JP5454386B2 - Vacuum arc evaporation system - Google Patents

Vacuum arc evaporation system Download PDF

Info

Publication number
JP5454386B2
JP5454386B2 JP2010148428A JP2010148428A JP5454386B2 JP 5454386 B2 JP5454386 B2 JP 5454386B2 JP 2010148428 A JP2010148428 A JP 2010148428A JP 2010148428 A JP2010148428 A JP 2010148428A JP 5454386 B2 JP5454386 B2 JP 5454386B2
Authority
JP
Japan
Prior art keywords
plasma
chamber
vacuum
evaporation source
magnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010148428A
Other languages
Japanese (ja)
Other versions
JP2012012641A (en
Inventor
浩 石塚
博文 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2010148428A priority Critical patent/JP5454386B2/en
Publication of JP2012012641A publication Critical patent/JP2012012641A/en
Application granted granted Critical
Publication of JP5454386B2 publication Critical patent/JP5454386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車部品、機械部品、工具、金型等の基材の摩擦係数低減や耐摩耗性を向上するために、基材表面に薄膜を蒸着して形成する真空アーク蒸着装置に関する。   The present invention relates to a vacuum arc vapor deposition apparatus that deposits and forms a thin film on the surface of a base material in order to reduce the friction coefficient and improve the wear resistance of the base material of automobile parts, machine parts, tools, molds and the like.

一般に、真空アーク蒸着法は、陽極と陰極の間にアーク放電を生じさせ、陰極材料を蒸発させて基材に蒸着するという薄膜形成方法であり、生産性に優れているという特徴をもつ。   In general, the vacuum arc deposition method is a thin film forming method in which arc discharge is generated between an anode and a cathode, and the cathode material is evaporated and deposited on a base material, which is characterized by excellent productivity.

しかし、陰極材料から、直径が数μm〜数百μmにもなる大きな塊りの粗大粒子(これはドロップレットとも呼ばれる。)が飛散し、この粗大粒子が基材に付着して被膜特性が劣化することが知られている。   However, a large lump of coarse particles (also called droplets) with a diameter of several μm to several hundreds of μm are scattered from the cathode material, and the coarse particles adhere to the base material to deteriorate the coating properties. It is known to do.

この粗大粒子による被膜特性の劣化を防止するため、磁気コイル等の磁石により、陰極と基体との間で偏向磁場を発生させ、粗大粒子を除いたプラズマ流だけを偏向磁場に沿って基体方向に輸送して、基体への粗大粒子の付着を防止する蒸着装置が磁気フィルター法として、例えば、特開2001−3160号公報などで提案されている。   In order to prevent deterioration of the coating properties due to the coarse particles, a magnet such as a magnetic coil generates a deflection magnetic field between the cathode and the substrate, and only the plasma flow excluding the coarse particles is directed toward the substrate along the deflection magnetic field. A vapor deposition apparatus that transports and prevents coarse particles from adhering to a substrate has been proposed as a magnetic filter method, for example, in JP-A-2001-3160.

しかし、上記の装置では完全に粗大粒子が基体に混入することを防ぐことは難しく、そこで粗大粒子は陰極から直進する性質をもつことから、陰極の対面に粗大粒子補集部を設けて、基体を収納するプロセス室(成膜室)への侵入を抑え、基材への粗大粒子混入をさらに抑えた装置が特開2002−8893号公報で提案されている。   However, in the above apparatus, it is difficult to completely prevent coarse particles from being mixed into the substrate, and since the coarse particles have a property of going straight from the cathode, a coarse particle collecting portion is provided on the opposite side of the cathode, and the substrate Japanese Patent Application Laid-Open No. 2002-8893 proposes an apparatus that suppresses entry into a process chamber (deposition chamber) for storing the material and further prevents coarse particles from being mixed into the substrate.

特開2001−3160号公報Japanese Patent Laid-Open No. 2001-3160 特開2002−8893号公報JP 2002-8893 A

前記の従来の装置では、磁場を発生させる電磁コイル等はプラズマ輸送室の真空容器外部に設置されており、このため電磁コイル等の作用を有効に働かすためにはプラズマ輸送室を狭くする必要があり、そのためメンテナンス性が悪く、逆にメンテナンス性を考慮してプラズマ輸送部を広くすると大きな電磁コイル等が必要になりコスト高になる。   In the above-described conventional apparatus, an electromagnetic coil or the like that generates a magnetic field is installed outside the vacuum container of the plasma transport chamber. For this reason, it is necessary to narrow the plasma transport chamber in order to effectively operate the electromagnetic coil or the like. For this reason, the maintainability is poor, and conversely, if the plasma transport portion is widened in consideration of the maintainability, a large electromagnetic coil or the like is required and the cost is increased.

