散v(n)に基づいて、雑音成分等と遅延波成分とを区別することができる。
図2は、分散算出部55の第1の構成を示すブロック図である。この分散算出部55−1は、バッファ101、平均値算出部102、減算器103、振幅算出部104および平均値算出部105を備えている。
バッファ101は、遅延プロファイル算出部50の遅延部54から入力される遅延プロファイルp(n,t)を時刻幅Tの期間バッファリングし、出力する。バッファ101の出力する複数時刻における遅延プロファイルp(n,t)は2分配され、一方が減算器103へ、他方が平均値算出部102へ出力される。平均値算出部102は、バッファ101から入力される遅延プロファイルp(n,t)の平均値を、前記式()により求める。平均値算出部102の出力する遅延プロファイルp(n,t)の平均値は減算器103へ入力される。
減算器103は、バッファ101から入力される複数時刻における遅延プロファイルp(n,t)から、平均値算出部102から入力される遅延プロファイルp(n,t)の平均値を減算する。減算器103の出力する減算結果(複数時刻における遅延プロファイルの平均値からの差分)は振幅算出部104へ入力される。
振幅算出部104は、減算器103から入力される複数時刻における遅延プロファイルp(n,t)の平均値からの差分について、その振幅を算出する。振幅算出部104の出力する差分の振幅は平均値算出部105へ入力される。平均値算出部105は、振幅算出部104から入力される差分の振幅の平均値を、前記式(1)に示した分散v(n)として求める。平均値算出部105の出力する遅延プロファイルp(n,t)の素波ごとの分散v(n)はリーク処理部56へ入力される。
図3は、分散算出部55の第2の構成を示すブロック図である。この分散算出部55−2は、複素共役部111、遅延部112、乗算器113、振幅算出部114,115、比較器116、選択器117、除算器118、複素共役部119、選択器120、同期加算部121、減算器122および振幅算出部123を備えている。
図2に示した第1の分散算出部55−1と図3に示す第2の分散算出部55−2とを比較すると、図2に示した第1の分散算出部55−1は、時刻幅Tの遅延プロファイルを保持するために大容量のメモリが必要であるのに対し、図3に示す分散算出部55−2は、単位更新時間前の遅延プロファイルを保持すればよいから、必要なメモリ容量は少なくて済む。
遅延プロファイル算出部50の遅延部54から入力される遅延プロファイルp(n,t)は3分配され、複素共役部111、遅延部112および振幅算出部114へ入力される。複素共役部111は、遅延部54から入力される遅延プロファイルp(n,t)の複素共役値を生成する。複素共役部111の出力する遅延プロファイルの複素共役値p(n,t)は乗算器113へ入力される。遅延部112は、遅延部54から入力される遅延プロファイルp(n,t)を単位更新時間遅らせる。遅延部112の出力する単位更新時間遅れた遅延プロファイルp(n,t−1)は、一方が乗算器113へ、他方が振幅算出部115へ入力される。乗算器113は、複素共役部111から入力される遅延プロファイルの複素共役値p(n,t)と、遅延部112から入力される単位更新時間遅れた遅延プロファイルp(n,t−1)とを乗算する。乗算器113の出力する乗算結果は除算器118へ入力される。
振幅算出部114は、遅延部54から入力される遅延プロファイルp(n,t)の振幅|p(n,t)|を算出する。振幅算出部114の出力する遅延プロファイルp(n,t)の振幅|p(n,t)|は2分配され、一方が比較器116へ入力され、他方が選択器117へ入力される。振幅算出部115は、遅延部112から入力される遅延プロファイルp(n,t−1)の振幅|p(n,t−1)|を算出する。振幅算出部115の出力する遅延プロファイルp(n,t−1)の振幅|p(n,t−1)|は2分配され、一方が比較器116へ入力され、他方が選択器117へ入力される。
比較器116は、振幅算出部114から入力される遅延プロファイルp(n,t)の振幅|p(n,t)|と、振幅算出部115から入力される遅延プロファイルp(n,t−1)の振幅|p(n,t−1)|とを大小比較し、前者が後者よりも大きいとき1(真)を示すブール値を生成し、後者が前者以上のとき0(偽)を示すブール値を生成する。比較器116の出力するブール値は、一方が選択器117へ、他方が選択器120へ入力される。
選択器117は、比較器116から入力されるブール値に基づいて、振幅算出部114から入力される遅延プロファイルp(n,t)の振幅|p(n,t)|または振幅算出部115から入力される遅延プロファイルp(n,t−1)の振幅|p(n,t−1)|を選択する。具体的には、ブール値が1(真)のとき、遅延プロファイルp(n,t)の振幅|p(n,t)|を選択し、ブール値が0(偽)のとき、遅延プロファイルp(n,t−1)の振幅|p(n,t−1)|を選択する。選択器117の出力する遅延プロファイルp(n,t)の振幅|p(n,t)|または遅延プロファイルp(n,t−1)の振幅|p(n,t−1)|のうちの大きい方の振幅は、除算器118へ入力される。
除算器118は、乗算器113から入力される乗算結果を、選択器117から入力される振幅で除算する。除算器118の出力する除算結果は2分配され、一方が選択器120へ、他方が複素共役部119へ入力される。複素共役部119は、除算器118から入力される除算結果の複素共役値を生成する。複素共役部119の出力する複素共役値は選択器120へ入力される。
選択器120は、比較器116から入力されるブール値に基づいて、除算器118から入力される除算結果または複素共役部119から入力される除算結果の複素共役値を選択する。具体的には、ブール値が1(真)のとき、除算器118から入力される除算結果を選択し、ブール値が0(偽)のとき、複素共役部119から入力される除算結果の複素共役値を選択する。選択器120の出力する、除算結果または除算結果の複素共役値は同期加算部121へ入力される。
すなわち、選択器120は、以下に示すr(n)を出力する。
Figure 0005460487
ここでr(n)は、連続する2サンプル時間における遅延プロファイルの素波成分を、振幅の大きい方で小さい方を割ったものであるため、その振幅は1以下である。
同期加算部121は、選択器120から入力されるr(n)を同期加算して出力する。
Figure 0005460487
ここで、αは、同期加算のための係数を示し、以下の式のように1に近い正の定数である。
Figure 0005460487
減算器122は、定数1から、同期加算部から入力されるw(n,t)を減じて振幅算出部123に出力する。振幅算出部123は、減算器122から入力される減算結果の振幅を求め、分散v(n)を出力する。
Figure 0005460487
このように、分散算出部55によれば、雑音成分等と遅延波とを区別可能な分散を算出するようにした。雑音成分等は、ランダム成分であって時間的に無相関であるから、r(n)も同様に時間的に無相関である。よって無相関信号r(n)の同期加算結果であるw(n)は小さい値となり、また分散v(n)は1に近い値になる。一方、遅延波成分は、所定の時間位置に出現するから、w(n)は1に近い値となり、分散v(n)は小さい値になる。これにより、リーク処理部56において、分散v(n)に基づいて、雑音成分等と遅延波とを区別することができる。
(リーク処理部)
次に、図1に示した等化係数算出部30の遅延プロファイル算出部50に備えたリーク処理部56について詳細に説明する。リーク処理部56は、遅延部54から入力される遅延プロファイルp(n)の実部および虚部ごとに、分散算出部55から入力される遅延プロファイルp(n)の素波ごとの分散v(n)に基づいて、リーク処理を施す。なお、実部に対する処理と虚部に対する処理は同じである。
具体的には、リーク処理部56は、分散v(n)が予め定められたしきい値thよりも大きい場合、すなわち、雑音成分等の場合、入力した遅延プロファイルp(n)の振幅を小さくするリーク処理を行い、新たな遅延プロファイルs(n)を出力し、分散v(n)が予め定められたしきい値thよりも大きくない場合、すなわち、遅延波成分の場合、リーク処理を行うことなく、入力した遅延プロファイルp(n)をそのまま出力する。
図4は、リーク処理部56の構成を示すブロック図である。このリーク処理部56は、選択器71、比較器72,74,77、加算器73,82、符号反転器75,79、乗算器76,78,81および否定論理和演算器80を備えている。なお、リークパラメータδpは予め定められた正の微定数を示し、しきい値thは予め定められた正の定数を示す。以下、遅延プロファイルp(n)の実部に対する処理を説明する。
遅延プロファイル算出部50の遅延部54から入力される遅延プロファイルp(n)の実部は5分配され、それぞれ選択器71、加算器73、比較器74、比較器77および符号反転器79へ入力される。比較器74は、遅延部54から入力される遅延プロファイルp(n)の実部とリークパラメータδpとを大小比較し、前者が後者よりも大きいとき1(真)を示すブール値を生成し、後者が前者以上のとき0(偽)を示すブール値を生成する。比較器74の出力するブール値は2分配され、一方が乗算器76へ、他方が否定論理和演算器80へ入力される。
符号反転器75は、リークパラメータδpの符号を反転する。符号反転器75の出力する、符号が反転したリークパラメータδpは2分配され、一方が乗算器76へ、他方が比較器77へ入力される。比較器77は、遅延部54から入力される遅延プロファイルp(n)の実部と符号反転器75から入力される−δpとを大小比較し、後者が前者よりも大きいとき1(真)を示すブール値を生成し、前者が後者以上のとき0(偽)を示すブール値を生成する。比較器77の出力するブール値は2分配され、一方が乗算器78へ、他方が否定論理和演算器80へ入力される。
否定論理和演算器80は、比較器74および比較器77から入力されるブール値の否定論理和を演算する。否定論理和演算器80の出力する演算結果は乗算器81へ入力される。符号反転器79は、遅延部54から入力される遅延プロファイルp(n)の実部の符号を反転する。符号反転器79の出力する、符号が反転した遅延プロファイルp(n)の実部は乗算器81へ入力される。
乗算器76は、比較器74から入力されるブール値に、符号反転器75から入力される−δpを乗算する。乗算器76の出力する乗算結果(−δpまたは0)は加算器82へ入力される。乗算器78は、比較器77から入力されるブール値に、リークパラメータδpを乗算する。乗算器78の出力する乗算結果(δpまたは0)は加算器82へ入力される。乗算器81は、否定論理和演算器80から入力される演算結果に、符号反転器79から入力される、符号が反転した遅延プロファイルp(n)の実部(以下、−p(n)とする。)を乗算する。乗算器81の出力する乗算結果(−p(n)または0)は加算器82へ入力される。加算器82は、乗算器76,78,81から入力される乗算結果を加算する。加算器82の出力する加算結果(−δp、−p(n)またはδp)は加算器73へ入力される。
図5は、リーク処理部56の処理のうち、加算器82の加算結果を説明する図である。加算器82は、遅延プロファイルp(n)の実部がリークパラメータδpよりも大きいときに、乗算器76から入力される−δpと、乗算器78から入力される0と、乗算器81から入力される0とを加算し、図5(a)に示すように、加算結果−δpを出力する。また、遅延プロファイルp(n)の実部が−δpよりも小さいときに、乗算器76から入力される0と、乗算器78から入力されるδpと、乗算器81から入力される0とを加算し、図5(c)に示すように、加算結果δpを出力する。また、遅延プロファイルp(n)の実部が−δp以上δp以下のときに、乗算器76から入力される0と、乗算器78から入力される0と、乗算器81から入力される−p(n)とを加算し、図5(b)に示すように、加算結果−p(n)を出力する。
図4に戻って、加算器73は、遅延部54から入力される遅延プロファイルp(n)の実部に、加算器82から入力される加算結果(−δp、−p(n)またはδp)を加算する。加算器73の出力する加算結果s(n)の実部(以下、s(n)とする)は選択器71へ入力される。
図6は、リーク処理部56の処理のうち、加算器73の加算結果s(n)を説明する図である。加算器73は、遅延プロファイルp(n)の実部がリークパラメータδpよりも大きいときに、遅延プロファイルp(n)の実部と加算器82から入力される−δpとを加算し、図6(a)に示すように、加算結果s(n)={p(n)の実部}−δpを出力する。また、遅延プロファイルp(n)の実部が−δpよりも小さいときに、遅延プロファイルp(n)の実部と加算器82から入力されるδpとを加算し、図6(c)に示すように、加算結果s(n)={p(n)の実部}+δpを出力する。また、遅延プロファイルp(n)の実部が−δp以上δp以下のときに、遅延プロファイルp(n)の実部と加算器82から入力される−p(n)とを加算し、図6(b)に示すように、加算結果s(n)=0を出力する。
図4に戻って、比較器72は、分散算出部55から入力される、遅延プロファイルp(n)の素波ごとの分散v(n)としきい値thとを大小比較し、前者が後者よりも大きいとき1(真)を示すブール値を生成し、後者が前者以上のとき0(偽)を示すブール値を生成する。比較器72の出力するブール値は選択器71へ入力される。選択器71は、比較器72から入力されるブール値に基づいて、遅延部54から入力される遅延プロファイルp(n)の実部、または加算器73から入力される加算結果s(n)の実部を選択する。具体的には、ブール値が1(真)のとき(分散v(n)がしきい値thよりも大きいとき、すなわち、雑音成分等のとき)、加算結果s(n)の実部を選択する。一方、ブール値が0(偽)のとき(分散v(n)がしきい値th以下のとき、すなわち、遅延波成分のとき)、遅延プロファイルp(n)の実部を選択する。選択器71の出力する遅延プロファイルp(n)または加算結果s(n)は、リーク処理後の遅延プロファイルq(n)として加算器53へ入力される。
すなわち、リーク処理部56は、以下の式に示すリーク処理を行い、遅延プロファイルq(n)を出力する。
Figure 0005460487
なお、加算器73の加算結果s(n)は、図6に示したとおり、以下の式で表される。
Figure 0005460487
以上、遅延プロファイルp(n)の実部の処理について説明したが、虚部についても同様である。
このように、リーク処理部56によれば、遅延プロファイルp(n)の素波ごとの分散v(n)が予め定められたしきい値thよりも大きい場合、すなわち、雑音成分等の場合、入力した遅延プロファイルp(n)の振幅を小さくするリーク処理を行い、新たな遅延プロファイルs(n)を遅延プロファイルq(n)として出力し、分散v(n)が予め定められたしきい値th以下の場合、すなわち、遅延波成分の場合、リーク処理を行うことなく、入力した遅延プロファイルp(n)をそのまま遅延プロファイルq(n)として出力するようにした。これにより、繰り返し処理を行うことで、加算器53において、等化誤差から算出された時間領域の等化誤差とリーク処理された遅延プロファイルq(n)との加算結果である遅延プロファイル(遅延プロファイル算出部50により算出される遅延プロファイル)は、雑音成分等が除去され、かつ遅延波が出現した特性となる。したがって、遅延プロファイル算出部50により、雑音成分等が除去された正確な遅延プロファイルが算出されるから、このような遅延プロファイルをFFTして算出された等化係数を用いることにより、周波数領域等化部10は、遅延波による周波数特性歪みを確実に等化することができる。
〔OFDM受信装置を用いた中継装置〕
次に、図1に示したOFDM信号受信装置1を用いた中継装置について説明する。図7は、中継装置の構成を示すブロック図である。この中継装置2は、受信アンテナ131、受信フィルタ132、周波数変換部133、A/D変換部134、直交復調部135、周波数領域等化部10、OFDM復調部20、等化係数算出部30、選択部136、IFFT部137、GI付加部138、直交変調部139、D/A変換部140、周波数変換部141、送信フィルタ142および送信アンテナ143を備えている。受信アンテナ131、受信フィルタ132、周波数変換部133、A/D変換部134、直交復調部135、周波数領域等化部10、OFDM復調部20および等化係数算出部30は、図1に示したOFDM信号受信装置1に相当する構成部である。なお、図1では、受信アンテナ131から直交復調部135までの構成を省略してある。
上位局から送信された希望波(OFDM波)は、図1に示したOFDM信号受信装置1を備える放送波中継局の中継装置2において、受信アンテナ131を介して受信される。受信アンテナ131から出力された受信信号は、フィーダーケーブルを通して受信フィルタ132であるBPFに入力され、希望波の周波数帯域外の不要な信号成分が除去される。受信フィルタ132の出力信号は、周波数変換部133に入力され、その出力レベルが一定になるようにAGC増幅された後、周波数変換され、A/D変換部134および直交復調部135を介して等価ベースバンド信号として周波数領域等化部10へ入力される。
周波数領域等化部10、OFDM復調部20および等化係数算出部30は、前述したので説明を省略する。OFDM復調部20に備えたチャネル等化部24(図1を参照)の出力信号であるチャネル等化後のキャリヤシンボルは、選択部136へ入力される。また、等化係数算出部30に備えたマッピング部41(図1を参照)の出力信号であるマッピング(シンボル再生)後のキャリヤシンボルは、選択部136へ入力される。
選択部136は、OFDM復調部20から入力されるチャネル等化後のキャリヤシンボルまたは等化係数算出部30から入力されるマッピング後のキャリヤシンボルのうちのいずれか一方を、所定の設定に従って選択する。選択部136の出力するキャリヤシンボルはIFFT部137へ入力される。IFFT部137は、選択部136から入力されるキャリヤシンボルをIFFTし、時間領域信号に変換する。IFFT部137の出力する時間領域信号はGI付加部138へ入力される。
GI付加部138は、IFFT部137から入力される時間領域信号について、OFDMシンボルの先頭にGIを付加する。GI付加部138の出力する時間領域信号は直交変調部139へ入力される。直交変調部139は、GI付加部138から入力される時間領域信号である等価ベースバンド信号に直交変調処理し、デジタルIF信号に変換する。直交変調部139の出力するデジタルIF信号はD/A変換部140へ入力される。
D/A変換部140は、直交変調部139から入力されるデジタルIF信号をアナログIF信号に変換する。D/A変換部140の出力するアナログIF信号は周波数変換部141へ入力される。周波数変換部141は、D/A変換部140から入力されるアナログIF信号をRF帯の信号に周波数変換し、一定レベルになるように増幅する。周波数変換部141の出力するRF信号は送信フィルタ142へ入力される。送信フィルタ142は、周波数変換部141から入力されるRF信号について、帯域外の不要輻射成分を除去する。送信フィルタ142の出力する信号は、フィーダーケーブルを通して送信アンテナ143へ供給され、電波となって放射される。
〔実験結果〕
次に、実験結果について説明する。図10は、低レベルなGI越えマルチパス波が多数存在する受信環境における遅延プロファイルを示す図である。図11(a)〜(c)は、図10に示す遅延プロファイルの受信環境における受信信号のコンスタレーションを示す図である。図11(a)は、図8に示した従来技術における通常の(GI越えマルチパス等化機能を有さない)OFDM信号受信装置200による、等化後の受信信号のコンスタレーションを示している。図11(b)は、図9に示した従来技術における、GI越えマルチパス等化機能を有するOFDM信号受信装置201による、等化後の受信信号のコンスタレーションを示している。図11(c)は、図1に示した本発明の実施形態によるOFDM信号受信装置1による等化後の受信信号のコンスタレーションを示している。
図10に示すように、OFDM信号受信装置1,200,201がOFDM信号を受信する受信環境における遅延プロファイルは、雑音成分やキャリヤ間干渉およびシンボル間干渉による干渉成分に埋もれてしまうほどの低レベルであって、遅延時間がGI長を越えるマルチパス波を有しているものとする。図11(a)〜(c)に示すコンスタレーションから、本発明の実施形態によるOFDM信号受信装置1では、従来技術による通常のOFDM信号受信装置200およびGI越えマルチパス等化機能を有するOFDM信号受信装置201と比較して、コンスタレーションのばらつきが小さいことがわかる。
以上のように、本発明の実施形態によるOFDM信号受信装置1によれば、遅延プロファイルに含まれる雑音成分等と遅延波とを分散によって区別し、雑音成分等に対して振幅を小さくするためのリーク処理を施し、遅延波に対してはリーク処理を施さないようにした。これにより、雑音成分等が除去され、遅延波が出現する遅延プロファイルが生成されるようになる。このような遅延プロファイルから算出された等化係数を用いることにより、周波数特性歪みを確実に等化することができる。したがって、低レベルであるものの遅延時間がGI長を越えるため、受信特性を著しく劣化させる遅延波を受信した場合であっても、この遅延波による周波数特性歪みを等化することが可能となる。また、OFDM信号受信装置1を用いた中継装置2によれば、上位局波を良好かつ安定に中継することができる。
1,200,201 OFDM信号受信装置
2 中継装置
10 周波数領域等化部
11,22,61,215 FFT部
12 等化部
13,51,137 IFFT部
20 OFDM復調部
21,214 GI除去部
23,216 チャネル推定部
24,217 チャネル等化部
25,218 デマッピング部
26,219 パラレルシリアル変換部
30 等化係数算出部
31 等化誤差算出部
40 周波数特性算出部
41,222 マッピング部
42,43,118,223 除算器
50 遅延プロファイル算出部
52 適応係数乗算器
53,73,82 加算器
54,112 遅延部
55 分散算出部
56 リーク処理部
60 領域変換部
71,117,120 選択器
72,74,77,116 比較器
75,79 符号反転器
76,78,81,113 乗算器
80 否定論理和演算器
101 バッファ
102,105 平均値算出部
103,220 減算器
104,114,115 振幅算出部
111,119 複素共役部
121 同期加算部
122 減算器
123 振幅算出部
131 受信アンテナ
132 受信フィルタ
133,141,211 周波数変換部
134,212 A/D変換部
135,213 直交復調部
136 選択部
138 GI付加部
139 直交変調部
140 D/A変換部
142 送信フィルタ
143 送信アンテナ
221 適応フィルタ部
223 除算器
224 フィルタ係数制御部

Claims (4)

  1. OFDM信号を受信して復調し、ビット列を出力するOFDM信号受信装置であって、
    前記OFDM信号を直交復調して算出された等価ベースバンド信号をFFTし、等化係数を用いてキャリヤ間隔の2のべき乗分の1の周波数間隔で等化し、IFFTして時間領域の等価ベースバンド信号を出力する周波数領域等化部と、
    前記周波数領域等化部により出力された時間領域の等価ベースバンド信号からGIを除去した後にFFTしてキャリヤシンボルを生成し、前記キャリヤシンボルに基づいてチャネル推定を行ってチャネル応答を生成し、前記キャリヤシンボルおよびチャネル応答からチャネル等化後のキャリヤシンボルを生成し、OFDM復調によりビット列を出力するOFDM復調部と、
    前記周波数領域等化部にて用いる等化係数を算出する等化係数算出部と、を備え、
    前記等化係数算出部は、周波数特性算出部、等化誤差算出部、遅延プロファイル算出部および領域変換部を有し、
    前記周波数特性算出部は、前記チャネル等化後のキャリヤシンボルからシンボル再生後のキャリヤシンボルを生成し、前記FFTにより生成されたキャリヤシンボルを前記シンボル再生後のキャリヤシンボルで除算して第1の周波数特性を求め、前記第1の周波数特性を前記チャネル応答で除算して第2の周波数特性を求め、
    前記等化誤差算出部は、前記第2の周波数特性から主波成分を除去して等化誤差を求め、
    前記遅延プロファイル算出部は、前記等化誤差に基づいて遅延プロファイルを算出し、
    前記領域変換部は、前記遅延プロファイルをFFTし、前記周波数領域等化部にて用いる等化係数を求め、
    前記遅延プロファイル算出部は、
    前記等化誤差を時間領域の等化誤差に変換するIFFT部、
    前記時間領域の等化誤差に適応係数を乗算する乗算部、
    単位更新時間前の遅延プロファイルを入力し、前記遅延プロファイルに、前記乗算部により乗算された等化誤差を加算して遅延プロファイルを更新する加算部、
    前記更新された遅延プロファイルを、前記単位更新時間遅延させて出力する第1の遅延部、
    前記第1の遅延部の出力する遅延プロファイルに対し、その素波ごとの分散を算出する分散算出部、および、
    前記遅延プロファイルの素波ごとの分散に基づいて、前記第1の遅延部の出力する遅延プロファイルに対し、その振幅を小さくするリーク処理を施し、前記リーク処理後の遅延プロファイルを、前記単位更新時間前の遅延プロファイルとして前記加算部に出力するリーク処理部を有することを特徴とするOFDM信号受信装置。
  2. 請求項1に記載のOFDM信号受信装置において、
    前記リーク処理部は、前記遅延プロファイルの素波ごとの分散と予め定められたしきい値とを比較し、前記分散が前記しきい値よりも大きい場合に、前記第1の遅延部の出力する遅延プロファイルに対し、その振幅を小さくするリーク処理を施し、リーク処理後の遅延プロファイルを前記加算部に出力し、前記分散が前記しきい値以下の場合に、前記第1の遅延部の出力する遅延プロファイルに対しリーク処理を施すことなく、前記遅延プロファイルを前記加算部に出力することを特徴とするOFDM信号受信装置。
  3. 請求項2に記載のOFDM信号受信装置において、
    前記分散算出部は、
    前記第1の遅延部の出力する遅延プロファイルを、前記単位更新時間遅延させて出力する第2の遅延部、
    前記第2の遅延部の出力する遅延プロファイルの振幅、および前記第1の遅延部の出力する遅延プロファイルの振幅を算出する振幅算出部、
    前記振幅の小さい方の遅延プロファイルを、前記振幅の大きい方の遅延プロファイルで除算する除算器、
    前記除算結果を同期加算する同期加算部、
    定数1から前記同期加算結果を減じる減算器、および、
    前記減算結果の振幅を、前記遅延プロファイルの素波ごとの分散として算出する振幅算出部を有することを特徴とするOFDM信号受信装置。
  4. 請求項1から3までのいずれか一項に記載のOFDM信号受信装置を用いる中継装置。
JP2010145666A 2010-06-25 2010-06-25 Ofdm信号受信装置および中継装置 Active JP5460487B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010145666A JP5460487B2 (ja) 2010-06-25 2010-06-25 Ofdm信号受信装置および中継装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145666A JP5460487B2 (ja) 2010-06-25 2010-06-25 Ofdm信号受信装置および中継装置

Publications (2)

Publication Number Publication Date
JP2012010203A JP2012010203A (ja) 2012-01-12
JP5460487B2 true JP5460487B2 (ja) 2014-04-02

Family

ID=45540220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145666A Active JP5460487B2 (ja) 2010-06-25 2010-06-25 Ofdm信号受信装置および中継装置

Country Status (1)

Country Link
JP (1) JP5460487B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420664B1 (ko) * 2012-12-03 2014-07-17 한국전자통신연구원 중계기 및 이를 이용한 무선 채널 사용자의 정보 보호 방법
JP6491439B2 (ja) * 2014-09-02 2019-03-27 日本放送協会 受信装置及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177708B2 (ja) * 2003-05-16 2008-11-05 日本放送協会 Ofdm信号復調装置
JP5023006B2 (ja) * 2008-07-09 2012-09-12 日本放送協会 Ofdm信号受信装置および中継装置
JP5023007B2 (ja) * 2008-07-09 2012-09-12 日本放送協会 Ofdm信号受信装置および中継装置

Also Published As

Publication number Publication date
JP2012010203A (ja) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5644475B2 (ja) 受信装置
JP4523294B2 (ja) 通信装置
US20070036232A1 (en) Ofdm reception apparatus and ofdm reception method
KR20090108665A (ko) 채널 추정 장치 및 등화 장치와 그 추정 및 등화 방법
JPWO2007046503A1 (ja) キャリア間干渉除去装置及びこれを用いた受信装置
JP3715282B2 (ja) Ofdm受信装置及びofdm信号の補正方法
JP4871334B2 (ja) Ofdm信号合成用受信装置
JP5570456B2 (ja) Ofdm信号受信装置および中継装置
JP5460487B2 (ja) Ofdm信号受信装置および中継装置
JP2008148277A (ja) Ofdm信号合成用受信装置および中継装置
JP5023007B2 (ja) Ofdm信号受信装置および中継装置
JP2005057673A (ja) マルチキャリア受信装置
JP2010050834A (ja) Ofdmデジタル信号等化装置、等化方法及び中継装置
JP6028572B2 (ja) 受信装置
JP4675790B2 (ja) 通信装置および通信システム
JP5023006B2 (ja) Ofdm信号受信装置および中継装置
JP4886736B2 (ja) Ofdm信号合成用受信装置および中継装置
JP2007104574A (ja) マルチキャリア無線受信機及び受信方法
JP5995703B2 (ja) 等化装置及び等化方法並びに受信装置
JP2012023670A (ja) Ofdm伝送方式における受信機
JP5812827B2 (ja) 受信装置
JP6869449B1 (ja) 伝送路等化処理装置、および、伝送路等化処理方法
JP2004165990A (ja) Ofdm信号受信装置
JP5662892B2 (ja) マルチキャリヤ変調信号受信装置
JP5353304B2 (ja) 信号復調装置及び信号復調方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250