JP5459028B2 - High-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on black skin, and its manufacturing method - Google Patents

High-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on black skin, and its manufacturing method Download PDF

Info

Publication number
JP5459028B2
JP5459028B2 JP2010089612A JP2010089612A JP5459028B2 JP 5459028 B2 JP5459028 B2 JP 5459028B2 JP 2010089612 A JP2010089612 A JP 2010089612A JP 2010089612 A JP2010089612 A JP 2010089612A JP 5459028 B2 JP5459028 B2 JP 5459028B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
chemical conversion
rolling
black skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010089612A
Other languages
Japanese (ja)
Other versions
JP2011219812A (en
Inventor
浩之 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010089612A priority Critical patent/JP5459028B2/en
Publication of JP2011219812A publication Critical patent/JP2011219812A/en
Application granted granted Critical
Publication of JP5459028B2 publication Critical patent/JP5459028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車などの輸送機器の部品に用いて好適な高強度熱延鋼板、および、その製造方法に関するものである。   The present invention relates to a high-strength hot-rolled steel sheet suitable for use in parts of transportation equipment such as automobiles, and a method for producing the same.

地球の温暖化を抑制するためには、人類全体で二酸化炭素の排出量を削減する必要がある。このうち、自動車などの輸送機器(運輸部門)からの排出量は約20%の比重を占めるものであるから、有効な対策を講じることが強く求められている。
輸送機器からの排出量を抑制する手段は多岐に亘るが、車体の質量を低減することは基本的な方策の一つとして広く取り組まれているものである。
この目的のために、従前より強度の高い材料を用いて部品を製造し、使用する材料の厚さを低減する手法で軽量化を図ることが行われている。
In order to suppress global warming, it is necessary to reduce the amount of carbon dioxide emitted by all human beings. Of these, emissions from transportation equipment (transportation sector) such as automobiles account for about 20% of the specific weight, so there is a strong demand for effective measures.
Although there are a variety of means for suppressing the amount of emissions from transport equipment, reducing the mass of the vehicle body has been widely tackled as one of the basic measures.
For this purpose, parts are manufactured using a material having higher strength than before, and the weight is reduced by a method of reducing the thickness of the material to be used.

この一方で、輸送機器の安全性や快適性は後退することが許されない指標であり、新たに付加される機能部品などのために製造コストは増加する傾向にある。そのため、従来からの基本的な部品などの製造コストを削減して、全体として製造コストを出来るだけ抑制する活動も同時に取り組まれている。
輸送機器に用いられる鋼板に関して言えば、工程の簡略化によって製造コストの低減を図る検討も進められている。
具体例を上げれば、これまで酸洗した熱延鋼板を用いて部品に成形した後、化成処理し、次いで塗装して成品としていたところを、熱延鋼板の酸洗を省略し、成形後、熱延スケール(黒皮と呼ばれる)上に化成処理を行い、塗装して成品化すると言う工程省略を上げることが出来る。この例の場合には、酸洗の省略のみならず、酸洗した場合に必要となる防錆油の塗付と化成処理前におけるその除去(脱脂)が不要となり、製造コストの削減に一定の寄与が見込まれる。
On the other hand, safety and comfort of transport equipment are indicators that are not allowed to retreat, and manufacturing costs tend to increase due to newly added functional parts. Therefore, activities to reduce the manufacturing cost of conventional basic parts and the like to suppress the manufacturing cost as much as possible as a whole are being worked on at the same time.
With regard to steel plates used in transportation equipment, studies are underway to reduce manufacturing costs by simplifying the process.
To give a specific example, after forming into a part using a hot-rolled steel sheet that has been pickled so far, chemical conversion treatment, and then painting and finished the product, omitting the pickling of the hot-rolled steel sheet, after forming, It is possible to omit the process of performing chemical conversion treatment on a hot-rolled scale (called black skin) and painting it into a product. In the case of this example, not only the pickling is omitted, but also the application of rust-preventing oil and the removal (degreasing) before chemical conversion treatment, which are necessary in the case of pickling, become unnecessary, and it is possible to reduce the manufacturing cost. Contribution is expected.

成品性能としては、化成処理以降は同一工程であるから、化成処理性が酸洗鋼板と同等である黒皮鋼板であればよく、こうした鋼板が求められるに至った。
また、こうした熱延鋼板が用いられるのは、足回り部品と通称されるような、アーム類、フレーム類であるが、これらの部品では、必須特性の一つとして疲労特性が求められることが多い。
すなわち、従来よりも高強度(足回り部品用途では、これまで主流であった590MPa級から780MPa級以上の鋼板への置換が志向されている)であり、黒皮上への化成処理性に優れ、かつ疲労特性の良好な熱延鋼板が求められている。
As the product performance, since it is the same process after the chemical conversion treatment, a black skin steel plate having chemical conversion treatment performance equivalent to that of the pickled steel plate may be used, and such a steel plate has been required.
Further, such hot-rolled steel sheets are used for arms and frames, commonly referred to as undercarriage parts, but these parts often require fatigue characteristics as one of the essential characteristics. .
In other words, it has higher strength than conventional ones (in the use of undercarriage parts, replacement of steel plates from 590 MPa class to 780 MPa class or more, which has been the mainstream until now), is excellent in chemical conversion treatment on black skin. There is a need for a hot-rolled steel sheet having good fatigue characteristics.

今までのところ、疲労特性に優れた鋼板およびその製造方法は数多く提案されているものの、その多くは、フェライト(F)相とマルテンサイト(M)相を複合させた所謂デュアルフェイズ(DP)鋼に関するものである。
本発明者らもその鋼板の優位性は認識しているところであるが、DP鋼では、製造の最終段階で室温近傍まで急速冷却して巻き取る(室温巻き取りと称されることが多い)ことでM相を生成させることが一般的に行われることから、巻き取られた鋼板(コイル)は水濡れした状態にあり、黒皮状態での加工とそれに続く化成処理を想定した場合には、一旦水濡れ状態を解消するような、例えばコイルを巻き戻しながら乾燥させる工程が必要となると言う問題があり、工程省略を志向している現状では到底採用できない鋼である。
So far, many steel sheets having excellent fatigue properties and methods for producing the same have been proposed, but many of them are so-called dual phase (DP) steels in which a ferrite (F) phase and a martensite (M) phase are combined. It is about.
Although the present inventors have recognized the superiority of the steel sheet, in DP steel, it is rapidly cooled to near room temperature in the final stage of production and is wound up (often referred to as room temperature winding). Since the M phase is generally generated in the steel sheet wound (coil) is in a wet state, when processing in the black skin state and subsequent chemical conversion treatment is assumed, There is a problem that, for example, a step of drying while rewinding the coil is necessary to eliminate the water-wetting state, and steel that cannot be adopted at present under the current trend of omitting the step.

これに対して、室温巻き取りを行わずに製造した鋼板であって疲労特性に優れるものとしては、特許文献1〜3などが提案されている。
特許文献1の鋼は、F相とパーライト(P)組織から成るミクロ組織を有しながらも高い疲労特性を示すものであるが、得られる引張強さが780MPaに届かず、黒皮上への化成処理性については、特に検討されていない。
On the other hand, Patent Documents 1 to 3 and the like have been proposed as steel sheets manufactured without performing room temperature winding and having excellent fatigue characteristics.
The steel of Patent Document 1 shows a high fatigue property while having a microstructure composed of an F phase and a pearlite (P) structure, but the obtained tensile strength does not reach 780 MPa, and thus the steel has a fine structure. The chemical conversion processability has not been particularly studied.

特許文献2は、ポリゴナルフェライト相、ベイナイト(B)組織、およびM相の3相から成る鋼であり、B組織とM相の各々の体積率、およびB組織とM相の体積比が所定の範囲にある場合に優れた疲労特性が得られるとする提案であるが、どのように製造するかについての記載がなく、工業的に実施するのが容易ではない。また、黒皮上への化成処理性についても検討はなされていない。
特許文献3には、引張強さが780MPa以上で、疲労特性のみならず伸びフランジ性にも優れた鋼板とその製造方法が開示されているが、Moを必須元素としていることから、鋼板自体が高価になることが予想されるという問題点がある。また、熱間圧延して巻き取ったコイルを、速度を制御して冷却する特殊な製造方法が求められ、工業的な実施が容易でないことも問題点として上げることが出来る。さらに、黒皮上への化成処理についての検討も行われていない。
Patent Document 2 is a steel composed of three phases of a polygonal ferrite phase, a bainite (B) structure, and an M phase. The volume ratio of each of the B structure and the M phase and the volume ratio of the B structure and the M phase are predetermined. However, it is not easy to implement industrially because there is no description on how to manufacture. Moreover, the chemical conversion processability on black skin is not examined.
Patent Document 3 discloses a steel sheet having a tensile strength of 780 MPa or more and excellent not only in fatigue characteristics but also in stretch flangeability and its manufacturing method. However, since Mo is an essential element, the steel sheet itself is There is a problem that it is expected to be expensive. In addition, a special manufacturing method for cooling the coil wound by hot rolling by controlling the speed is required, and the fact that industrial implementation is not easy can be raised as a problem. In addition, there is no study on chemical conversion treatment on the black skin.

一方、黒皮上への化成処理を考えると、地鉄と黒皮の密着性が重要と考えられる。これに関しては、特許文献4に、スケール密着性に優れた熱延鋼板に関する技術が開示されている。具体的には、スケール層中に含まれる特定の酸化物の体積率と残留圧縮応力を制御することで密着性が高まるとするものであるが、鋼板(地鉄)のミクロ組織や、機械的性質に関する記載が一切為されていないので、例え黒皮上の化成処理性が優れていたとしても、足回り部品用の鋼板として適切か否か不明である。   On the other hand, considering the chemical conversion treatment on the black skin, the adhesion between the base iron and the black skin is considered important. In this regard, Patent Document 4 discloses a technique related to a hot-rolled steel sheet having excellent scale adhesion. Specifically, the adhesion is enhanced by controlling the volume fraction and residual compressive stress of a specific oxide contained in the scale layer. Since there is no description regarding properties, it is unclear whether or not it is suitable as a steel plate for undercarriage parts even if the chemical conversion treatment on the black skin is excellent.

また特許文献5には、スケール密着性に優れた鋼材の製造方法が開示されている。しかし、該方法は、圧延後に、鋼材を冷却する工程と、それを復熱させる工程を1サイクルとして2回以上繰り返すとするものであって、通常の連続熱延設備では実施できないという課題がある。
特許文献6には、スケール密着性とはやや趣を異にするが、熱延鋼板に対してめっきや化成処理を施す際の「不メッキ」、処理液の「ハジキ」や「ムラ」などの不良を生じさせないための技術が示されている。しかしながら、当該技術は、熱延板を酸洗して黒皮を除去した後の表面処理性に関するものであって、黒皮上に化成処理を施す技術には言及していない。
Patent Document 5 discloses a method for producing a steel material having excellent scale adhesion. However, the method is such that after rolling, the step of cooling the steel material and the step of reheating it are repeated two or more times as one cycle, and there is a problem that it cannot be performed with ordinary continuous hot rolling equipment. .
In Patent Document 6, although slightly different from scale adhesion, “non-plating” when performing plating or chemical conversion treatment on hot-rolled steel sheet, “repellency” or “unevenness” of the treatment liquid, etc. Techniques for preventing defects are shown. However, this technique relates to the surface treatment property after pickling the hot-rolled sheet to remove the black skin, and does not refer to a technique for performing a chemical conversion treatment on the black skin.

特開平5−179397号公報Japanese Patent Application Laid-Open No. 5-17997 特開平7−150291号公報Japanese Unexamined Patent Publication No. 7-150291 特開2000−290396号公報JP 2000-290396 A 特開2004−346416号公報JP 2004-346416 A 特開2009−203532号公報JP 2009-203532 A 特開平10−158784号公報JP-A-10-158784

このように、室温巻き取りを行わずに製造した熱延鋼板であって、疲労特性に優れ、同時に黒皮上への化成処理性に優れる高強度鋼板を得るための技術は提案されていない。
本発明はこのような実情に鑑みて為されたものであり、疲労特性と黒皮上への化成処理性に優れた高強度熱延鋼板、およびその製造方法の提供を可能とするものである。
Thus, no technology has been proposed for obtaining a high-strength steel sheet that is a hot-rolled steel sheet manufactured without being rolled up at room temperature and has excellent fatigue properties and at the same time excellent chemical conversion treatment on the black skin.
The present invention has been made in view of such circumstances, and makes it possible to provide a high-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on the black skin, and a method for producing the same. .

本発明者らは、室温巻き取りを行わない製造条件の中で、疲労特性に優れ、かつ、加工を受けた黒皮面上への化成処理性に優れた鋼板を得るべく鋭意研究を重ねた。そして、化学成分と製造条件を適切に制御することでそうした鋼板の得られることを見出して本発明に至った。
そのような本発明の要旨は以下の通りである。
The inventors of the present invention have made extensive studies in order to obtain a steel sheet having excellent fatigue characteristics and excellent chemical conversion on the processed black skin surface in the manufacturing conditions in which room temperature winding is not performed. . And it discovered that such a steel plate was obtained by controlling a chemical component and manufacturing conditions appropriately, and came to this invention.
The gist of the present invention is as follows.

(1)質量%にて、
C:0.05〜0.15%
Si:0.1%以下
Mn:1.4〜2.5%
Al:1.2%以下
Ti:0.02〜0.06%
Cr:0.2〜0.8%
を含有し、
P:0.05%以下
S:0.005%以下
N:0.01%以下
に制限し、
残部がFeおよび不可避的不純物からなり、引張強さが780MPa以上であり、
その金属組織が面積率60%以上のフェライト相とベイナイト組織、または、面積率60%以上のフェライト相、ベイナイト組織および10%以下のマルテンサイト相からなり、
熱延後の鋼板表面から厚さ方向の位置で10〜30μmの範囲において、グロー放電発光分光分析にて検出されるCrの濃度の平均値が母材のCr濃度の1.2倍以上であり、かつ同範囲のフェライト相の平均結晶粒径が板厚の1/4位置における同相の平均結晶粒径の1.2倍以上であることを特徴とする、疲労特性と黒皮上への化成処理性に優れた高強度熱延鋼板
(2)上記(1)に記載の化学成分を有する鋼片を1250℃以下に加熱し、780〜860℃で終了する仕上げ圧延を行うに際し、連続圧延の最終圧延パスの圧延率を15%以下とし、その後、10℃/s以上の平均冷却速度で600〜720℃まで冷却し、4〜14秒間の空冷を行い、更に20℃/s以上の平均冷却速度で350〜550℃まで冷却して巻き取ることを特徴とする、上記(1)に記載の疲労特性と黒皮上への化成処理性に優れた高強度熱延鋼板の製造方法。
(1) In mass%,
C: 0.05 to 0.15%
Si: 0.1% or less Mn: 1.4-2.5%
Al: 1.2% or less Ti: 0.02 to 0.06%
Cr: 0.2 to 0.8%
Containing
P: 0.05% or less S: 0.005% or less N: 0.01% or less
The balance consists of Fe and inevitable impurities, the tensile strength is 780 MPa or more,
The metal structure is composed of a ferrite phase and a bainite structure with an area ratio of 60% or more, or a ferrite phase, a bainite structure with an area ratio of 60% or more, and a martensite phase of 10% or less,
In the range of 10 to 30 μm in the thickness direction from the surface of the steel sheet after hot rolling, the average value of the Cr concentration detected by glow discharge optical emission spectrometry is 1.2 times or more the Cr concentration of the base material. And the average crystal grain size of the ferrite phase in the same range is 1.2 times or more of the average crystal grain size of the same phase at the 1/4 position of the plate thickness. High-strength hot-rolled steel sheet excellent in processability (2) When the steel slab having the chemical component described in (1) above is heated to 1250 ° C. or lower and finish rolling finished at 780 to 860 ° C., The rolling rate of the final rolling pass is set to 15% or less, and then cooled to 600 to 720 ° C. at an average cooling rate of 10 ° C./s or more, air-cooled for 4 to 14 seconds, and further average cooling of 20 ° C./s or more. Cooling up to 350-550 ° C at a speed and winding up The symptom, the method of producing a high strength hot-rolled steel sheet excellent in chemical convertibility of the fatigue properties and the black scale on according to (1).

本発明により疲労特性と黒皮上への化成処理性に優れた高強度熱延鋼板の提供が可能となるので、特に自動車の足回り部品などにおいて、材料の高強度化による軽量化と酸洗工程省略による製造コストの削減が同時に可能となり、産業上の貢献が極めて顕著である。   The present invention makes it possible to provide a high-strength hot-rolled steel sheet having excellent fatigue characteristics and chemical conversion treatment on the black skin. Manufacturing costs can be reduced by omitting the process at the same time, and the industrial contribution is extremely remarkable.

本発明者らは、室温巻き取りを行わないことを前提に、まず、疲労特性に優れる鋼板の探索を行った。その結果、前記のDP鋼板にはやや及ばないものの、F相とB組織を複合させた鋼板でも一定水準の優れた疲労特性を有することを見出した。中でも、熱延後の冷却時に空冷する工程を取り入れてF相を一定の比率以上確保すると、疲労特性が特に優れることを見出した。
一方、F相を一定の比率以上とし、第2相をM相とせずにB組織とすると、得られる引張強さは高々750MPa程度であり、市場で必要とされている780MPa以上を得るには、更なる工夫が求められた。
The inventors first searched for a steel sheet having excellent fatigue characteristics on the assumption that room temperature winding is not performed. As a result, it was found that the steel sheet in which the F phase and the B structure are combined has a certain level of excellent fatigue characteristics, although it does not reach the DP steel sheet. In particular, it has been found that fatigue characteristics are particularly excellent when a step of air cooling at the time of cooling after hot rolling is incorporated to secure the F phase at a certain ratio or more.
On the other hand, if the F phase is a certain ratio or more and the second phase is a B structure without the M phase, the resulting tensile strength is at most about 750 MPa, and in order to obtain the 780 MPa or more required in the market. Further ideas were sought.

そこで、Tiを添加して、Ti炭化物の析出強化を活用することとした。また、これに加えて、Crを添加して、変態組織強化を利用することも検討した。
こうして化学成分の最適化を進めることと併せて熱延工程で生成する黒皮の性状制御の研究も行った。
その結果、黒皮と地鉄の密着性、および黒皮自体の平坦度はSi量の影響を強く受け、Si量を出来るだけ抑制することが望ましいこと、その上で、F相を確保するには、Alを適切に含有させる方法も有効であることを見出した。
Therefore, Ti was added to utilize precipitation strengthening of Ti carbide. In addition to this, the use of transformation structure strengthening by adding Cr was also examined.
In addition to optimizing the chemical composition in this way, we also studied the control of the properties of the black skin produced in the hot rolling process.
As a result, the adhesion between the black skin and the ground iron and the flatness of the black skin itself are strongly influenced by the amount of Si, and it is desirable to suppress the Si amount as much as possible. Found that a method of appropriately containing Al is also effective.

黒皮上への化成処理性については、実際の使用状況、すなわち、プレスなどの成形加工後に処理されることを想定して、熱延後巻き取られた鋼板をテンションレベラーに通して平坦にするのと同時に表層に曲げ、曲げ戻し変形を与えた後に処理を行い、その良し悪しを判定した。
その結果、化成処理性に影響する因子として、化学成分としては、Crの寄与が大きいこと、断面のミクロ組織形態としては、黒皮直下(表層近傍)の結晶粒径が寄与することを見出した。
これらを更に詳細に調査したところ、化成処理性に対して、黒皮直下へCrが濃化していることが有効であり、また表層近傍の結晶粒径の制御には、連続(多段)圧延の最終パスの圧延率が大きく寄与することを明らかに出来た。
As for the chemical conversion processability on the black skin, the steel sheet wound after hot rolling is flattened by passing it through a tension leveler, assuming that it is processed after a forming process such as pressing. At the same time, the surface layer was bent and unbent, and then processed to determine whether it was good or bad.
As a result, it has been found that as a factor affecting chemical conversion property, the contribution of Cr is large as a chemical component, and the crystal grain size directly under the black skin (near the surface layer) contributes as the microstructure of the cross section. .
As a result of examining these in more detail, it is effective for the chemical conversion treatment that Cr is concentrated just below the black skin, and the control of the crystal grain size in the vicinity of the surface layer is performed by continuous (multistage) rolling. It was clarified that the rolling rate of the final pass contributed greatly.

本発明はこのような過程を経て完成されたものであり、その詳細は実施例の中で述べることとし、まず、本発明の限定理由について説明する。
初めに化学成分について述べる。なお、成分元素の含有量や濃度の単位は質量%であり、特に説明のない限り、単に%で表す。
The present invention has been completed through such a process, and details thereof will be described in the embodiments. First, the reasons for limiting the present invention will be described.
First, chemical components are described. The unit of the content and concentration of the component elements is mass%, and is simply represented by% unless otherwise specified.

[C:0.05〜0.15%]
Cは鋼板の強度を確保し、またB組織を得るためには必須の元素である。C量が0.05%未満では780MPa以上の引張強さが得られない。一方、Cが0.15%を超えて含有されていると、溶接性が劣化する。そこでCの含有量は0.05〜0.15%とする。
[Si:0.1%以下]
Siは熱延スケール(黒皮)の性状に強く影響する。黒皮と地鉄との密着性、および黒皮の平坦度を良好とするには、Si量を0.1%以下とする必要がある。一方、必要以上に低減することは製鋼工程の負荷となり生産性を低下させて、製造コストの上昇を招く。こうした観点から、0.001%以上とすることが好ましい。
[C: 0.05 to 0.15%]
C is an essential element for securing the strength of the steel sheet and obtaining the B structure. If the C content is less than 0.05%, a tensile strength of 780 MPa or more cannot be obtained. On the other hand, if the C content exceeds 0.15%, the weldability deteriorates. Therefore, the C content is set to 0.05 to 0.15%.
[Si: 0.1% or less]
Si strongly affects the properties of the hot rolled scale (black skin). In order to improve the adhesion between the black skin and the ground iron and the flatness of the black skin, the Si content needs to be 0.1% or less. On the other hand, if it is reduced more than necessary, it becomes a load of the steelmaking process, which lowers productivity and causes an increase in manufacturing cost. From such a viewpoint, the content is preferably 0.001% or more.

[Mn:1.4〜2.5%]
Mnは、鋼板の強度確保には必須の元素である。固溶強化の他、焼き入れ性を高めるので変態組織強化にも有効である。このために1.4%以上のMnを含有させることが必要である。一方、2.5%を超えるMnを含有させると、溶接性を劣化させる他、板厚方向の偏析により、延性が劣位になったり、切断時に剪断面の性状を悪化させたりする恐れがあるため、上限を2.5%とする。
[Al:1.2%以下]
Alはフェライト変態を促進する働きをするのでF相の確保に有効である。ただしAlが1.2%超では、鋼片割れなど、製造上の不具合が顕在化し、また粗大なアルミナ系介在物が生成して機械的性質の劣化をもたらすので好ましくない。一方、脱酸を目的とした添加の結果、含有される量を下限とすればよく、その値は好ましくは0.01%以上である。
[Mn: 1.4 to 2.5%]
Mn is an essential element for securing the strength of the steel sheet. In addition to solid solution strengthening, it enhances hardenability and is effective for strengthening transformation structures. For this reason, it is necessary to contain 1.4% or more of Mn. On the other hand, if Mn exceeding 2.5% is contained, not only the weldability is deteriorated, but also segregation in the thickness direction may cause the ductility to be inferior, or the properties of the shear plane may be deteriorated during cutting. The upper limit is set to 2.5%.
[Al: 1.2% or less]
Since Al works to promote ferrite transformation, it is effective for securing the F phase. However, if Al exceeds 1.2%, problems in production such as cracking of steel pieces become obvious, and coarse alumina inclusions are generated, resulting in deterioration of mechanical properties. On the other hand, as a result of the addition for the purpose of deoxidation, the amount contained may be the lower limit, and the value is preferably 0.01% or more.

[Ti:0.02〜0.06%]
Tiは炭化物の析出によってF相を強化出来る。その効果は0.02%以上で明確となる。一方、0.06%を超えて含有されていると、粗大な窒化物を形成して加工性の低下をもたらす。そこで0.02〜0.06%に制御する。
[Cr:0.2〜0.8%]
Crは変態組織強化に有効であるのみならず、黒皮中、および黒皮直下への濃化を介して化成処理性に強く影響する。その効果は0.2%以上で発現する。一方0.8%を超えて含有されていると、F相の生成を妨げる働きを示すようになる。そこで、0.2〜0.8%とする。
[Ti: 0.02 to 0.06%]
Ti can strengthen the F phase by precipitation of carbides. The effect becomes clear at 0.02% or more. On the other hand, if the content exceeds 0.06%, coarse nitrides are formed and workability is lowered. Therefore, the content is controlled to 0.02 to 0.06%.
[Cr: 0.2 to 0.8%]
Cr is not only effective for strengthening the transformation structure, but also strongly affects the chemical conversion properties through concentration in the black skin and directly under the black skin. The effect is manifested at 0.2% or more. On the other hand, when it contains exceeding 0.8%, it will show the function which prevents the production | generation of F phase. Therefore, the content is set to 0.2 to 0.8%.

[P:0.05%以下]
Pは、固溶強化(粒界強化)元素としての働きはあるものの、不純物であって、偏析による加工性の劣化が危惧される。そこでP量を0.05%以下にすることが必要である。一方、必要以上に低減することは製鋼工程の負荷となり生産性を低下させて、製造コストの上昇を招く。こうした観点から、0.001%以上とすることが好ましい。
[S:0.005%以下]
Sは、MnSなどの介在物を形成して機械的性質を劣化させるので、出来るだけ低減することが望ましいが、0.005%以下のSの含有は許容出来る。一方、必要以上に低減することは製鋼工程の負荷となり生産性を低下させて、製造コストの上昇を招く。こうした観点から、0.0001%以上とすることが好ましい。
[N:0.01%以下]
Nは、不純物であり、AlNなどの介在物を形成して加工性に影響を与える可能性がある。そこでN量は0.01%を上限とする。一方、必要以上に低減することは製鋼工程の負荷となり生産性を低下させて、製造コストの上昇を招く。こうした観点から、0.001%以上とすることが好ましい。
なお、上記以外の残部はFeであるが、原料などに起因する不可避的不純物は許容される。
[P: 0.05% or less]
P functions as a solid solution strengthening (grain boundary strengthening) element, but is an impurity, and there is a risk of deterioration of workability due to segregation. Therefore, the P amount needs to be 0.05% or less. On the other hand, if it is reduced more than necessary, it becomes a load of the steelmaking process, which lowers productivity and causes an increase in manufacturing cost. From such a viewpoint, the content is preferably 0.001% or more.
[S: 0.005% or less]
Since S forms inclusions such as MnS and degrades mechanical properties, it is desirable to reduce it as much as possible, but it is acceptable to contain 0.005% or less of S. On the other hand, if it is reduced more than necessary, it becomes a load of the steelmaking process, which lowers productivity and causes an increase in manufacturing cost. From such a viewpoint, the content is preferably 0.0001% or more.
[N: 0.01% or less]
N is an impurity and may form inclusions such as AlN to affect workability. Therefore, the upper limit of N content is 0.01%. On the other hand, if it is reduced more than necessary, it becomes a load of the steelmaking process, which lowers productivity and causes an increase in manufacturing cost. From such a viewpoint, the content is preferably 0.001% or more.
The remainder other than the above is Fe, but inevitable impurities caused by raw materials and the like are allowed.

次に、黒皮直下のCr濃度の限定理由を説明する。
[熱延後の鋼板表面から厚さ方向の位置で10〜30μmの範囲において、グロー放電発光分光分析にて検出されるCrの濃度の平均値: 母材のCr濃度の1.2倍以上]
鋼板表面部の厚さ方向の位置で10〜30μmの範囲におけるCrの濃度の平均値が、母材濃度の1.2倍未満では必要な化成処理性が得られない。上限は特に規定しないものの、過剰な濃化は内部にCrの欠乏した領域(部分)を形成する可能性を有するため、鋼板の含有量の10倍を上限として製造条件を管理することが望ましい。
なお、本発明者らの調査によれば、実施例の中で述べる方法にて製造された熱延鋼板の黒皮は最大で10μm程度であり、また、Cr濃度は、表面から30μm以上内部では、ほぼ母材の濃度と同一と見做せる値を示した。黒皮直下のCrの濃度を限定する厚さ方向の位置を表面から10〜30μmとしたのはそのためである。
ここで、母材のCr濃度とは、板厚の1/4位置に対して行った発光分光分析法による化学成分定量分析結果の値を指す。
Next, the reason for limiting the Cr concentration directly under the black skin will be described.
[Average value of Cr concentration detected by glow discharge optical emission spectrometry in the range of 10 to 30 μm in the thickness direction from the surface of the steel sheet after hot rolling: 1.2 times or more the Cr concentration of the base metal]
If the average value of the Cr concentration in the range of 10 to 30 μm at the position in the thickness direction of the steel plate surface portion is less than 1.2 times the base material concentration, the required chemical conversion property cannot be obtained. Although the upper limit is not particularly defined, since excessive concentration has the possibility of forming a Cr-deficient region (part) inside, it is desirable to manage the production conditions with the upper limit being 10 times the content of the steel sheet.
According to the investigation by the present inventors, the black skin of the hot-rolled steel sheet manufactured by the method described in the examples is about 10 μm at the maximum, and the Cr concentration is 30 μm or more inside from the surface. The value is almost the same as the concentration of the base material. This is why the position in the thickness direction that limits the concentration of Cr immediately below the black skin is set to 10 to 30 μm from the surface.
Here, the Cr concentration of the base material refers to the value of the chemical component quantitative analysis result obtained by the emission spectroscopic analysis method performed for the 1/4 position of the plate thickness.

当該範囲におけるCrの平均濃度とは、グロー放電発光分光分析にて検出されるCrの濃度を、表面からの深さ(x)に対してプロットし、隣接する2点間を直線で結んで台形と見做す近似によって面積を求め、xが10〜30μmの範囲についてそれらを合計し(積分し)xの長さ(20μm)で除した値である。
なお、測定の都合で、x=20μm、および30μmの測定点が得られない場合は、それらに最も近い測定点を採用することとした。
The average Cr concentration in this range is a trapezoidal shape in which the Cr concentration detected by glow discharge optical emission spectrometry is plotted against the depth (x) from the surface, and two adjacent points are connected by a straight line. This is a value obtained by calculating the area by approximation and summing (integrating) x in the range of 10 to 30 μm and dividing by x length (20 μm).
When measurement points of x = 20 μm and 30 μm cannot be obtained due to the convenience of measurement, the measurement points closest to them are adopted.

熱延後の鋼板表面から厚さ方向に10〜30μm入った範囲において、グロー放電発光分光分析にて検出されるCrの濃度の平均値が母材のCr濃度の1.2倍以上の場合に化成処理性が優れる理由は必ずしも明らかではないが、次のように推測される。
すなわち、この領域に濃化したCrの多くは炭化物として存在し、その結果この領域の粒界強度を低下させており、熱延されたコイルをテンションレベラーにて平坦に矯正する際に黒皮に発生する微細な割れの先端につながるように微細な粒界の割れをもたらす。この微細な割れが化成皮膜のアンカーとして働き皮膜の密着性を高めるものと考えられる。
グロー放電発光分光分析は市販の装置で、標準的な条件で行えばよい。ただし極表層の分析であるから、取り込み周期(サンプリング時間)を短くするのが好ましく、0.05秒/回より短周期とするのが望ましい。
When the average value of the Cr concentration detected by glow discharge optical emission spectrometry is 1.2 times or more of the Cr concentration of the base material in the range of 10 to 30 μm in the thickness direction from the surface of the steel plate after hot rolling The reason why the chemical conversion property is excellent is not necessarily clear, but is presumed as follows.
That is, most of the concentrated Cr in this region exists as carbides, and as a result, the grain boundary strength in this region is reduced, and when the hot rolled coil is flattened with a tension leveler, It brings about fine grain boundary cracks that lead to the tips of the fine cracks that occur. This fine crack is considered to act as an anchor for the chemical conversion film and enhance the adhesion of the film.
The glow discharge emission spectroscopic analysis may be performed using a commercially available apparatus under standard conditions. However, since it is an analysis of the extreme surface layer, it is preferable to shorten the capture cycle (sampling time), and it is desirable to set the cycle shorter than 0.05 seconds / time.

次に、金属(ミクロ)組織について説明する。
[面積率60%以上のフェライト相およびベイナイト組織、または、面積率60%以上のフェライト相、ベイナイト組織および10%以下のマルテンサイト相]
本発明の熱延鋼板は、基本的にはF相およびB組織、または、F相、B組織およびM相からなるものとする。
そして、F相の面積率は60%以上、望ましくは80%以上とし、第二相はB組織とするが、10%以下のM相は許容される。こうすることで、優れた機械的性質、特に疲労特性が得られる。
ミクロ組織の構成(面積率)は、圧延方向と平行な断面を研磨し、ナイタール液で腐食した後、板厚の1/4位置の組織を観察して決定する。
Next, the metal (micro) structure will be described.
[A ferrite phase and bainite structure with an area ratio of 60% or more, or a ferrite phase, bainite structure with an area ratio of 60% or more and a martensite phase of 10% or less]
The hot-rolled steel sheet of the present invention basically comprises an F phase and a B structure, or an F phase, a B structure and an M phase.
The area ratio of the F phase is 60% or more, desirably 80% or more, and the second phase has a B structure, but an M phase of 10% or less is allowed. By doing so, excellent mechanical properties, in particular fatigue properties, can be obtained.
The structure (area ratio) of the microstructure is determined by polishing a cross section parallel to the rolling direction and corroding with a nital solution, and then observing the structure at a 1/4 position of the plate thickness.

[鋼板表面部の厚さ方向の位置で10〜30μmの範囲におけるフェライト相の平均粒径: 板厚の1/4位置におけるフェライト相の平均粒径の1.2倍以上]
化成処理性を良好とするには、黒皮直下、すなわち表面から厚さ方向に10〜30μm入った範囲におけるF相の平均結晶粒径(D)については、板厚の1/4位置のそれ(D1/4)に対して1.2倍以上であることが必要である。
Crの濃化についての説明の中で述べたように、熱延されたコイルをテンションレベラーにて平坦に矯正する当たり、地鉄の極表層には微小な割れが発生するが、当該範囲を内層に比べて僅かに軟質化することで、発生する微小な割れを、最小限に食い止め、その結果疲労特性の劣化を抑制する効果があるのではないかと推定される。
の上限は、機械的性質の極端な低下を避ける観点から、D1/4の2倍以下とすることが望ましい。
[Average grain size of ferrite phase in the range of 10 to 30 μm at the position in the thickness direction of the steel sheet surface portion: 1.2 times or more of the average grain diameter of ferrite phase at ¼ position of the plate thickness]
In order to improve the chemical conversion treatment property, the average crystal grain size (D 0 ) of the F phase in the range immediately below the black skin, that is, in the range of 10 to 30 μm in the thickness direction from the surface, is about 1/4 of the plate thickness. It is necessary to be 1.2 times or more with respect to it (D1 / 4 ).
As described in the explanation of the Cr concentration, when the hot-rolled coil is flattened with a tension leveler, a minute crack is generated in the extreme surface layer of the ground iron. It is presumed that by slightly softening as compared with the above, there is an effect of minimizing the minute cracks that occur and consequently suppressing the deterioration of fatigue characteristics.
The upper limit of D 0 is desirably set to be twice or less of D 1/4 from the viewpoint of avoiding an extreme decrease in mechanical properties.

最後に、製造条件について説明する。
鋼片は、常法の溶製及び鋳造によって製造される。生産性の観点から、連続鋳造が好ましい。
[鋼片加熱温度(SRT):1250℃以下]
SRTは、仕上げ圧延を780〜860℃で終了出来るように用いる設備の仕様に応じて選択すればよいが、1250℃を超えて加熱を行うと、粒界の酸化による表面品位の低下が圧延終了後の鋼板の表面品位に影響を及ぼすので好ましくない。
[仕上げ圧延温度(FT):780〜860℃]
FTは、圧延後の鋼板の結晶粒径やミクロ組織の構成に影響を及ぼす。同温度が780℃未満では圧延中にF相が生成し、加工を受けたF相が残存することになり加工性が低下する。一方、860℃超では、結晶粒径が粗大化する他、F相の生成が不十分と成りやすい。そこで780〜860℃に制御する必要がある。
Finally, manufacturing conditions will be described.
The billet is produced by conventional melting and casting. From the viewpoint of productivity, continuous casting is preferable.
[Steel heating temperature (SRT): 1250 ° C or less]
SRT may be selected according to the specifications of the equipment used so that finish rolling can be completed at 780 to 860 ° C. However, when heating is performed at a temperature exceeding 1250 ° C., the reduction of surface quality due to oxidation of grain boundaries results in the end of rolling. Since it affects the surface quality of the later steel sheet, it is not preferable.
[Finishing rolling temperature (FT): 780-860 ° C]
FT affects the crystal grain size and microstructure of the steel sheet after rolling. If the temperature is less than 780 ° C., an F phase is generated during rolling, and the processed F phase remains and the workability deteriorates. On the other hand, if it exceeds 860 ° C., the crystal grain size becomes coarse and the generation of the F phase tends to be insufficient. Therefore, it is necessary to control to 780 to 860 ° C.

[連続圧延の最終圧延パスの圧延率:15%以下]
仕上げ圧延は、6段または7段の連続(多段)圧延で行うことが好ましい。その最終パスを軽圧下とすることで、黒皮直下の結晶粒径を鋼板内部に比べて大きくすることが出来、結果として黒皮上への化成処理性を良好にする。その効果は、実施例の中で述べるように、同圧延率が15%以下で明瞭となる。
仕上げ圧延のその他の条件(例えば、ロール材質、粗度、潤滑、パススケジュールなど)は、一般的に行われているものでよい。
[Rolling ratio of final rolling pass of continuous rolling: 15% or less]
The finish rolling is preferably performed by 6-stage or 7-stage continuous (multistage) rolling. By making the final pass under a light pressure, the crystal grain size directly under the black skin can be made larger than that inside the steel plate, and as a result, the chemical conversion treatment on the black skin is improved. The effect becomes clear when the rolling ratio is 15% or less, as described in Examples.
Other conditions for finish rolling (for example, roll material, roughness, lubrication, pass schedule, etc.) may be generally performed.

[最初の冷却の平均冷却速度(CR1):10℃/s以上]
CR1が10℃/s未満ではP組織が生成し機械的性質の低下を招く。一方、上限は設備能力により決定すればよいが、余りに冷却速度が速いと鋼板内での不均一性が高まるため、50℃/sを目安とすることが望ましい。
[最初の冷却の終了温度(MT):600〜720℃]
[空冷時間(tAC):4〜14秒間]
MTが600℃未満、あるいは720℃超、またはtACが4秒未満の場合にはF相の生成量が十分得られず機械的性質が劣位となる。一方、tACが14秒を超えるとP組織の生成が、やはり機械的性質を劣化させる。従って、MTは600〜720℃、tACは4〜14秒とする。
[Average cooling rate of initial cooling (CR1): 10 ° C./s or more]
When CR1 is less than 10 ° C./s, a P structure is formed and mechanical properties are deteriorated. On the other hand, the upper limit may be determined by the equipment capacity, but if the cooling rate is too high, non-uniformity in the steel sheet increases, so it is desirable to set 50 ° C./s as a guide.
[End temperature of first cooling (MT): 600 to 720 ° C.]
[Air cooling time (tAC): 4 to 14 seconds]
When MT is less than 600 ° C., or more than 720 ° C., or tAC is less than 4 seconds, a sufficient amount of F phase is not obtained and the mechanical properties are inferior. On the other hand, if the tAC exceeds 14 seconds, the generation of P texture also deteriorates the mechanical properties. Therefore, MT is 600 to 720 ° C. and tAC is 4 to 14 seconds.

[空冷後の冷却の平均冷却速度(CR2):20℃/s以上]
[空冷後の冷却の終了温度(巻き取り温度)(CT):350〜550℃]
空冷過程を経た鋼板は、20℃/s以上の冷却速度CR2で350〜550℃まで冷却されて巻き取られる。
CR2が20℃/s未満、かつ/またはCTが550℃超ではP組織の生成が抑制できない。一方、CTが350℃未満では、CTの熱延コイル内変動が大きく、生産性が著しく低下することが懸念される。そこで、CR2、およびCTは上記のように限定する。
CR2の上限は設備能力により決定すればよいが、余りに速い冷却速度ではCTの鋼板内変動が大きくなるので、100℃/sを目安とするのが好ましい。
[Average cooling rate of cooling after air cooling (CR2): 20 ° C./s or more]
[End temperature of cooling after air cooling (winding temperature) (CT): 350 to 550 ° C.]
The steel sheet that has undergone the air cooling process is cooled to 350 to 550 ° C. at a cooling rate CR2 of 20 ° C./s or more and wound.
When CR2 is less than 20 ° C./s and / or CT exceeds 550 ° C., generation of P tissue cannot be suppressed. On the other hand, if the CT is lower than 350 ° C., there is a concern that the variation in the hot rolled coil of the CT is large and the productivity is remarkably lowered. Therefore, CR2 and CT are limited as described above.
The upper limit of CR2 may be determined depending on the facility capacity, but it is preferable to set 100 ° C./s as a guideline because the fluctuation in the CT steel plate becomes large at an excessively high cooling rate.

本発明は、以上説明したように構成されるものであるが、以下、実施例を用いて、本発明の実施可能性及び効果についてさらに説明する。
[実施例1]
表1に記載の化学成分(残部はFeおよび不可避不純物)を有する鋼片を作製し、表2に記載の条件で6パスの仕上げ圧延にて板厚4mmの熱延鋼板とした。なお、最終圧延パスの圧延率をRF6と表記する。
得られた鋼板の圧延方向と平行な断面を研磨、ナイタール腐食し、板厚の1/4位置のミクロ組織分率を調べた。また、鋼板の両面を各々0.5mmずつ研削して厚さ3mmの鋼板とし、該鋼板から引張軸が圧延方向と直行するJIS5号引張試験片と、JIS Z 2275 に定める平面曲げ疲労試験用1号試験片を、b=15mm、R=30mmとして、長手方向を圧延方向と直行する向きに採取した。
それらの試験片を用いて、引張強さ(σB)と伸び(εB)、および疲労限度(σW)を調べた。なお、疲労限度は、完全両振り、繰り返し速度20Hzで行った疲労試験にて作成したS−N線図の1×10回時間強度とした。
その結果を表3に示す。
Although the present invention is configured as described above, the feasibility and effects of the present invention will be further described below using examples.
[Example 1]
Steel slabs having the chemical components shown in Table 1 (the balance being Fe and inevitable impurities) were produced, and a hot-rolled steel plate having a thickness of 4 mm was obtained by 6-pass finish rolling under the conditions shown in Table 2. The rolling rate of the final rolling pass is denoted as RF6.
The cross section parallel to the rolling direction of the obtained steel plate was polished and subjected to nital corrosion, and the microstructure fraction at 1/4 position of the plate thickness was examined. Moreover, both sides of the steel plate are ground 0.5 mm each to obtain a steel plate having a thickness of 3 mm, and a JIS No. 5 tensile test piece in which the tensile axis is perpendicular to the rolling direction from the steel plate, and a plane bending fatigue test 1 defined in JIS Z 2275 The test specimen was sampled with b = 15 mm and R = 30 mm so that the longitudinal direction was perpendicular to the rolling direction.
Using these specimens, tensile strength (σ B ) and elongation (ε B ), and fatigue limit (σ W ) were examined. The fatigue limit was set to 1 × 10 7 times the time strength of the SN diagram prepared in a fatigue test conducted at a complete swing and a repetition rate of 20 Hz.
The results are shown in Table 3.

Figure 0005459028
Figure 0005459028

Figure 0005459028
Figure 0005459028

Figure 0005459028
Figure 0005459028

化学成分、および熱延条件の両方が本発明の範囲内であるNo.1、3、6、7、8、10、および11は、σBが780MPa以上を示し、σWもσBに対して0.6以上と優れていることが分かる。
これに対して、化学成分が本発明の範囲を外れるNo.2、および4は、σBが780MPaに達しない。熱延条件が本発明の範囲を外れるNo.5、および9は、780MPa以上のσBを示すものの、σWがσB比で0.5未満と低位である。
No. in which both chemical components and hot rolling conditions are within the scope of the present invention. 1, 3, 6, 7, 8, 10, and 11 show that σ B is 780 MPa or more, and σ W is excellent at 0.6 or more with respect to σ B.
On the other hand, a chemical component is outside the scope of the present invention. In 2 and 4, σ B does not reach 780 MPa. No. in which the hot rolling conditions are outside the scope of the present invention. Although 5 and 9 show σ B of 780 MPa or more, σ W is a low level of less than 0.5 in terms of σ B ratio.

[実施例2]
表4に記載の化学成分(残部はFe、および不可避不純物)を有する鋼片を作製し、表5に記載の条件で6パスの仕上げ圧延を行い、板厚6mmの熱延鋼板とした。得られた鋼板(コイル)をテンションレベラーに通して平坦にし、評価用の試験素材とした。テンションレベラーは4段のワークロールを有する標準的な設備で、付与張力は出側12N/mm2、入側4N/mm2とした。
[Example 2]
Steel slabs having the chemical components shown in Table 4 (the balance being Fe and inevitable impurities) were prepared and subjected to 6-pass finish rolling under the conditions shown in Table 5 to obtain hot-rolled steel sheets having a thickness of 6 mm. The obtained steel plate (coil) was passed through a tension leveler and flattened, and used as a test material for evaluation. Tension leveler with standard equipment having a work roll of a four-stage, applying tension exit side 12N / mm 2, and the inlet side 4N / mm 2.

まず、圧延方向と平行な断面を研磨、ナイタール腐食し、板厚の1/4位置のミクロ組織分率を調べた。また、表面から(a)10〜30μmと、(b)板厚の1/4位置のF相の平均結晶粒径を調べた。測定範囲は、(a)については板厚方向;10〜30μm、それに直行する方向(圧延方向);100μm、(b)については板厚方向;1/4位置を中心とする20μm、それに直行する方向(圧延方向);100μmであり、各々の線分で切断されるF相の結晶粒数で線分の長さを除した値の、直行する2値の組の平均値を以って平均結晶粒径(D0、およびD1/4)とした。なおこれは、JIS G 0552に準拠した方法である。 First, the cross section parallel to the rolling direction was polished and subjected to nital corrosion, and the microstructure fraction at 1/4 position of the plate thickness was examined. Further, the average crystal grain size of the F phase at (a) 10 to 30 μm and (b) 1/4 position of the plate thickness from the surface was examined. The measurement range is as follows: (a) plate thickness direction: 10-30 μm, direction perpendicular to it (rolling direction); 100 μm, (b) plate thickness direction: 20 μm centered on the ¼ position, perpendicular to it Direction (rolling direction): 100 μm, average of the values obtained by dividing the length of the line segment by the number of F phase grains cut at each line segment, with an average value of a set of orthogonal binary values The crystal grain size (D 0 and D 1/4 ) was used. This is a method based on JIS G 0552.

表面から板厚方向にグロー放電発光分光分析を行った。JOBIN YVON社製JY5000RFを用い、出力40W、Ar流圧775Pa、サンプリング間隔は0.045秒で行った。まず、酸素の分析から判断される黒皮の厚さは光学顕微鏡観察から判断される概ね10μmとほぼ一致することを確認した。また、Crについては、黒皮中では母材濃度より低く、10〜30μmの領域で母材より高く、30μmより内部ではほぼ母材濃度を示した。
表面から10〜30μmの領域のCr測定値を積分して平均値(CCr)を求めた。計算には市販のグラフソフトを用いた。なお、母材のCr濃度をCr1/4と表記する。
Glow discharge optical emission spectrometry was performed from the surface to the plate thickness direction. JY5000RF manufactured by JOBIN YVON was used, the output was 40 W, the Ar flow pressure was 775 Pa, and the sampling interval was 0.045 seconds. First, it was confirmed that the thickness of the black skin judged from the analysis of oxygen substantially coincided with about 10 μm judged from observation with an optical microscope. As for Cr, it was lower than the base material concentration in the black skin, higher than the base material in the region of 10 to 30 μm, and almost the base material concentration inside 30 μm.
The average value (C Cr ) was obtained by integrating the Cr measurement values in the region of 10 to 30 μm from the surface. Commercially available graph software was used for the calculation. The Cr concentration of the base material is expressed as Cr 1/4 .

次に化成処理試験を行った。化成処理は、市販の化成処理剤を用い、55℃、2分焼付けで成膜した。狙い付着量は2g/m2とした。なお、処理液の調整や処理の方法は、メーカーの推奨条件に準拠して行った。
化成処理性の評価は、リン酸塩皮膜量(W)を以って行い、またその密着性は、粘着テープを添付、剥離してテープに付着した化成皮膜(黒皮ごと剥離する場合も区別しない)の面積を100×100mmについて調べることで行った。
Wは質量増加から単位m2当たりに計算した。また剥離面積は、剥離したテープに2mm四方のメッシュを被せ、付着物が存在したメッシュの数を合計し、それに4mm2(1メッシュの面積)を乗じて計算した。
化成処理した鋼板から、引張試験片と、疲労試験片を採取して、σB、εB、およびσWを調べた。試験片の形状、および圧延方向に対する採取方向は実施例1と同様である。何れの試験片も表面は化成処理ままとして加工は行わなかった。
表6および7に、評価の結果をまとめて示す。
Next, a chemical conversion treatment test was performed. In the chemical conversion treatment, a commercially available chemical conversion treatment agent was used, and a film was formed by baking at 55 ° C. for 2 minutes. The target adhesion amount was 2 g / m 2 . The adjustment of the treatment liquid and the treatment method were performed in accordance with the manufacturer's recommended conditions.
The chemical conversion treatment is evaluated by the amount of phosphate film (W), and the adhesion is also distinguished when the adhesive film is attached and peeled and the chemical film deposited on the tape is peeled off. No) was conducted by examining the area of 100 × 100 mm.
W was calculated per unit m 2 from the mass increase. The peeled area was calculated by covering the peeled tape with a 2 mm square mesh, summing the number of meshes with deposits, and multiplying it by 4 mm 2 (1 mesh area).
Tensile test pieces and fatigue test pieces were sampled from the steel sheet subjected to chemical conversion treatment, and σ B , ε B , and σ W were examined. The shape of the test piece and the sampling direction with respect to the rolling direction are the same as in Example 1. None of the test pieces were processed with the surface left as the chemical conversion treatment.
Tables 6 and 7 summarize the results of the evaluation.

Figure 0005459028
Figure 0005459028

Figure 0005459028
Figure 0005459028

Figure 0005459028
Figure 0005459028

Figure 0005459028
Figure 0005459028

化学成分、および、製造条件が本発明の範囲内である、No.21、22、24、25、27、29、30、および33は、化成皮膜の付着量が狙い値に近く、剥離面積も5%程度と軽微であり、疲労限度も引張強さ比で0.4以上と優れた特性を示した。
これに対して、化学成分(Si量)が本発明の範囲を外れるNo.28および32では、化成皮膜の付着量が低く、剥離面積も50%前後と、密着性の悪さが際立っている。また疲労限度も引張強さに対して0.3にも達せず、劣位であることが分かる。恐らくSiがCrの黒皮直下への濃化を妨げたことと、黒皮と地鉄の密着性を劣化させていることが影響したものと考えられる。
製造条件(最終6パス目の圧延率)が本発明の範囲を外れるNo.23、26、および31では、化成皮膜の付着量が1.5g/mに届かず、また剥離面積も試験面積の10%前後と劣位である。更に疲労限度も引張強さ比で0.3と劣位である。D/D1/4が1.2未満にとどまったことが強く影響していることが推定される。
Chemical components and production conditions are within the scope of the present invention, No. Nos. 21, 22, 24, 25, 27, 29, 30, and 33 have an adhesion amount of the chemical conversion film close to the target value, a slight peeling area of about 5%, and a fatigue limit of 0. Excellent characteristics of 4 or more were exhibited.
On the other hand, the chemical component (Si amount) is out of the scope of the present invention. In Nos. 28 and 32, the adhesion amount of the chemical conversion film is low, and the peeled area is about 50%. Further, it can be seen that the fatigue limit does not reach 0.3 with respect to the tensile strength and is inferior. Probably, it was thought that Si prevented the concentration of Cr just below the black skin and that the adhesion between the black skin and the ground iron was deteriorated.
The production conditions (rolling ratio in the final sixth pass) deviate from the scope of the present invention. In Nos. 23, 26, and 31, the amount of chemical conversion film does not reach 1.5 g / m 2 , and the peeled area is inferior to about 10% of the test area. Furthermore, the fatigue limit is inferior with a tensile strength ratio of 0.3. It is estimated that the fact that D 0 / D 1/4 remains below 1.2 has a strong influence.

Claims (2)

質量%にて、
C:0.05〜0.15%
Si:0.1%以下
Mn:1.4〜2.5%
Al:1.2%以下
Ti:0.02〜0.06%
Cr:0.2〜0.8%
を含有し、
P:0.05%以下
S:0.005%以下
N:0.01%以下
に制限し、
残部がFeおよび不可避的不純物からなり、引張強さが780MPa以上であり、
その金属組織が、面積率60%以上のフェライト相およびベイナイト組織、または、面積率60%以上のフェライト相、ベイナイト組織および10%以下のマルテンサイト相からなり、
熱延後の鋼板表面から厚さ方向の位置で10〜30μmの範囲において、グロー放電発光分光分析にて検出されるCrの濃度の平均値が母材のCr濃度の1.2倍以上であり、かつ同範囲のフェライト相の平均粒径が板厚の1/4位置におけるフェライト相の平均粒径の1.2倍以上であることを特徴とする、疲労特性と黒皮上への化成処理性に優れた高強度熱延鋼板。
In mass%
C: 0.05 to 0.15%
Si: 0.1% or less Mn: 1.4-2.5%
Al: 1.2% or less Ti: 0.02 to 0.06%
Cr: 0.2 to 0.8%
Containing
P: 0.05% or less S: 0.005% or less N: 0.01% or less
The balance consists of Fe and inevitable impurities, the tensile strength is 780 MPa or more,
The metal structure is composed of a ferrite phase and a bainite structure with an area ratio of 60% or more, or a ferrite phase, a bainite structure with an area ratio of 60% or more, and a martensite phase of 10% or less.
In the range of 10 to 30 μm in the thickness direction from the surface of the steel sheet after hot rolling, the average value of the Cr concentration detected by glow discharge optical emission spectrometry is 1.2 times or more the Cr concentration of the base material. And the average grain size of the ferrite phase in the same range is 1.2 times or more of the average grain size of the ferrite phase at the 1/4 position of the plate thickness, and the fatigue characteristics and the chemical conversion treatment on the black skin High strength hot rolled steel sheet with excellent properties.
請求項1に記載の化学成分を有する鋼片を1250℃以下に加熱し、780〜860℃で終了する仕上げ圧延を行うに際し、連続圧延の最終圧延パスの圧延率を15%以下とし、その後、10℃/s以上の平均冷却速度で600〜720℃まで冷却し、4〜14秒間の空冷を行い、更に20℃/s以上の平均冷却速度で350〜550℃まで冷却して巻き取ることを特徴とする請求項1に記載の疲労特性と黒皮上への化成処理性に優れた高強度熱延鋼板の製造方法。   When the steel slab having the chemical component according to claim 1 is heated to 1250 ° C. or less and finish rolling is finished at 780 to 860 ° C., the rolling rate of the final rolling pass of continuous rolling is 15% or less, Cooling to 600-720 ° C. at an average cooling rate of 10 ° C./s or more, performing air cooling for 4-14 seconds, and further cooling to 350-550 ° C. at an average cooling rate of 20 ° C./s or more The method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics and chemical conversion treatment on the black skin according to claim 1.
JP2010089612A 2010-04-08 2010-04-08 High-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on black skin, and its manufacturing method Active JP5459028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089612A JP5459028B2 (en) 2010-04-08 2010-04-08 High-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on black skin, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089612A JP5459028B2 (en) 2010-04-08 2010-04-08 High-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on black skin, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011219812A JP2011219812A (en) 2011-11-04
JP5459028B2 true JP5459028B2 (en) 2014-04-02

Family

ID=45037156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089612A Active JP5459028B2 (en) 2010-04-08 2010-04-08 High-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on black skin, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5459028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435772B2 (en) 2015-03-27 2019-10-08 Nippon Steel Corporation Steel sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018935B1 (en) * 2012-04-05 2019-09-05 타타 스틸 이즈무이덴 베.뷔. Steel strip having a low si content
CN102767532B (en) * 2012-08-10 2014-10-22 河北临泉泵业有限公司 Shaft of water filling type submersible electric pump and manufacturing process for shaft material of shaft
JP6112617B2 (en) * 2014-05-16 2017-04-12 日本電信電話株式会社 Black skin evaluation method for steel
JP6052473B1 (en) * 2015-01-28 2016-12-27 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
CN111041378B (en) * 2019-11-18 2021-06-15 武汉钢铁有限公司 Steel for easily-formed commercial vehicle beam and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935653A (en) * 1982-08-19 1984-02-27 Kawasaki Steel Corp High-tension hot-rolled steel plate
JPH06240356A (en) * 1993-02-10 1994-08-30 Sumitomo Metal Ind Ltd Production of high strength hot rolled steel plate excellent in workability
JPH1136050A (en) * 1997-07-15 1999-02-09 Kawasaki Steel Corp Hot rolled steel sheet excellent in scale adhesion and chemical convertibility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435772B2 (en) 2015-03-27 2019-10-08 Nippon Steel Corporation Steel sheet

Also Published As

Publication number Publication date
JP2011219812A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP4917186B2 (en) Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof
KR101492753B1 (en) High strength hot rolled steel sheet having excellent fatigue resistance and method for manufacturing the same
JP4977879B2 (en) Super high strength cold-rolled steel sheet with excellent bendability
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
JP6135577B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5713118B2 (en) Ferritic stainless steel
JP5387073B2 (en) Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
JP5459028B2 (en) High-strength hot-rolled steel sheet excellent in fatigue characteristics and chemical conversion treatment on black skin, and its manufacturing method
JP6136547B2 (en) High yield ratio high strength hot-rolled steel sheet and method for producing the same
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP6070642B2 (en) Hot-rolled steel sheet having high strength and excellent low-temperature toughness and method for producing the same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5825343B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR20160147869A (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
KR102217100B1 (en) High-strength steel sheet and its manufacturing method
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP5630002B2 (en) High-strength steel sheet having a tensile strength of 1500 MPa or more and a method for producing the same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP5151354B2 (en) High tensile cold-rolled steel sheet and method for producing high-tensile cold-rolled steel sheet
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
KR20170095977A (en) High-strength steel sheet and production method therefor
JP5176599B2 (en) Ultra-thin cold-rolled steel sheet for building materials and manufacturing method thereof
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5459028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350