また電磁コイル等を真空室内に設置すると、プラズマなどが電磁コイル等に直接照射されて、電磁コイル等の劣化や破損が頻繁に生ずる、などの問題がある。   Further, when an electromagnetic coil or the like is installed in a vacuum chamber, there is a problem that plasma or the like is directly irradiated onto the electromagnetic coil or the like, and the electromagnetic coil or the like is frequently deteriorated or damaged.

そこで、本発明は上記問題に鑑み、真空チャンバ内のメンテナンスが容易で、電磁コイル等の磁気コイルの劣化が小さく、ランニングコストが安い装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an apparatus in which maintenance in a vacuum chamber is easy, magnetic coils such as electromagnetic coils are less deteriorated, and running costs are low.

プラズマ輸送室を広くすることを可能にするため、誘導磁場発生部の少なくとも一部を真空チャンバ内に取り込むとともに、該誘導磁場発生部を構成する磁気コイルをプラズマ輸送室内に設けた大気空間部内に配設するようにした。   In order to make the plasma transport chamber wide, at least a part of the induction magnetic field generation unit is taken into the vacuum chamber, and the magnetic coil constituting the induction magnetic field generation unit is placed in the atmospheric space provided in the plasma transport chamber. It was arranged.

すなわち、本発明は、真空チャンバ内に、アーク放電による蒸発源部と、該蒸発源部から発生したプラズマを輸送するプラズマ輸送室と、該プラズマによって薄膜を被覆する基体を収納する成膜室と、該蒸発源部から発生したプラズマを成膜室へ屈曲輸送するように前記プラズマ輸送室に設けられた磁気コイルからなる誘導磁場発生部と、を備えた真空アーク蒸着装置であって、前記誘導磁場発生部を構成する磁気コイルの少なくとも一部が真空チャンバ内のプラズマ輸送室に設けられた大気空間部内に配設されていることを特徴としている。   That is, the present invention provides a vacuum chamber with an evaporation source section by arc discharge, a plasma transport chamber for transporting plasma generated from the evaporation source section, and a film formation chamber for storing a substrate that covers a thin film with the plasma. A vacuum arc vapor deposition apparatus comprising: an induction magnetic field generation unit including a magnetic coil provided in the plasma transport chamber so as to bend and transport the plasma generated from the evaporation source unit to the film formation chamber, It is characterized in that at least a part of a magnetic coil constituting the magnetic field generating part is disposed in an atmospheric space part provided in a plasma transport chamber in the vacuum chamber.

誘導磁場発生部を構成する磁気コイルのすべて、あるいは少なくとも一部を真空チャンバのプラズマ輸送室内に設けるので、プラズマ輸送室を広くすることができ、従ってメンテナンスが容易にできる。また前記磁気コイルはプラズマの当たらない大気空間部内に配置するので、プラズマの影響を受けることがなく、従って劣化しないという効果を奏する。   Since all or at least a part of the magnetic coil constituting the induction magnetic field generation unit is provided in the plasma transport chamber of the vacuum chamber, the plasma transport chamber can be widened, and maintenance can be facilitated. Further, since the magnetic coil is disposed in the atmospheric space where no plasma is applied, the magnetic coil is not affected by the plasma, and therefore, there is an effect that the magnetic coil is not deteriorated.

さらに、誘導磁場発生部の磁気コイルを収める大気空間部内を二重配管として冷却水を通すと、磁気コイルの熱による劣化を防ぐことができる。   Furthermore, when the cooling water is passed through the atmosphere space portion containing the magnetic coil of the induction magnetic field generation portion as a double pipe, deterioration of the magnetic coil due to heat can be prevented.

は本発明の一実施形態を示す平面概略図である。FIG. 1 is a schematic plan view showing an embodiment of the present invention. は図1のX―X’方向の断面概略図である。FIG. 2 is a schematic sectional view in the X-X ′ direction of FIG. 1. 本発明の他の実施形態を示す平面概略図である。It is a plane schematic diagram showing other embodiments of the present invention.

