JP5453061B2 - Ventilation duct - Google Patents

Ventilation duct Download PDF

Info

Publication number
JP5453061B2
JP5453061B2 JP2009257765A JP2009257765A JP5453061B2 JP 5453061 B2 JP5453061 B2 JP 5453061B2 JP 2009257765 A JP2009257765 A JP 2009257765A JP 2009257765 A JP2009257765 A JP 2009257765A JP 5453061 B2 JP5453061 B2 JP 5453061B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
resin
duct
heat
ventilation duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009257765A
Other languages
Japanese (ja)
Other versions
JP2011101984A (en
Inventor
真介 水田
美智夫 木嶋
稔 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tigers Polymer Corp
Original Assignee
Tigers Polymer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tigers Polymer Corp filed Critical Tigers Polymer Corp
Priority to JP2009257765A priority Critical patent/JP5453061B2/en
Publication of JP2011101984A publication Critical patent/JP2011101984A/en
Application granted granted Critical
Publication of JP5453061B2 publication Critical patent/JP5453061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、合成樹脂などで形成されたダクトの内部に空気を通流する通気ダクトに関する。特に、ダクト壁の一部に不織布成形体が使用された通気ダクトに関する。 The present invention relates to a ventilation duct that allows air to flow inside a duct formed of a synthetic resin or the like. In particular, the present invention relates to a ventilation duct in which a nonwoven fabric molded body is used for a part of the duct wall.

通気ダクトは、特に自動車用内燃機関の吸気システムや、空調システム・冷却風送風システムなどの一連のダクト系の一部として使用されている。このようなダクト系においては、一般にはダクト壁が非通気性素材からなるダクトが使用されるが、そのために、エンジンやファンやモータなどを騒音源とする騒音がダクト内を伝播したり、ダクト系に生ずる気柱共鳴が発生したりするので、かねてから騒音の低減が望まれていた。 Ventilation ducts are used in particular as part of a series of duct systems such as an intake system for an internal combustion engine for automobiles, an air conditioning system, and a cooling air blowing system. In such a duct system, a duct made of a non-breathable material is generally used for the duct wall. For this reason, noise caused by an engine, a fan, a motor, or the like as noise sources propagates in the duct, Since air column resonance that occurs in the system occurs, it has long been desired to reduce noise.

ダクト系を伝播する騒音を低減する技術としては、拡径チャンバー部を設けるものや、ヘルムホルツレゾネータなどの共鳴型消音器を設けるものなどが開発・応用されているが、非通気性素材で形成されるダクト壁の一部に、不織布成形体などの通気性を有する部分を設けて、ダクト系の気柱共鳴を予防して、ダクトを伝播する騒音の低減を図る技術、いわゆるポーラスダクトと呼ばれる技術が開発されている。 Technologies that reduce the noise that propagates through the duct system have been developed and applied, such as those that provide a chamber for expanding the diameter and those that provide a resonance silencer such as a Helmholtz resonator. A technology called so-called porous duct, in which part of the duct wall is provided with a breathable part such as a nonwoven fabric molded body to prevent air column resonance of the duct system and to reduce noise propagating through the duct Has been developed.

そのような機能を有するポーラスダクトとして、特許文献1に記載されたような技術が知られている。この技術は、非通気性のダクト壁の一部に穴を設けて、適度な通気性を有する不織布などの多孔質材を、それらの穴を覆うように取付け、ダクト内部空間と外部空間とが多孔質材を通じて連通するようにした技術であり、さらに、特許文献1に記載のポーラスダクトにおいては、ダクト本体の壁面から突出する小筒部を設け、小筒部先端の開口部に不織布が熱溶着されている。このようなダクトにおいては、多孔質材の通気度を調整することにより、ダクト系に生ずる気柱共鳴の発生を防止しながら、ダクト系を伝播する騒音の低減を図ることができるとともに、不織布の取付けがしやすくなり、さらに、ダクトの通気抵抗が低減できるという効果が得られる。 As a porous duct having such a function, a technique as described in Patent Document 1 is known. In this technology, a hole is formed in a part of a non-breathable duct wall, and a porous material such as a non-woven fabric having an appropriate breathability is attached so as to cover these holes, and the duct internal space and external space are separated. In the porous duct described in Patent Document 1, a small tube portion protruding from the wall surface of the duct body is provided, and the nonwoven fabric is heated at the opening at the tip of the small tube portion. It is welded. In such a duct, by adjusting the air permeability of the porous material, it is possible to reduce noise propagating through the duct system while preventing the occurrence of air column resonance occurring in the duct system, and It is easy to mount, and further, the effect that the ventilation resistance of the duct can be reduced is obtained.

また、特許文献2には、自動車エンジン用の吸気管において、不織布よりなる成形体から管壁の少なくとも一部が形成されたことを特徴とする吸気管が開示され、不織布からなる成形体が例えば熱プレス成形によってダクトの半割り形状に立体成形されて、一対の半割れ体を接合部で接着一体化して通気ダクトを構成することが記載されている。 Patent Document 2 discloses an intake pipe in which at least a part of a pipe wall is formed from a molded body made of a nonwoven fabric in an intake pipe for an automobile engine. It is described that the air duct is formed by three-dimensionally forming a half-cut shape of the duct by hot press molding, and bonding and integrating a pair of half cracks at the joint.

また、複数の構成部材を一体化して通気ダクトを構成する接合技術としては、接着、溶着・熱かしめ、はめ込み、爪などによる係止、粘着テープの使用、インサート成形、オーバーモールド成形などが知られている。ここで、オーバーモールド成形による接合技術とは、図10に示すように、接合すべき構成部材91,92の接合部91a、92aを互いに重ね合わせた状態で、射出成形金型(M1,M2)内に当該構成部材を導入し、金型を閉じてキャビティCを形成し、重ね合わせられた接合部91a、92aの外周面を覆うように、キャビティCに合成樹脂の射出成形を行うことにより、合成樹脂Lにより接合部を被覆して接合する技術のことである(図11)。 In addition, as a joining technique for forming a ventilation duct by integrating a plurality of constituent members, adhesion, welding / heat caulking, fitting, locking with a nail, use of an adhesive tape, insert molding, overmold molding, etc. are known. ing. Here, the joining technique by overmolding is an injection mold (M1, M2) in a state where the joining portions 91a, 92a of the constituent members 91, 92 to be joined are overlapped with each other as shown in FIG. By introducing the constituent member into the inside, forming the cavity C by closing the mold, and performing injection molding of synthetic resin into the cavity C so as to cover the outer peripheral surfaces of the overlapped joint portions 91a and 92a, This is a technique in which the joint is covered with the synthetic resin L and joined (FIG. 11).

そして、特許文献3には、オーバーモールド成形を応用して構成部材を一体化し通気ダクトを構成することについて開示されており、特許文献3においては、一対の合成樹脂製半割れ体の接合部を重ね合わせて、互いの接合面を溶着すると共に、接合部の外周部を合成樹脂材により被覆する二次成形を行うことによって、一対の半割れ体を一体化して通気ダクトにすることが開示されている。 Patent Document 3 discloses that an overmolding is applied to integrate constituent members to form a ventilation duct. In Patent Document 3, a joint part of a pair of synthetic resin half-cracks is disclosed. It is disclosed that a pair of half-broken bodies are integrated into a ventilation duct by performing secondary molding that overlaps and welds the joint surfaces to each other and covers the outer periphery of the joint with a synthetic resin material. ing.

特開2001−323853号公報JP 2001-323853 A 特開2000−73895号公報JP 2000-73895 A 特開平5−305679号公報JP-A-5-305679

オーバーモールド成形による接合技術は、接合部の強度やシール性に優れるといった特徴を備える優れた接合技術であるが、特許文献1や特許文献2に開示されたような不織布成形体などの多孔質体をダクトの構成部材とした通気ダクトの製造において、オーバーモールド成形による接合技術を応用しようとすると、オーバーモールド成形の成形不良が発生しやすく、製造効率が低下し、成形不良の程度が著しい時には製造が不可能となってしまうことが判明した。 The joining technique by overmolding is an excellent joining technique having features such as excellent strength and sealability of the joint, but is a porous body such as a nonwoven fabric molded body as disclosed in Patent Document 1 and Patent Document 2. In the manufacture of ventilation ducts that use a duct as a component of the duct, if an attempt is made to apply joining technology by overmolding, overmolding is likely to cause molding defects, resulting in reduced manufacturing efficiency and manufacturing when the degree of molding defects is significant. Turned out to be impossible.

即ち、不織布成形体などの多孔質材料は、その性質上弾力性を有するものであることが多く、そのような材料で構成された通気ダクト構成部材93,94をオーバーモールド成形により接合しようとして、金型M1,M2で接合部93a、94a挟持すると、不織布成形体がその弾力性のために変形してしまい、キャビティCの中で適正な位置を保てなくなるのである(図12)。具体的には、不織布成形体93,94が金型M1,M2で直接挟持される部分を起点として、不織布成形体の接続部93a、94aがめくれあがる方向に変形しやすくなる。 That is, a porous material such as a non-woven fabric molded article is often elastic in nature, and trying to join the ventilation duct constituent members 93 and 94 made of such a material by overmolding, When the joining portions 93a and 94a are sandwiched between the molds M1 and M2, the nonwoven fabric molded body is deformed due to its elasticity, and an appropriate position cannot be maintained in the cavity C (FIG. 12). Specifically, the connecting portions 93a and 94a of the nonwoven fabric molded body are easily deformed in the direction in which the nonwoven fabric molded bodies 93 and 94 are directly sandwiched between the molds M1 and M2.

この状態で樹脂の射出が行われると、不織布成形体の接続部93a、94aがめくれ上がった部分に対向するキャビティ部分C1,C2には樹脂が回り込みにくくなって、図13に示したように、合成樹脂Lが不織布成形体の接続部93a、94aを包み込んでいないような成形不良が起こりやすくなる。このような成形不良が起こると、完成した通気ダクトの外観がよくないほか、接合の強度も不十分となることがあり、通気ダクトとしての性能や商品性が著しく低下する。 When the injection of the resin is performed in this state, it becomes difficult for the resin to go around the cavity portions C1 and C2 facing the portions where the connection portions 93a and 94a of the nonwoven fabric molded body are turned up, as shown in FIG. Molding defects such that the synthetic resin L does not wrap the connection portions 93a and 94a of the nonwoven fabric molded body are likely to occur. When such a molding defect occurs, the appearance of the completed air duct is not good, and the strength of joining may be insufficient, and the performance and merchantability of the air duct are significantly reduced.

したがって、本発明の目的は、不織布成形体を構成部材とする通気ダクトを製造する際のオーバーモールド成形の成形不良を防止することにあり、それに適した通気ダクトを提供することにある。
Accordingly, an object of the present invention is to prevent molding defects in overmolding when manufacturing a ventilation duct having a nonwoven fabric molded body as a constituent member, and to provide a ventilation duct suitable for it.

発明者は、鋭意検討の結果、不織布成形体の表面に特定の熱処理を施した層を設けると、上記課題を解決できることを知見し、本発明を完成させた。 As a result of intensive studies, the inventor has found that the above problem can be solved by providing a layer subjected to a specific heat treatment on the surface of the nonwoven fabric molded body, and has completed the present invention.

本発明は、少なくとも2つ以上の構成部材を一体化して構成される通気ダクトであって、
構成部材の少なくとも1つは、熱可塑性樹脂繊維を含む不織布を含むように、プレス加工によって前記不織布が賦形された不織布成形体であり、不織布成形体が他の構成部材と一体化される部位において、前記一体化が、互いに一体化される構成部材の端縁部に沿って形成された接続部を互いに重ね合わせて、重ね合わせた接続部の末端部を包み込むように、射出成形により樹脂被覆体を被覆形成することによりなされ、不織布成形体には、樹脂被覆体で被覆される側の表面に、不織布の表面を選択的に加熱する工程を経たことにより表面の熱可塑性樹脂繊維が溶融して剛性が高められた熱処理硬化層が形成されており、熱処理硬化層の表面には、熱可塑性樹脂繊維が溶融して形成された樹脂の塊が粒状に分布していることを特徴とする通気ダクトである。
The present invention is a ventilation duct configured by integrating at least two or more components,
At least one of the constituent members is a non-woven fabric molded body in which the non-woven fabric is shaped by press processing so as to include a non-woven fabric containing thermoplastic resin fibers, and the non-woven fabric molded body is integrated with other constituent members. In the above, the integration is performed by resin molding by injection molding so that the connection portions formed along the edge portions of the component members to be integrated with each other are overlapped with each other and the end portions of the overlapped connection portions are wrapped. The thermoplastic resin fibers on the surface of the nonwoven fabric molded body are melted by selectively heating the surface of the nonwoven fabric on the surface to be coated with the resin coating. and heat treatment hardened layer stiffened is formed Te, the surface of the heat-treated hardened layer, the mass of the resin thermoplastic resin fibers are formed by melting, characterized in that distributed in the particulate ventilation It is ECTS.

本発明によれば、オーバーモールド成形によって不織布成形体を通気ダクトに一体化する際の、オーバーモールド成形される樹脂被覆体の成形不良が予防・抑制されるという効果が得られる。そして、熱処理硬化層の表面に、熱可塑性樹脂繊維が溶融して形成された樹脂の塊が粒状に分布しているので、成形不良がより効果的に予防・抑制される。
ADVANTAGE OF THE INVENTION According to this invention, the effect that the shaping | molding defect of the resin coating body overmolded at the time of integrating a nonwoven fabric molded object with a ventilation duct by overmolding is prevented and suppressed is acquired. And since the lump of resin formed by melting thermoplastic resin fibers is distributed in the form of particles on the surface of the heat-treated cured layer , molding defects are more effectively prevented and suppressed.

本発明第1実施形態の通気ダクトの外観を示す斜視図である。It is a perspective view which shows the external appearance of the ventilation duct of 1st Embodiment of this invention. 第1実施形態の通気ダクトのX−X断面を示す断面図である。It is sectional drawing which shows the XX cross section of the ventilation duct of 1st Embodiment. 本発明第1実施形態の通気ダクトを構成する構成部材の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the structural member which comprises the ventilation duct of 1st Embodiment of this invention. 不織布表面の熱処理硬化層に略球状の樹脂の塊が粒状に分布する状態を示す写真である。It is a photograph which shows the state by which the substantially spherical resin lump is distributed in a granular form in the heat-treatment hardening layer of the nonwoven fabric surface. 不織布表面の熱処理硬化層に扁平な板状の樹脂の塊が粒状に分布する状態を示す写真である。It is a photograph which shows the state in which the lump of a flat plate-shaped resin is distributed granularly in the heat-treatment hardening layer of the nonwoven fabric surface. 不織布表面に熱処理硬化層が存在しない通常の不織布表面の状態を示す写真である。It is a photograph which shows the state of the normal nonwoven fabric surface in which the heat processing hardened layer does not exist on the nonwoven fabric surface. 本発明第1実施形態のオーバーモールド成形工程を示す模式図である。It is a schematic diagram which shows the overmolding process of 1st Embodiment of this invention. 本発明第2実施形態の通気ダクトの断面を示す断面図である。It is sectional drawing which shows the cross section of the ventilation duct of 2nd Embodiment of this invention. 本発明第3実施形態の通気ダクトの一部のダクト長手方向に沿う断面を示す断面図である。It is sectional drawing which shows the cross section along the duct longitudinal direction of a part of ventilation duct of 3rd Embodiment of this invention. オーバーモールド成形における金型を閉じた状態を示す模式図である。It is a schematic diagram which shows the state which closed the metal mold | die in overmolding. オーバーモールド成形によって接合部が接合された状態を示す断面図である。It is sectional drawing which shows the state by which the junction part was joined by overmolding. 不織布成形体を用いた場合の、オーバーモールド成形における金型を閉じた状態を示す模式図である。It is a schematic diagram which shows the state which closed the metal mold | die in overmold shaping | molding at the time of using a nonwoven fabric molded object. 不織布成形体を用いた場合に生じうる、オーバーモールド成形接合部の成形不良の状態を示す断面図である。It is sectional drawing which shows the state of the shaping | molding defect of the overmolding joining part which may arise when a nonwoven fabric molded object is used.

以下、図面を参照しながら、本発明の実施形態について説明するが、本発明は以下に示す個別の実施形態に限定されるものではなく、その形態を変更して実施することもできる。図1及び図2に示す本発明の第1の実施形態の通気ダクト1は、ハイブリッド自動車や電気自動車の電池を冷却する冷却風を送るために使用される通気ダクト1である。図1には斜視図を、図2にはX−X断面図を示す。通気ダクト1は、一対の半割れ体2,3が、その端縁部で被覆体4により一体化された中空のダクト部材であり、被覆体4は、図2に示すように半割れ体2,3の端縁部を包み込むような断面形状で、半割れ体2,3の端縁部に沿って形成されている。通気ダクト1の片側及び反対側には、他のダクト部材や接続部材、電池ケースや送風ファンケースなどに接続される開口部11,12が設けられている。通気ダクト1は、電池の冷却システム中に組み込まれて、例えば、開口部11からダクト内部に流れ込んだ空気が開口部12から流出するように、その内部に電池冷却風が流れるように使用される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the individual embodiments shown below, and the embodiments can be modified. A ventilation duct 1 according to the first embodiment of the present invention shown in FIGS. 1 and 2 is a ventilation duct 1 used for sending cooling air for cooling a battery of a hybrid vehicle or an electric vehicle. 1 is a perspective view, and FIG. 2 is a cross-sectional view taken along line XX. The ventilation duct 1 is a hollow duct member in which a pair of half-broken bodies 2 and 3 are integrated by a covering body 4 at an end portion thereof, and the covering body 4 is a half-cracked body 2 as shown in FIG. , 3 in such a cross-sectional shape as to wrap around the end edges, and formed along the end edges of the half cracks 2, 3. Openings 11 and 12 connected to other duct members, connection members, battery cases, blower fan cases and the like are provided on one side and the opposite side of the ventilation duct 1. The ventilation duct 1 is incorporated in a battery cooling system, and is used so that, for example, battery cooling air flows through the opening 12 so that air flowing into the duct from the opening 11 flows out of the opening 12. .

半割れ体2,3を一体化している被覆体4はオーバーモールド成形により形成される。即ち、半割れ体2,3は、互いに接合されるべき端縁部に沿って、略フランジ状をなすように接続部21,31が設けられたモナカ形状(ハット形状)に形成されて、接続部21、31を互いに重ね合わせた状態で射出成形金型の内部に導入され、その後、被覆体4を構成する樹脂材料が接続部21、31の重ねあわせ部分の末端部を包み込むような形態に射出されて、被覆体4が形成されている。その詳細については後に述べる。 The covering 4 in which the half cracks 2 and 3 are integrated is formed by overmolding. That is, the half cracks 2 and 3 are formed in a monaca shape (hat shape) in which connection portions 21 and 31 are provided so as to form a substantially flange shape along edge portions to be joined to each other. The portions 21 and 31 are introduced into the injection mold in a state where they are overlapped with each other, and then the resin material constituting the covering 4 is wrapped around the end portions of the overlapping portions of the connecting portions 21 and 31. The covering 4 is formed by being injected. Details will be described later.

通気ダクト1の構成部材である半割れ体2,3は、いずれも、不織布素材をプレス成形により賦形して形成した部材である。本実施形態においては、後述するように3枚の不織布を積層してプレス成形に供して得られる、通気ダクトの略半分を構成するようなモナカ形状に賦形された半割れ体2,3となっている。そして半割れ体2,3の表面は、後述する熱処理により表層部の剛性が高められた熱処理硬化層となっている。さらに、本実施形態においては、熱処理硬化層が半割れ体のダクト内面側にもダクト外面側にも両面に設けられると共に、熱処理硬化層の表面には、熱処理硬化層を形成する際の熱処理により形成された樹脂の塊Gが粒状に分布している。 The half-cracked bodies 2 and 3 which are constituent members of the ventilation duct 1 are members formed by shaping a nonwoven fabric material by press molding. In this embodiment, as will be described later, half-broken bodies 2, 3 shaped into a monaca shape that is obtained by laminating three non-woven fabrics and subjected to press molding so as to constitute approximately half of the ventilation duct; It has become. And the surface of the half-cracked bodies 2 and 3 is a heat-treated hardened layer in which the rigidity of the surface layer portion is increased by heat treatment described later. Further, in the present embodiment, the heat treatment hardened layer is provided on both the inner surface of the duct and the outer surface of the half cracked body, and the heat treatment hardened layer is subjected to heat treatment when forming the heat treatment hardened layer on the surface. The formed resin mass G is distributed in granular form.

本発明においては、不織布成形体である半割れ体2、3の表面のうち、特に通気ダクト外側の面、すなわち、被覆体4によって包み込まれる接合部21,31において被覆体4と直接接触する面の側の不織布表層部に、熱処理硬化層が存在する点に特徴がある。 In the present invention, among the surfaces of the half-cracked bodies 2 and 3 that are nonwoven fabric molded bodies, in particular, the surface outside the ventilation duct, that is, the surface that directly contacts the covering body 4 at the joint portions 21 and 31 wrapped by the covering body 4. It is characterized in that a heat-treated cured layer is present in the surface layer portion of the nonwoven fabric on the side of.

半割れ体2,3の不織布表面に存在する熱処理硬化層及び樹脂の塊G及びそれらを形成するための熱処理について詳述する。この表層部(即ち樹脂の塊Gが分布する熱処理硬化層)は、熱可塑性合成樹脂繊維を含む繊維素材によって、公知のカーディング工程や積層工程やニードルパンチ工程などを経て製造された不織布に対し、炎や熱輻射(例えば赤外線ヒータ)などの手段によって、不織布表面を選択的に加熱することにより不織布表面に形成される層である。不織布表面を選択的に加熱すると、不織布表面付近でのみ熱可塑性樹脂繊維が溶融し、不織布表面における繊維の結合度が上がって、不織布表層に剛性が高められた層すなわち熱処理硬化層が生じ、不織布内部では普通の不織布であるような不織布が得られる。また、この熱処理過程において、熱可塑性樹脂繊維が溶融した樹脂が集合して略球状となった状態で冷却すると、溶融した繊維の樹脂が略球状の塊となり、その塊を熱処理硬化層の表面に粒状に分布させることができる。 The heat-treated cured layer and resin lump G present on the nonwoven fabric surfaces of the half-broken bodies 2 and 3 and the heat treatment for forming them will be described in detail. This surface layer portion (that is, the heat-treated cured layer in which the resin mass G is distributed) is made of a fiber material containing a thermoplastic synthetic resin fiber with respect to a nonwoven fabric manufactured through a known carding process, lamination process, needle punching process, and the like. It is a layer formed on the nonwoven fabric surface by selectively heating the nonwoven fabric surface by means such as flame or heat radiation (for example, an infrared heater). When the nonwoven fabric surface is selectively heated, the thermoplastic resin fibers are melted only near the nonwoven fabric surface, the degree of fiber bonding on the nonwoven fabric surface is increased, and a layer with increased rigidity, that is, a heat-treated cured layer is formed on the nonwoven fabric surface layer. Inside, a non-woven fabric that is a normal non-woven fabric is obtained. Also, in this heat treatment process, when the molten resin of thermoplastic resin aggregates and cools in a substantially spherical state, the resin of the molten fiber becomes a substantially spherical lump, and the lump is formed on the surface of the heat-treated cured layer. It can be distributed in granular form.

このような不織布は、不織布表面を選択的に加熱する際の加熱・冷却の程度や時間を調節して得ることができ、好ましくは不織布生産ライン上に加熱装置を設けることによって連続的に製造することができる。加熱の時間が長すぎると繊維がより多く溶けて、溶けた樹脂が連続して不織布表面が膜状あるいは板状になってしまう場合もあるが、加熱の程度を弱めたり加熱時間を短縮したりして、溶融した樹脂の塊が熱処理硬化層に粒状に分布するように調節することができる。 Such a nonwoven fabric can be obtained by adjusting the degree and time of heating and cooling when the nonwoven fabric surface is selectively heated, and is preferably produced continuously by providing a heating device on the nonwoven fabric production line. be able to. If the heating time is too long, more fibers will melt and the melted resin will continue to form a film or plate on the nonwoven fabric surface, but the degree of heating will be reduced or the heating time will be shortened. Thus, the molten resin mass can be adjusted so as to be distributed in a granular form in the heat-treated cured layer.

この熱処理は、不織布の表側・裏側に対してそれぞれ独立して行うことが可能であり、表側と裏側の両面に熱処理硬化層を形成することも、表側や裏側の一方のみに熱処理硬化層を形成して他方は通常の不織布表面とすることも、いずれも可能である。 This heat treatment can be performed independently for the front and back sides of the nonwoven fabric. A heat-treated cured layer can be formed on both the front and back sides, or a heat-treated cured layer can be formed only on one of the front and back sides. And the other can also be used as a normal nonwoven fabric surface.

また、不織布に上記熱処理を行って略球状の樹脂の塊が分布した熱処理硬化層を形成した後に、さらに熱プレスをかけても良い。上記熱処理の直後に樹脂の塊が軟化した状態で熱プレスをかけると、樹脂の塊が潰れて、偏平な板状となって不織布表面に粒状に分布するようになる。このようにすると、熱処理硬化層の結合度及び剛性が効果的に向上する。 Moreover, after performing the said heat processing to a nonwoven fabric and forming the heat processing hardening layer in which the substantially spherical resin lump was distributed, you may apply a hot press further. When heat pressing is performed with the resin lump softened immediately after the heat treatment, the resin lump is crushed and becomes flat and distributed in a granular form on the nonwoven fabric surface. In this way, the degree of bonding and rigidity of the heat-treated cured layer are effectively improved.

また、熱処理の程度は必ずしも溶融した樹脂の塊が不織布表面に粒状に分布する程度に限られるものではなく、後述する他の実施形態のように、不織布表層を選択的に加熱することによって表面の熱可塑性樹脂繊維が溶融して剛性が高められた層が生ずる限りにおいて、不織布表面が膜状あるいは板状となる程度まで加熱するものであっても良い。 In addition, the degree of heat treatment is not necessarily limited to the degree that the molten resin lump is distributed in a granular manner on the nonwoven fabric surface, and the surface layer is selectively heated by heating the nonwoven fabric surface layer as in other embodiments described later. As long as the thermoplastic resin fibers are melted to form a layer with increased rigidity, the nonwoven fabric surface may be heated to a film or plate shape.

図4、5は不織布表面の熱処理硬化層に樹脂の塊Gが粒状に分布する様子を示す不織布表面の拡大写真であり、パワーハイスコープ装置により撮影した写真である。図4には、樹脂の塊Gが略球状の塊で分布したものを、図5には、樹脂の塊Gが偏平な板状の塊で分布したものを示し、いずれにおいても、不織布表面には、不織布の繊維組織が残存した状態の熱処理硬化層が形成されている。また、図4においては、溶融した樹脂が略球状(球状や涙型状や紡錘状を含む)の塊となって熱処理硬化層の表面に粒状に分布している様子が観察され、図5においては、溶融した樹脂が偏平に押しつぶされた板状の樹脂の塊となって、熱処理硬化層の表面に粒状に分布している様子が観察される。なお、図6には、熱処理硬化層が形成されず、樹脂の塊Gが表面に粒状に分布しない、通常の不織布表面の拡大写真を示し、通常の不織布表面には不織布の構成繊維が交絡した組織が観察される。 4 and 5 are enlarged photographs of the nonwoven fabric surface showing a state in which the resin mass G is distributed in a granular form on the heat-treated cured layer on the nonwoven fabric surface, and are photographs taken by a power high scope apparatus. FIG. 4 shows the resin mass G distributed as a substantially spherical mass, and FIG. 5 shows the resin mass G distributed as a flat plate-shaped mass. Is formed with a heat-treated cured layer in a state in which the fibrous structure of the nonwoven fabric remains. Further, in FIG. 4, it is observed that the molten resin becomes a substantially spherical mass (including a spherical shape, a teardrop shape, and a spindle shape) and is distributed in a granular form on the surface of the heat-treated cured layer. It is observed that the molten resin becomes a plate-like resin lump that is flattened and distributed in a granular form on the surface of the heat-treated cured layer. In addition, in FIG. 6, the heat processing hardened layer is not formed and the lump G of the resin is not distributed on the surface, an enlarged photograph of a normal nonwoven fabric surface is shown, and the constituent fibers of the nonwoven fabric are entangled on the normal nonwoven fabric surface. Tissue is observed.

熱処理によって、表面が膜状あるいは板状となった熱処理硬化層が不織布表面に形成される場合には、図4、図5に示した熱処理硬化層に比べて、より多くの表面の繊維が溶融し、互いに融合してつながった状態となる。なお、熱処理硬化層が膜状あるいは板状であるという状態は、必ずしも非通気性となる程度まで連続した状態にあることを意味せず、通気性を有するような網状の状態、及び、樹脂が互いに連続しながらも空隙や穴があるような状態を含んでいる。 When a heat-treated cured layer having a film-like or plate-like surface is formed on the nonwoven fabric surface by heat treatment, more fibers on the surface melt than the heat-treated cured layer shown in FIGS. Then, they will be fused and connected. In addition, the state that the heat-treated cured layer is in the form of a film or a plate does not necessarily mean that the heat-cured layer is in a continuous state to the extent that it is non-breathable. It includes a state where there are voids and holes while continuing to each other.

本実施形態の半割れ体(不織布成形体)2,3の成形に好ましく使用できる不織布の構成および性状について説明する。不織布としては、合成樹脂繊維からなる不織布が好ましく使用でき、合成樹脂繊維としては、PET樹脂繊維、ポリプロピレン樹脂繊維や、ポリアミド樹脂繊維、ポリエステル樹脂繊維などの熱可塑性樹脂繊維が例示できる。特に、不織布に熱可塑性樹脂繊維が含まれることが、上述した熱処理によって不織布表面に熱処理硬化層を形成する上で重要である。不織布には、熱可塑性樹脂繊維のほか、天然繊維(綿・麻・パルプ)や準天然繊維(レーヨン繊維など)や金属繊維やガラス繊維、カーボン繊維、ロックウールなどの他の繊維素材を含ませるようにしても良い。 The configuration and properties of the nonwoven fabric that can be preferably used for molding the half-cracked bodies (nonwoven fabric molded bodies) 2 and 3 of this embodiment will be described. As the nonwoven fabric, a nonwoven fabric made of synthetic resin fibers can be preferably used, and examples of the synthetic resin fibers include PET resin fibers, polypropylene resin fibers, and thermoplastic resin fibers such as polyamide resin fibers and polyester resin fibers. In particular, it is important that the nonwoven fabric contains thermoplastic resin fibers in forming a heat-treated cured layer on the nonwoven fabric surface by the heat treatment described above. In addition to thermoplastic resin fibers, non-woven fabrics contain other fiber materials such as natural fibers (cotton, hemp, pulp), semi-natural fibers (such as rayon fibers), metal fibers, glass fibers, carbon fibers, and rock wool. You may do it.

熱可塑性樹脂繊維としては、融点の異なる熱可塑性樹脂を芯鞘構造とした樹脂繊維を使用しても良い。また、融点の異なる熱可塑性樹脂繊維を混紡した不織布としても良い。特に、融点の異なる熱可塑性樹脂繊維を混紡した不織布を本発明の実施に供するようにすれば、前述した熱処理工程において、不織布表面で、低融点繊維のみが溶融しながら、高融点繊維は繊維の形態を維持することになって、不織布の通気性を維持しながら不織布表層の剛性が高められやすくなる。また、低融点繊維と高融点繊維とが混紡された不織布素材は、後述する熱プレス加工の際の加工性がよくなり、プレス成形品の凹凸形状の固定や通気性の調整が行いやすくなる。 As the thermoplastic resin fibers, resin fibers having a core-sheath structure made of thermoplastic resins having different melting points may be used. Moreover, it is good also as a nonwoven fabric which blended the thermoplastic resin fiber from which melting | fusing point differs. In particular, if a nonwoven fabric blended with thermoplastic resin fibers having different melting points is used in the practice of the present invention, in the heat treatment step described above, only the low melting point fibers melt on the nonwoven fabric surface, while the high melting point fibers By maintaining the form, the rigidity of the nonwoven fabric surface layer is easily increased while maintaining the breathability of the nonwoven fabric. Moreover, the nonwoven fabric material in which the low-melting fiber and the high-melting fiber are mixed is improved in workability at the time of hot press processing described later, and it becomes easy to fix the uneven shape of the press-formed product and adjust the air permeability.

不織布は、単層の不織布であっても良いし、複層の不織布であっても良い。また、不織布には、不織布の保形性を高めたり、不織布の通気性を調整したりする目的で、アクリル系樹脂や、スチレン系樹脂、フェノール系樹脂、エポキシ系樹脂、酢酸ビニル系樹脂などの樹脂成分を含むバインダー樹脂を含浸させて使用することができる。 The non-woven fabric may be a single-layer non-woven fabric or a multi-layer non-woven fabric. In addition, for nonwoven fabrics, acrylic resins, styrene resins, phenolic resins, epoxy resins, vinyl acetate resins, etc. are used for the purpose of improving the shape retention of nonwoven fabrics and adjusting the breathability of nonwoven fabrics. It can be used by impregnating a binder resin containing a resin component.

本実施形態の通気ダクト1及びその構成部材である半割れ体2,3においては、不織布に対し上記熱処理が行われて、熱処理硬化層が形成されると共に樹脂の塊Gが熱処理硬化層に粒状に分布する不織布素材(A1,A2,A3)が、プレス成形によって賦形されて、その結果、プレス成形された不織布成形体(半割れ体2、3)および、通気ダクト1の表面には、上記熱処理によって形成された熱処理硬化層が形成された状態となっている。
In the ventilation duct 1 and the half-cracked bodies 2 and 3 that are constituent members of the embodiment, the non-woven fabric is subjected to the heat treatment to form a heat-treated cured layer and the resin lump G is granular in the heat-treated cured layer. The non-woven fabric material (A1, A2, A3) distributed in is shaped by press molding. As a result, the press-molded non-woven fabric molded body (half-cracked body 2, 3) and the surface of the ventilation duct 1 are A heat-treated cured layer formed by the heat treatment is formed.

上記通気ダクト1及びその構成部材(半割れ体2,3)の製造方法について説明する。不織布成形体である半割れ体2,3は、不織布の調製工程、プレス金型への供給工程、プレス成形工程、必要によりカット・仕上げ工程、を順に経て製造される。そして、得られた半割れ体2,3を射出成形金型にセットして、いわゆるオーバーモールド成形によって、半割れ体2,3が結合されるべき端縁部に設けられた接続部21、31を被覆材4で包むように被覆材の樹脂材料を射出成形し、半割れ体2,3を一体化させて通気ダクト1が製造される。 The manufacturing method of the said air duct 1 and its structural member (half crack bodies 2, 3) is demonstrated. The half-broken bodies 2 and 3 which are nonwoven fabric molded bodies are manufactured through a nonwoven fabric preparation process, a press mold feeding process, a press molding process, and, if necessary, a cutting and finishing process. Then, the obtained half-cracks 2 and 3 are set in an injection mold, and the connection portions 21 and 31 provided at the edge portions to which the half-cracks 2 and 3 are to be joined by so-called overmolding. The ventilation material 1 is manufactured by injection-molding the resin material of the covering material so as to be wrapped in the covering material 4 and integrating the half-broken bodies 2 and 3 together.

以下各工程を詳細に説明する。
(不織布の調製工程)
プレス成形に供する不織布の調製を行う。熱可塑性樹脂繊維を含む不織布を公知の製造方法により製造し、得られた不織布に対し、上述したように、不織布表面を選択的に加熱して、不織布表面に熱処理硬化層が存在し、熱処理硬化層に樹脂の塊Gが粒状に分布する不織布を得る。不織布を積層してプレス成形する場合もあるので、必要に応じて、不織布の繊維の配合や厚みや目付け、表面状態の異なる不織布をそれぞれ準備しても良い。
Each step will be described in detail below.
(Nonwoven fabric preparation process)
A non-woven fabric to be subjected to press molding is prepared. A nonwoven fabric containing thermoplastic resin fibers is produced by a known production method, and as described above, the nonwoven fabric surface is selectively heated and a heat treatment cured layer is present on the nonwoven fabric surface, and heat treatment curing is performed. A non-woven fabric in which the resin mass G is distributed in a granular form in the layer is obtained. Since nonwoven fabrics may be laminated and press molded, nonwoven fabrics with different fiber composition, thickness, basis weight, and surface condition may be prepared as necessary.

(プレス金型への供給工程)
先の工程で得られた不織布を、プレス処理に適した所定の大きさにカットする。
そして、必要に応じて複数の不織布を積層する。不織布は単層でプレス成形に供することも可能であって、その場合は積層しなくても良い。即ち、プレス成形に供する不織布は単層状態でも積層状態でも良いが、少なくとも上記熱処理により不織布表面に熱処理硬化層が存在するようにされた不織布を含むようにしてプレス成形に供する必要がある。
そして、積層する場合には、上下方向に型開きしたプレス金型P1,P2のうち、少なくともダクト外周面を形成する側の金型面(図ではP1)に、熱処理硬化層が存在する不織布面が対向するように、不織布を積層・配置する。
(Supply process to press mold)
The non-woven fabric obtained in the previous step is cut into a predetermined size suitable for press treatment.
And a some nonwoven fabric is laminated | stacked as needed. The nonwoven fabric can be subjected to press molding as a single layer, and in that case, it is not necessary to laminate the nonwoven fabric. That is, the non-woven fabric to be subjected to press molding may be in a single layer state or a laminated state, but it is necessary to at least include the non-woven fabric in which the heat treatment cured layer is present on the non-woven fabric surface by the heat treatment.
And when laminating, among the press dies P1 and P2 opened in the vertical direction, at least the die surface on the side forming the outer peripheral surface of the duct (P1 in the figure) is a nonwoven fabric surface on which a heat treatment cured layer exists. Are laminated and arranged so that the two face each other.

本実施形態においては、片面のみに樹脂の塊Gが粒状に分布した熱処理硬化層を有する不織布2枚(A1,A2)と、両面に樹脂の塊Gが粒状に分布した熱処理硬化層を有する不織布1枚(A3)とを積層し、最下層には両面に熱処理硬化層を有する不織布A3を、中間層及び最上層には、片面のみに熱処理硬化層を有する不織布A2,A1をそれぞれ熱処理硬化層を有する面が上側となるように積層している(図3(a))。その結果、積層された不織布積層体AAにおいては、その最上面と最下面において、樹脂の塊Gが粒状に分布する熱処理硬化層が露出している。 In the present embodiment, two non-woven fabrics (A1, A2) having a heat-treated cured layer in which resin lumps G are distributed in granular form only on one side, and a non-woven fabric having a heat-treated cured layer in which resin lumps G are distributed in granular form on both sides. One sheet (A3) is laminated, and the lowermost layer is a nonwoven fabric A3 having a heat-treated cured layer on both sides, and the intermediate layer and the uppermost layer are nonwoven fabrics A2 and A1 having a heat-treated cured layer only on one side, respectively. Are laminated so that the surface having the upper side is on the upper side (FIG. 3A). As a result, in the laminated nonwoven fabric laminate AA, the heat-treated cured layer in which the resin mass G is distributed in a granular form is exposed on the uppermost surface and the lowermost surface.

この積層状態を維持しながら、不織布積層体AAの全体を加熱する。加熱にはオーブン加熱が好ましく用いられ、不織布積層体全体を均一に加熱することが好ましい。加熱温度は、プレス成形に好適な温度で、不織布積層体AAに含まれる熱可塑性樹脂繊維の少なくとも一部が軟化する温度であることが好ましい。
そして、所定の温度まで加熱された不織布積層体AAを、型開きされたプレス型P1、P2の内部に供給・配置する(図3(b))。
The entire nonwoven fabric laminate AA is heated while maintaining this laminated state. Oven heating is preferably used for heating, and it is preferable to uniformly heat the entire nonwoven fabric laminate. The heating temperature is a temperature suitable for press molding and is preferably a temperature at which at least a part of the thermoplastic resin fibers contained in the nonwoven fabric laminate AA is softened.
And the nonwoven fabric laminated body AA heated to predetermined temperature is supplied and arrange | positioned inside the press type | molds P1 and P2 which were opened (FIG.3 (b)).

(プレス成形工程)
プレス金型P1,P2を閉じて、所定の圧力を加える。本工程により、不織布積層体AAはプレス金型に設けられたキャビティの形状と合致する形状を有する不織布成形体Bとなる(図3(c))。プレス工程を経ることにより、不織布表面に分布していた樹脂の塊は、偏平な板状になることもある。また、不織布積層体AAの加熱が比較的低温であり、不織布表面に分布していた樹脂の塊が軟化するに至らないような温度で加熱されてプレスされた場合には、プレス工程を経ても不織布表面に分布していた樹脂の塊Gは、略球状のプレス前の形状を維持したまま不織布成形体Bの表面に分布することもある。
(Press molding process)
The press dies P1, P2 are closed and a predetermined pressure is applied. By this step, the nonwoven fabric laminate AA becomes a nonwoven fabric molded body B having a shape that matches the shape of the cavity provided in the press mold (FIG. 3C). By passing through the pressing step, the lump of resin distributed on the surface of the nonwoven fabric may become a flat plate. Further, when the nonwoven fabric laminate AA is heated at a relatively low temperature and is heated and pressed at such a temperature that the lump of resin distributed on the nonwoven fabric surface does not soften, The resin lump G distributed on the nonwoven fabric surface may be distributed on the surface of the nonwoven fabric molded product B while maintaining the substantially spherical shape before pressing.

(カット・仕上げ工程)
プレス成形された不織布成形体Bをプレス金型から取り出し、必要に応じて不要な部分をカッターCT、CTなどによってカットする(図3(d))。また、穴あけ加工が必要であればこの段階で行うこともできる。本実施形態においては、半割れ体の側部の余計な部分を切除すると共に、通気ダクト1の開口部11,12となる部分をカットしている。これら工程を経て、本発明実施形態の1つである通気ダクト1の構成部材(すなわち半割れ部材2,3)を製造できる。
単純な平面形状である場合など、構成部材の形状によっては、カット・仕上げ工程が不要となる場合もある。また、カット工程は、プレス金型を利用してプレス成形と同時並行的に行うこともできる。
(Cut and finishing process)
The press-molded nonwoven fabric molded body B is taken out from the press mold, and unnecessary portions are cut with a cutter CT, CT, etc. as necessary (FIG. 3D). If drilling is necessary, it can be performed at this stage. In the present embodiment, an unnecessary portion of the side portion of the half-cracked body is cut off, and portions that become the opening portions 11 and 12 of the ventilation duct 1 are cut. Through these steps, the constituent members of the ventilation duct 1 that is one of the embodiments of the present invention (that is, the half-cracked members 2 and 3) can be manufactured.
Depending on the shape of the component, such as a simple planar shape, the cutting / finishing process may not be necessary. Further, the cutting step can be performed simultaneously with press molding using a press die.

(通気ダクト組立工程)
上記工程により、得られた通気ダクト構成部材(本実施形態では半割れ体2,3)を組み立てて、通気ダクト1を製造する。本発明においては、いわゆるオーバーモールド成形によって、半割れ体2,3を一体化する。以下、図7を参照しながら、その工程を説明する。
(Ventilation duct assembly process)
Through the above steps, the obtained ventilation duct constituent members (in the present embodiment, half-cracks 2 and 3) are assembled to manufacture the ventilation duct 1. In the present invention, the half cracks 2 and 3 are integrated by so-called overmolding. Hereinafter, the process will be described with reference to FIG.

まず、半割れ体2,3を射出成形金型にセットする。半割れ体2,3の互いに接続されるべき端縁部にフランジ状に設けられた接続部21,31を互いに重ね合わせるようにして、半割れ体2,3を仮組み立てする。その状態を維持しながら、半割れ体2,3を型開きされた状態の射出成形金型M1,M2内部に導入する(図7(a)の状態)。 First, the half cracks 2 and 3 are set in an injection mold. The half cracked bodies 2 and 3 are temporarily assembled so that the flanges 2 and 3 are overlapped with each other at the edge portions to be connected to each other. While maintaining this state, the half cracks 2 and 3 are introduced into the injection molds M1 and M2 in a state where the molds are opened (state shown in FIG. 7A).

次に、金型を閉じ、接続部21,31の末端が包み込まれるような形状のキャビティCを形成する(図7(b))。即ち、キャビティCは、半割れ体2及び3の接続部21,31におけるダクト外周面側となる面及び末端面、ならびに、金型M1,M2の内周面によって画定される空間である。 Next, the mold is closed to form a cavity C shaped so that the ends of the connecting portions 21 and 31 are wrapped (FIG. 7B). That is, the cavity C is a space defined by the surfaces and end surfaces on the duct outer peripheral surface side in the connection portions 21 and 31 of the half-broken bodies 2 and 3 and the inner peripheral surfaces of the molds M1 and M2.

形成されたキャビティCに液状の合成樹脂を射出し、固化させることによって、半割れ体2,3の接続部21,31が射出された合成樹脂で包まれるように被覆体4が形成される(図7(c))。以上のオーバーモールド工程を経ることによって、半割れ体2,3が接合一体化されて、通気ダクト1が完成する。 By injecting a liquid synthetic resin into the formed cavity C and solidifying it, the covering 4 is formed so that the connecting portions 21 and 31 of the half-cracks 2 and 3 are wrapped with the injected synthetic resin ( FIG. 7 (c)). By passing through the above overmolding process, the half cracks 2 and 3 are joined and integrated, and the ventilation duct 1 is completed.

オーバーモールド工程で射出される樹脂は、射出成形に使用可能な熱可塑性樹脂や熱可塑性エラストマーや熱硬化性樹脂などが使用できる。熱可塑性樹脂としては、例えばポリプロピレン樹脂やポリアミド樹脂などの汎用のプラスチック材料が広く使用でき、熱硬化性樹脂としては、例えばLIMS成形に使用可能な液状シリコーンゴムなどが使用できる。オーバーモールド工程で射出される樹脂としては、半割れ体2,3を形成する樹脂材料と接着性が良い材料であることが好ましく、溶着可能な材料であることがより好ましい。 As the resin injected in the overmolding process, a thermoplastic resin, a thermoplastic elastomer, a thermosetting resin, or the like that can be used for injection molding can be used. As the thermoplastic resin, general-purpose plastic materials such as polypropylene resin and polyamide resin can be widely used, and as the thermosetting resin, for example, liquid silicone rubber that can be used for LIMS molding can be used. The resin injected in the overmolding process is preferably a material that has good adhesion to the resin material forming the half-cracks 2 and 3, and more preferably a material that can be welded.

本実施形態における有利な作用と効果について説明する。
本実施形態によれば、オーバーモールド成形に供される不織布成形体において、樹脂被覆体で被覆される側の表面に、不織布の表面を選択的に加熱する工程を経たことにより表面の熱可塑性樹脂繊維が溶融して剛性が高められた層(即ち熱処理硬化層)が存在するようにしたので、射出成形の金型内部で、不織布成形体が変形してしまうことが効果的に抑制される。その結果、不織布成形体のダクト外周面に対向するキャビティ部分C1,C2が十分に確保されて、射出した樹脂が接合部21,31の末端を包み込むようにキャビティCを満たすようになって、図7(c)に示すような成形品が得られやすくなり、図13に示したような、不織布成形体の弾力性に起因するような成形不良の発生が予防・抑制される。
Advantageous actions and effects in this embodiment will be described.
According to this embodiment, in the nonwoven fabric molded body to be subjected to overmolding, the surface thermoplastic resin is obtained by performing a process of selectively heating the surface of the nonwoven fabric on the surface coated with the resin coating. Since there is a layer in which the fibers are melted and the rigidity is increased (that is, a heat-treated cured layer), deformation of the nonwoven fabric molded body inside the injection mold is effectively suppressed. As a result, the cavity portions C1 and C2 facing the outer peripheral surface of the duct of the nonwoven fabric molded body are sufficiently secured, and the injected resin fills the cavity C so as to wrap the ends of the joint portions 21 and 31. It becomes easy to obtain a molded product as shown in FIG. 7C, and the occurrence of molding defects such as those shown in FIG. 13 due to the elasticity of the nonwoven fabric molded product is prevented and suppressed.

上記効果を得るためには、オーバーモールド工程中の金型を閉じてキャビティCを形成した段階において不織布成形体のキャビティ空間内への変形を直接制限できるように、樹脂被覆材で被覆される側の表面(即ちダクト外周面側)に、熱処理硬化層が存在することが重要であるが、本実施形態のように、ダクト内周面側にも熱処理硬化層を存在させれば、より効果的にオーバーモールド成形工程における成形不良を防止できる。 In order to obtain the above effect, the side coated with the resin coating material can directly limit the deformation of the nonwoven fabric molded body into the cavity space at the stage where the mold during the overmolding process is closed and the cavity C is formed. It is important that a heat treatment hardened layer exists on the surface of the duct (that is, on the outer peripheral surface side of the duct). In addition, molding defects in the overmolding process can be prevented.

また、本実施形態のように、不織布成形体の接続部の末端部を覆うように樹脂被覆材を形成して、不織布成形体の通気ダクトへの一体化を行うようにすれば、不織布成形体の表層部、特にダクト外周面側が不織布成形体の末端からはがれることが確実に防止され、通気ダクトに対し、不織布成形体を確実に一体化でき、その接合強度が高められる。 Moreover, if the resin coating material is formed so that the terminal part of the connection part of a nonwoven fabric molded object may be covered like this embodiment and the nonwoven fabric molded object is integrated with the ventilation duct, a nonwoven fabric molded object will be obtained. The surface layer portion, particularly the outer peripheral surface side of the duct is reliably prevented from peeling off from the end of the nonwoven fabric molded body, and the nonwoven fabric molded body can be reliably integrated with the ventilation duct, and the bonding strength is increased.

また、本実施形態のように、オーバーモールド成形に供される不織布成形体において、樹脂被覆材で被覆される側の表面に、熱処理硬化層が存在し、かつ、当該表面には、熱可塑性樹脂繊維が溶融して形成された樹脂の塊が粒状に分布するようにすることが特に好ましい。 Further, as in this embodiment, in the non-woven fabric molded body that is subjected to overmolding, a heat treatment cured layer is present on the surface that is coated with the resin coating material, and the thermoplastic resin is present on the surface. It is particularly preferable that the resin lump formed by melting the fibers is distributed in a granular form.

このように、樹脂被覆体で被覆される側の面に樹脂の塊Gが粒状に分布している場合には、たとえ接続部21,31がキャビティCの内側に向けて変形することがあろうとも、表面に樹脂の塊が存在することによって、不織布成形体の表面と金型内周面が密着してしまうことが防止されて、キャビティの部分C1,C2にも射出された樹脂がいきわたるようになり、より効果的にオーバーモールド成形における成形不良を予防・抑制できる。 In this way, when the resin lump G is distributed in a granular form on the surface to be coated with the resin coating, the connecting portions 21 and 31 may be deformed toward the inside of the cavity C. However, the presence of the lump of resin on the surface prevents the surface of the nonwoven fabric molded body and the inner peripheral surface of the mold from sticking to each other, and the injected resin spreads in the cavity portions C1 and C2. Therefore, it is possible to prevent and suppress molding defects in overmolding more effectively.

また、樹脂被覆体で被覆される側の面に樹脂の塊Gが粒状に分布していれば、射出された樹脂材料が、樹脂の塊Gを包み込むように隙間に入り込んで被覆体4の成形が行われるので、いわゆるアンカー効果によって、被覆体4と半割れ体(不織布成形体)2,3との間の接合強度が向上する。 Further, if the resin lump G is distributed in a granular form on the surface to be coated with the resin coating, the injected resin material enters the gap so as to wrap the resin lump G, and the covering 4 is formed. Therefore, the bonding strength between the cover 4 and the half-cracked bodies (nonwoven fabric molded bodies) 2 and 3 is improved by a so-called anchor effect.

本発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に本発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分については同じ番号を付すと共にその詳細な説明を省略する。 The present invention is not limited to the above embodiment, and can be implemented with various modifications. Although other embodiments of the present invention will be described below, in the following description, portions different from the above embodiment will be mainly described, and the same portions will be denoted by the same reference numerals and detailed description thereof will be omitted. .

上記実施形態の説明においては、通気ダクトが、電気自動車などの電池冷却システムの送風ダクトとして使用される実施形態について説明したが、通気ダクトの用途はそれに限定されるものではない。例えば、本発明の通気ダクトは、自動車用エンジンなどの内燃機関に空気を供給するための吸気システムの通気経路の一部を構成するための通気ダクトとして使用できる。また、エアコンディショナーなどの空調システムにおいて、空気を送風するための送風経路の一部を構成するための通気ダクトとしても使用できる。 In the description of the above embodiment, the embodiment has been described in which the ventilation duct is used as a blower duct of a battery cooling system such as an electric vehicle. However, the use of the ventilation duct is not limited thereto. For example, the ventilation duct of the present invention can be used as a ventilation duct for constituting a part of a ventilation path of an intake system for supplying air to an internal combustion engine such as an automobile engine. Moreover, in air-conditioning systems, such as an air conditioner, it can be used also as a ventilation duct for comprising a part of ventilation path for blowing air.

図8および図9には、本発明の通気ダクトに関し、他の実施形態を示す。例えば、図8には、本発明の通気ダクトの第2実施形態の断面を示すが、本実施形態においては、不織布素材をプレス成形して半割れモナカ状の不織布成形体からなる通気ダクト半割れ体5を用いる点は第1実施形態と同様であるが、本実施形態においては、反対側の半割れ体6は非通気性の合成樹脂素材(たとえばポリアミド樹脂)でブロー成形や射出成形により形成されている点が異なる。また、本実施形態においては、不織布成形体の半割れ体5のダクト外面側にのみ熱処理がされて、半割れ体5の外表面に熱処理硬化層Hが存在する。さらに本実施形態では、熱処理硬化層Hの表面の熱可塑性樹脂繊維が溶融して膜状になっている。本実施形態においても、熱処理硬化層Hがダクト外周面に存在することによって、樹脂被覆材4をオーバーモールド成形する際の成形不良の発生が予防・抑制される。 8 and 9 show another embodiment relating to the ventilation duct of the present invention. For example, FIG. 8 shows a cross-section of the second embodiment of the ventilation duct of the present invention. In this embodiment, the ventilation duct half-crack is formed by press-molding a nonwoven fabric material to form a half-cracked monaca-like nonwoven fabric molded body. Although the point which uses the body 5 is the same as that of 1st Embodiment, in this embodiment, the half crack body 6 of the other side is formed by blow molding or injection molding with the non-breathable synthetic resin material (for example, polyamide resin). Is different. Moreover, in this embodiment, heat processing is performed only on the duct outer surface side of the half-cracked body 5 of the nonwoven fabric molded body, and the heat-treated cured layer H exists on the outer surface of the half-cracked body 5. Furthermore, in this embodiment, the thermoplastic resin fibers on the surface of the heat-treated cured layer H are melted to form a film. Also in the present embodiment, the presence of the heat-treated cured layer H on the outer peripheral surface of the duct prevents or suppresses the occurrence of molding defects when the resin coating material 4 is overmolded.

図9には、本発明の通気ダクトの第3実施形態について、通気ダクトの一部のダクト軸方向に沿った断面を示すが、本実施形態においては、特許文献1に記載のダクトのごとく、ポリプロピレン樹脂などの非通気性素材で成形されたダクト本体部材8の一部に設けられた筒状開口部81の端部に、不織布がプレス加工された不織布成形体7が一体化されており、不織布成形体7のダクト外周面側には、樹脂の塊Gが粒状に分布する熱処理硬化層が存在するようにされている。本実施形態においても、熱処理硬化層がオーバーモールド成形で形成される被覆体4と直接接触する面の側に存在することによって、樹脂被覆体4をオーバーモールド成形する際の成形不良の発生が予防・抑制される。 FIG. 9 shows a cross section of the ventilation duct according to the third embodiment of the present invention along the axial direction of a part of the ventilation duct. In this embodiment, as in the duct described in Patent Document 1, A nonwoven fabric molded body 7 in which a nonwoven fabric is pressed is integrated with an end portion of a cylindrical opening 81 provided in a part of a duct body member 8 formed of a non-breathable material such as polypropylene resin. On the outer peripheral surface side of the duct of the nonwoven fabric molded body 7, there is a heat-treated cured layer in which the resin mass G is distributed in a granular form. Also in the present embodiment, the presence of the heat-cured layer on the side in direct contact with the cover 4 formed by overmolding prevents the occurrence of molding defects when the resin cover 4 is overmolded.・ Suppressed.

このように、本発明が通気ダクトに適用される形態は特に限定されず、不織布をプレス成形した不織布成形体をオーバーモールド成形により一体化した通気ダクトであれば、広く適用可能である。そして、不織布成形体以外の通気ダクトの構成要素に関しては、広く公知技術が採用できることは明らかであって、通気ダクトに非通気性素材の部分が存在すれば、その部分は、熱可塑性樹脂の射出成形やブロー成形によって形成したり、金属板などで構成したりできる。
Thus, the form in which the present invention is applied to the ventilation duct is not particularly limited, and can be widely applied as long as it is a ventilation duct in which a nonwoven fabric formed by press-molding a nonwoven fabric is integrated by overmolding. As for the components of the ventilation duct other than the non-woven fabric molded body, it is obvious that widely known techniques can be adopted. If there is a portion of a non-breathable material in the ventilation duct, that portion is injected with a thermoplastic resin. It can be formed by molding or blow molding, or can be composed of a metal plate or the like.

本発明の通気ダクトは、その内部に空気を通流する用途の通気ダクト(吸気ダクトやエアコン用ダクト、送風ダクトなど)において使用することができる。本発明の通気ダクトによれば、好ましい特性のダクトを効率的に製造でき、産業上の利用価値が高い。 The ventilation duct according to the present invention can be used in a ventilation duct (such as an intake duct, an air conditioner duct, or a blower duct) that is used to flow air inside. According to the ventilation duct of the present invention, a duct having desirable characteristics can be efficiently manufactured, and the industrial utility value is high.

1 通気ダクト
2,3 半割れ体(通気ダクト構成部材)
21,31 接続部
4 樹脂被覆体
G 樹脂の塊
H 膜状の表面を有する熱処理硬化層
AA 不織布積層体
A1,A2 不織布
P1、P2 プレス金型
B 不織布成形体
CT カッター
M1、M2 射出成形金型
C キャビティ
5 半割れ体(通気ダクト構成部材)
6 非通気性の半割れ体(通気ダクト構成部材)
7 通気性部材(通気ダクト構成部材)
8 非通気性のダクト部材(通気ダクト構成部材)
91,92 半割れ体(合成樹脂製)
93、94 半割れ体(不織布成形体)
L 樹脂被覆体
1 Ventilation ducts 2, 3 Half-broken body (Ventilation duct components)
21, 31 Connection part 4 Resin coating G Resin lump H Heat treatment cured layer AA having a film-like surface Non-woven fabric laminate A1, A2 Non-woven fabric P1, P2 Press mold B Non-woven fabric molded body CT Cutter M1, M2 Injection mold C Cavity 5 Half-cracked body (Ventilation duct component)
6 Non-breathable half-broken body (ventilation duct component)
7 Breathable member (Venting duct component)
8 Non-breathable duct members (ventilating duct components)
91,92 Half-slice (synthetic resin)
93, 94 Half-broken body (nonwoven fabric molded body)
L resin coating

Claims (1)

少なくとも2つ以上の構成部材を一体化して構成される通気ダクトであって、
構成部材の少なくとも1つは、熱可塑性樹脂繊維を含む不織布を含むように、プレス加工によって前記不織布が賦形された不織布成形体であり、
不織布成形体が他の構成部材と一体化される部位において、前記一体化が、互いに一体化される構成部材の端縁部に沿って形成された接続部を互いに重ね合わせて、重ね合わせた接続部の末端部を包み込むように、射出成形により樹脂被覆体を被覆形成することによりなされ、
不織布成形体には、樹脂被覆体で被覆される側の表面に、不織布の表面を選択的に加熱する工程を経たことにより表面の熱可塑性樹脂繊維が溶融して剛性が高められた熱処理硬化層が形成されており、
熱処理硬化層の表面には、熱可塑性樹脂繊維が溶融して形成された樹脂の塊が粒状に分布していることを特徴とする通気ダクト。
A ventilation duct configured by integrating at least two or more components,
At least one of the constituent members is a nonwoven fabric molded body in which the nonwoven fabric is shaped by press processing so as to include a nonwoven fabric containing thermoplastic resin fibers,
In the part where the nonwoven fabric molded body is integrated with other constituent members, the integration is performed by superimposing the connection portions formed along the edge portions of the constituent members integrated with each other and superimposing each other. It is made by coating the resin coating by injection molding so as to wrap the end part of the part,
The nonwoven fabric molded body has a heat-cured layer in which the thermoplastic resin fibers on the surface are melted and the rigidity is increased by selectively heating the surface of the nonwoven fabric on the surface to be coated with the resin coating. Is formed ,
A ventilation duct characterized in that a lump of resin formed by melting thermoplastic resin fibers is distributed in a granular form on the surface of the heat-treated cured layer .
JP2009257765A 2009-11-11 2009-11-11 Ventilation duct Active JP5453061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257765A JP5453061B2 (en) 2009-11-11 2009-11-11 Ventilation duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257765A JP5453061B2 (en) 2009-11-11 2009-11-11 Ventilation duct

Publications (2)

Publication Number Publication Date
JP2011101984A JP2011101984A (en) 2011-05-26
JP5453061B2 true JP5453061B2 (en) 2014-03-26

Family

ID=44192553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257765A Active JP5453061B2 (en) 2009-11-11 2009-11-11 Ventilation duct

Country Status (1)

Country Link
JP (1) JP5453061B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369720B2 (en) * 2014-07-03 2018-08-08 株式会社ジェイテクト Manufacturing method of rack housing
JP6700601B2 (en) * 2016-08-29 2020-05-27 トヨタ紡織株式会社 Intake system parts for internal combustion engines
JP2019199834A (en) * 2018-05-16 2019-11-21 トヨタ紡織株式会社 Air intake duct of internal combustion engine
CN114872277B (en) * 2022-03-30 2023-11-14 郯城县泓邦塑柄有限公司 Injection mold for outer layer of blank and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3312231A1 (en) * 1983-04-05 1984-10-11 Bayer Ag, 5090 Leverkusen PLASTIC HOLLOW BODIES
JPH05305679A (en) * 1992-05-01 1993-11-19 Tigers Polymer Corp Production of resin hollow body
JPH09164551A (en) * 1995-12-14 1997-06-24 Aisin Takaoka Ltd Manufacture of synthetic resin hollow body
JP2001131855A (en) * 1999-10-29 2001-05-15 Toyobo Co Ltd Durable long fiber nonwoven fabric and its production
JP2004190196A (en) * 2002-12-13 2004-07-08 Kureha Ltd Composite nonwoven fabric and method for producing the same
JP2007176316A (en) * 2005-12-28 2007-07-12 Inoac Corp Vehicle duct and its manufacturing method
JP5350982B2 (en) * 2009-11-05 2013-11-27 タイガースポリマー株式会社 Ventilation duct, components thereof, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011101984A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5350982B2 (en) Ventilation duct, components thereof, and manufacturing method thereof
JP5586708B2 (en) Manufacturing method for sandwich components
JP4075658B2 (en) Intake device and method of manufacturing the same
US20100219561A1 (en) Method for Producing a Panel or Housing Part of a Vehicle
JP5453061B2 (en) Ventilation duct
JP6082145B1 (en) Soundproof material for vehicle and method for manufacturing the same
JP4424084B2 (en) Fuel vapor adsorption filter and air cleaner provided with the same
JP2009096401A (en) Vehicle body undercover
JP2007176316A (en) Vehicle duct and its manufacturing method
TW201708006A (en) Exterior trim part and the use thereof
KR20150089012A (en) Method for producing at least two-layer components, and component
JP4863294B2 (en) Automotive duct
TW201739603A (en) Sound absorbing liner for the engine bay of a vehicle and sound absorbing trim part having the same
DE102012021887A1 (en) Method for manufacturing three-dimensional formed lining component with integrated heating function for motor car, involves compression molding carrier structure with heating element to lining component, and demolding lining component
JP5284514B2 (en) Manufacturing method of duct for automobile
JP5307676B2 (en) Duct and manufacturing method thereof
JP5100207B2 (en) Manufacturing method of duct for automobile
JP2006299441A (en) Nonwoven fabric for thermoforming
JP2018141914A (en) Vehicular inner packaging material and its manufacturing method
JP4766523B2 (en) Duct manufacturing method
JP2007038854A (en) Interior fitting material for automobile and method of manufacturing interior materials
JP6233626B2 (en) Duct manufacturing method and duct
JP5748105B2 (en) Method for producing molded structure and mold
JPH08223855A (en) Sound-proof cover and its manufacture
JP4951246B2 (en) Manufacturing method of nonwoven fabric member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5453061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250