JP5452098B2 - Method for producing nanoparticle phosphor - Google Patents

Method for producing nanoparticle phosphor Download PDF

Info

Publication number
JP5452098B2
JP5452098B2 JP2009154932A JP2009154932A JP5452098B2 JP 5452098 B2 JP5452098 B2 JP 5452098B2 JP 2009154932 A JP2009154932 A JP 2009154932A JP 2009154932 A JP2009154932 A JP 2009154932A JP 5452098 B2 JP5452098 B2 JP 5452098B2
Authority
JP
Japan
Prior art keywords
particles
compound
nanoparticle
nanoparticle phosphor
reflux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009154932A
Other languages
Japanese (ja)
Other versions
JP2011012097A (en
Inventor
泰彦 岩▲崎▼
英也 川崎
靖久 柴田
Original Assignee
学校法人 関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 関西大学 filed Critical 学校法人 関西大学
Priority to JP2009154932A priority Critical patent/JP5452098B2/en
Publication of JP2011012097A publication Critical patent/JP2011012097A/en
Application granted granted Critical
Publication of JP5452098B2 publication Critical patent/JP5452098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ナノ粒子蛍光体の新規な製造方法に関する。   The present invention relates to a novel method for producing a nanoparticle phosphor.

従来、蛍光プローブとして、フルオレセイン、ローダミン、Alexa色素等の低分子蛍光色素;緑色蛍光色素(GFP)、YEP、REP等の蛍光性タンパク質;Eu、Tb、Ru等の金属錯体;CdSe/ZnS、InAs、PbSe、Si等の量子ドットなどが知られており、ナノマテリアル、バイオイメージング、光エレクトロニクス(レーザー、通信)等の分野で研究が進められている。   Conventionally, as fluorescent probes, low-molecular fluorescent dyes such as fluorescein, rhodamine, and Alexa dyes; fluorescent proteins such as green fluorescent dyes (GFP), YEP, and REP; metal complexes such as Eu, Tb, and Ru; CdSe / ZnS, InAs Quantum dots such as PbSe and Si are known, and research is being conducted in the fields of nanomaterials, bioimaging, optoelectronics (laser, communication) and the like.

上記量子ドットの中でも、Si(シリコン)ナノ粒子は、粒子サイズに依存した蛍光を発することが知られている。そして、シリコンナノ粒子の蛍光は、低分子蛍光色素や蛍光タンパク質等と比べると、光による分解を受け難く、退色が遅いという特徴を有する。   Among the quantum dots, Si (silicon) nanoparticles are known to emit fluorescence depending on the particle size. And the fluorescence of a silicon nanoparticle has the characteristics that it is hard to receive decomposition | disassembly by light compared with a low molecular fluorescent dye, fluorescent protein, etc., and discoloration is slow.

このように、シリコンナノ粒子は、発光安定性の点で他の蛍光プローブよりも優位性があるが、既存の製造方法には、危険性の高い試薬を用いる必要があること、後精製が必要であること、大量生産に不向きであること等の問題がある。   In this way, silicon nanoparticles are superior to other fluorescent probes in terms of light emission stability, but existing manufacturing methods require the use of high-risk reagents and post-purification. There are problems such as being unsuitable for mass production.

例えば、非特許文献1、2には、非晶性ケイ素酸化物(又はシリコンウエハ)をHFでエッチングする工程を有するシリコンナノ粒子の製造方法が記載されている。HFによるエッチングは危険性が指摘されているため、改良が求められている。また、非特許文献3には、SiClをエマルジョン法により還元するシリコンナノ粒子の製造方法が記載されている。エマルジョン法では、強い還元剤である水素化アルミニウムリチウムを使用し、オクチルアンモニウムブロミドを界面活性剤として併用することが知られているが、反応条件が限定的であることと界面活性剤を取り除くために後精製が必要である点で大量生産に不向きであり、改良が求められている。また、シリコンナノ粒子の粒子径が揃っていることが均一な蛍光を得るための条件となるが、従来法では粒子径を精度よく制御することは困難である。 For example, Non-Patent Documents 1 and 2 describe a method for producing silicon nanoparticles having a step of etching an amorphous silicon oxide (or silicon wafer) with HF. Since etching with HF has been pointed out to be dangerous, improvement is required. Non-Patent Document 3 describes a method for producing silicon nanoparticles in which SiCl 4 is reduced by an emulsion method. In the emulsion method, it is known to use lithium aluminum hydride, which is a strong reducing agent, and octylammonium bromide as a surfactant. However, in order to remove the surfactant, the reaction conditions are limited. In addition, it is unsuitable for mass production in that post-purification is necessary, and improvement is required. Further, the uniform particle size of silicon nanoparticles is a condition for obtaining uniform fluorescence, but it is difficult to control the particle size with high accuracy by the conventional method.

よって、シリコンナノ粒子に代表されるナノ粒子蛍光体の製造方法であって、危険性の高い試薬を用いる必要がなく、後処理の必要がなく、粒子径の揃ったナノ粒子蛍光体を大量生産するのに適した製造方法の開発が望まれている。   Therefore, it is a method for producing nanoparticle phosphors typified by silicon nanoparticles, which do not require the use of high-risk reagents, do not require post-treatment, and mass-produce nanoparticle phosphors with uniform particle sizes Development of a manufacturing method suitable for this purpose is desired.

S. -M. Liu et al., Langmuir 2005, 21, 6324.S. -M.Liu et al., Langmuir 2005, 21, 6324. J. H. Park et al., Nature Materials 2009, in pressJ. H. Park et al., Nature Materials 2009, in press R. D. Tilly et al., Adv. Mater. 2006, 18, 2053.R. D. Tilly et al., Adv. Mater. 2006, 18, 2053.

本発明は、シリコンナノ粒子に代表されるナノ粒子蛍光体の製造方法であって、危険性の高い試薬を用いる必要がなく、後処理の必要がなく、粒子径の揃ったナノ粒子蛍光体を大量生産するのに適した製造方法を提供することを目的とする。   The present invention is a method for producing a nanoparticle phosphor typified by silicon nanoparticles, which does not require the use of a highly dangerous reagent, does not require post-treatment, and has a nanoparticle phosphor with a uniform particle size. An object is to provide a manufacturing method suitable for mass production.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の金属化合物又は非金属化合物を、ジメチルホルムアミド(DMF)含有溶媒中で加熱還流する方法によれば、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor can achieve the above object by a method of heating and refluxing a specific metal compound or nonmetal compound in a dimethylformamide (DMF) -containing solvent. As a result, the present invention has been completed.

即ち、本発明は、下記のナノ粒子蛍光体の製造方法に関する。
1.Si化合物、Pt化合物、Pd化合物、Fe化合物及びCu化合物からなる群から選択される少なくとも1種を、ジメチルホルムアミド含有溶媒中で加熱還流するナノ粒子蛍光体の製造方法であって、
前記化合物は、いずれも塩化物であることを特徴とする、ナノ粒子蛍光体の製造方法。
2. マイクロ波を照射しながら前記加熱還流を行う、上記項1に記載の製造方法。
3. 沸騰状態の前記ジメチルホルムアミド含有溶媒に、前記Si化合物、Pt化合物、Pd化合物、Fe化合物及びCu化合物からなる群から選択される少なくとも1種を添加して加熱還流を行う、上記項1又は2に記載の製造方法。
. 前記ナノ粒子蛍光体は、Si粒子、Pt粒子、Pd粒子、Fe粒子及びCu粒子からなる群から選択される少なくとも1種である、上記項1〜のいずれかに記載の製造方法。
. 前記ナノ粒子蛍光体の平均粒子径は0.5〜4nmである、上記項1〜のいずれかに記載の製造方法。
That is, this invention relates to the manufacturing method of the following nanoparticle fluorescent substance.
1. Si compounds, Pt compound, Pd compound, at least one selected from the group consisting of Fe compound and Cu compound, a process for the preparation of Luna Roh particle phosphor be heated to reflux with dimethylformamide containing solvent,
All the compounds are chlorides, The manufacturing method of the nanoparticle fluorescent substance characterized by the above-mentioned.
2. The manufacturing method of said claim | item 1 which performs the said heating recirculation | reflux while irradiating a microwave.
3. Item 1 or 2 above, wherein at least one selected from the group consisting of the Si compound, Pt compound, Pd compound, Fe compound and Cu compound is added to the boiling dimethylformamide-containing solvent and heated to reflux. The manufacturing method as described.
4 . Item 4. The method according to any one of Items 1 to 3 , wherein the nanoparticle phosphor is at least one selected from the group consisting of Si particles, Pt particles, Pd particles, Fe particles, and Cu particles.
5 . Item 5. The method according to any one of Items 1 to 4 , wherein the nanoparticle phosphor has an average particle size of 0.5 to 4 nm.

以下、本発明のナノ粒子蛍光体の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the nanoparticle fluorescent substance of this invention is demonstrated in detail.

本発明のナノ粒子蛍光体の製造方法は、Si化合物、Pt化合物、Pd化合物、Fe化合物、Au化合物、Cu化合物及びAg化合物からなる群から選択される少なくとも1種を、ジメチルホルムアミド(DMF)含有溶媒中で加熱還流することを特徴とする。   The method for producing a nanoparticle phosphor of the present invention comprises at least one selected from the group consisting of Si compounds, Pt compounds, Pd compounds, Fe compounds, Au compounds, Cu compounds and Ag compounds, containing dimethylformamide (DMF). It is characterized by heating to reflux in a solvent.

上記特徴を有する本発明のナノ粒子蛍光体の製造方法によれば、従来法に比して危険性の高い試薬を用いる必要がなく、後処理の必要がなく、粒子径の揃ったナノ粒子蛍光体を大量生産することができる。   According to the method for producing a nanoparticle phosphor of the present invention having the above characteristics, it is not necessary to use a reagent having a higher risk than the conventional method, no post-treatment is required, and nanoparticle fluorescence having a uniform particle size The body can be mass-produced.

本発明では、最終生成物であるナノ粒子蛍光体として、Si粒子、Pt粒子、Pd粒子、Fe粒子、Au粒子、Cu粒子及びAg粒子の少なくとも1種を得る。特にSi粒子の場合には半導体ナノ粒子であり、他の元素の場合には金属ナノ粒子である。   In the present invention, at least one of Si particles, Pt particles, Pd particles, Fe particles, Au particles, Cu particles, and Ag particles is obtained as the nanoparticle phosphor that is the final product. In particular, in the case of Si particles, it is a semiconductor nanoparticle, and in the case of other elements, it is a metal nanoparticle.