図1は本発明に係る真空アーク蒸着装置の一実施形態を示す平面概略図である。この真空アーク蒸着装置は、図示しない真空排気装置によって真空排気される真空チャンバ1が隔壁4によってプラズマ輸送室2と成膜室3に分けられており、成膜室3の中には成膜しようとする基体9が図示しないホルダに保持されている。   FIG. 1 is a schematic plan view showing an embodiment of a vacuum arc deposition apparatus according to the present invention. In this vacuum arc deposition apparatus, a vacuum chamber 1 that is evacuated by a vacuum evacuation apparatus (not shown) is divided into a plasma transport chamber 2 and a film formation chamber 3 by a partition wall 4. A substrate 9 is held by a holder (not shown).

そして、この真空チャンバ1は電気的に接地されている。基体9にはホルダを介して、例えば直流の負のバイアス電圧が印加される。
また、成膜室3には必要に応じてアルゴン等の不活性ガス、窒素等の反応性ガスが導入される。
The vacuum chamber 1 is electrically grounded. For example, a negative DC bias voltage is applied to the substrate 9 via a holder.
In addition, an inert gas such as argon or a reactive gas such as nitrogen is introduced into the film forming chamber 3 as necessary.

プラズマ輸送室2の一端には真空アーク放電による蒸発源部5を設けており、この蒸発源部5は陰極(カソード)を有し、陰極とこの例では陽極を兼ねるプラズマ輸送室2との間の真空アーク放電によって、陰極を局部的に溶解させて陰極物質を蒸発させ、陰極物質のプラズマ10と粗大粒子11が生成される。なお、蒸発源部5前方に陽極となる電極を配置してもよい。その場合は陰極とこの陽極との間で真空アーク放電が生ずる。   One end of the plasma transport chamber 2 is provided with an evaporation source section 5 by vacuum arc discharge, and this evaporation source section 5 has a cathode (cathode) between the cathode and the plasma transport chamber 2 which also serves as an anode in this example. In this vacuum arc discharge, the cathode is locally dissolved to evaporate the cathode material, and the cathode material plasma 10 and coarse particles 11 are generated. An electrode serving as an anode may be disposed in front of the evaporation source unit 5. In that case, a vacuum arc discharge occurs between the cathode and the anode.

蒸発源部5の陰極は成膜しようとする所望の材料(例えば純金属、合金、カーボン等)からなる。より具体的には、例えばTi、Cr、Mo、W、Al等の純金属、TiAl等の合金、グラファイト(カーボン)からなる。   The cathode of the evaporation source section 5 is made of a desired material (for example, pure metal, alloy, carbon, etc.) to be formed. More specifically, it is made of, for example, pure metals such as Ti, Cr, Mo, W, and Al, alloys such as TiAl, and graphite (carbon).

プラズマ輸送室2内には前記プラズマ10を誘導磁場によって、図で示すように成膜室3の基体8近傍に屈曲輸送するように、磁気コイル7が複数個配設された誘導磁場発生部8を有している。この実施形態では磁気コイルは3個であり、すべて真空チャンバ1内のプラズマ輸送室2に配置している。この磁気コイル7は図示しない直流の電源によって励磁される電磁コイルである。この磁気コイル7が励磁されることによって磁場が形成され、プラズマが屈曲輸送されるのである。   In the plasma transport chamber 2, an induction magnetic field generating section 8 in which a plurality of magnetic coils 7 are disposed so as to bend and transport the plasma 10 by an induced magnetic field to the vicinity of the substrate 8 of the film forming chamber 3 as shown in the figure. have. In this embodiment, there are three magnetic coils, all of which are arranged in the plasma transport chamber 2 in the vacuum chamber 1. The magnetic coil 7 is an electromagnetic coil excited by a direct current power source (not shown). When the magnetic coil 7 is excited, a magnetic field is formed and the plasma is bent and transported.

磁気コイル7は図1のX−X’方向断面概略図である図2に示すように、プラズマ輸送室2内に縦断して設けられ、上下の真空チャンバ上壁21及び下壁22に取り付けられた大気空間部6aを形成するパイプ6b内および真空チャンバ1の外側を通し巻回して配設される。これにより、磁気コイル7はプラズマに曝されることがなく、したがって、磁気コイル7の劣化を防ぐことができるのである。   As shown in FIG. 2 which is a schematic cross-sectional view in the XX ′ direction of FIG. 1, the magnetic coil 7 is provided vertically in the plasma transport chamber 2 and attached to the upper and lower vacuum chamber upper walls 21 and lower walls 22. The air space 6a and the outside of the vacuum chamber 1 are wound around the pipe 6b. As a result, the magnetic coil 7 is not exposed to the plasma, and therefore the deterioration of the magnetic coil 7 can be prevented.

また、プラズマ輸送室2の蒸発源部5に対向する壁面及び側壁面には羽根状の部材で構成されたバッフル12が設けられており、陰極から発生し直進する性質をもつ粗大粒子11を捕獲し、成膜室3に飛散しないようにしている。   Further, a baffle 12 made of a blade-like member is provided on the wall surface and the side wall surface of the plasma transport chamber 2 facing the evaporation source section 5, and captures coarse particles 11 generated from the cathode and traveling straight. In addition, the film formation chamber 3 is prevented from being scattered.

図3は本発明に係る真空アーク蒸着装置の他の実施形態を示す平面概略図である。この実施形態では複数の磁気コイル7の一部で、しかも磁気コイル7の一部を前記説明したように、プラズマ輸送室2内に縦断して設けた大気空間部6aを形成するパイプ6b内を通し、さらに真空チャンバ1外を通して巻回して配設する例である。   FIG. 3 is a schematic plan view showing another embodiment of the vacuum arc deposition apparatus according to the present invention. In this embodiment, as described above, a part of the plurality of magnetic coils 7 and a part of the magnetic coil 7 in the pipe 6b forming the atmospheric space portion 6a provided in the plasma transport chamber 2 in the longitudinal direction. This is an example in which the wire is wound and passed through the outside of the vacuum chamber 1.

本実施形態では3個の磁気コイル7のから構成される磁気コイル7のうち、1個の磁気コイルの一部分はプラズマ輸送室2内を通る前記パイプ6bの大気空間部6aを通して設け、その他の部分は真空チャンバ外に設けている。残りの磁気コイル7はすべて真空チャンバ外に配設している。   In this embodiment, among the magnetic coils 7 composed of three magnetic coils 7, one part of the magnetic coil is provided through the atmospheric space 6a of the pipe 6b passing through the plasma transport chamber 2, and the other part. Is provided outside the vacuum chamber. All the remaining magnetic coils 7 are disposed outside the vacuum chamber.

なお、この実施形態ではプラズマ輸送室2と成膜室3とはプラズマガイド部13によって連接している。   In this embodiment, the plasma transport chamber 2 and the film forming chamber 3 are connected by a plasma guide portion 13.

なお、以上の実施形態では、磁気コイル7は磁気コイルを直流電流で励磁する電磁コイルとしたが、これに限らず、永久磁石等で構成してもよい。また、磁気コイル7を3個としたがこれに限らず、それ以下又はそれ以上の数の磁気コイルを設けても良いことは勿論のことである。   In the above embodiment, the magnetic coil 7 is an electromagnetic coil that excites the magnetic coil with a direct current. However, the present invention is not limited to this, and may be a permanent magnet or the like. Moreover, although the number of the magnetic coils 7 is three, it is needless to say that the number of magnetic coils is not limited to this and may be less or more.

また、実施形態では真空チャンバ1を縦断するパイプ6bを一つの配管としたが、直径の異なるパイプで二重配管としてその隙間部に冷却水を流して大気空間部6aを冷却するようにした方が磁気コイルの熱による損傷を防ぐことが出来るので望ましい。   Further, in the embodiment, the pipe 6b that vertically cuts the vacuum chamber 1 is a single pipe, but a pipe having different diameters is used as a double pipe to cool the atmospheric space 6a by flowing cooling water through the gap. Is desirable because it can prevent the magnetic coil from being damaged by heat.

自動車部品、機械部品、工具、金型等の基体の摩擦係数低減や耐摩耗性を向上するために、基体表面に薄膜を蒸着して形成する蒸着装置として利用できる。 In order to reduce friction coefficient and improve wear resistance of substrates such as automobile parts, machine parts, tools, dies, etc., it can be used as a deposition apparatus for depositing a thin film on the surface of the substrate.

1 真空チャンバ
2 プラズマ輸送室
3 成膜室
4 隔壁
5 蒸発源部
6a 大気空間部
6b パイプ
7 磁気コイル
8 誘導磁場発生部
9 基体
10 プラズマ
11 粗大粒子
12 バッフル
13 プラズマガイド
21 真空チャンバ上壁
22 真空チャンバ下壁





















DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Plasma transport room 3 Film formation room 4 Partition 5 Evaporation source part 6a Atmospheric space part 6b Pipe 7 Magnetic coil 8 Induction magnetic field generation part 9 Base 10 Plasma 11 Coarse particle 12 Baffle 13 Plasma guide 21 Vacuum chamber upper wall 22 Vacuum Chamber lower wall





















Claims (1)

真空チャンバ内に、アーク放電による蒸発源部と、該蒸発源部から発生したプラズマを輸送するプラズマ輸送室と、該プラズマによって薄膜を被覆する基体を収納する成膜室と、該蒸発源部から発生したプラズマを成膜室へ屈曲輸送するように前記プラズマ輸送室に設けられた磁気コイルからなる誘導磁場発生部と、を備えた真空アーク蒸着装置であって、前記誘導磁場発生部を構成する少なくとも一部の前記磁気コイルが前記プラズマ輸送室に設けられた大気空間部に配設されていることを特徴とする真空アーク蒸着装置。 In the vacuum chamber, from the evaporation source section by arc discharge, the plasma transport chamber for transporting the plasma generated from the evaporation source section, the film forming chamber for storing the substrate that covers the thin film by the plasma, and the evaporation source section A vacuum arc vapor deposition apparatus comprising an induction magnetic field generation unit comprising a magnetic coil provided in the plasma transport chamber so as to bend and transport the generated plasma to the film formation chamber, and constitutes the induction magnetic field generation unit A vacuum arc deposition apparatus, wherein at least a part of the magnetic coil is disposed in an atmospheric space provided in the plasma transport chamber.
JP2010148428A 2010-06-30 2010-06-30 Vacuum arc evaporation system Expired - Fee Related JP5454386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148428A JP5454386B2 (en) 2010-06-30 2010-06-30 Vacuum arc evaporation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148428A JP5454386B2 (en) 2010-06-30 2010-06-30 Vacuum arc evaporation system

Publications (2)

Publication Number Publication Date
JP2012012641A JP2012012641A (en) 2012-01-19
JP5454386B2 true JP5454386B2 (en) 2014-03-26

Family

ID=45599420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148428A Expired - Fee Related JP5454386B2 (en) 2010-06-30 2010-06-30 Vacuum arc evaporation system

Country Status (1)

Country Link
JP (1) JP5454386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136253A1 (en) * 2013-03-08 2014-09-12 株式会社島津製作所 Arc-plasma film formation device

Also Published As

Publication number Publication date
JP2012012641A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP4883601B2 (en) Plasma processing equipment
Takikawa et al. Review of cathodic arc deposition for preparing droplet-free thin films
KR101166570B1 (en) Apparatus and method for manufacturing carbon structure
JP5373905B2 (en) Film forming apparatus and film forming method
TWI539026B (en) Plasma cvd device, plasma cvd method, reactive sputtering device and reactive sputtering method
KR100610412B1 (en) Film forming apparatus
Ayesh et al. Size-controlled Pd nanocluster grown by plasma gas-condensation method
US7951276B2 (en) Cluster generator
JP2011504545A (en) Droplet-free film forming apparatus manufactured by arc evaporation method
JP2009144236A (en) Evaporation source for arc ion plating device and arc ion plating device
JP2008223105A (en) Treatment apparatus with the use of progressive plasma, treatment method, and article to be treated
JP2002008893A (en) Plasma machining method
JP5454386B2 (en) Vacuum arc evaporation system
US7897025B2 (en) Method and apparatus for forming thin film
JP4000764B2 (en) Vacuum arc evaporator
JP2010248576A (en) Magnetron sputtering apparatus
JP2009191340A (en) Film-forming apparatus and film-forming method
JP5708472B2 (en) Magnetron sputtering cathode and sputtering apparatus equipped with the same
JP6396222B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus thereof
US8919279B1 (en) Processing system having magnet keeper
JP2013129874A (en) Film forming apparatus and method for producing film-formed body
JP2001059165A (en) Arc type ion plating device
JP2010156018A (en) Sputtering apparatus
JP2004353023A (en) Arc discharge type ion plating apparatus
JP2015040313A (en) Film deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees