JP5458162B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP5458162B2
JP5458162B2 JP2012245828A JP2012245828A JP5458162B2 JP 5458162 B2 JP5458162 B2 JP 5458162B2 JP 2012245828 A JP2012245828 A JP 2012245828A JP 2012245828 A JP2012245828 A JP 2012245828A JP 5458162 B2 JP5458162 B2 JP 5458162B2
Authority
JP
Japan
Prior art keywords
layer
type
light emitting
semiconductor light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012245828A
Other languages
Japanese (ja)
Other versions
JP2013030816A (en
Inventor
年輝 彦坂
浩一 橘
肇 名古
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012245828A priority Critical patent/JP5458162B2/en
Publication of JP2013030816A publication Critical patent/JP2013030816A/en
Application granted granted Critical
Publication of JP5458162B2 publication Critical patent/JP5458162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、半導体発光素子に関する。   Embodiments described herein relate generally to a semiconductor light emitting device.

窒化物半導体を用いた量子井戸構造を有する発光素子において、窒化物結晶の結晶構造の対称性や結晶歪みにより、量子井戸構造内部に分極電界が発生し、量子井戸内のキャリアが空間分離し、発光効率の低下や駆動電圧の上昇を招く。   In a light-emitting device having a quantum well structure using a nitride semiconductor, a polarization electric field is generated inside the quantum well structure due to symmetry and crystal distortion of the crystal structure of the nitride crystal, and carriers in the quantum well are spatially separated, This leads to a decrease in luminous efficiency and an increase in driving voltage.

これに対し、特許文献1には、ピエゾ電界の影響を抑制するために、障壁層に、n型不純物のドープされたn型領域とアンドープ領域とを設ける構成が提案されている。しかしながら、本技術を用いても発光効率は不十分であり、改良の余地がある。   On the other hand, Patent Document 1 proposes a configuration in which an n-type region doped with an n-type impurity and an undoped region are provided in the barrier layer in order to suppress the influence of the piezoelectric field. However, even if this technology is used, the luminous efficiency is insufficient and there is room for improvement.

特開2003−229645号公報JP 2003-229645 A

本発明は、低駆動電圧で高発光効率の半導体発光素子を提供する。   The present invention provides a semiconductor light emitting device having a low driving voltage and high luminous efficiency.

本発明の一態様によれば、窒化物半導体からなるn型層と、窒化物半導体からなるp型層と、前記n型層と前記p型層との間に設けられ、窒化物半導体からなる複数の障壁層と、前記複数の障壁層のそれぞれの間に設けられ、前記障壁層におけるバンドギャップエネルギーよりも小さいバンドギャップエネルギーを有し、窒化物半導体からなる井戸層と、を含積層体と、を備え、前記複数の障壁層の少なくともいずれかは、前記n型層の側に設けられn型不純物の濃度が低い第1層と、前記p型層の側に設けられ、前記第1層よりも高い濃度でn型不純物を含む第2層と、を含み、前記井戸層の少なくともいずれかは、前記n型層の側に設けられn型不純物の濃度が低い第3層と、前記p型層の側に設けられ、前記第3層よりも高い濃度でn型不純物を含む第4層と、を含み、前記第1層及び前記第2層は、互いに異なるバンドギャップエネルギーを有していることを特徴とする半導体発光素子が提供される。 According to one aspect of the present invention, an n-type layer made of a nitride semiconductor, a p-type layer made of a nitride semiconductor, and a nitride semiconductor provided between the n-type layer and the p-type layer. and a plurality of barrier layers, provided between each of the plurality of barrier layers, has a smaller band gap energy than the band gap energy in the barrier layer, including laminate and a well layer made of a nitride semiconductor, the And at least one of the plurality of barrier layers is provided on the n-type layer side and is provided on the p-type layer side, the first layer having a low n-type impurity concentration, and the first type A second layer containing an n-type impurity at a higher concentration than the layer, and at least one of the well layers is provided on the n-type layer side and the third layer having a low concentration of the n-type impurity, Provided on the p-type layer side, with a higher concentration than the third layer Viewed contains a fourth layer containing impurity, wherein the first layer and the second layer, is provided a semiconductor light emitting device characterized in that it has a different band gap energy from each other.

本発明によれば、低駆動電圧で高発光効率の半導体発光素子及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor light-emitting device of a low drive voltage and high luminous efficiency and its manufacturing method are provided.

半導体発光素子を示す模式的断面図である。It is a typical sectional view showing a semiconductor light emitting element. 実施形態に係る半導体発光素子及び比較例の半導体発光素子を示す模式図である。It is a schematic diagram which shows the semiconductor light-emitting device which concerns on embodiment, and the semiconductor light-emitting device of a comparative example. 比較例の半導体発光素子を示す模式図である。It is a schematic diagram which shows the semiconductor light-emitting device of a comparative example. 実施形態に係る半導体発光素子及び比較例の半導体発光素子の特性を示すグラフ図である。It is a graph which shows the characteristic of the semiconductor light-emitting device which concerns on embodiment, and the semiconductor light-emitting device of a comparative example. 半導体発光素子を示す模式的断面図である。It is a typical sectional view showing a semiconductor light emitting element. 半導体発光素子を示す模式的断面図である。It is a typical sectional view showing a semiconductor light emitting element. 半導体発光素子を示す模式的断面図である。It is a typical sectional view showing a semiconductor light emitting element. 半導体発光素子を示す模式的断面図である。It is a typical sectional view showing a semiconductor light emitting element. 半導体発光素子を示す模式的断面図である。It is a typical sectional view showing a semiconductor light emitting element. 半導体発光素子の製造方法を示すフローチャート図である。It is a flowchart figure which shows the manufacturing method of a semiconductor light-emitting device.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.

図1は、本発明の実施形態に係る半導体発光素子の構成を例示する模式的断面図である。
すなわち、同図(b)は、半導体発光素子の全体の構成を例示し、同図(a)は、半導体発光素子のうちの発光部の構成を例示している。
FIG. 1 is a schematic cross-sectional view illustrating the configuration of a semiconductor light emitting element according to an embodiment of the invention.
That is, FIG. 2B illustrates the overall configuration of the semiconductor light emitting element, and FIG. 1A illustrates the configuration of the light emitting portion of the semiconductor light emitting element.

図1(b)に表したように、本実施形態に係る半導体発光素子110は、n型層20と、p型層50と、n型層20とp型層50との間に設けられた発光部40と、を備える。   As shown in FIG. 1B, the semiconductor light emitting device 110 according to this embodiment is provided between the n-type layer 20, the p-type layer 50, and the n-type layer 20 and the p-type layer 50. And a light emitting unit 40.

n型層20及びp型層50は、窒化物半導体からなる。   The n-type layer 20 and the p-type layer 50 are made of a nitride semiconductor.

図1(a)に表したように、発光部40は、複数の障壁層BLと、前記複数の障壁層のそれぞれの間に設けられた井戸層WLと、を有する。
障壁層BL及び井戸層WLは、窒化物半導体からなる。井戸層WLには、少なくともインジウム(In)を含む窒化物半導体を用いるのが良い。障壁層BLのバンドギャップエネルギーは、井戸層WLよりも大きい。
すなわち、障壁層BLがInを含む場合、障壁層BLにおけるInの濃度は、井戸層WLにおけるInの濃度よりも低い。これにより、井戸層WLにおけるバンドギャップエネルギーは、障壁層BLにおけるバンドギャップエネルギーよりも小さくなる。
As shown in FIG. 1A, the light emitting unit 40 includes a plurality of barrier layers BL and a well layer WL provided between each of the plurality of barrier layers.
The barrier layer BL and the well layer WL are made of a nitride semiconductor. For the well layer WL, it is preferable to use a nitride semiconductor containing at least indium (In). The band gap energy of the barrier layer BL is larger than that of the well layer WL.
That is, when the barrier layer BL includes In, the In concentration in the barrier layer BL is lower than the In concentration in the well layer WL. Thereby, the band gap energy in the well layer WL becomes smaller than the band gap energy in the barrier layer BL.

このように、障壁層BLと井戸層WLとは互いに交互に積層される。ここで、井戸層WLの数を「n」とすると、井戸層WLは、第1井戸層WL〜第n井戸層WLを有する。一方、障壁層BLは、第1障壁層BL〜第(n+1)障壁層BLn+1を有する。ここで、最もp型層50に近い障壁層BL(第(n+1)障壁層BLn+1)を適宜、「最終障壁層BLZ」と言う。 Thus, the barrier layers BL and the well layers WL are alternately stacked. Here, when the number of well layers WL is “n”, the well layer WL includes a first well layer WL 1 to an n-th well layer WL n . On the other hand, the barrier layer BL includes a first barrier layer BL 1 to an (n + 1) th barrier layer BL n + 1 . Here, the barrier layer BL ((n + 1) th barrier layer BL n + 1 ) closest to the p-type layer 50 is appropriately referred to as a “final barrier layer BLZ”.

そして、図1(a)に表したように、障壁層BLのそれぞれは、n型層20の側に設けられ、n型不純物の濃度が低い第1層BLLと、p型層50の側に設けられ、第1層BLLよりも高い濃度でn型不純物を含む第2層BLHと、を含む。そして、井戸層WLのそれぞれは、n型層20の側に設けられ、n型不純物の濃度が低い第3層WLLと、p型層50の側に設けられ、第3層WLLよりも高い濃度でn型不純物を含む第4層WLHと、を含む。   As shown in FIG. 1A, each of the barrier layers BL is provided on the n-type layer 20 side, on the first layer BLL having a low n-type impurity concentration, and on the p-type layer 50 side. And a second layer BLH containing an n-type impurity at a higher concentration than the first layer BLL. Each of the well layers WL is provided on the n-type layer 20 side, and is provided on the p-type layer 50 side with a third layer WLL having a low n-type impurity concentration, and has a higher concentration than the third layer WLL. And a fourth layer WLH containing an n-type impurity.

例えば、第1層BLLは、障壁層BLと井戸層WLとの界面のうちのn型層20の側の界面に接して設けられ、第2層BLHは、障壁層BLと井戸層WLとの界面のうちのp型層50の側の界面に接して設けられる。そして、例えば、第3層WLLは、障壁層BLと井戸層WLとの界面のうちのn型層20の側の界面に接して設けられ、第4層WLHは、障壁層BLと井戸層WLとの界面のうちのp型層50の側の界面に接して設けられる。   For example, the first layer BLL is provided in contact with the interface on the n-type layer 20 side of the interface between the barrier layer BL and the well layer WL, and the second layer BLH is formed between the barrier layer BL and the well layer WL. It is provided in contact with the interface on the p-type layer 50 side of the interface. For example, the third layer WLL is provided in contact with the interface on the n-type layer 20 side of the interface between the barrier layer BL and the well layer WL, and the fourth layer WLH is provided with the barrier layer BL and the well layer WL. In contact with the interface on the p-type layer 50 side.

ただし、後述するように、障壁層BLの少なくともいずれかが、上記の第1層BLLと第2層BLHとを含み、井戸層WLの少なくともいずれかが、上記の第3層WLLと第4層WLHとを含めば良い。   However, as will be described later, at least one of the barrier layers BL includes the first layer BLL and the second layer BLH, and at least one of the well layers WL includes the third layer WLL and the fourth layer. WLH may be included.

このように、半導体発光素子110においては、障壁層BLが第1層BLLと第2層BLHとを含み、井戸層WLが第3層WLLと第4層WLHとを含む構成を有することで、発光部40内のキャリアの空間分離を抑制し、また、不純物の制御性が良いことから結晶性が高く、発光効率の高い半導体発光素子が得られる。   Thus, in the semiconductor light emitting device 110, the barrier layer BL includes the first layer BLL and the second layer BLH, and the well layer WL includes the third layer WLL and the fourth layer WLH. Since the spatial separation of carriers in the light emitting section 40 is suppressed and the controllability of impurities is good, a semiconductor light emitting device with high crystallinity and high light emission efficiency can be obtained.

以下、半導体発光素子110の具体的な構成について説明する。なお、本具体例の半導体発光素子110は、発光ダイオード(LED:Light Emitting Diode)である。   Hereinafter, a specific configuration of the semiconductor light emitting device 110 will be described. In addition, the semiconductor light emitting element 110 of this specific example is a light emitting diode (LED: Light Emitting Diode).

図1(b)に表したように、半導体発光素子110においては、サファイアからなる基板10の主面に、バッファ層11が設けられ、その上に、n型GaN層21と、n型GaNガイド層22と、が設けられる。n型GaN層21及びn型GaNガイド層22は、n型層20に含まれる。   As shown in FIG. 1B, in the semiconductor light emitting device 110, the buffer layer 11 is provided on the main surface of the substrate 10 made of sapphire, and the n-type GaN layer 21 and the n-type GaN guide are formed thereon. Layer 22 is provided. The n-type GaN layer 21 and the n-type GaN guide layer 22 are included in the n-type layer 20.

そして、n型GaNガイド層22の上に、活性層(発光部40)が設けられ、その上に、p型GaN第1ガイド層51、p型AlGaN層52(電子オーバーフロー防止層)、p型GaN第2ガイド層53及びp型GaNコンタクト層54が、この順で設けられている。p型GaN第1ガイド層51、p型AlGaN層52、p型GaN第2ガイド層53及びp型GaNコンタクト層54は、p型層50に含まれる。   An active layer (light emitting unit 40) is provided on the n-type GaN guide layer 22, and a p-type GaN first guide layer 51, a p-type AlGaN layer 52 (electron overflow prevention layer), and a p-type are formed thereon. The GaN second guide layer 53 and the p-type GaN contact layer 54 are provided in this order. The p-type GaN first guide layer 51, the p-type AlGaN layer 52, the p-type GaN second guide layer 53, and the p-type GaN contact layer 54 are included in the p-type layer 50.

そして、n型層20であるn型GaN層21の一部、並びに、その一部に対応する発光部40及びp型層50が除去され、n型GaN層21の上にn側電極70が設けられる。一方、p型GaNコンタクト層54の上にp側電極80が設けられる。   Then, a part of the n-type GaN layer 21 that is the n-type layer 20 and the light emitting unit 40 and the p-type layer 50 corresponding to the part are removed, and the n-side electrode 70 is formed on the n-type GaN layer 21. Provided. On the other hand, a p-side electrode 80 is provided on the p-type GaN contact layer 54.

半導体発光素子110の製造方法の例について説明する。
まず、サファイアからなる基板10の主面上に、バッファ層11を形成した後、n型GaN層21を結晶成長させる。結晶成長には、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)が用いられる。この他、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)により結晶成長を行っても良い。n型GaN層21にドープするn型不純物としてSiが用いられる。ただし、この他、Ge及びSnなど種々の元素を用いることが可能である。n型GaN層21におけるSiのドーピング量は、例えば、2×1018cm−3程度とされ、n側GaN層21の厚さは、例えば4μm(マイクロメートル)とされる。
An example of a method for manufacturing the semiconductor light emitting device 110 will be described.
First, after forming the buffer layer 11 on the main surface of the substrate 10 made of sapphire, the n-type GaN layer 21 is crystal-grown. For crystal growth, for example, metal organic chemical vapor deposition (MOCVD) is used. In addition, crystal growth may be performed by molecular beam epitaxy (MBE). Si is used as an n-type impurity to be doped into the n-type GaN layer 21. However, various other elements such as Ge and Sn can be used. The doping amount of Si in the n-type GaN layer 21 is, for example, about 2 × 10 18 cm −3, and the thickness of the n-side GaN layer 21 is, for example, 4 μm (micrometer).

なお、基板10には、サファイア以外に、GaN、SiC、Si及びGaAsなどの各種の材料を用いることができる。   In addition to sapphire, various materials such as GaN, SiC, Si, and GaAs can be used for the substrate 10.

次に、n型GaN層21の上に、n型GaNガイド層22を結晶成長させる。n型GaNガイド層22におけるn型不純物濃度は、例えば1×1018cm−3程度とされ、n型GaNガイド層22の厚さは、例えば0.1μmとされる。 Next, an n-type GaN guide layer 22 is grown on the n-type GaN layer 21. The n-type impurity concentration in the n-type GaN guide layer 22 is, for example, about 1 × 10 18 cm −3, and the thickness of the n-type GaN guide layer 22 is, for example, 0.1 μm.

なお、n型GaN層21及びn型GaNガイド層22を成長させる際の成長温度は、いずれも1000〜1100℃である。   The growth temperature for growing the n-type GaN layer 21 and the n-type GaN guide layer 22 is 1000 to 1100 ° C.

また、n型GaNガイド層22として、GaN層ではなく、厚さが0.1μm程度のIn0.01Ga0.99Nを用いても良い。In0.01Ga0.99Nを用いる場合の成長温度は、700〜800℃である。 Further, as the n-type GaN guide layer 22, In 0.01 Ga 0.99 N having a thickness of about 0.1 μm may be used instead of the GaN layer. The growth temperature when using In 0.01 Ga 0.99 N is 700 to 800 ° C.

次に、n型GaNガイド層22の上に、発光部40を形成する。
例えば、まず、1層目の第1障壁層BLを形成する。このとき、まず、n型不純物の濃度が低い、すなわち、例えばアンドープの第1層BLLを形成する。この第1層BLLには、例えばアンドープのIn0.02Ga0.98Nが用いられ、厚さは例えば10.5nm(ナノメートル)とされる。なお、アンドープのIn0.02Ga0.98Nにおいても、わずかなn型不純物を含有しているので、アンドープのIn0.02Ga0.98Nの第1層BLLにおけるn型不純物濃度は、1×1016cm−3〜1×1017cm−3である。
Next, the light emitting unit 40 is formed on the n-type GaN guide layer 22.
For example, first, a first barrier layer BL 1 of the first layer. At this time, first, the n-type impurity concentration is low, that is, for example, an undoped first layer BLL is formed. For example, undoped In 0.02 Ga 0.98 N is used for the first layer BLL, and the thickness is set to, for example, 10.5 nm (nanometer). In addition, since undoped In 0.02 Ga 0.98 N also contains a slight amount of n-type impurities, the n-type impurity concentration in the first layer BLL of undoped In 0.02 Ga 0.98 N is 1 × 10 16 cm −3 to 1 × 10 17 cm −3 .

その後、第1層BLLの上に、第1層BLLよりもn型不純物の濃度が高い第2層BLHを形成する。第2層BLHには、例えば、SiをドープしたIn0.02Ga0.98Nが用いられ、厚さは例えば2nmとされる。そして、第2層BLHにおけるSi濃度は、例えば5×1017cm−3〜1×1019cm−3とされる。
これにより、障壁層BLの厚さは、12.5nmとなる。このように、第2層BLHの厚さ(この例では2nm)は、第1層BLLの厚さ(この例では10.5nm)に対して薄く設定される。
なお、障壁層BLは、井戸層WLよりも大きい複数のバンドギャップエネルギーを有することができる。例えば、第1層BLLと第2層BLHとが、互いに異なるバンドギャップエネルギーを有していても良く、また、第1層BLL及び第2層BLHにおけるバンドギャップエネルギーが傾斜状または階段状に変化していても良い。
Thereafter, a second layer BLH having a higher n-type impurity concentration than the first layer BLL is formed on the first layer BLL. For example, In 0.02 Ga 0.98 N doped with Si is used for the second layer BLH, and the thickness is set to 2 nm, for example. Then, Si concentration in the second layer BLH is, for example, 5 × 10 17 cm -3 ~1 × 10 19 cm -3.
As a result, the thickness of the barrier layer BL is 12.5 nm. Thus, the thickness of the second layer BLH (2 nm in this example) is set to be thinner than the thickness of the first layer BLL (10.5 nm in this example).
The barrier layer BL can have a plurality of band gap energies larger than the well layer WL. For example, the first layer BLL and the second layer BLH may have different band gap energies, and the band gap energy in the first layer BLL and the second layer BLH changes in an inclined or stepped manner. You may do it.

その後、第2層BLHの上に、1層目の第1井戸層WLを形成する。このとき、まず、n型不純物の濃度が低い、すなわち、例えばアンドープの第3層WLLを形成する。この第3層WLLには、例えばアンドープのIn0.2Ga0.8Nが用いられ、厚さは例えば1.5nmとされる。なお、アンドープのIn0.2Ga0.8Nにおいても、わずかなn型不純物を含有しているので、アンドープのIn0.2Ga0.8Nの第3層WLLにおけるn型不純物濃度は、1×1016cm−3〜1×1017cm−3である。 Then, on the second layer BLH, forming a first well layer WL 1 of the first layer. At this time, first, the n-type impurity concentration is low, that is, for example, an undoped third layer WLL is formed. For example, undoped In 0.2 Ga 0.8 N is used for the third layer WLL, and the thickness is set to 1.5 nm, for example. Note that since undoped In 0.2 Ga 0.8 N also contains a slight amount of n-type impurities, the n-type impurity concentration in the third layer WLL of undoped In 0.2 Ga 0.8 N is 1 × 10 16 cm −3 to 1 × 10 17 cm −3 .

その後、第3層WLLの上に、第3層WLLよりもn型不純物の濃度が高い第4層WLHを形成する。第4層WLHには、例えば、SiをドープしたIn0.2Ga0.8Nが用いられ、厚さは例えば1nmとされる。そして、第4層WLHにおけるSi濃度は、例えば5×1017cm−3〜1×1019cm−3とされる。
なお、これにより、井戸層WLの厚さは、2.5nmとなる。このように、第4層WLHの厚さ(この例では1nm)は、第3層WLLの厚さ(この例では1.5nm)に対して薄く設定される。
Thereafter, a fourth layer WLH having a higher n-type impurity concentration than the third layer WLL is formed on the third layer WLL. For example, In 0.2 Ga 0.8 N doped with Si is used for the fourth layer WLH, and the thickness is set to 1 nm, for example. The Si concentration in the fourth layer WLH is, for example, 5 × 10 17 cm −3 to 1 × 10 19 cm −3 .
Thereby, the thickness of the well layer WL becomes 2.5 nm. Thus, the thickness of the fourth layer WLH (1 nm in this example) is set to be thinner than the thickness of the third layer WLL (1.5 nm in this example).

その後、同様にして、障壁層BL(第2障壁層BL〜第(n+1)障壁層BLn+1)と、井戸層WL(第2井戸層WL〜第n井戸層WL)と、を交互に繰り返して形成する。これにより、障壁層BLと井戸層WLとが交互に積層された多重量子井戸(MQW:Multiple Quantum Well)構造の発光部40が形成される。 Thereafter, similarly, the barrier layers BL (second barrier layer BL 2 to (n + 1) th barrier layer BL n + 1 ) and well layers WL (second well layer WL 2 to nth well layer WL n ) are alternately arranged. Repeat to form. As a result, a light emitting section 40 having a multiple quantum well (MQW) structure in which the barrier layers BL and the well layers WL are alternately stacked is formed.

なお、上記の障壁層BL及び井戸層WL(第1層BLL、第2層BLH、第3層WLL及び第4層WLH)の形成の際の成長温度は、例えば700〜800℃である。また、室温における発光部40のフォトルミネッセンスの波長が450nmとなるように、上記の障壁層BL及び井戸層WLは設計されている。   In addition, the growth temperature at the time of formation of said barrier layer BL and well layer WL (1st layer BLL, 2nd layer BLH, 3rd layer WLL, and 4th layer WLH) is 700-800 degreeC, for example. In addition, the barrier layer BL and the well layer WL are designed so that the photoluminescence wavelength of the light emitting unit 40 at room temperature is 450 nm.

次に、発光部40の上に、GaNからなるp型GaN第1ガイド層51を成長させる。p型GaN第1ガイド層51の厚さは、例えば30nm程度である。このp型GaN第1ガイド層51となるGaN層を成長する温度は、例えば1000〜1100℃である。この時に用いるp型不純物としては、Mgが用いられる。ただし、この他、Zn及びCなど種々の元素を用いることが可能である。Mgのドーピング濃度は、例えば4×1018cm−3程度とされる。なお、p型GaN第1ガイド層51として、厚さが30nm程度のIn0.01Ga0.99Nを用いても良い。In0.01Ga0.99Nを用いる場合の成長温度は、例えば700〜800℃である。 Next, a p-type GaN first guide layer 51 made of GaN is grown on the light emitting unit 40. The thickness of the p-type GaN first guide layer 51 is, for example, about 30 nm. The temperature for growing the GaN layer to be the p-type GaN first guide layer 51 is, for example, 1000 to 1100 ° C. Mg is used as the p-type impurity used at this time. However, various other elements such as Zn and C can be used. The doping concentration of Mg is about 4 × 10 18 cm −3 , for example. In addition, as the p-type GaN first guide layer 51, In 0.01 Ga 0.99 N having a thickness of about 30 nm may be used. The growth temperature in the case of using In 0.01 Ga 0.99 N is, for example, 700 to 800 ° C.

次に、p型GaN第1ガイド層51の上に、p型AlGaN層52を形成する。p型AlGaN層52には、p型不純物がドープされたAl0.2Ga0.8Nを用いることができる。p型AlGaN層52は、電子オーバーフロー防止層の機能を有する。p型不純物としてはMgを用い、Mgの濃度は、例えば1×1019cm−3程度とされる。なお、p型AlGaN層52となるAl0.2Ga0.8Nの成長温度は、例えば1000〜1100℃である。 Next, a p-type AlGaN layer 52 is formed on the p-type GaN first guide layer 51. For the p-type AlGaN layer 52, Al 0.2 Ga 0.8 N doped with p-type impurities can be used. The p-type AlGaN layer 52 functions as an electron overflow prevention layer. Mg is used as the p-type impurity, and the Mg concentration is, for example, about 1 × 10 19 cm −3 . The growth temperature of Al 0.2 Ga 0.8 N that becomes the p-type AlGaN layer 52 is, for example, 1000 to 1100 ° C.

次に、p型AlGaN層52の上に、p型GaN第2ガイド層53を形成する。p型GaN第2ガイド層53には、Mgがドープされたp型GaN層を用いることができる。p型GaN第2ガイド層53の厚さは、例えば50nm程度である。p型不純物としてMgを用いることができ、Mgの濃度は例えば1×1019cm−3程度とされる。p型GaN第2ガイド層53となるGaNの成長温度は、例えば1000〜1100℃である。 Next, a p-type GaN second guide layer 53 is formed on the p-type AlGaN layer 52. As the p-type GaN second guide layer 53, a p-type GaN layer doped with Mg can be used. The thickness of the p-type GaN second guide layer 53 is, for example, about 50 nm. Mg can be used as the p-type impurity, and the concentration of Mg is, for example, about 1 × 10 19 cm −3 . The growth temperature of GaN serving as the p-type GaN second guide layer 53 is, for example, 1000 to 1100 ° C.

そして、p型GaN第2ガイド層53の上に、p型GaNコンタクト層54を形成する。p型GaNコンタクト層54において、p型不純物としてMgを用いることができ、Mgの濃度は、例えば1×1020cm−3程度であり、p型GaNコンタクト層54の厚さは、例えば60nm程度である。 Then, a p-type GaN contact layer 54 is formed on the p-type GaN second guide layer 53. In the p-type GaN contact layer 54, Mg can be used as a p-type impurity. The concentration of Mg is, for example, about 1 × 10 20 cm −3 , and the thickness of the p-type GaN contact layer 54 is, for example, about 60 nm. It is.

このような各層の結晶成長を行った積層構造体に対して、以下のデバイスプロセスを行う。
すなわち、p型GaNコンタクト層54の上にp側電極80を形成する。p側電極80には、例えば、パラジウム−白金−金(Pd/Pt/Au)の複合膜を用いる。例えば、Pd膜の厚さは0.05μmであり、Pt膜の厚さは0.05μmであり、Au膜の厚さは0.05μmである。ただし、この他、酸化インジウムスズ(ITO)などの透明性電極や反射性の高い金属を用いることが可能である。
The following device process is performed on the stacked structure in which the crystal growth of each layer is performed.
That is, the p-side electrode 80 is formed on the p-type GaN contact layer 54. For the p-side electrode 80, for example, a composite film of palladium-platinum-gold (Pd / Pt / Au) is used. For example, the thickness of the Pd film is 0.05 μm, the thickness of the Pt film is 0.05 μm, and the thickness of the Au film is 0.05 μm. However, in addition to this, it is possible to use a transparent electrode such as indium tin oxide (ITO) or a highly reflective metal.

この後、上記の積層構造体の一部にドライエッチングを施し、n型GaN層21を露出させ、n側電極70を形成する。n側電極70としては、例えば、チタン−白金−金(Ti/Pt/Au)の複合膜を用いる。例えば、Ti膜の厚さは0.05μm程度であり、Pt膜の厚さは0.05μm程度であり、Au膜の厚さは1.0μm程度である。
これにより、図1に例示した半導体発光素子110が作製される。
Thereafter, dry etching is performed on a part of the laminated structure to expose the n-type GaN layer 21 and the n-side electrode 70 is formed. As the n-side electrode 70, for example, a composite film of titanium-platinum-gold (Ti / Pt / Au) is used. For example, the thickness of the Ti film is about 0.05 μm, the thickness of the Pt film is about 0.05 μm, and the thickness of the Au film is about 1.0 μm.
Thereby, the semiconductor light emitting device 110 illustrated in FIG. 1 is manufactured.

以下、半導体発光素子110の特性について、比較例を参照しながら説明する。
図2及び図3は、本発明の実施形態に係る半導体発光素子及び比較例の半導体発光素子の構成を例示する模式図である。
すなわち、これらの図は、半導体発光素子の発光部における伝導帯のエネルギーバンド及び高濃度不純物層の配置をモデル的に示しており、図2(a)は本実施形態に係る半導体発光素子110に対応し、図2(b)〜(f)及び図3(a)〜(e)は、第1〜第10比較例の半導体発光素子191〜200に対応する。
Hereinafter, the characteristics of the semiconductor light emitting device 110 will be described with reference to comparative examples.
2 and 3 are schematic views illustrating the configurations of the semiconductor light emitting device according to the embodiment of the invention and the semiconductor light emitting device of the comparative example.
That is, these drawings schematically show the energy band of the conduction band and the arrangement of the high-concentration impurity layer in the light emitting portion of the semiconductor light emitting device, and FIG. 2A shows the semiconductor light emitting device 110 according to this embodiment. Correspondingly, FIGS. 2B to 2F and FIGS. 3A to 3E correspond to the semiconductor light emitting devices 191 to 200 of the first to tenth comparative examples.

図2(a)に表したように、本実施形態に係る半導体発光素子110においては、各障壁層BLのp型層50の側に、高濃度でn型不純物を含む第2層BLHが配置されると共に、各井戸層WLのp型層50の側に、高濃度でn型不純物を含む第4層WLHが配置される。これにより、発光部40の内部の電界の影響を抑制し、効率を向上できる。すなわち、駆動電圧を低減し、発光効率が向上する。   As shown in FIG. 2A, in the semiconductor light emitting device 110 according to the present embodiment, the second layer BLH containing n-type impurities at a high concentration is disposed on the p-type layer 50 side of each barrier layer BL. In addition, a fourth layer WLH containing n-type impurities at a high concentration is disposed on the p-type layer 50 side of each well layer WL. Thereby, the influence of the electric field inside the light emission part 40 can be suppressed, and efficiency can be improved. That is, the driving voltage is reduced and the light emission efficiency is improved.

さらに、この構造においては、障壁層BLとして、不純物の濃度が低い(例えばアンドープの)第1層BLLの形成の後に、高濃度の第2層BLHが形成され、その後に、井戸層WLとして、不純物の濃度が低い(例えばアンドープの)第3層WLLが形成され、その後に、高濃度の第4層WLHが形成される。   Furthermore, in this structure, after the formation of the first layer BLL having a low impurity concentration (for example, undoped) as the barrier layer BL, the second layer BLH having a high concentration is formed, and then the well layer WL is formed as the well layer WL. A third layer WLL having a low impurity concentration (for example, undoped) is formed, and then a fourth layer WLH having a high concentration is formed.

このとき、障壁層BLから井戸層WLへの切り替えの後には、井戸層WLとして、まず、低濃度である第3層WLLの結晶成長から開始し、その後、高濃度の第4層WLHの結晶成長を行うことで、反応炉内の残留不純物の影響を抑制できるため、不純物濃度の制御性が高まり、結晶性が向上する。すなわち、第3層WLLと第4層WLHとの界面において不純物濃度の制御の急峻性が向上する。   At this time, after switching from the barrier layer BL to the well layer WL, as the well layer WL, first, the crystal growth of the low-concentration third layer WLL is started, and then the crystal of the high-concentration fourth layer WLH. By performing the growth, the influence of the residual impurities in the reaction furnace can be suppressed, so that the controllability of the impurity concentration is improved and the crystallinity is improved. That is, the steepness of the impurity concentration control is improved at the interface between the third layer WLL and the fourth layer WLH.

そして、井戸層WLから障壁層BLへの切り替えの後には、障壁層BLとして、まず、低濃度である第1層BLLの結晶成長から開始し、その後、高濃度の第2層BLHの結晶成長を行うことで、不純物濃度の制御性が高まり、結晶性が向上する。すなわち、第1層BLLと第2層BLHとの界面において不純物濃度の制御の急峻性が向上する。   Then, after switching from the well layer WL to the barrier layer BL, as the barrier layer BL, first, crystal growth of the first layer BLL having a low concentration is started, and then crystal growth of the second layer BLH having a high concentration is performed. As a result, the controllability of the impurity concentration is increased and the crystallinity is improved. That is, the steepness of the impurity concentration control is improved at the interface between the first layer BLL and the second layer BLH.

また、半導体発光素子110の製造においては、良好な結晶を得るために、n型層20を形成し、その後、発光部40を形成し、その後、p型層50を形成する。このような発光部40の形成において、障壁層BLから井戸層WLへの切り替え、及び、井戸層WLから障壁層BLへの切り替えの際に、後述するように、障壁層BLまたは井戸層WLとなる原料ガスの一部の供給を中断し、例えば窒素原料ガスのみを供給する方法を採用でき、不純物濃度及び組成の制御性を高めて、結晶性の良好な結晶が得られる。
このように、障壁層BLから井戸層WLへの切り替え、及び、井戸層WLから障壁層BLへの切り替えの際に、低濃度の第3層WLL、または、低濃度の第1層BLLから結晶成長を開始することにより、井戸層WL及び障壁層BLの結晶性が向上し、また、井戸層WLと障壁層BLとの間の不純物濃度及び組成の変化の急峻性も向上できる。
Further, in the manufacture of the semiconductor light emitting device 110, in order to obtain a good crystal, the n-type layer 20 is formed, then the light emitting portion 40 is formed, and then the p-type layer 50 is formed. In the formation of the light emitting section 40, when switching from the barrier layer BL to the well layer WL and switching from the well layer WL to the barrier layer BL, as described later, the barrier layer BL or the well layer WL A method of interrupting the supply of a part of the raw material gas and supplying only the nitrogen raw material gas, for example, can be adopted, and the crystallinity with good crystallinity can be obtained by improving the controllability of impurity concentration and composition.
As described above, when switching from the barrier layer BL to the well layer WL and switching from the well layer WL to the barrier layer BL, the crystal from the low-concentration third layer WLL or the low-concentration first layer BLL. By starting the growth, the crystallinity of the well layer WL and the barrier layer BL is improved, and the steepness of the change in impurity concentration and composition between the well layer WL and the barrier layer BL can be improved.

すなわち、この構成においては、高濃度の不純物領域である第2層BLH及び第4層WLHが、それぞれ、例えばアンドープの第1層BLL及び第3層WLLの後に形成されるので、良好な結晶性を維持しつつ、高キャリア濃度かつ高移動度の障壁層及び井戸層を得ることができる。   That is, in this configuration, the second layer BLH and the fourth layer WLH, which are high-concentration impurity regions, are formed, for example, after the undoped first layer BLL and third layer WLL, respectively. Thus, a barrier layer and a well layer having a high carrier concentration and high mobility can be obtained.

そして、高濃度の不純物領域である第2層BLH及び第4層WLH中の不純物から生じるキャリアによって、障壁層BL及び井戸層WLに生じる内部電界を効率的に抑制できる。これにより、発光効率を向上でき、光出力を向上できる。   The internal electric field generated in the barrier layer BL and the well layer WL can be efficiently suppressed by the carriers generated from the impurities in the second layer BLH and the fourth layer WLH which are high concentration impurity regions. Thereby, luminous efficiency can be improved and light output can be improved.

上記のように、本実施形態に係る半導体発光素子110においては、障壁層BLと井戸層WLとが、高濃度で不純物を含む第2層BLH及び第4層WLHをそれぞれ含むことで、電界を抑制し、さらに、第2層BLH及び第4層WLHが、それぞれ不純物の低濃度が低い第1層BLL及び第3層WLLの後に形成される構成によって、高い結晶性を維持する。これにより、駆動電圧を低減しつつ発光効率を向上できる。   As described above, in the semiconductor light emitting device 110 according to the present embodiment, the barrier layer BL and the well layer WL each include the second layer BLH and the fourth layer WLH containing impurities at a high concentration, thereby generating an electric field. In addition, the second layer BLH and the fourth layer WLH maintain high crystallinity by a structure in which the low concentration of impurities is formed after the first layer BLL and the third layer WLL, respectively. Thereby, the light emission efficiency can be improved while reducing the drive voltage.

半導体発光素子110において、第2層BLHにおけるn型不純物の濃度は、5×1017cm−3〜1×1019cm−3が好ましく、1×1018cm−3〜5×1018cm−3がさらに好ましい。すなわち、n型不純物の濃度を、5×1017cm−3〜1×1019cm−3とすることで、発光効率が向上し、駆動電圧が低減できる。n型不純物の濃度が、5×1017cm−3よりも低い、または、1×1019cm−3よりも高い場合は、発光効率の向上が不十分であるか、または、駆動電圧の低減が不十分となる。 In the semiconductor light emitting device 110, the concentration of the n-type impurity in the second layer BLH is preferably 5 × 10 17 cm −3 to 1 × 10 19 cm −3 , and 1 × 10 18 cm −3 to 5 × 10 18 cm −. 3 is more preferable. That is, by setting the concentration of the n-type impurity to 5 × 10 17 cm −3 to 1 × 10 19 cm −3 , the light emission efficiency can be improved and the driving voltage can be reduced. When the concentration of the n-type impurity is lower than 5 × 10 17 cm −3 or higher than 1 × 10 19 cm −3 , the luminous efficiency is not sufficiently improved, or the driving voltage is reduced. Is insufficient.

そして、第4層WLHにおけるn型不純物の濃度は、5×1017cm−3〜1×1019cm−3が好ましく、1×1018cm−3〜5×1018cm−3がさらに好ましい。第4層WLHにおけるn型不純物の濃度を、5×1017cm−3〜1×1019cm−3とすることで、発光効率が向上し、駆動電圧が低減できる。特に、第4層WLHにおけるn型不純物の濃度を、1×1018cm−3〜5×1018cm−3にすることで、発光効率が最も向上し、駆動電圧が最も低減できる。n型不純物の濃度が、5×1017cm−3よりも低い、または、1×1019cm−3よりも高い場合は、発光効率の向上が不十分であるか、または、駆動電圧の低減が不十分となる。 The concentration of the n-type impurity in the fourth layer WLH is preferably 5 × 10 17 cm −3 to 1 × 10 19 cm −3, more preferably 1 × 10 18 cm −3 to 5 × 10 18 cm −3. . By setting the concentration of the n-type impurity in the fourth layer WLH to 5 × 10 17 cm −3 to 1 × 10 19 cm −3 , the light emission efficiency can be improved and the driving voltage can be reduced. In particular, by setting the concentration of the n-type impurity in the fourth layer WLH to 1 × 10 18 cm −3 to 5 × 10 18 cm −3 , the light emission efficiency can be improved most and the drive voltage can be reduced most. When the concentration of the n-type impurity is lower than 5 × 10 17 cm −3 or higher than 1 × 10 19 cm −3 , the luminous efficiency is not sufficiently improved, or the driving voltage is reduced. Is insufficient.

また、第2層BLHの厚さは、単原子層の厚さ以上であり、第1層BLLの厚さ以下とすることが望ましい。なお、単原子層の厚さは、約0.25nmである。第2層BLHの厚さが、単原子層の厚さよりも薄い場合は、不純物の導入の効果が低く、例えば駆動電圧の低下や発光効率の向上の効果が小さい。一方、第2層BLHの厚さが第1層BLLの厚さを超えると、結晶性が低くなり、例えば発光効率が低下する。   Further, the thickness of the second layer BLH is preferably not less than the thickness of the monoatomic layer and not more than the thickness of the first layer BLL. The thickness of the monoatomic layer is about 0.25 nm. When the thickness of the second layer BLH is thinner than the thickness of the monoatomic layer, the effect of introducing impurities is low, for example, the effect of lowering the driving voltage and improving the light emission efficiency is small. On the other hand, when the thickness of the second layer BLH exceeds the thickness of the first layer BLL, the crystallinity is lowered, for example, the light emission efficiency is lowered.

また、第4層WLHの厚さは、単原子層の厚さ以上であり、第3層WLLの厚さ以下であることが望ましい。第4層WLHの厚さが、単原子層の厚さよりも薄い場合は、不純物の導入の効果が低く、例えば駆動電圧の低下や発光効率の向上の効果が小さい。一方、第4層WLHの厚さが第3層WLLの厚さを超えると、結晶性が低くなり、例えば発光効率が低下する。   In addition, the thickness of the fourth layer WLH is preferably greater than or equal to the thickness of the monoatomic layer and less than or equal to the thickness of the third layer WLL. When the thickness of the fourth layer WLH is thinner than the thickness of the monoatomic layer, the effect of introducing impurities is low, for example, the effect of lowering the driving voltage and improving the light emission efficiency is small. On the other hand, when the thickness of the fourth layer WLH exceeds the thickness of the third layer WLL, the crystallinity is lowered, for example, the light emission efficiency is lowered.

また、第2層BLH及び第4層WLHに含まれるn型不純物は、Si、Ge、Sn及びTeよりなる群から選択された少なくともいずれかであることが望ましい。これらの材料を用いることで、良好な結晶性を維持しつつ、特性の向上のためのキャリアを効率的に生成でき、駆動電圧の低減と発光効率の向上とが効果的に行われる。   The n-type impurity contained in the second layer BLH and the fourth layer WLH is preferably at least one selected from the group consisting of Si, Ge, Sn, and Te. By using these materials, carriers for improving characteristics can be efficiently generated while maintaining good crystallinity, and driving voltage can be reduced and luminous efficiency can be effectively improved.

以下、比較例について説明する。
図2(b)に表したように、第1比較例の半導体発光素子191においては、障壁層BL及び井戸層WLには、高濃度で不純物を含む層が設けられていない。
Hereinafter, a comparative example will be described.
As shown in FIG. 2B, in the semiconductor light emitting device 191 of the first comparative example, the barrier layer BL and the well layer WL are not provided with a layer containing impurities at a high concentration.

図2(c)に表したように、第2比較例の半導体発光素子192においては、障壁層BLが、不純物の濃度が高い高濃度障壁層XLHと、不純物の濃度が低い低濃度障壁層XLLと、を有している。そして、高濃度障壁層XLHがp型層50の側に配置され、低濃度障壁層XLLがn型層20の側に配置されている。すなわち、本構成における障壁層BLの構成は、本実施形態に係る半導体発光素子110における障壁層BLに類似している。しかし、半導体発光素子192においては、井戸層WLは高い濃度で不純物を含む層を含んでいない。   As shown in FIG. 2C, in the semiconductor light emitting device 192 of the second comparative example, the barrier layer BL includes a high concentration barrier layer XLH having a high impurity concentration and a low concentration barrier layer XLL having a low impurity concentration. And have. The high concentration barrier layer XLH is disposed on the p-type layer 50 side, and the low concentration barrier layer XLL is disposed on the n-type layer 20 side. That is, the configuration of the barrier layer BL in this configuration is similar to the barrier layer BL in the semiconductor light emitting device 110 according to this embodiment. However, in the semiconductor light emitting device 192, the well layer WL does not include a layer containing impurities at a high concentration.

図2(d)に表したように、第3比較例の半導体発光素子193においては、井戸層WLが、不純物の濃度が高い高濃度井戸層YLHと、不純物の濃度が低い低濃度井戸層YLLと、を有している。そして、高濃度井戸層YLHがp型層50の側に配置され、低濃度井戸層YLLがn型層20の側に配置されている。すなわち、本構成における井戸層WLの構成は、本実施形態に係る半導体発光素子110における井戸層WLに類似している。しかし、半導体発光素子193においては、障壁層BLは高い濃度で不純物を含む層を含んでいない。   As shown in FIG. 2D, in the semiconductor light emitting device 193 of the third comparative example, the well layer WL includes a high concentration well layer YLH having a high impurity concentration and a low concentration well layer YLL having a low impurity concentration. And have. The high concentration well layer YLH is disposed on the p-type layer 50 side, and the low concentration well layer YLL is disposed on the n-type layer 20 side. That is, the configuration of the well layer WL in this configuration is similar to the well layer WL in the semiconductor light emitting device 110 according to the present embodiment. However, in the semiconductor light emitting device 193, the barrier layer BL does not include a layer containing impurities at a high concentration.

図2(e)に表したように、第4比較例の半導体発光素子194においては、障壁層BLが、不純物の濃度が高い高濃度障壁層XLHと、不純物の濃度が低い低濃度障壁層XLLと、を有している。そして、高濃度障壁層XLHがn型層20の側に配置され、低濃度障壁層XLLがp型層50の側に配置されている。この構成においては、高濃度障壁層XLHと低濃度障壁層XLLとの配置が、本実施形態に係る半導体発光素子110における障壁層BLの場合とは逆である。   As shown in FIG. 2E, in the semiconductor light emitting device 194 of the fourth comparative example, the barrier layer BL includes a high concentration barrier layer XLH having a high impurity concentration and a low concentration barrier layer XLL having a low impurity concentration. And have. The high concentration barrier layer XLH is disposed on the n-type layer 20 side, and the low concentration barrier layer XLL is disposed on the p-type layer 50 side. In this configuration, the arrangement of the high concentration barrier layer XLH and the low concentration barrier layer XLL is opposite to that of the barrier layer BL in the semiconductor light emitting device 110 according to the present embodiment.

図2(f)に表したように、第5比較例の半導体発光素子195においては、障壁層BLは、第2比較例における障壁層BLの構成と同じであり、井戸層WLが、高濃度井戸層YLHと低濃度井戸層YLLと、を有している。そして、高濃度井戸層YLHがn型層20の側に配置され、低濃度井戸層YLLがp型層50の側に配置されている。この構成においては、高濃度井戸層YLHと低濃度井戸層YLLとの配置が、本実施形態に係る半導体発光素子110における井戸層WLの場合とは逆である。   As shown in FIG. 2F, in the semiconductor light emitting device 195 of the fifth comparative example, the barrier layer BL has the same configuration as the barrier layer BL in the second comparative example, and the well layer WL has a high concentration. A well layer YLH and a low concentration well layer YLL are included. The high concentration well layer YLH is disposed on the n-type layer 20 side, and the low concentration well layer YLL is disposed on the p-type layer 50 side. In this configuration, the arrangement of the high concentration well layer YLH and the low concentration well layer YLL is opposite to the case of the well layer WL in the semiconductor light emitting device 110 according to the present embodiment.

図3(a)に表したように、第6比較例の半導体発光素子196においては、障壁層BLが、2つの高濃度障壁層XLHと、低濃度障壁層XLLと、を有している。そして、高濃度障壁層XLHがn型層20の側とp型層50の側とに配置され、その間に低濃度障壁層XLLが配置されている。   As shown in FIG. 3A, in the semiconductor light emitting device 196 of the sixth comparative example, the barrier layer BL includes two high concentration barrier layers XLH and a low concentration barrier layer XLL. The high concentration barrier layer XLH is disposed on the n-type layer 20 side and the p-type layer 50 side, and the low concentration barrier layer XLL is disposed therebetween.

図3(b)に表したように、第7比較例の半導体発光素子197においては、障壁層BLが、高濃度障壁層XLHと低濃度障壁層XLLとを有し、高濃度障壁層XLHがn型層20の側に配置され、低濃度障壁層XLLがp型層50の側に配置されている。そして、井戸層WLが、高濃度井戸層YLHと低濃度井戸層YLLとを有し、高濃度井戸層YLHがn型層20の側に配置され、低濃度井戸層YLLがp型層50の側に配置されている。すなわち、障壁層BL及び井戸層WLにおける高濃度の不純物層の配置が、本実施形態に係る半導体発光素子110とは逆である。   As shown in FIG. 3B, in the semiconductor light emitting device 197 of the seventh comparative example, the barrier layer BL has the high concentration barrier layer XLH and the low concentration barrier layer XLL, and the high concentration barrier layer XLH is The low concentration barrier layer XLL is arranged on the n-type layer 20 side, and is arranged on the p-type layer 50 side. The well layer WL includes a high-concentration well layer YLH and a low-concentration well layer YLL, the high-concentration well layer YLH is disposed on the n-type layer 20 side, and the low-concentration well layer YLL is the p-type layer 50. Arranged on the side. That is, the arrangement of the high-concentration impurity layer in the barrier layer BL and the well layer WL is opposite to that of the semiconductor light emitting device 110 according to the present embodiment.

次に、半導体発光素子110、及び、第1〜第7比較例の半導体発光素子191〜197を実際に作製し、特性を評価した結果について説明する。   Next, the results of actually fabricating the semiconductor light emitting device 110 and the semiconductor light emitting devices 191 to 197 of the first to seventh comparative examples and evaluating the characteristics will be described.

図4は、本発明の実施形態に係る半導体発光素子及び比較例の半導体発光素子の特性を例示するグラフ図である。
すなわち、図4(a)は、20mAの電流を通電した際の発光効率を示している。縦軸は、第1比較例の半導体発光素子191の発光効率を1とした規格化発光効率Irである。発光効率の測定においては、各半導体発光素子に、20mAの電流を通電し、その時の発光出力を測定し、その結果から発光効率を求めた。また、図4(b)は、20mAの電流が流れるときの駆動電圧を示している。縦軸は、第1比較例の半導体発光素子191の駆動電圧を1としたときの規格化駆動電圧Vrである。
FIG. 4 is a graph illustrating characteristics of the semiconductor light emitting device according to the embodiment of the invention and the semiconductor light emitting device of the comparative example.
That is, FIG. 4A shows the light emission efficiency when a current of 20 mA is applied. The vertical axis represents the normalized light emission efficiency Ir with the light emission efficiency of the semiconductor light emitting device 191 of the first comparative example as 1. In the measurement of luminous efficiency, a current of 20 mA was passed through each semiconductor light emitting element, the luminous output at that time was measured, and the luminous efficiency was determined from the result. FIG. 4B shows a driving voltage when a current of 20 mA flows. The vertical axis represents the normalized drive voltage Vr when the drive voltage of the semiconductor light emitting device 191 of the first comparative example is 1.

図4(a)に表したように、本実施形態に係る半導体発光素子110における発光効率(規格化発光効率Ir)は、比較例のいずれよりも高い。
また、図4(b)に表したように、本実施形態に係る半導体発光素子110における駆動電圧(規格化駆動電圧Vr)は、比較例のいずれよりも低い。
このように、本実施形態に係る半導体発光素子110は、発光効率及び駆動電圧の両方の特性を大幅に改善する。
As shown in FIG. 4A, the light emission efficiency (standardized light emission efficiency Ir) in the semiconductor light emitting device 110 according to this embodiment is higher than any of the comparative examples.
As shown in FIG. 4B, the drive voltage (standardized drive voltage Vr) in the semiconductor light emitting device 110 according to the present embodiment is lower than any of the comparative examples.
As described above, the semiconductor light emitting device 110 according to the present embodiment greatly improves both the characteristics of the light emission efficiency and the driving voltage.

一方、第1比較例の半導体発光素子191においては、発光効率が低く、駆動電圧が高い。これは、障壁層BL及び井戸層WLに高濃度の不純物層が設けられていないため、障壁層BL及び井戸層WLにおける結晶構造の対称性や結晶歪みにより分極電界が発生し、これにより障壁層BL及び井戸層WLのエネルギーバンドが傾斜し、これにより、発光部40内のキャリアが空間的に分離することが原因である。   On the other hand, in the semiconductor light emitting device 191 of the first comparative example, the light emission efficiency is low and the drive voltage is high. This is because a high-concentration impurity layer is not provided in the barrier layer BL and the well layer WL, so that a polarization electric field is generated due to the symmetry of the crystal structure and crystal distortion in the barrier layer BL and the well layer WL. This is because the energy bands of the BL and the well layer WL are inclined, and this causes the carriers in the light emitting unit 40 to be spatially separated.

一方、障壁層BLが本実施形態と類似の構成である第2比較例の半導体発光素子192においては、発光効率は、第1比較例の半導体発光素子191よりも向上しているが、その程度は低い。また、駆動電圧はほとんど変化していない。   On the other hand, in the semiconductor light emitting device 192 of the second comparative example in which the barrier layer BL has a configuration similar to that of the present embodiment, the light emission efficiency is improved as compared with the semiconductor light emitting device 191 of the first comparative example. Is low. Moreover, the drive voltage has hardly changed.

また、井戸層WLが本実施形態と類似の構成である第3比較例の半導体発光素子193においては、駆動電圧は、第1比較例の半導体発光素子191よりも向上しているが、その程度は低い。また、発光効率はほとんど変化していない。   Further, in the semiconductor light emitting device 193 of the third comparative example in which the well layer WL has a configuration similar to that of the present embodiment, the drive voltage is improved compared to the semiconductor light emitting device 191 of the first comparative example, but to that extent Is low. Moreover, the luminous efficiency has hardly changed.

このように、障壁層BL及び井戸層WLの一方にのみ、高濃度の不純物層を設ける方法では、発光効率と駆動電圧の両方の特性を改善することが難しい。   As described above, it is difficult to improve the characteristics of both the light emission efficiency and the driving voltage in the method of providing the high-concentration impurity layer only in one of the barrier layer BL and the well layer WL.

第4比較例の半導体発光素子194においても、第1比較例よりは特性が改善するが、本実施形態と比較すると、発光効率が低く、駆動電圧が高い。これは、半導体発光素子194においては、高濃度障壁層XLHと低濃度障壁層XLLとの配置が半導体発光素子110とは逆であり、不純物濃度の制御性が低く、結晶性が悪いことに起因する。すなわち、反応炉内に残留した残留不純物によって、低濃度障壁層XLLにも不純物が過剰に含まれやすく、高濃度障壁層XLHと低濃度障壁層XLLとの界面の不純物濃度の急峻性が低下、つまり、障壁層BLの結晶性が劣化し易い。このため、本実施形態に比べ、結晶性が悪く、電界の抑制効果が小さいため、出力が低く、駆動電圧が高くなったものと考えられる。   Also in the semiconductor light emitting device 194 of the fourth comparative example, the characteristics are improved as compared with the first comparative example, but the light emission efficiency is low and the drive voltage is high compared to the present embodiment. This is because, in the semiconductor light emitting device 194, the arrangement of the high concentration barrier layer XLH and the low concentration barrier layer XLL is opposite to that of the semiconductor light emitting device 110, and the controllability of the impurity concentration is low and the crystallinity is poor. To do. That is, due to residual impurities remaining in the reactor, the low concentration barrier layer XLL is likely to contain excessive impurities, and the steepness of the impurity concentration at the interface between the high concentration barrier layer XLH and the low concentration barrier layer XLL is reduced. That is, the crystallinity of the barrier layer BL is likely to deteriorate. For this reason, compared with this embodiment, since crystallinity is bad and the electric field suppression effect is small, it is considered that the output is low and the drive voltage is high.

第5比較例の半導体発光素子195においても、第1比較例よりは特性が改善するが、本実施形態と比較すると、発光効率が低く、駆動電圧が高い。これは、半導体発光素子195においては、井戸層WLの高濃度井戸層YLHと低濃度井戸層YLLの配置が、半導体発光素子110の場合と逆であることが原因している。すなわち、第5比較例の構成においては、井戸層WLの形成における、高濃度井戸層YLHから低濃度井戸層YLLへの切り替えの際に、不純物濃度を急峻に変化させることが実際上困難であり、不純物が低濃度井戸層YLLにも含まれ易く、このため、結晶性が劣化し易い。このため、半導体発光素子110に比べて、結晶性が悪いため、発光効率が低く、駆動電圧が高くなったものと考えられる。   Also in the semiconductor light emitting device 195 of the fifth comparative example, the characteristics are improved as compared with the first comparative example, but the light emission efficiency is low and the drive voltage is high compared to the present embodiment. This is because, in the semiconductor light emitting device 195, the arrangement of the high concentration well layer YLH and the low concentration well layer YLL in the well layer WL is opposite to that in the semiconductor light emitting device 110. That is, in the configuration of the fifth comparative example, it is actually difficult to change the impurity concentration sharply when switching from the high concentration well layer YLH to the low concentration well layer YLL in the formation of the well layer WL. Impurities are easily contained in the low-concentration well layer YLL, and the crystallinity is likely to deteriorate. For this reason, it is considered that the light emitting efficiency is low and the driving voltage is high because the crystallinity is poor as compared with the semiconductor light emitting device 110.

第6比較例の半導体発光素子196においては、第1比較例に対して発光効率が若干向上したが駆動電圧はほとんど変化しない。これは、半導体発光素子196においては、2つの高濃度障壁層XLHの間に低濃度障壁層XLLが配置されており、第4比較例と同様に、本実施形態に比べて結晶性が悪く、電界の抑制効果が小さいことが原因と考えられる。   In the semiconductor light emitting device 196 of the sixth comparative example, the light emission efficiency is slightly improved compared to the first comparative example, but the drive voltage hardly changes. This is because, in the semiconductor light emitting device 196, the low-concentration barrier layer XLL is disposed between the two high-concentration barrier layers XLH, and similarly to the fourth comparative example, the crystallinity is poor compared to the present embodiment. The cause is considered to be that the effect of suppressing the electric field is small.

第7比較例の半導体発光素子197においては、第1比較例に対して駆動電圧が若干低下するが、発光効率はほとんど変化しない。これは、半導体発光素子197においては、障壁層BLの高濃度障壁層XLHと低濃度障壁層XLLの配置、並びに、井戸層WLの高濃度井戸層YLHと低濃度井戸層YLLの配置、が、半導体発光素子110の場合と逆であり、本実施形態に比べて結晶性が悪いことが原因と考えられる。   In the semiconductor light emitting device 197 of the seventh comparative example, the driving voltage is slightly lowered as compared with the first comparative example, but the light emission efficiency hardly changes. In the semiconductor light emitting device 197, the arrangement of the high concentration barrier layer XLH and the low concentration barrier layer XLL of the barrier layer BL and the arrangement of the high concentration well layer YLH and the low concentration well layer YLL of the well layer WL are as follows: This is the reverse of the case of the semiconductor light emitting device 110, and is considered to be caused by poor crystallinity compared to the present embodiment.

このように、本実施形態に係る半導体発光素子110は、上記の比較例のいずれよりも、発光効率及び駆動電圧の両方において高い特性を発揮する。   Thus, the semiconductor light emitting device 110 according to this embodiment exhibits higher characteristics in both light emission efficiency and driving voltage than any of the above comparative examples.

なお、図3(c)に表したように、第8比較例の半導体発光素子198においては、障壁層BLの全ての部分が、高濃度で不純物を含む高濃度障壁層XLHである。高濃度障壁層XLHにおけるSi濃度は、例えば5×1017cm−3〜1×1019cm−3である。この構成の場合には、第1比較例の半導体発光素子191よりも駆動電圧は低減できるが、結晶性が悪化し、効率が低い。 As shown in FIG. 3C, in the semiconductor light emitting device 198 of the eighth comparative example, all portions of the barrier layer BL are the high-concentration barrier layer XLH containing impurities at a high concentration. The Si concentration in the high concentration barrier layer XLH is, for example, 5 × 10 17 cm −3 to 1 × 10 19 cm −3 . In the case of this configuration, the drive voltage can be reduced as compared with the semiconductor light emitting device 191 of the first comparative example, but the crystallinity deteriorates and the efficiency is low.

また、図3(d)に表したように、第9比較例の半導体発光素子199においては、井戸層WLの全ての部分が、高濃度で不純物を含む高濃度井戸層YLHである。高濃度井戸層YLHにおけるSi濃度は、例えば5×1017cm−3〜1×1019cm−3である。この構成の場合にも、第1比較例の半導体発光素子191よりも駆動電圧は低減できるが、結晶性が著しく悪化し、効率が低い。 As shown in FIG. 3D, in the semiconductor light emitting device 199 of the ninth comparative example, all portions of the well layer WL are high-concentration well layers YLH containing impurities at a high concentration. The Si concentration in the high concentration well layer YLH is, for example, 5 × 10 17 cm −3 to 1 × 10 19 cm −3 . Even in this configuration, the driving voltage can be reduced as compared with the semiconductor light emitting device 191 of the first comparative example, but the crystallinity is remarkably deteriorated and the efficiency is low.

なお、図3(e)に表したように、第10比較例の半導体発光素子200においては、第3及び第4比較例の両方の構成が適用されている。この場合にも、高濃度障壁層XLHと低濃度障壁層XLLとの配置が、本実施形態に係る半導体発光素子110における障壁層BLの場合とは逆であるため、不純物濃度の制御性が悪く、結晶性が低下するため、やはり効率が低い。   As shown in FIG. 3E, in the semiconductor light emitting element 200 of the tenth comparative example, the configurations of both the third and fourth comparative examples are applied. Also in this case, since the arrangement of the high-concentration barrier layer XLH and the low-concentration barrier layer XLL is opposite to that of the barrier layer BL in the semiconductor light emitting device 110 according to the present embodiment, the controllability of the impurity concentration is poor. Since the crystallinity is lowered, the efficiency is still low.

このように、本実施形態に係る半導体発光素子110においては、高濃度で不純物を含む第2層BLHと第4層WLHとを、p型層50の側に配置することで、比較例のいずれよりも駆動電圧を低減でき、比較例のいずれよりも発光効率を向上することができる。   As described above, in the semiconductor light emitting device 110 according to the present embodiment, the second layer BLH and the fourth layer WLH containing impurities at a high concentration are arranged on the p-type layer 50 side, so that any of the comparative examples can be obtained. As a result, the driving voltage can be reduced more and the luminous efficiency can be improved than any of the comparative examples.

図5〜図9は、本発明の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図5に表したように本実施形態に係る別の半導体発光素子111においては、p型層50に最も近い最終障壁層BLZには、第1層BLLと第2層BLHとの積層構造が設けられておらず、最終障壁層BLZの全体は、不純物濃度が低い層(例えばアンドープ層)である。それ以外は、半導体発光素子110と同様である。
5 to 9 are schematic cross-sectional views illustrating the configuration of another semiconductor light emitting element according to the embodiment of the invention.
As shown in FIG. 5, in another semiconductor light emitting device 111 according to this embodiment, the final barrier layer BLZ closest to the p-type layer 50 is provided with a stacked structure of the first layer BLL and the second layer BLH. The entire final barrier layer BLZ is a layer having a low impurity concentration (for example, an undoped layer). The rest is the same as the semiconductor light emitting device 110.

このように、第1層BLLと第2層BLHとの組み合わせは、障壁層BLの全てに設けられなくても良く、一部の障壁層BLに設けるだけでも、上記で説明した駆動電圧の低下と効率の向上の効果がある。   As described above, the combination of the first layer BLL and the second layer BLH does not have to be provided in all of the barrier layers BL. And has the effect of improving efficiency.

図6に表したように、本実施形態に係る別の半導体発光素子112においては、n型層20に近い障壁層BLと井戸層WLとは、それぞれ、第1層BLLと第2層BLHとの組み合わせ、及び、第3層WLLと第4層WLHとの組み合わせ、を有しているが、p型層50に近い障壁層BLと井戸層WLとには、高濃度で不純物を含有する層が設けられていない。   As shown in FIG. 6, in another semiconductor light emitting device 112 according to this embodiment, the barrier layer BL and the well layer WL close to the n-type layer 20 include the first layer BLL and the second layer BLH, respectively. And a combination of the third layer WLL and the fourth layer WLH, the barrier layer BL and the well layer WL close to the p-type layer 50 are layers containing impurities at a high concentration. Is not provided.

図7に表したように、本実施形態に係る別の半導体発光素子113においては、p型層50に近い障壁層BLと井戸層WLとは、それぞれ、第1層BLLと第2層BLHとの組み合わせ、及び、第3層WLLと第4層WLHとの組み合わせ、を有しているが、n型層20に近い障壁層BLと井戸層WLとには、高濃度で不純物を含有する層が設けられていない。   As shown in FIG. 7, in another semiconductor light emitting device 113 according to the present embodiment, the barrier layer BL and the well layer WL close to the p-type layer 50 include the first layer BLL and the second layer BLH, respectively. And a combination of the third layer WLL and the fourth layer WLH, but the barrier layer BL and the well layer WL close to the n-type layer 20 are layers containing impurities at a high concentration. Is not provided.

図8に表したように、本実施形態に係る別の半導体発光素子114においては、n型層20及びp型層50に近い障壁層BLと井戸層WLとは、それぞれ、第1層BLLと第2層BLHとの組み合わせ、及び、第3層WLLと第4層WLHとの組み合わせ、を有しているが、n型層20とp型層50との間の中間部においては、障壁層BLと井戸層WLとには、高濃度で不純物を含有する層が設けられていない。   As shown in FIG. 8, in another semiconductor light emitting device 114 according to the present embodiment, the barrier layer BL and the well layer WL close to the n-type layer 20 and the p-type layer 50 are the first layer BLL and the first layer BLL, respectively. A combination of the second layer BLH and a combination of the third layer WLL and the fourth layer WLH are provided, but in the intermediate portion between the n-type layer 20 and the p-type layer 50, the barrier layer The BL and the well layer WL are not provided with a layer containing impurities at a high concentration.

図9に表したように、本実施形態に係る別の半導体発光素子115においては、n型層20とp型層50との間の中間部においては、障壁層BLと井戸層WLとは、それぞれ、第1層BLLと第2層BLHとの組み合わせ、及び、第3層WLLと第4層WLHとの組み合わせ、を有しているが、n型層20及びp型層50に近い障壁層BLと井戸層WLとには、高濃度で不純物を含有する層が設けられていない。   As shown in FIG. 9, in another semiconductor light emitting device 115 according to the present embodiment, the barrier layer BL and the well layer WL are in the middle portion between the n-type layer 20 and the p-type layer 50. Each of the barrier layers close to the n-type layer 20 and the p-type layer 50 has a combination of the first layer BLL and the second layer BLH and a combination of the third layer WLL and the fourth layer WLH. The BL and the well layer WL are not provided with a layer containing impurities at a high concentration.

このように、障壁層BLの少なくともいずれかが、n型層20の側に設けられ、n型不純物の濃度が低い第1層BLLと、p型層50の側に設けられ、第1層BLLよりも高い濃度でn型不純物を含む第2層BLHと、を含み、井戸層WLの少なくともいずれかが、n型層20の側に設けられ、n型不純物の低濃度が低い第3層WLLと、p型層50の側に設けられ、第3層WLLよりも高い濃度でn型不純物を含む第4層WLHと、を含めば良い。   In this way, at least one of the barrier layers BL is provided on the n-type layer 20 side, provided on the first layer BLL having a low n-type impurity concentration, and on the p-type layer 50 side, and the first layer BLL. A third layer WLL including a second layer BLH containing n-type impurities at a higher concentration, wherein at least one of the well layers WL is provided on the n-type layer 20 side, and the low concentration of n-type impurities is low. And a fourth layer WLH provided on the p-type layer 50 side and containing an n-type impurity at a higher concentration than the third layer WLL.

なお、複数の障壁層BLのうちの一部が第1層BLLと第2層BLHとを有し、複数の井戸層WLのうちの一部が第3層WLLと第4層WLHとを有する場合において、第1層BLLと第2層BLHとを有する障壁層BLと、第3層WLLと第4層WLHとを有する井戸層WLとは、互いに隣接していることが望ましい。これにより、高濃度の不純物領域である第2層BLH及び第4層WLH中の不純物から生じるキャリアによって、より効率的に障壁層BLおよび井戸層WLに生じる内部電界を抑制できる。   Part of the plurality of barrier layers BL includes the first layer BLL and the second layer BLH, and part of the plurality of well layers WL includes the third layer WLL and the fourth layer WLH. In some cases, it is desirable that the barrier layer BL having the first layer BLL and the second layer BLH and the well layer WL having the third layer WLL and the fourth layer WLH are adjacent to each other. Thereby, the internal electric field generated in the barrier layer BL and the well layer WL can be more efficiently suppressed by the carriers generated from the impurities in the second layer BLH and the fourth layer WLH which are high concentration impurity regions.

以下、本発明の実施形態に係る半導体発光素子の製造方法について説明する。
本製造方法は、窒化物半導体からなるn型層20と、窒化物半導体からなるp型層50と、n型層20とp型層50との間に設けられ、窒化物半導体からなる複数の障壁層BLと、複数の障壁層BLのそれぞれの間に設けられ、障壁層BLにおけるバンドギャップエネルギーよりも小さいバンドギャップエネルギーを有し、窒化物半導体からなる井戸層WLと、を有する発光部40と、を有し、障壁層BLの少なくともいずれかは、n型層20の側に設けられ、n型不純物の濃度が低い第1層BLLと、p型層50の側に設けられ、第1層BLLよりも高い濃度でn型不純物を含む第2層BLHと、を含み、井戸層WLの少なくともいずれかは、n型層20の側に設けられ、n型不純物の濃度が低い第3層WLLと、p型層50の側に設けられ、第3層WLLよりも高い濃度でn型不純物を含む第4層WLHと、を含む半導体発光素子の製造方法である。
Hereinafter, a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention will be described.
The present manufacturing method includes an n-type layer 20 made of a nitride semiconductor, a p-type layer 50 made of a nitride semiconductor, and a plurality of nitride semiconductors provided between the n-type layer 20 and the p-type layer 50. A light emitting unit 40 having a barrier layer BL and a well layer WL provided between each of the plurality of barrier layers BL and having a band gap energy smaller than that of the barrier layer BL and made of a nitride semiconductor. And at least one of the barrier layers BL is provided on the n-type layer 20 side, provided on the first layer BLL having a low n-type impurity concentration, and on the p-type layer 50 side, A second layer BLH containing an n-type impurity at a higher concentration than the layer BLL, and at least one of the well layers WL is provided on the n-type layer 20 side, and a third layer having a low concentration of the n-type impurity WLL and provided on the p-type layer 50 side A method for manufacturing a semiconductor light emitting device and a fourth layer WLH containing n-type impurity at a higher concentration than the third layer WLL.

図10は、本発明の実施形態に係る半導体発光素子の製造方法を例示するフローチャート図である。
図10に表したように、本実施形態に係る半導体発光素子の製造方法においては、n型層20が形成された基板が配置された処理室内に、III族原料ガスとV族原料ガスとを導入して、n型層20の上に、第1層BLLを形成した後、n型不純物となる不純物原料ガスをさらに導入して第2層BLHを形成する(ステップS110)。
FIG. 10 is a flowchart illustrating the method for manufacturing a semiconductor light emitting element according to the embodiment of the invention.
As shown in FIG. 10, in the method for manufacturing a semiconductor light emitting device according to this embodiment, a group III source gas and a group V source gas are placed in a processing chamber in which a substrate on which an n-type layer 20 is formed is disposed. After introducing and forming the first layer BLL on the n-type layer 20, an impurity source gas that becomes an n-type impurity is further introduced to form the second layer BLH (step S110).

V族原料ガスには、例えばNHガスを用いることができる。
一方、III族原料ガスには、例えば、Ga(CHやGa(C等の有機金属Ga化合物ガス、並びに、In(CHやIn(C等の有機金属In化合物ガスを用いることができる。また、障壁層BL及び井戸層WLがAlを含む場合には、III族原料として、例えば、Al(CHやAl(C等の有機金属Al化合物ガスを用いることができる。
また、n型不純物としてSiを用いる場合には、不純物原料ガスとして、SiH等のSi水素化物ガスやSi(CH等の有機Si化合物ガスを用いることができる。
For example, NH 3 gas can be used as the group V source gas.
On the other hand, group III source gases include, for example, organometallic Ga compound gases such as Ga (CH 3 ) 3 and Ga (C 2 H 5 ) 3 , and In (CH 3 ) 3 and In (C 2 H 5 ). An organometallic In compound gas such as 3 can be used. Further, when the barrier layer BL and the well layer WL contain Al, an organometallic Al compound gas such as Al (CH 3 ) 3 or Al (C 2 H 5 ) 3 is used as the group III material. it can.
In the case of using Si as the n-type impurity may be used as the impurity material gas, an organic Si compound gas such as SiH 4 or the like of Si hydride gas or Si (CH 3) 4.

そして、III族原料ガス及び不純物原料ガスの供給を停止する(ステップS120)。すなわち、例えば、V族原料ガスだけが導入される期間を設ける。この期間の間に、処理室内に残留した不純物ガスが十分に排気されて除去される。これにより、処理室内には実質的に不純物ガスが残留しない状態が形成される。なお、障壁層BL及び井戸層WLの成長条件(例えば成長温度など)が異なる場合には、このステップS120中に成長条件の変更を行うことが可能である。   Then, the supply of the group III source gas and the impurity source gas is stopped (step S120). That is, for example, a period in which only the group V source gas is introduced is provided. During this period, the impurity gas remaining in the processing chamber is sufficiently exhausted and removed. As a result, a state is formed in which substantially no impurity gas remains in the processing chamber. When the growth conditions (for example, the growth temperature) of the barrier layer BL and the well layer WL are different, the growth conditions can be changed during this step S120.

この後、III族原料ガスとV族原料ガスとを導入して、障壁層BLの上に、第3層WLLを形成した後、n型不純物となる不純物ガスをさらに導入して第4層WLHを形成する(ステップS130)。
なお、ステップS130においては、ステップS110よりも、例えばInの比率を高める。これにより、井戸層WL(第3層WLL及び第4層WLH)におけるバンドギャップエネルギーを、障壁層BLよりも小さくできる。
Thereafter, a group III source gas and a group V source gas are introduced to form a third layer WLL on the barrier layer BL, and then an impurity gas that becomes an n-type impurity is further introduced to form a fourth layer WLH. Is formed (step S130).
In step S130, for example, the In ratio is increased compared to step S110. Thereby, the band gap energy in the well layer WL (the third layer WLL and the fourth layer WLH) can be made smaller than that in the barrier layer BL.

その後、III族原料ガス及び不純物原料ガスの供給を停止する(ステップS140)。
井戸層WLと障壁層BLの成長条件(例えば成長温度など)が異なる場合には、このステップS140中に成長条件の変更を行うことが可能である。
Thereafter, the supply of the group III source gas and the impurity source gas is stopped (step S140).
When the growth conditions (for example, the growth temperature) of the well layer WL and the barrier layer BL are different, the growth conditions can be changed during this step S140.

以下、上記のステップS110〜ステップS140を繰り返す。
ただし、2回目以降のステップS110においては、第1層BLLの形成は、第4層WLHの上に行われる。
Thereafter, the above steps S110 to S140 are repeated.
However, in the second and subsequent steps S110, the formation of the first layer BLL is performed on the fourth layer WLH.

この繰り返しにおいては、例えば、最初に整数jを「0」に設定し(ステップS101)、その後、整数jを、前の整数jに1加算したものとし(ステップS102)、上記のステップS110〜ステップS140を実施する。その後、整数jと、予め定めた積層数nと、の比較を行い(ステップS150)、整数jが積層数nに満たない場合は、ステップS110(この場合はステップ102)に戻り、上記の処理を繰り返す。   In this repetition, for example, the integer j is first set to “0” (step S101), and then the integer j is added to the previous integer j by 1 (step S102). S140 is performed. Thereafter, the integer j is compared with the predetermined number n of layers (step S150). If the integer j is less than the number n of layers, the process returns to step S110 (in this case, step 102), and the above processing is performed. repeat.

そして、整数jが積層数nに達したら、障壁層BL(最終障壁層BLZ)を形成する(ステップS110a)。すなわち、III族原料ガスとV族原料ガスとを導入して、第4層WLHの上に、第1層BLLを形成した後、n型不純物となる不純物原料ガスをさらに導入して第2層BLHを形成する。   When the integer j reaches the number n of layers, the barrier layer BL (final barrier layer BLZ) is formed (step S110a). That is, a group III source gas and a group V source gas are introduced to form the first layer BLL on the fourth layer WLH, and then an impurity source gas that becomes an n-type impurity is further introduced to form the second layer. BLH is formed.

なお、ステップS110aにおいて、III族原料ガスとV族原料ガスとを導入して、第4層WLHの上に第1層BLLを形成し、n型不純物となる不純物原料ガスを導入しなければ、最終障壁層BLZは、不純物濃度が低い層だけを有する構成となり、図5に例示した半導体発光素子111が作成できる。   In Step S110a, a group III source gas and a group V source gas are introduced to form the first layer BLL on the fourth layer WLH, and an impurity source gas that becomes an n-type impurity is not introduced. The final barrier layer BLZ includes only a layer having a low impurity concentration, and the semiconductor light emitting device 111 illustrated in FIG. 5 can be formed.

また、図10に例示したフローチャートにおいて、ステップS110〜ステップS140の繰り返しの一部において、第2層BLH及び第4層WLHの形成のいずれかを省略することができる。これにより、例えば、図6〜図9に例示した半導体発光素子112〜115及びそれらの変形の半導体発光素子が作製できる。   In the flowchart illustrated in FIG. 10, any of the formation of the second layer BLH and the fourth layer WLH can be omitted in a part of the repetition of Steps S110 to S140. Thereby, for example, the semiconductor light emitting devices 112 to 115 exemplified in FIGS. 6 to 9 and the modified semiconductor light emitting devices can be manufactured.

この後、既に説明したp型層50及び各種の電極の形成、並びに、素子の分断を行い、本実施形態に係る半導体発光素子が製造される。p型不純物原料としてMgを用いる場合には、不純物原料ガスとして、(CMgや(CMg等の有機Mg化合物ガスを用いることができる。 Thereafter, the already described p-type layer 50 and various electrodes are formed, and the device is divided, and the semiconductor light emitting device according to this embodiment is manufactured. When Mg is used as the p-type impurity source, an organic Mg compound gas such as (C 5 H 5 ) 2 Mg or (C 5 H 4 C 2 H 5 ) 2 Mg can be used as the impurity source gas.

このように、本実施形態に係る半導体発光素子の製造方法は、n型層20が形成された基板10が配置された処理室内に、III族原料ガスとV族原料ガスとを導入して第1層BLLを形成した後、n型不純物となる不純物原料ガスをさらに導入して第2層BLHを形成する第1処理と、III族原料ガス及び不純物原料ガスの供給を停止する第2処理と、III族原料ガスとV族原料ガスとを導入して第3層WLLを形成した後、不純物ガスをさらに導入して第4層WLHを形成する第3処理と、III族原料ガス及び不純物原料ガスの供給を停止する第4処理と、を含む。そして、上記の第1処理〜第4処理を繰り返して行うことをさらに含むことができる。   As described above, the method for manufacturing the semiconductor light emitting device according to the present embodiment introduces the group III source gas and the group V source gas into the processing chamber in which the substrate 10 on which the n-type layer 20 is formed is disposed. After forming the first layer BLL, a first process for further introducing an impurity source gas to be an n-type impurity to form the second layer BLH, and a second process for stopping the supply of the group III source gas and the impurity source gas , A third process of introducing a group III source gas and a group V source gas to form a third layer WLL, and further introducing an impurity gas to form a fourth layer WLH; a group III source gas and an impurity source And a fourth process for stopping the supply of gas. And it can further include performing said 1st process-4th process repeatedly.

これにより、上記の第2処理(ステップS120)及び第4処理(ステップS140)において、処理室内に実質的に不純物ガスが残留しない状態が形成され、第1層BLL及び第3層WLL中の不純物濃度を十分に低下させることができ、結果として障壁層BL及び井戸層WLの結晶性を高めることができ、駆動電圧が低く、かつ、発光効率の高い半導体発光素子を製造できる。   Thereby, in the second process (step S120) and the fourth process (step S140), a state in which substantially no impurity gas remains in the process chamber is formed, and the impurities in the first layer BLL and the third layer WLL are formed. The concentration can be sufficiently lowered, and as a result, the crystallinity of the barrier layer BL and the well layer WL can be increased, and a semiconductor light emitting device with low driving voltage and high light emission efficiency can be manufactured.

なお、本実施形態に係る半導体発光素子及びその製造方法は、紫外〜青紫色〜青色〜緑色のLEDの他、紫外〜青紫色〜青色〜緑色のレーザダイオード(LD:Laser Diode)などに応用できる。   The semiconductor light emitting device and the manufacturing method thereof according to this embodiment can be applied to ultraviolet to blue violet to blue to green LEDs, as well as ultraviolet to blue violet to blue to green laser diodes (LDs). .

なお、本願明細書において、「窒化物半導体」は、BInAlGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x,y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むものや、導電型などを制御するために添加される各種のドーパントのいずれかをさらに含むものも、「窒化物半導体」に含まれるものとする。 In the present specification, “nitride semiconductor” means B x In y Al z Ga 1-xyz N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z ≦ 1) Semiconductors having all compositions in which the composition ratios x, y, and z are changed within the respective ranges are included. Furthermore, in the above chemical formula, those further including a group V element other than N (nitrogen) and those further including any of various dopants added for controlling the conductivity type are also referred to as “nitride semiconductors”. Shall be included.

以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子を構成するn型層、p型層、発光部、井戸層、障壁層、第1層〜第4層、電極、基板等、各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, a person skilled in the art has a specific configuration of each element such as an n-type layer, a p-type layer, a light-emitting portion, a well layer, a barrier layer, a first layer to a fourth layer, an electrode, a substrate, etc. Is appropriately included in the scope of the present invention as long as the present invention can be carried out in the same manner and the same effects can be obtained by appropriately selecting from the known ranges.
Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.

その他、本発明の実施の形態として上述した半導体発光素子及びその製造方法を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子及びその製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。   In addition, all semiconductor light-emitting devices and methods for manufacturing the same that can be implemented by those skilled in the art based on the semiconductor light-emitting devices and methods for manufacturing the same described above as embodiments of the present invention are also included in the gist of the present invention. As long as it is included, it belongs to the scope of the present invention.

その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。   In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .

本発明によれば、低駆動電圧で高発光効率の半導体発光素子及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor light-emitting device of a low drive voltage and high luminous efficiency and its manufacturing method are provided.

10…基板、 11…バッファ層、 20…n型層、 21…n型GaN層、 22…n型GaNガイド層、 40…発光部、 50…p型層、 51…p型GaN第1ガイド層、 52…p型AlGaN層(電子オーバーフロー防止層)、 53…p型GaN第2ガイド層、 54…p型GaNコンタクト層、 70…n側電極、 80…p側電極、 110〜115、191〜200…半導体発光素子、 BL…障壁層、 BL〜BLn+1…第1障壁層〜第(n+1)障壁層、 BLH…第2層、 BLL…第1層、 BLZ…最終障壁層、 Ir…規格化発光効率、 Vr…規格化駆動電圧、 WL…井戸層、 WL〜WL…第1井戸層〜第n井戸層、 WLH…第4層、 WLL…第3層、 XLH…高濃度障壁層、 XLL…低濃度障壁層、 YLH…高濃度井戸層、 YLL…低濃度井戸層 DESCRIPTION OF SYMBOLS 10 ... Substrate, 11 ... Buffer layer, 20 ... N-type layer, 21 ... N-type GaN layer, 22 ... N-type GaN guide layer, 40 ... Light emitting part, 50 ... P-type layer, 51 ... P-type GaN first guide layer 52 ... p-type AlGaN layer (electron overflow prevention layer), 53 ... p-type GaN second guide layer, 54 ... p-type GaN contact layer, 70 ... n-side electrode, 80 ... p-side electrode, 110-115, 191 200 ... semiconductor light-emitting element, BL ... barrier layer, BL 1 ~BL n + 1 ... ~ first barrier layer (n + 1) -th barrier layer, BLH ... second layer, BLL ... first layer, BLZ ... final barrier layer, Ir ... standards of emission efficiency, Vr ... normalized driving voltage, WL ... well layers, WL 1 to WL n ... first well layer to the n-well layer, WLH ... fourth layer, WLL ... third layer, XLH ... high concentration barrier layer , XLL ... low concentration barrier layer, YLH ... high Degree well layer, YLL ... low-concentration well layer

Claims (9)

窒化物半導体からなるn型層と、
窒化物半導体からなるp型層と、
前記n型層と前記p型層との間に設けられ、
窒化物半導体からなる複数の障壁層と、
前記複数の障壁層のそれぞれの間に設けられ、前記障壁層におけるバンドギャップエネルギーよりも小さいバンドギャップエネルギーを有し、窒化物半導体からなる井戸層と、
を含積層体と、
を備え、
前記複数の障壁層の少なくともいずれかは、
前記n型層の側に設けられn型不純物の濃度が低い第1層と、
前記p型層の側に設けられ、前記第1層よりも高い濃度でn型不純物を含む第2層と、を含み、
前記井戸層の少なくともいずれかは、
前記n型層の側に設けられn型不純物の濃度が低い第3層と、
前記p型層の側に設けられ、前記第3層よりも高い濃度でn型不純物を含む第4層と、を含み、
前記第1層及び前記第2層は、互いに異なるバンドギャップエネルギーを有していることを特徴とする半導体発光素子。
An n-type layer made of a nitride semiconductor;
A p-type layer made of a nitride semiconductor;
Provided between the n-type layer and the p-type layer;
A plurality of barrier layers made of a nitride semiconductor;
A well layer that is provided between each of the plurality of barrier layers, has a band gap energy smaller than a band gap energy in the barrier layer, and is made of a nitride semiconductor;
And including laminate,
With
At least one of the plurality of barrier layers is
A first layer provided on the n-type layer side and having a low concentration of n-type impurities;
A second layer provided on the p-type layer side and containing an n-type impurity at a higher concentration than the first layer;
At least one of the well layers is
A third layer provided on the n-type layer side and having a low concentration of n-type impurities;
Wherein provided on the side of the p-type layer, seen including a fourth layer comprising a n-type impurity at a higher concentration than said third layer,
The semiconductor light emitting device, wherein the first layer and the second layer have different band gap energies .
前記第1層及び前記第2層の少なくともいずれかのバンドギャップエネルギーは、傾斜状または階段状に変化していることを特徴とする請求項記載の半導体発光素子。 2. The semiconductor light emitting device according to claim 1 , wherein the band gap energy of at least one of the first layer and the second layer changes in an inclined shape or a step shape. 前記第2層及び前記第4層における前記n型不純物濃度は、5×1017cm−3以上であることを特徴とする請求項1または2に記載の半導体発光素子。 Wherein the n-type impurity concentration in the second layer and the fourth layer, the semiconductor light emitting device according to claim 1 or 2, characterized in that 5 × 10 17 cm -3 or more. 前記第2層及び前記第4層における前記n型不純物濃度は、1×1019cm−3以下であることを特徴とする請求項記載の半導体発光素子。 4. The semiconductor light emitting device according to claim 3 , wherein the n-type impurity concentration in the second layer and the fourth layer is 1 × 10 19 cm −3 or less. 5. 前記第1層及び前記第3層における前記n型不純物濃度は、1×1017cm−3以下であることを特徴とする請求項記載の半導体発光素子。 The semiconductor light emitting device according to claim 4 , wherein the n-type impurity concentration in the first layer and the third layer is 1 × 10 17 cm −3 or less. 前記第1層及び前記第3層における前記n型不純物濃度は、1×1016cm−3以上であることを特徴とする請求項記載の半導体発光素子。 The semiconductor light emitting device according to claim 5 , wherein the n-type impurity concentration in the first layer and the third layer is 1 × 10 16 cm −3 or more. 前記第2層の厚さは、前記第1層の厚さ以下であることを特徴とする請求項記載の半導体発光素子。 The semiconductor light emitting device according to claim 6 , wherein a thickness of the second layer is equal to or less than a thickness of the first layer. 前記第4層の厚さは、前記第3層の厚さ以下であることを特徴とする請求項記載の半導体発光素子。 8. The semiconductor light emitting device according to claim 7 , wherein the thickness of the fourth layer is equal to or less than the thickness of the third layer. 前記n型不純物は、Si、Ge、Sn及びTeよりなる群から選択された少なくともいずれかであることを特徴とする請求項記載の半導体発光素子。 9. The semiconductor light emitting device according to claim 8 , wherein the n-type impurity is at least one selected from the group consisting of Si, Ge, Sn, and Te.
JP2012245828A 2012-11-07 2012-11-07 Semiconductor light emitting device Expired - Fee Related JP5458162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012245828A JP5458162B2 (en) 2012-11-07 2012-11-07 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245828A JP5458162B2 (en) 2012-11-07 2012-11-07 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011260695A Division JP5135465B2 (en) 2011-11-29 2011-11-29 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013030816A JP2013030816A (en) 2013-02-07
JP5458162B2 true JP5458162B2 (en) 2014-04-02

Family

ID=47787490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245828A Expired - Fee Related JP5458162B2 (en) 2012-11-07 2012-11-07 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5458162B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277868A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Light emitting element
JP3438648B2 (en) * 1999-05-17 2003-08-18 松下電器産業株式会社 Nitride semiconductor device
JP3460641B2 (en) * 1999-09-28 2003-10-27 日亜化学工業株式会社 Nitride semiconductor device
JP2001267693A (en) * 2000-03-17 2001-09-28 Sanyo Electric Co Ltd Semiconductor laser element
JP2004087908A (en) * 2002-08-28 2004-03-18 Sharp Corp Nitride semiconductor light-emitting element, method for manufacturing the same, and optical device mounting the same
TWI234915B (en) * 2002-11-18 2005-06-21 Pioneer Corp Semiconductor light-emitting element and method of manufacturing the same
JP4908381B2 (en) * 2006-12-22 2012-04-04 昭和電工株式会社 Group III nitride semiconductor layer manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP2009152552A (en) * 2007-12-18 2009-07-09 Seoul Opto Devices Co Ltd Light-emitting diode having active region of multiple quantum well structure
JP4881491B2 (en) * 2009-09-01 2012-02-22 株式会社東芝 Semiconductor light emitting device
JP5135465B2 (en) * 2011-11-29 2013-02-06 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013030816A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP4881491B2 (en) Semiconductor light emitting device
JP4940317B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4954536B2 (en) Nitride semiconductor light emitting device
JP4892618B2 (en) Semiconductor light emitting device
US20150349197A1 (en) Nitride semiconductor light-emitting element
JP2008244307A (en) Semiconductor light-emitting element and nitride semiconductor light-emitting element
JPWO2006038665A1 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2008130877A (en) Method for fabricating nitride semiconductor light emitting element
TW201015761A (en) Group III nitride-based compound semiconductor light-emitting device and production method therefor
JPWO2014061692A1 (en) Nitride semiconductor light emitting device
JP5143214B2 (en) Semiconductor light emitting device
JP2008078297A (en) GaN-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE
TWI384657B (en) Nitirde semiconductor light emitting diode device
JP5135465B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5337862B2 (en) Semiconductor light emitting device
JP7129630B2 (en) Light-emitting element and method for manufacturing light-emitting element
JP5458162B2 (en) Semiconductor light emitting device
JP5800251B2 (en) LED element
JP5306873B2 (en) Nitride semiconductor light emitting diode and manufacturing method thereof
JP7481618B2 (en) Method for manufacturing nitride semiconductor device
JP5973006B2 (en) Semiconductor light emitting device
JP5694476B2 (en) Semiconductor light emitting device
JP2012119692A (en) Semiconductor light-emitting element
JP5554387B2 (en) Semiconductor light emitting device
JP5800252B2 (en) LED element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140110

LAPS Cancellation because of no payment of annual fees