上記ナノ粒子蛍光体を製造するために用いる原料(各化合物)としては、例えば、Si化合物であればSiCl、SiCl等が挙げられる。Pt化合物としては、HPtCl、[Pt(NH]Cl等が挙げられる。Pd化合物としては、PdCl、[Pd(NH]Cl等が挙げられる。Fe化合物としては、FeCl、Fe(SO等が挙げられる。Au化合物としては、HAuCl、Na[Au(CN)]等が挙げられる。Cu化合物としては、CuCl、CuSO等が挙げられる。Ag化合物としては、AgNO、〔Ag(NH〕NO等が挙げられる。これらの原料化合物の中でも、還元され易く微粒子が得られ易い点で塩化物を用いることが好ましい。 Examples of the raw material (each compound) used for producing the nanoparticle phosphor include SiCl 4 and Si 2 Cl 6 for Si compounds. Examples of the Pt compound include H 2 PtCl 6 , [Pt (NH 3 ) 4 ] Cl 2, and the like. Examples of the Pd compound include PdCl 2 , [Pd (NH 3 ) 4 ] Cl 2, and the like. Examples of the Fe compound include FeCl 3 and Fe 2 (SO 4 ) 3 . Examples of the Au compound include HAuCl 4 and Na [Au (CN) 4 ]. Examples of the Cu compound include CuCl 2 and CuSO 4 . Examples of the Ag compound include AgNO 3 and [Ag (NH 3 ) 2 ] NO 3 . Among these raw material compounds, it is preferable to use a chloride because it is easily reduced and fine particles are easily obtained.

本発明では、反応溶媒としてジメチルホルムアミド含有溶液を用いる。なお、ジメチルホルムアミドは還元剤としても作用する。反応溶媒としてはジメチルホルムアミド単独でもよく、ジメチルホルムアミドに他の溶媒(例えば、N−メチルホルムアミド、N−メチル-2-ピロリドン等)が混合されていてもよい。2種以上の溶媒を混合して用いる場合には、溶媒中のジメチルホルムアミド含有量は60重量%以上が好ましく、90重量%以上がより好ましい。   In the present invention, a dimethylformamide-containing solution is used as a reaction solvent. Dimethylformamide also acts as a reducing agent. The reaction solvent may be dimethylformamide alone, or other solvents (for example, N-methylformamide, N-methyl-2-pyrrolidone, etc.) may be mixed with dimethylformamide. When two or more solvents are mixed and used, the dimethylformamide content in the solvent is preferably 60% by weight or more, and more preferably 90% by weight or more.

本発明では、ジメチルホルムアミド含有溶液中で原料化合物を加熱還流する。このとき、ジメチルホルムアミドを加熱して130℃以上、好ましくは沸騰状態としておき、そこに原料化合物を一度に(急峻に)添加して加熱還流することが好ましい。これにより、得られるナノ粒子蛍光体の平均粒子径が制御し易くなる。   In the present invention, the raw material compound is heated to reflux in a dimethylformamide-containing solution. At this time, it is preferable that dimethylformamide is heated to 130 ° C. or higher, preferably in a boiling state, and the raw material compounds are added thereto at once (steeply) and heated to reflux. Thereby, it becomes easy to control the average particle diameter of the obtained nanoparticle phosphor.

また、本発明では、反応液にマイクロ波を照射しながら加熱還流することが好ましい。マイクロ波の周波数は2.45GHz程度が好ましく、照射量としては100〜300Wの範囲が好ましい。マイクロ波を照射することにより、ナノ粒子蛍光体の製造効率を高めることができる。これは、マイクロ波の照射によりナノ粒子蛍光体の粒子性を短時間で高めることができるからである。   Moreover, in this invention, it is preferable to heat-reflux while irradiating a reaction liquid with a microwave. The frequency of the microwave is preferably about 2.45 GHz, and the irradiation amount is preferably in the range of 100 to 300 W. Irradiation with microwaves can increase the production efficiency of the nanoparticle phosphor. This is because the particle property of the nanoparticle phosphor can be enhanced in a short time by microwave irradiation.

上記加熱還流により、Si粒子、Pt粒子、Pd粒子、Fe粒子、Au粒子、Cu粒子及びAg粒子の少なくとも1種のナノ粒子蛍光体が得られる。ナノ粒子蛍光体は粒子径に応じた蛍光性を示す。ナノ粒子蛍光体の平均粒子径は0.5〜4nm程度が好ましい。   By heating and refluxing, at least one kind of nanoparticle phosphor of Si particles, Pt particles, Pd particles, Fe particles, Au particles, Cu particles, and Ag particles can be obtained. The nanoparticle phosphor exhibits fluorescence according to the particle diameter. The average particle diameter of the nanoparticle phosphor is preferably about 0.5 to 4 nm.

具体的には、Si粒子の平均粒子径としては、0.5〜4nm程度が好ましく、0.5〜3nm程度がより好ましい。他の金属ナノ粒子(Pt粒子、Pd粒子、Fe粒子、Au粒子、Cu粒子及びAg粒子)の平均粒子径としては、いずれも0.5〜2nm程度が好ましい。加熱還流の終了時は、ナノ粒子蛍光体が、目的の平均粒子径に到達した時点とすればよい。   Specifically, the average particle diameter of the Si particles is preferably about 0.5 to 4 nm, and more preferably about 0.5 to 3 nm. The average particle diameter of other metal nanoparticles (Pt particles, Pd particles, Fe particles, Au particles, Cu particles, and Ag particles) is preferably about 0.5 to 2 nm. The end of heating and reflux may be the time when the nanoparticle phosphor reaches the target average particle diameter.

本発明の製造方法は、界面活性剤を取り除く等の後処理の必要がなく、一段階の操作でナノ粒子蛍光体を高収率で合成することができる。そのため、ナノ粒子蛍光体をゲル浸透クロマトグラフィー(GPC)や遠心分離で分離する必要がなく、一段階の操作で効率的に調製できる点で従来法に比して優位性が高い。   The production method of the present invention does not require post-treatment such as removing the surfactant, and can synthesize the nanoparticle phosphor in a high yield by one-step operation. Therefore, it is not necessary to separate the nanoparticle phosphor by gel permeation chromatography (GPC) or centrifugation, and it is superior to the conventional method in that it can be efficiently prepared in one step.

本発明の製造方法により得られるナノ粒子蛍光体は、理由は定かではないが、各種媒体への分散性が高いという特性がある。例えば、別途の表面処理を施すことなく、水、クロロホルム、ジメチルホルムアミド等の各種媒体に均一に分散させることができる。従来のシリコン蛍光プローブは、水に分散させるに際して表面処理を要するが、本発明の製造方法により得られるナノ粒子蛍光体であれば、表面処理しなくても良好な分散性が得られる。かかる良好な分散性は、バイオセンシング、バイオイメージングの観点から有用である。   The nanoparticle phosphor obtained by the production method of the present invention has a characteristic of high dispersibility in various media, although the reason is not clear. For example, it can be uniformly dispersed in various media such as water, chloroform, dimethylformamide and the like without performing a separate surface treatment. A conventional silicon fluorescent probe requires a surface treatment when dispersed in water. However, if it is a nanoparticle phosphor obtained by the production method of the present invention, good dispersibility can be obtained without surface treatment. Such good dispersibility is useful from the viewpoint of biosensing and bioimaging.

本発明のナノ粒子蛍光体の製造方法によれば、従来法に比して危険性の高い試薬を用いる必要がなく、後処理の必要がなく、粒子径の揃ったナノ粒子蛍光体を大量生産することができる。   According to the method for producing a nanoparticle phosphor of the present invention, it is not necessary to use a reagent having a higher risk than the conventional method, no post-treatment is required, and mass production of nanoparticle phosphors having a uniform particle size is possible. can do.

実施例1で得られたシリコンナノ粒子蛍光体のTEM像である。2 is a TEM image of the silicon nanoparticle phosphor obtained in Example 1. FIG. 実施例1、2において、加熱還流条件と発光強度との関係を示す図である。In Example 1, 2, it is a figure which shows the relationship between heating-reflux conditions and emitted light intensity. 実施例1、2において、加熱還流時間と発光強度との関係を示す図である。In Example 1, 2, it is a figure which shows the relationship between heating recirculation | reflux time and emitted light intensity. 金属ナノ粒子蛍光体の発光性を示す図である。It is a figure which shows the luminescent property of a metal nanoparticle fluorescent substance. 金属ナノ粒子蛍光体の波長/発光強度の関係を示す図である。It is a figure which shows the relationship of the wavelength / luminescence intensity of a metal nanoparticle fluorescent substance. 金属ナノ粒子蛍光体(Au、Pt及びPd)のMALDI-MSによるマススペクトルを示す図である。It is a figure which shows the mass spectrum by MALDI-MS of metal nanoparticle fluorescent substance (Au, Pt, and Pd).

以下に実施例を示して本発明を具体的に説明する。但し本発明は実施例に限定されない。   The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples.

実施例では、次の測定装置を使用した。
・蛍光分光計:F-2500形分光蛍光光度計、HITACHI製
・赤外分光光度計:FT/IR-6300 Fourier Transform Infrared Spectrometer、JASCO製
・吸光光度計:V-650 spectrophotometer、JASCO製
・質量分析計:AXIMA-CFR、(株)島津製作所製
実施例1(シリコンナノ粒子蛍光体の調製:オイルバス)
三口フラスコ(100ml)にジムロート冷却器をつないだものをArガスで置換しながらガスバーナーで全体を炙った。3回炙った後、Ar雰囲気下で脱水DMF(40ml)をフラスコに加えた。オイルバス(155℃)にフラスコを浸し、Ar雰囲気の還流下で約10分撹拌した。Ar雰囲気下でSiCl4(60μl、0.522mmol)をマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら8時間、撹拌した。
In the examples, the following measuring apparatus was used.
・ Fluorescence spectrometer: F-2500 spectrofluorometer, manufactured by HITACHI ・ Infrared spectrophotometer: FT / IR-6300 Fourier Transform Infrared Spectrometer, manufactured by JASCO ・ Absorptiometer: V-650 spectrophotometer, manufactured by JASCO ・ Mass analysis Total: AXIMA-CFR, manufactured by Shimadzu Corporation
Example 1 (Preparation of silicon nanoparticle phosphor: oil bath)
The whole thing which connected the Dimroth condenser to the three neck flask (100 ml) was replaced with Ar gas, and the whole was burned with a gas burner. After thrice, dehydrated DMF (40 ml) was added to the flask under Ar atmosphere. The flask was immersed in an oil bath (155 ° C.) and stirred for about 10 minutes under reflux in an Ar atmosphere. Under an Ar atmosphere, SiCl 4 (60 μl, 0.522 mmol) was added to the DMF solution in the flask with a microsyringe and stirred for 8 hours under reflux.

実施例2(シリコンナノ粒子蛍光体の調製:マイクロウェーブ加熱)
上部が二又の試験管をマイクロ波式有機化学反応実験装置(グリーン・モチーフ・IB)、IDX製、に入れジムロート冷却器をつないだ後、Arガスで置換した。Ar雰囲気下で脱水DMF(10ml)をシリンジで試験管に加えた。グリーン・モチーフ・IB(設定温度153℃、2.45GHz、出力300Wに設定)の電源を入れ、マイクロウェーブを発生させ、撹拌しながらAr雰囲気の還流下で溶液を沸騰させた。沸騰し始めたらAr雰囲気下でSiCl4(15μl、0.13mmol)をマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら8時間撹拌した。
≪実施例1、2の考察≫
実施例1、2において、加熱還流することによりシリコンナノ粒子蛍光体が得られた。実施例1において、6時間還流により得られたシリコンナノ粒子蛍光体の透過型電子顕微鏡観察像(TEM像)を図1に示す。図1から、粒子径が揃ったシリコンナノ粒子蛍光体(粒子径約0.5〜1nm)が得られたことが分かる。
Example 2 (Preparation of silicon nanoparticle phosphor: microwave heating)
The test tube with a bifurcated upper part was placed in a microwave organic chemical reaction experimental apparatus (Green Motif / IB), manufactured by IDX, connected with a Dimroth cooler, and then replaced with Ar gas. Dehydrated DMF (10 ml) was added to the test tube with a syringe under Ar atmosphere. The green motif IB (set temperature: 153 ° C, 2.45GHz, output: 300W) was turned on, microwaves were generated, and the solution was boiled under reflux in an Ar atmosphere while stirring. When it began to boil, SiCl4 (15 μl, 0.13 mmol) was added to the DMF solution in the flask with a microsyringe under an Ar atmosphere and stirred for 8 hours while refluxing.
<< Consideration of Examples 1 and 2 >>
In Examples 1 and 2, silicon nanoparticle phosphors were obtained by heating to reflux. In Example 1, the transmission electron microscope observation image (TEM image) of the silicon nanoparticle phosphor obtained by refluxing for 6 hours is shown in FIG. From FIG. 1, it can be seen that a silicon nanoparticle phosphor having a uniform particle diameter (particle diameter of about 0.5 to 1 nm) was obtained.

実施例1において加熱還流時間を1時間、6時間に設定し、得られたシリコンナノ粒子蛍光体の波長と発光強度(a.u.)との関係を図2に示す。また、参考例として加熱還流をしない場合(SiCl4+DMF(r.t.))の結果も示す。また、実施例2において加熱還流時間を0.5時間、1時間、2時間、3時間に設定し、得られたシリコンナノ粒子蛍光体の波長と発光強度(a.u.)との関係を図2に示す。 In Example 1, the heating reflux time is set to 1 hour and 6 hours, and the relationship between the wavelength of the obtained silicon nanoparticle phosphor and the emission intensity (au) is shown in FIG. In addition, as a reference example, the result of heating without reflux (SiCl 4 + DMF (rt)) is also shown. In Example 2, the heating reflux time was set to 0.5 hours, 1 hour, 2 hours, and 3 hours, and the relationship between the wavelength of the obtained silicon nanoparticle phosphor and the emission intensity (au) is shown in FIG. Show.

図2の結果から明らかなように、加熱還流をしない場合(SiCl4+DMF(r.t.))には発光強度は観測されず、1時間、6時間と加熱還流時間が長くなるに従って、発光強度が強くなることが分かる。マイクウェーブ加熱をした場合には、マイクロウェーブ加熱をしない場合と比べて短時間で発光強度の高いシリコンナノ粒子蛍光体が得られることが分かる。0.5時間マイクロウェーブ加熱をした場合には、既にマイクロウェーブ加熱をせずに6時間加熱還流した場合よりも発光強度が高く、1時間、2時間、3時間と加熱還流時間が長くなる従って、発光強度がより強くなることが分かる。 As is clear from the results in FIG. 2, the emission intensity is not observed when heating is not refluxed (SiCl 4 + DMF (rt)), and the emission intensity increases as the heating reflux time increases to 1 hour and 6 hours. It turns out that it becomes strong. It can be seen that when the microwave heating is performed, a silicon nanoparticle phosphor having a high emission intensity can be obtained in a shorter time than when the microwave heating is not performed. When microwave heating is performed for 0.5 hours, the emission intensity is higher than when heating is refluxed for 6 hours without microwave heating, and the heating reflux time is long as 1 hour, 2 hours, and 3 hours. It can be seen that the emission intensity becomes stronger.

実施例1、2における加熱還流時間と発光強度(a.u.)との関係を図3に示す。図3の結果からも明らかなように、マイクロウェーブ加熱をすることにより、マイクロウェーブ加熱をしない場合と比べて短時間で発光強度の高いシリコンナノ粒子蛍光体が得られることが分かる。   FIG. 3 shows the relationship between the heating reflux time and the emission intensity (a.u.) in Examples 1 and 2. As is clear from the results of FIG. 3, it can be seen that by performing microwave heating, a silicon nanoparticle phosphor having a high emission intensity can be obtained in a shorter time than when microwave heating is not performed.

参考例3(金ナノ粒子蛍光体の調製:オイルバス)
三口フラスコ(100ml)にジムロート冷却器をつないだものを、空気雰囲気下で脱水DMF(15ml)をフラスコに加えた。オイルバス(140℃)にフラスコを浸し、空気雰囲気の還流下で6分ほど撹拌した。空気雰囲気下で塩化金酸水溶液(150μl, 0.1M)をマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら6時間、撹拌した。
Reference Example 3 (Preparation of gold nanoparticle phosphor: oil bath)
A Dimroth condenser connected to a three-necked flask (100 ml), and dehydrated DMF (15 ml) were added to the flask under an air atmosphere. The flask was immersed in an oil bath (140 ° C.) and stirred for about 6 minutes under reflux in an air atmosphere. Under an air atmosphere, an aqueous chloroauric acid solution (150 μl, 0.1 M) was added to the DMF solution in the flask with a microsyringe and stirred for 6 hours while refluxing.

参考例4(銀ナノ粒子蛍光体の調製:オイルバス)
三口フラスコ(100ml)にジムロート冷却器をつないだものを、空気雰囲気下で脱水DMF(15ml)をフラスコに加えた。オイルバス(140℃)にフラスコを浸し、空気雰囲気の還流下で6分ほど撹拌した。空気雰囲気下で硝酸銀水溶液(150μl, 0.1M)をマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら6時間、撹拌した。
Reference Example 4 (Preparation of silver nanoparticle phosphor: oil bath)
A Dimroth condenser connected to a three-necked flask (100 ml), and dehydrated DMF (15 ml) were added to the flask under an air atmosphere. The flask was immersed in an oil bath (140 ° C.) and stirred for about 6 minutes under reflux in an air atmosphere. Under an air atmosphere, an aqueous silver nitrate solution (150 μl, 0.1 M) was added to the DMF solution in the flask with a microsyringe and stirred for 6 hours while refluxing.

実施例5(銅ナノ粒子蛍光体の調製:オイルバス)
三口フラスコ(100ml)にジムロート冷却器をつないだものを、空気雰囲気下で脱水DMF(15ml)をフラスコに加えた。オイルバス(140℃)にフラスコを浸し、空気雰囲気の還流下で6分ほど撹拌した。空気雰囲気下で硝酸銅水溶液(15μl, 0.1M)と水135μlをマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら6時間、撹拌した。
Example 5 (Preparation of copper nanoparticle phosphor: oil bath)
A Dimroth condenser connected to a three-necked flask (100 ml), and dehydrated DMF (15 ml) were added to the flask under an air atmosphere. The flask was immersed in an oil bath (140 ° C.) and stirred for about 6 minutes under reflux in an air atmosphere. Under an air atmosphere, an aqueous copper nitrate solution (15 μl, 0.1 M) and 135 μl of water were added to the DMF solution in the flask with a microsyringe and stirred for 6 hours while refluxing.

実施例6(白金ナノ粒子蛍光体の調製:オイルバス)
三口フラスコ(100ml)にジムロート冷却器をつないだものを、空気雰囲気下で脱水DMF(15ml)をフラスコに加えた。オイルバス(140℃)にフラスコを浸し、空気雰囲気の還流下で6分ほど撹拌した。空気雰囲気下で塩化白金酸水溶液(75μl, 0.1M)と水75μlをマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら6時間、撹拌した。
Example 6 (Preparation of platinum nanoparticle phosphor: oil bath)
A Dimroth condenser connected to a three-necked flask (100 ml), and dehydrated DMF (15 ml) were added to the flask under an air atmosphere. The flask was immersed in an oil bath (140 ° C.) and stirred for about 6 minutes under reflux in an air atmosphere. Under an air atmosphere, an aqueous chloroplatinic acid solution (75 μl, 0.1 M) and 75 μl of water were added to the DMF solution in the flask with a microsyringe and stirred for 6 hours while refluxing.

実施例7(パラジウムナノ粒子蛍光体の調製:オイルバス)
三口フラスコ(100ml)にジムロート冷却器をつないだものを、空気雰囲気下で脱水DMF(15ml)をフラスコに加えた。オイルバス(140℃)にフラスコを浸し、空気雰囲気の還流下で6分ほど撹拌した。空気雰囲気下で塩化パラジウム(II)水溶液(75μl, 0.2M)と水75μlをマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら6時間、撹拌した。
Example 7 (Preparation of palladium nanoparticle phosphor: oil bath)
A Dimroth condenser connected to a three-necked flask (100 ml), and dehydrated DMF (15 ml) were added to the flask under an air atmosphere. The flask was immersed in an oil bath (140 ° C.) and stirred for about 6 minutes under reflux in an air atmosphere. Under an air atmosphere, an aqueous palladium (II) chloride solution (75 μl, 0.2 M) and 75 μl of water were added to the DMF solution in the flask with a microsyringe and stirred for 6 hours while refluxing.

実施例8(鉄ナノ粒子蛍光体の調製:オイルバス)
三口フラスコ(100ml)にジムロート冷却器をつないだものを、空気雰囲気下で脱水DMF(15ml)をフラスコに加えた。オイルバス(140℃)にフラスコを浸し、空気雰囲気の還流下で6分ほど撹拌した。空気雰囲気下で塩化鉄(III)水溶液(15μl, 0.1M)と水135μlをマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら6時間、撹拌した。
Example 8 (Preparation of iron nanoparticle phosphor: oil bath)
A Dimroth condenser connected to a three-necked flask (100 ml), and dehydrated DMF (15 ml) were added to the flask under an air atmosphere. The flask was immersed in an oil bath (140 ° C.) and stirred for about 6 minutes under reflux in an air atmosphere. Under an air atmosphere, an iron (III) chloride aqueous solution (15 μl, 0.1 M) and 135 μl of water were added to the DMF solution in the flask with a microsyringe and stirred for 6 hours while refluxing.

実施例9(鉄ナノ粒子蛍光体の調製:マイクロウェーブ加熱)
上部が二又の試験管をマイクロ波式有機化学反応実験装置(グリーン・モチーフ・IB)、IDX製に入れジムロート冷却器をつないだ後、空気雰囲気下で脱水DMF(10ml)をシリンジで試験管に加えた。グリーン・モチーフ・IB(設定温度153℃、2.45GHz、出力300Wに設定)の電源を入れ、マイクロウェーブを発生させ、撹拌しながら空気雰囲気の還流下で溶液を沸騰させた。沸騰し始めたら空気雰囲気下で塩化鉄(III)水溶液(15μl, 0.1M)と水135μlをマイクロシリンジでフラスコ内のDMF溶液に加え、還流しながら8時間撹拌した。
参考例3及び4並びに実施例〜9の考察≫
図4(A)に、参考例3及び4並びに実施例〜8で得られた金属ナノ粒子蛍光体を示す。ブラックライトを照射した際の蛍光性を図4(B)に示す。いずれの金属ナノ粒子蛍光体も蛍光性を示すことが分かる。
Example 9 (Preparation of iron nanoparticle phosphor: microwave heating)
Place the test tube with a bifurcated upper part into a microwave organic chemical reaction experimental device (green motif IB), IDX, connect a Dimroth cooler, and then dehydrated DMF (10 ml) in a test tube with a syringe in an air atmosphere Added to. The green motif IB (set temperature: 153 ° C, 2.45GHz, output: 300W) was turned on, microwaves were generated, and the solution was boiled under reflux in an air atmosphere while stirring. When boiling started, an iron (III) chloride aqueous solution (15 μl, 0.1M) and 135 μl of water were added to the DMF solution in the flask with a microsyringe in an air atmosphere and stirred for 8 hours while refluxing.
<< Consideration of Reference Examples 3 and 4 and Examples 5 to 9 >>
FIG. 4A shows the metal nanoparticle phosphors obtained in Reference Examples 3 and 4 and Examples 5 to 8. FIG. 4B shows the fluorescence when irradiated with black light. It turns out that any metal nanoparticle fluorescent substance shows fluorescence.

参考例3及び4並びに実施例〜8で得られた金属ナノ粒子蛍光体の波長と発光強度(a.u.)との関係を図5に示す。各スペクトルから明らかなように、各金属ナノ粒子蛍光体が蛍光性を示すことが分かる。金属ナノ粒子の粒子径が2nm以下であるとき、量子サイズ効果により蛍光特性を示すことが知られている。参考例3及び4並びに実施例〜8の金属ナノ粒子は、蛍光特性を示すことから、いずれも粒子径が2nm以下であることが分かる。また、質量分析(マトリックス支援レーザー脱離イオン化質量分析法:MALDI-MS)結果から、金属ナノ粒子蛍光体(Au、Pt及びPd)は、いずれも金属原子が10〜15個程度からなる金属ナノ粒子であることが分かる(図6)。 FIG. 5 shows the relationship between the wavelength of the metal nanoparticle phosphors obtained in Reference Examples 3 and 4 and Examples 5 to 8 and the emission intensity (au). As is clear from each spectrum, it can be seen that each metal nanoparticle phosphor exhibits fluorescence. It is known that when the particle size of the metal nanoparticles is 2 nm or less, it exhibits fluorescence characteristics due to the quantum size effect. Since the metal nanoparticles of Reference Examples 3 and 4 and Examples 5 to 8 exhibit fluorescence characteristics, it can be seen that the particle diameter is 2 nm or less. In addition, from the results of mass spectrometry (matrix-assisted laser desorption / ionization mass spectrometry: MALDI-MS), the metal nanoparticle phosphors (Au, Pt and Pd) are all metal nano particles composed of about 10 to 15 metal atoms. It can be seen that they are particles (FIG. 6).

実施例8、9では、ともに鉄ナノ粒子蛍光体を得ている。実験の結果、マイクロウェーブ加熱をする実施例9の方が、マイクロウェーブ加熱をしない実施例8よりも短時間で鉄ナノ粒子蛍光体が得られた。いずれの金属の場合でも、マイクロウェーブ加熱により製造効率を高めることができた。   In Examples 8 and 9, both iron nanoparticle phosphors are obtained. As a result of the experiment, the iron nanoparticle phosphor was obtained in a shorter time in Example 9 in which microwave heating was performed than in Example 8 in which microwave heating was not performed. In any case, the production efficiency could be increased by microwave heating.

Claims (5)

Si化合物、Pt化合物、Pd化合物、Fe化合物及びCu化合物からなる群から選択される少なくとも1種を、ジメチルホルムアミド含有溶媒中で加熱還流するナノ粒子蛍光体の製造方法であって、
前記化合物は、いずれも塩化物であることを特徴とする、ナノ粒子蛍光体の製造方法。
Si compounds, Pt compound, Pd compound, at least one selected from the group consisting of Fe compound and Cu compound, a process for the preparation of Luna Roh particle phosphor be heated to reflux with dimethylformamide containing solvent,
All the compounds are chlorides, The manufacturing method of the nanoparticle fluorescent substance characterized by the above-mentioned.
マイクロ波を照射しながら前記加熱還流を行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein the heating and refluxing is performed while irradiating microwaves. 沸騰状態の前記ジメチルホルムアミド含有溶媒に、前記Si化合物、Pt化合物、Pd化合物、Fe化合物及びCu化合物からなる群から選択される少なくとも1種を添加して加熱還流を行う、請求項1又は2に記載の製造方法。 To the dimethylformamide-containing solvent in a boiling state, at least one selected from the group consisting of the Si compound, Pt compound, Pd compound, Fe compound and Cu compound is added and heated to reflux. The manufacturing method as described. 前記ナノ粒子蛍光体は、Si粒子、Pt粒子、Pd粒子、Fe粒子及びCu粒子からなる群から選択される少なくとも1種である、請求項1〜のいずれかに記載の製造方法。 The nanoparticle phosphor, Si particles, Pt particles, Pd particles, is at least one selected from the group consisting of Fe particles and Cu particles, The process according to any one of claims 1-3. 前記ナノ粒子蛍光体の平均粒子径は0.5〜4nmである、請求項1〜のいずれかに記載の製造方法。 The manufacturing method according to claim 1, wherein the nanoparticle phosphor has an average particle diameter of 0.5 to 4 nm.
JP2009154932A 2009-06-30 2009-06-30 Method for producing nanoparticle phosphor Expired - Fee Related JP5452098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154932A JP5452098B2 (en) 2009-06-30 2009-06-30 Method for producing nanoparticle phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154932A JP5452098B2 (en) 2009-06-30 2009-06-30 Method for producing nanoparticle phosphor

Publications (2)

Publication Number Publication Date
JP2011012097A JP2011012097A (en) 2011-01-20
JP5452098B2 true JP5452098B2 (en) 2014-03-26

Family

ID=43591312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154932A Expired - Fee Related JP5452098B2 (en) 2009-06-30 2009-06-30 Method for producing nanoparticle phosphor

Country Status (1)

Country Link
JP (1) JP5452098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733622B2 (en) * 2011-05-31 2015-06-10 学校法人 関西大学 Method for producing phosphor composition containing metal nanoparticles, and metal sensor and phosphor film using the phosphor composition
WO2014082703A1 (en) * 2012-11-30 2014-06-05 Merck Patent Gmbh Wavelength conversion polymer film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248308B2 (en) * 2003-05-29 2009-04-02 東海ゴム工業株式会社 Production method of ultrafine particles
KR100809982B1 (en) * 2006-09-21 2008-03-06 삼성전기주식회사 Method for manufacturing copper nanoparticles using microwave

Also Published As

Publication number Publication date
JP2011012097A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
Sk et al. Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor
Li et al. Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties
CN107271409B (en) Method for detecting metal ions in solution by using perovskite nanocrystal-based metal ion sensor
Wei et al. Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display
Gao et al. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence
Runowski et al. Preparation of biocompatible, luminescent-plasmonic core/shell nanomaterials based on lanthanide and gold nanoparticles exhibiting SERS effects
Dong et al. Synthesis and characterization of the water-soluble silica-coated ZnS: Mn nanoparticles as fluorescent sensor for Cu2+ ions
Wang et al. Photoluminescence of colloidal YVO4: Eu/SiO2 core/shell nanocrystals
Cheng et al. Metal-enhanced fluorescence effect of Ag and Au nanoparticles modified with rhodamine derivative in detecting Hg2+
Ansari et al. Influence of shell formation on morphological structure, optical and emission intensity on aqueous dispersible NaYF4: Ce/Tb nanoparticles
Yoshinaga et al. Glycothermally synthesized carbon dots with narrow-bandwidth and color-tunable solvatochromic fluorescence for wide-color-gamut displays
Xu et al. Synthesis of multi-functional green fluorescence carbon dots and their applications as a fluorescent probe for Hg 2+ detection and zebrafish imaging
CN106829920A (en) A kind of green fluorescence carbon quantum dot material and preparation method thereof
Vera et al. Fluorescent silica nanoparticles with chemically reactive surface: Controlling spatial distribution in one-step synthesis
Weng et al. N-GQDs and Eu 3+ co-encapsulated anionic MOFs: two-dimensional luminescent platform for decoding benzene homologues
Moaddab et al. Green synthesis of silver/carbon dot nanoparticles from Malva Sylvestris for fluorescence determination of tetracycline
CN101851502B (en) Ru(bpy)3-doped Ag@SiO2 fluorescent nano particles and preparation method thereof
Zhao et al. Synthesis and Characterization of Red‐Luminescent Graphene Oxide Functionalized with Silica‐Coated Eu3+ Complex Nanoparticles
Ansari et al. Synthesis of water-soluble luminescent LaVO 4: Ln 3+ porous nanoparticles
JP5452098B2 (en) Method for producing nanoparticle phosphor
CN105820809B (en) 6 azepine, 2 thio-thymine gold nano cluster and preparation method thereof
CN101186815B (en) Preparation method for fluorescence metal nano particles
Sui et al. Plasmon-controlled narrower and blue-shifted fluorescence emission in (Au@ SiO 2) SiC nanohybrids
Davies et al. Towards white luminophores: developing luminescent silica on the nanoscale
Zhou et al. A DNA-Schiff base functional nanopore sensing platform for the highly sensitive detection of Al 3+ and Zn 2+ ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees