JP5450237B2 - Steam turbine casing structure - Google Patents

Steam turbine casing structure Download PDF

Info

Publication number
JP5450237B2
JP5450237B2 JP2010102960A JP2010102960A JP5450237B2 JP 5450237 B2 JP5450237 B2 JP 5450237B2 JP 2010102960 A JP2010102960 A JP 2010102960A JP 2010102960 A JP2010102960 A JP 2010102960A JP 5450237 B2 JP5450237 B2 JP 5450237B2
Authority
JP
Japan
Prior art keywords
casing
upper half
outer casing
bearing support
lower half
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010102960A
Other languages
Japanese (ja)
Other versions
JP2011231691A (en
Inventor
玲 村上
嘉昭 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010102960A priority Critical patent/JP5450237B2/en
Publication of JP2011231691A publication Critical patent/JP2011231691A/en
Application granted granted Critical
Publication of JP5450237B2 publication Critical patent/JP5450237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、蒸気タービンの車室構造に関する。   The present invention relates to a casing structure of a steam turbine.

蒸気タービンとは、ボイラーもしくは原子炉(以降、蒸気源と記載する)で発生させた蒸気の熱エネルギを機械的仕事に変換する原動機である。原子力または火力発電用大出力のタービンにおいては、蒸気源側の高圧部と復水器側の低圧部の温度・圧力の条件により、要求される材料仕様が異なることと、蒸気通路部面積の差異とから、一般的には少なくとも高圧タービンと低圧タービンによる複数気筒構成となり、低圧タービンからの排気が復水器に直接排出される復水タービンの形式が採用される。   A steam turbine is a prime mover that converts thermal energy of steam generated in a boiler or nuclear reactor (hereinafter referred to as a steam source) into mechanical work. For high-power turbines for nuclear power or thermal power generation, the required material specifications differ depending on the temperature and pressure conditions of the high-pressure part on the steam source side and the low-pressure part on the condenser side, and the difference in the steam passage area Therefore, in general, a multi-cylinder configuration having at least a high-pressure turbine and a low-pressure turbine is adopted, and a condensate turbine type in which exhaust from the low-pressure turbine is directly discharged to a condenser is adopted.

低圧タービンでは、ノズル及び羽根を収める内部車室と、排気通路を構成する外部車室とを有する2重車室構造が一般的である。特に、発電プラント用の排気流量が多い大出力タービンにおいては、外部車室が大型化するためパッキン及び軸受を外部車室に設けることが多い。   In a low-pressure turbine, a double casing structure having an internal casing that houses nozzles and blades and an external casing that constitutes an exhaust passage is common. In particular, in a high-power turbine with a large exhaust flow rate for a power plant, the outer casing is increased in size, and therefore packing and bearings are often provided in the outer casing.

ここで、従来の低圧タービンの低圧車室の構造を、図12及び図13を用いて説明する。   Here, the structure of the low-pressure casing of the conventional low-pressure turbine will be described with reference to FIGS.

低圧タービン100は、低圧車室101内にタービンロータ102が収容されて構成される。このうち、低圧車室101は、タービンロータ102の羽根などを覆う内部車室103と、この内部車室103の外側に配置された外部車室104とを備えてなり、これらの内部車室103と外部車室104との間に排気通路105が形成される。   The low-pressure turbine 100 is configured by accommodating a turbine rotor 102 in a low-pressure casing 101. Among these, the low-pressure casing 101 includes an internal casing 103 that covers the blades of the turbine rotor 102 and the like, and an external casing 104 disposed outside the internal casing 103. An exhaust passage 105 is formed between the vehicle and the external casing 104.

外部車室104に設けられた蒸気入口管106から内部車室103の入口蒸気室107に蒸気が導入され、この蒸気が図10の矢印Rに示すように、蒸気通路部108を流れてタービンロータ102を回転させた後、排気通路105内を流れ、その後図示しない復水器へ導かれる。   Steam is introduced from the steam inlet pipe 106 provided in the outer casing 104 into the inlet steam chamber 107 of the inner casing 103, and this steam flows through the steam passage portion 108 as indicated by an arrow R in FIG. After rotating 102, it flows through the exhaust passage 105 and is then led to a condenser (not shown).

外部車室104は、外部車室上半109と外部車室下半110に分割され、これらの外部車室上半109と外部車室下半110とが、それぞれの水平フランジ部上半111、水平フランジ部下半112でボルト結合されて外部車室104が構成される。この外部車室104は、復水器に連通して、この復水器と同程度の真空状態に保持される。   The outer casing 104 is divided into an outer casing upper half 109 and an outer casing lower half 110, and the outer casing upper half 109 and the outer casing lower half 110 are respectively connected to the horizontal flange upper half 111, The outer casing 104 is configured by bolting at the lower half 112 of the horizontal flange portion. The external casing 104 communicates with the condenser and is maintained in a vacuum state similar to that of the condenser.

外部車室上半109は、半円筒形状の胴板113と、この胴板113の両端に溶着された端板114と、これらの胴板113及び端板114の下端に溶着された前記水平フランジ部上半111と、この水平フランジ部上半111と端板114に溶着された軸受支持部上半115とを備えてなる。   The outer casing upper half 109 includes a semi-cylindrical body plate 113, end plates 114 welded to both ends of the body plate 113, and the horizontal flanges welded to the body plates 113 and the lower ends of the end plates 114. The upper half 111 includes a horizontal flange upper half 111 and a bearing support upper half 115 welded to the end plate 114.

また、外部車室下半110は、対向配置された一対の側板116と、これらの側板116の両端に溶着された一対の端板117と、これらの側板116及び端板117のそれぞれの上端に溶着された前記水平フランジ部半112と、この水平フランジ部112と端板117に溶着された軸受支持部下半118とを備えてなる。   Further, the lower half 110 of the external compartment is formed by a pair of side plates 116 disposed opposite to each other, a pair of end plates 117 welded to both ends of the side plates 116, and upper ends of the side plates 116 and the end plates 117. The horizontal flange part half 112 welded, and the horizontal flange part 112 and the bearing support lower half 118 welded to the end plate 117 are provided.

外部車室上半109と外部車室下半110が、前述のごとく、それぞれの水平フランジ部上半111、水平フランジ部下半112でボルト結合されて外部車室104が構成されるが、このとき、軸受支持部上半115と軸受支持部下半118もボルト結合されて、軸受支持部119が外部車室104の一構成要素として形成される。この軸受支持部119内に軸受120及びバッキン121が配設され、軸受120を介してタービンロータ102の荷重が軸受支持部119、特に軸受支持部下半118により支持される。   As described above, the outer casing upper half 109 and the outer casing lower half 110 are bolted to each other by the horizontal flange upper half 111 and the horizontal flange lower half 112 to form the outer casing 104. The bearing support upper half 115 and the bearing support lower half 118 are also bolted together, and the bearing support 119 is formed as one component of the external compartment 104. A bearing 120 and a backing 121 are disposed in the bearing support portion 119, and the load of the turbine rotor 102 is supported by the bearing support portion 119, particularly the lower half 118 of the bearing support portion, via the bearing 120.

外部車室104は、外圧が復水器と同様な真空度となっているので、大気圧(真空荷重)の作用により変形する。特に外部車室上半109における端板114が、図13の1点鎖線に示すように外部車室上半109の内側に撓むことで、この撓み変形が軸受支持部119及び外部車室下半110へ伝達され、軸受支持部下半118が図13の1点鎖線に示すように下方へ倒れ込み、タービンロータ102の軸心がずれてしまう。   The external casing 104 is deformed by the action of atmospheric pressure (vacuum load) because the external pressure has the same degree of vacuum as the condenser. Particularly, the end plate 114 in the upper half 109 of the outer casing is bent inward of the upper half 109 of the outer casing as shown by a one-dot chain line in FIG. This is transmitted to the half 110, and the lower half 118 of the bearing support part falls down as shown by the one-dot chain line in FIG. 13, and the axis of the turbine rotor 102 is displaced.

従来の低圧タービンでは、もっぱら外部車室104の剛性を高めることで、上述の真空荷重による変形に対処している。例えば、特許文献1及び2に記載のように、外部車室上半109の端板114に、タービンロータ102のロータ軸を中心に放射状に延びる防撓材が配置されたり、また図12に示すように、外部車室上半109の端板114に格子状の防撓材122が配置されている。   In the conventional low-pressure turbine, the deformation due to the above-described vacuum load is dealt with solely by increasing the rigidity of the external casing 104. For example, as described in Patent Documents 1 and 2, stiffeners extending radially about the rotor shaft of the turbine rotor 102 are disposed on the end plate 114 of the upper half 109 of the outer casing, as shown in FIG. As described above, the lattice-shaped stiffener 122 is disposed on the end plate 114 of the upper half 109 of the outer casing.

特開2009−209697号公報JP 2009-209697 A 特開2002−235505号公報JP 2002-235505 A

真空荷重の作用で外部車室104、特に外部車室上半109の端板114が内側に撓む変形は、通常、地域ごとに経済性を考慮して定められた設計真空度を用いて、タービンロータ102の軸心ずれが許容値に収まるよう設計される。   Deformation in which the outer casing 104, particularly the end plate 114 of the upper half 109 of the outer casing is bent inward by the action of the vacuum load is usually performed using a design vacuum degree determined in consideration of economy for each region. It is designed so that the axial misalignment of the turbine rotor 102 falls within an allowable value.

しかしながら、実際の運用では、外部車室104内の真空度は、冷却水温度が低下する冬季に設計真空度よりも過大になってしまい、軸受支持部下半118の下方への倒れ込み量が著しくなってしまう。   However, in actual operation, the degree of vacuum in the external casing 104 becomes excessively higher than the designed degree of vacuum in the winter when the cooling water temperature is lowered, and the amount of downward tilt of the bearing support lower half 118 becomes significant. End up.

軸受支持部下半118の上記変形は、パッキン119のラビング等による有害な振動の原因となる。このため、設計真空度よりも高真空で低圧タービン100を運用する場合、振動レベルを監視しながらこの振動レベルが上昇しないように、例えば復水器内の非凝縮性ガスの濃度を上昇させることで真空度を調整する真空調整運転を実施している。   The above deformation of the bearing support lower half 118 causes harmful vibration due to rubbing of the packing 119 or the like. For this reason, when operating the low-pressure turbine 100 at a vacuum higher than the design vacuum, for example, the concentration of the non-condensable gas in the condenser is increased so as not to increase the vibration level while monitoring the vibration level. The vacuum adjustment operation is performed to adjust the degree of vacuum.

排気損失を低減させるために最終段翼長を長くした低圧タービン100では、最高出力点が設計真空度よりも高真空側にあることと、特に原子力発電プラントの定格熱出力一定運転への移行により冬季の高真空度運転による発電利得の向上が可能になったこと等とがあるにも拘らず、上述のように有害な振動の発生を懸念して真空調整運転を実施し、真空度に制約を設けているため、高真空度運転による発電利得の向上の機会を失している。   In the low-pressure turbine 100 in which the last stage blade length is increased in order to reduce the exhaust loss, the maximum output point is on the high vacuum side from the design vacuum degree, and particularly due to the transition to the operation with a constant rated heat output of the nuclear power plant. Despite the fact that it is possible to improve the power generation gain by high vacuum operation in winter, vacuum adjustment operation is implemented due to concerns about the occurrence of harmful vibration as described above, and the vacuum degree is restricted. Therefore, the opportunity to improve the power generation gain by high vacuum operation is lost.

設計真空度の上限を引き上げて、真空調整運転が必要ない低圧タービン100とすれば上述の課題は解決されるが、従来技術のまま設計真空度を引き上げた場合には、外部車室104の剛性確保の大部分を内部補強に依存することになってしまう。この結果、外部車室104において、排気損失の増大や車室質量の増大による材料及び製造コストの上昇を招いてしまう。   If the upper limit of the design vacuum level is raised to make the low-pressure turbine 100 that does not require a vacuum adjustment operation, the above-mentioned problems can be solved. However, if the design vacuum level is raised with the conventional technique, the rigidity of the external casing 104 is increased. Most of the security will depend on internal reinforcement. As a result, in the external compartment 104, an increase in exhaust loss and an increase in the compartment mass cause an increase in materials and manufacturing costs.

本発明の目的は、上述の事情を考慮してなされたものであり、排気損失や車室重量を増大させることなく真空調整運転を不要にして、高真空度運転による発電利得の向上を実現できる蒸気タービンの車室構造を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and can eliminate the need for a vacuum adjustment operation without increasing exhaust loss and the weight of the passenger compartment, and can realize an improvement in power generation gain by high vacuum operation. It is to provide a casing structure of a steam turbine.

本発明は、タービンロータを収容する車室が内部車室と外部車室を有してなり、前記外部車室が、前記タービンロータのロータ軸を通る水平面で外部車室上半と外部車室下半に分割され、前記外部車室上半は、半筒形状の胴板と、この胴板の両端に設けられる端板と、これら胴板及び端板のそれぞれの下端に設けられる水平フランジ部上半と、この水平フランジ部上半と前記端板間に設けられる軸受支持部上半とを備えてなり、前記水平フランジ部上半と前記外部車室下半の水平フランジ部下半とが結合され、前記軸受支持部上半と前記外部車室下半の軸受支持部下半とが結合されて、前記外部車室が構成され、前記軸受支持部下半により前記タービンロータの荷重が支持される蒸気タービンの車室構造であって、前記外部車室上半では、前記端板の下端が可撓性部材を介して、前記軸受支持部上半と前記水平フランジ部上半とに接合されたことを特徴とするものである。   In the present invention, a casing for accommodating a turbine rotor has an inner casing and an outer casing, and the outer casing is a horizontal plane passing through the rotor shaft of the turbine rotor and the upper half of the outer casing and the outer casing. The upper half of the outer casing is divided into a lower half, a semi-cylindrical body plate, end plates provided at both ends of the body plate, and horizontal flange portions provided at lower ends of the body plate and the end plate. An upper half, an upper half of the horizontal flange portion, and an upper half of a bearing support portion provided between the end plates are coupled to the upper half of the horizontal flange portion and the lower half of the horizontal flange portion of the lower half of the external casing. The upper half of the bearing support portion and the lower half of the bearing support portion in the lower half of the outer casing are combined to form the outer casing, and the steam that supports the load of the turbine rotor by the lower half of the bearing support portion A turbine casing structure, in the upper half of the outer casing, The lower end of the end plate via a flexible member, and is characterized in that the said bearing support upper half is joined to the horizontal flange portion upper half.

本発明によれば、外部車室上半の端板が真空荷重により内側に撓んでも、その撓み変形が可撓性部材により吸収されて外部車室下半へ伝達されず、この外部車室下半の軸受支持部下半が下方へ倒れ込むことを抑制できる。このため、高真空度運転時に有害な振動の発生を防止でき、更に、排気通路を形成する外部車室下半に補強部材を追加する必要がない。従って、排気損失や車室重量を増大させることなく真空調整運転を不要にできるので、高真空度運転による発電利得の向上を実現できる。   According to the present invention, even if the end plate of the upper half of the external compartment is bent inward by a vacuum load, the bending deformation is absorbed by the flexible member and is not transmitted to the lower half of the external compartment. The lower half of the lower half bearing support portion can be prevented from falling downward. For this reason, generation | occurrence | production of a harmful vibration at the time of high vacuum operation can be prevented, and also it is not necessary to add a reinforcement member to the lower half of the external compartment that forms the exhaust passage. Therefore, since the vacuum adjustment operation can be made unnecessary without increasing the exhaust loss and the passenger compartment weight, the power generation gain can be improved by the high vacuum operation.

本発明に係る蒸気タービンの車室構造が適用された第1の実施の形態における低圧タービンの低圧車室を示す斜視図。1 is a perspective view showing a low-pressure casing of a low-pressure turbine according to a first embodiment to which a casing structure of a steam turbine according to the present invention is applied. 図1の低圧タービンを示す側断面図。FIG. 2 is a side sectional view showing the low-pressure turbine of FIG. 1. 本発明に係る蒸気タービンの車室構造が適用された第2の実施の形態おける低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low pressure casing of the low pressure turbine in 2nd Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied. 本発明に係る蒸気タービンの車室構造が適用された第3の実施の形態における低圧タービンを示し、(A)が部分側断面図、(B)が図4(A)のIV−IV線に沿う断面図。The low pressure turbine in 3rd Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied is shown, (A) is a fragmentary sectional side view, (B) is the IV-IV line of FIG. 4 (A). FIG. 本発明に係る蒸気タービンの車室構造が適用された第4の実施の形態における低圧タービンを示し、(A)が部分側断面図、(B)が図5(A)のV−V線に沿う断面図。The low pressure turbine in 4th Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied is shown, (A) is a fragmentary sectional side view, (B) is the VV line of FIG. 5 (A). FIG. 本発明に係る蒸気タービンの車室構造が適用された第5の実施の形態における低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low pressure casing of the low pressure turbine in 5th Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied. 本発明に係る蒸気タービンの低圧車室における第6の実施の形態における低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low pressure casing of the low pressure turbine in 6th Embodiment in the low pressure casing of the steam turbine which concerns on this invention. 本発明に係る蒸気タービンの車室構造が適用された第7の実施の形態における低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low pressure casing of the low pressure turbine in 7th Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied. 本発明に係る蒸気タービンの車室構造が適用された第8の実施の形態における低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low pressure casing of the low pressure turbine in 8th Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied. 本発明に係る蒸気タービンの車室構造が適用された第9の実施の形態における低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low pressure casing of the low pressure turbine in 9th Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied. 本発明に係る蒸気タービンの車室構造が適用された第10の実施の形態における低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low pressure casing of the low pressure turbine in 10th Embodiment to which the casing structure of the steam turbine which concerns on this invention was applied. 従来の低圧タービンの低圧車室を示す斜視図。The perspective view which shows the low voltage | pressure compartment of the conventional low pressure turbine. 図12の低圧タービンを示す側断面図。FIG. 13 is a side sectional view showing the low-pressure turbine of FIG. 12.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態(図1、図2)
図1及び図2に示すように、蒸気タービンにおける低圧タービン10は、圧力容器である低圧車室11内にタービンロータ12が収容されて構成される。このうち、低圧車室11は、タービンロータ12の羽根(動翼)20等を覆う内部車室14と、この内部車室14の外側に配置された外部車室15とを備えてなり、これらの内部車室14と外部車室15との間の空間が排気通路16として形成される。
[A] First embodiment (FIGS. 1 and 2)
As shown in FIGS. 1 and 2, a low-pressure turbine 10 in a steam turbine is configured such that a turbine rotor 12 is accommodated in a low-pressure casing 11 that is a pressure vessel. Among these, the low-pressure casing 11 includes an internal casing 14 that covers the blades (moving blades) 20 and the like of the turbine rotor 12, and an external casing 15 disposed outside the internal casing 14. A space between the internal compartment 14 and the external compartment 15 is formed as an exhaust passage 16.

内部車室14は、鋼板溶接構造で上半部と下半部との2分割構造となっており、それぞれの水平フランジ部(不図示)がボルト結合される。この内部車室14の内部に、入口蒸気室17、蒸気通路部18等が形成される。内部車室14の蒸気通路部18にノズル板(静翼)19が設置され、このノズル板19が、タービンロータ12に植設された羽根20(動翼)と共にタービン段落を構成する。入口蒸気室17には、外部車室15を貫通する蒸気入口管21が接続されている。この蒸気入口管21と外部車室15との間に、ベローズなどが配設されて気密性が保持される。   The inner casing 14 is a steel plate welded structure and has a two-part structure of an upper half and a lower half, and each horizontal flange portion (not shown) is bolted. An entrance steam chamber 17, a steam passage portion 18, and the like are formed inside the internal casing 14. A nozzle plate (static blade) 19 is installed in the steam passage portion 18 of the internal casing 14, and this nozzle plate 19 constitutes a turbine stage together with blades 20 (moving blades) implanted in the turbine rotor 12. A steam inlet pipe 21 that passes through the external casing 15 is connected to the inlet steam chamber 17. A bellows or the like is disposed between the steam inlet pipe 21 and the external casing 15 to maintain airtightness.

外部車室15に設けられた蒸気入口管21から内部車室14の入口蒸気室17に蒸気が導入されると、この蒸気は、図2の矢印Pに示すように、蒸気通路部18を流れてタービンロータ12を回転させた後、排気通路16内へ流れ、その後図示しない復水器へ導かれる。   When steam is introduced from the steam inlet pipe 21 provided in the outer casing 15 into the inlet steam chamber 17 of the inner casing 14, this steam flows through the steam passage portion 18 as shown by an arrow P in FIG. After the turbine rotor 12 is rotated, the turbine rotor 12 flows into the exhaust passage 16 and then guided to a condenser (not shown).

低圧車室11の外部車室15は、鋼板溶接構造であり、タービンロータ12のロータ軸Oを通る水平面で外部車室上半22と外部車室下半23に分割される。これらの外部車室上半22と外部車室下半23とが、それぞれの水平フランジ部上半24、水平フランジ部半25でボルト結合されて外部車室15が構成される。この外部車室15は復水器(不図示)と連通し、この復水器と同程度の真空状態に保持される。また、この外部車室15は、図示しないキーにより内部車室14を固定する。   The outer casing 15 of the low-pressure casing 11 has a steel plate welded structure, and is divided into an outer casing upper half 22 and an outer casing lower half 23 along a horizontal plane passing through the rotor axis O of the turbine rotor 12. The external casing upper half 22 and the outer casing lower half 23 are bolted by the horizontal flange portion upper half 24 and the horizontal flange portion half 25 to constitute the outer casing 15. The external casing 15 communicates with a condenser (not shown) and is maintained in a vacuum state similar to that of the condenser. In addition, the outer casing 15 fixes the inner casing 14 with a key (not shown).

外部車室上半22は、タービンロータ12のロータ軸O方向に延びる略半円筒形状の胴板26と、この胴板26におけるロータ軸O方向の両端に固着(例えば溶着)して設けられた略半円板形状の一対の端板27と、胴板26の下端に固着(例えば溶着)して設けられると共に、端板27の下端に可撓性部材30(後述)を介して接合して設けられた前記水平フランジ部上半24と、この水平フランジ部上半24と端板27との間で、水平フランジ部上半24に固着(例えば溶着)して設けられると共に、端板27に可撓性部材30を介して接合して設けられた軸受支持部上半28と、を備えてなる。   The outer casing upper half 22 is provided with a substantially semi-cylindrical body plate 26 extending in the rotor axis O direction of the turbine rotor 12 and fixed (for example, welded) to both ends of the body plate 26 in the rotor axis O direction. A pair of substantially semi-disc shaped end plates 27 and a lower end of the body plate 26 are fixed (for example, welded) and joined to the lower end of the end plate 27 via a flexible member 30 (described later). The horizontal flange portion upper half 24 provided, and the horizontal flange portion upper half 24 and the end plate 27 are fixedly attached (for example, welded) to the horizontal flange portion upper half 24, and are attached to the end plate 27. And a bearing support upper half 28 that is joined through a flexible member 30.

外部車室下半23は、タービンロータ12を挟んで対向配置され、且つタービンロータ12のロータ軸O方向に延出された長方形形状の一対の側板31と、これらの側板31におけるロータ軸O方向の両端に固着(例えば溶着)して設けられた長方形形状の一対の端板32と、側板31及び端板32のそれぞれの上端に固着(例えば溶着)して設けられた前記水平フランジ部下半25と、この水平フランジ部下半25と端板32との間に固着(例えば溶着)して設けられた軸受支持部間33と、を備えてなる。   The lower half 23 of the outer casing is opposed to the turbine rotor 12 and extends in the rotor axis O direction of the turbine rotor 12, and the pair of rectangular side plates 31, and the rotor axis O direction of these side plates 31. A pair of rectangular end plates 32 that are fixed (for example, welded) to both ends of the horizontal plate, and the lower half 25 of the horizontal flange portion that is fixed (for example, welded) to the upper ends of the side plate 31 and the end plate 32. And between the bearing support portions 33 fixed (for example, welded) between the lower half 25 of the horizontal flange portion and the end plate 32.

この外部車室下半23は、側板31及び端板32に固着(例えば溶着)されたフートプレート37によってタービン基礎台38のソールプレート39に載置される。外部車室下半23のフートプレート37とタービン基礎台38のソールプレート39とは潤滑されており、熱膨張が可能な構成になっている。但し、フートプレート37の側板31側と端板32側に設けられたセンターキー40により、外部車室15はタービンロータ12のロータ軸Oとのアライメントが確保される。   The lower half 23 of the outer casing is placed on the sole plate 39 of the turbine base 38 by a foot plate 37 fixed (for example, welded) to the side plate 31 and the end plate 32. The foot plate 37 in the lower half 23 of the outer casing and the sole plate 39 in the turbine base 38 are lubricated and are capable of thermal expansion. However, the center key 40 provided on the side plate 31 side and the end plate 32 side of the foot plate 37 ensures that the outer casing 15 is aligned with the rotor shaft O of the turbine rotor 12.

外部車室上半22と外部車室下半23は、前述のごとく、それぞれの水平フランジ部上半24、水平フランジ部下半25がボルト結合されて外部車室15が構成される。このとき、軸受支持部上半28と軸受支持部下半33がボルト結合されて軸受支持部34が、外部車室15の一構成要素として形成される。この軸受支持部34内に軸受35及びパッキン36が配置される。軸受35を介してタービンロータ12の荷重が軸受支持部34、特に軸受支持部下半33により支持される。   As described above, the outer casing upper half 22 and the outer casing lower half 23 are connected to the horizontal flange portion upper half 24 and the horizontal flange portion lower half 25 by bolts to form the outer casing 15. At this time, the bearing support upper half 28 and the bearing support lower half 33 are bolted together to form the bearing support 34 as one component of the external casing 15. A bearing 35 and a packing 36 are disposed in the bearing support portion 34. The load of the turbine rotor 12 is supported by the bearing support 34, particularly the lower half 33 of the bearing support via the bearing 35.

タービンロータ12は、内部車室14及び外部車室15の中心を貫通して配置され、外部車室15の貫通部である軸受支持部34に配置されたパッキン36によって、大気の外部車室15内への侵入が防止される。このパッキン36は、シール蒸気を用いる非接触式のラビリンスパッキンである。また、タービンロータ12と内部車室14及び外部車室15との軸心調整は、タービンロータ12の据付時にタービンロータ12の重量による軸受35の沈み込み等を考慮して実施される。   The turbine rotor 12 is disposed through the center of the inner casing 14 and the outer casing 15, and the packing 36 disposed in the bearing support portion 34, which is a penetrating portion of the outer casing 15, causes the outer casing 15 in the atmosphere. Intrusion is prevented. This packing 36 is a non-contact type labyrinth packing using seal steam. Further, the shaft center adjustment between the turbine rotor 12 and the inner casing 14 and the outer casing 15 is performed in consideration of the sinking of the bearing 35 due to the weight of the turbine rotor 12 when the turbine rotor 12 is installed.

外部車室15は、内圧が復水器と同様な真空度になるので、外圧である大気圧(真空荷重)によって撓み変形し易い。この撓み変形を抑制するために、外部車室上半22には胴板26に補強リブ41が設置されている。また、外部車室下半23は、上述の真空荷重の他、内部車室14、タービンロータ12及び外部車室上半22の荷重を支持する。このため、水平フランジ部下半25とフートプレート37との間の側板31及び端板32に補強リブ42が設置される他、外部車室下半23の内部に多数の補強板43や、図示しないパイプステーが配置されて外部車室下半23が補強されている。   The external casing 15 is easily bent and deformed by the atmospheric pressure (vacuum load) that is the external pressure because the internal pressure has the same degree of vacuum as the condenser. In order to suppress this bending deformation, reinforcing ribs 41 are installed on the body plate 26 in the upper half 22 of the outer casing. The outer casing lower half 23 supports the loads of the inner casing 14, the turbine rotor 12, and the outer casing upper half 22 in addition to the above-described vacuum load. For this reason, the reinforcing ribs 42 are installed on the side plate 31 and the end plate 32 between the lower half 25 of the horizontal flange portion and the foot plate 37, and a number of reinforcing plates 43 are not provided in the lower half 23 of the outer casing. A pipe stay is arranged to reinforce the lower half 23 of the external compartment.

ところで、図1に示すように、外部車室15における外部車室上半22では、前述のごとく、端板27の下端は、軸受支持部上半28と水平フランジ部上半24に固着(例えば溶着)されず、ベローズなどの可撓性部材30を介して軸受支持部上半28と水平フランジ部上半24にそれぞれ接合されている。このため、外部車室上半22の端板27が真空荷重により外部車室15の内側に撓んだ場合、この撓み変形が可撓性部材30の変形により吸収されて軸受支持部34及び外部車室下半23へ伝達されない構造となっている。更に、端板27と軸受支持部上半28及び水平フランジ部上半24とは、可撓性部材30により気密性が確保されている。   By the way, as shown in FIG. 1, in the outer casing upper half 22 in the outer casing 15, as described above, the lower end of the end plate 27 is fixed to the bearing support upper half 28 and the horizontal flange upper half 24 (for example, It is not welded) and is joined to the bearing support upper half 28 and the horizontal flange upper half 24 via a flexible member 30 such as a bellows. For this reason, when the end plate 27 of the upper half 22 of the outer casing is bent inward of the outer casing 15 due to the vacuum load, this bending deformation is absorbed by the deformation of the flexible member 30, and the bearing support portion 34 and the outer The structure is not transmitted to the lower half 23 of the passenger compartment. Further, the end plate 27, the bearing support portion upper half 28 and the horizontal flange portion upper half 24 are airtight by the flexible member 30.

以上のように構成されたことから、本実施の形態によれば、次の効果(1)を奏する。   With the configuration as described above, the present embodiment has the following effect (1).

(1)外部車室上半22では、端板27の下端が可撓性部材30を介して軸受支持部上半28と水平フランジ部上半24にそれぞれ接合されている。このため、外部車室上半22の端板27が真空荷重により内側に撓んでも、その撓み変形が可撓性部材30により吸収されて軸受支持部34及び外部車室下半23へ伝達されず、この外部車室下半23の軸受支持部下半33が下方へ倒れ込むことを抑制できる。この結果、高真空度運転時に有害な振動の発生を防止でき、更に、排気通路16を形成する外部車室下半23に補強部材を追加する必要がない。従って、外部車室15内の真空度の低下を抑制する真空調整運転を、排気損失や車室重量を増大させることなく不要にできるので、高真空度運転による発電利得の向上を実現できる。   (1) In the upper half 22 of the outer casing, the lower end of the end plate 27 is joined to the bearing support upper half 28 and the horizontal flange upper half 24 via the flexible member 30. For this reason, even if the end plate 27 of the outer casing upper half 22 is bent inward by a vacuum load, the bending deformation is absorbed by the flexible member 30 and transmitted to the bearing support portion 34 and the outer casing lower half 23. Therefore, the bearing support lower half 33 of the lower half 23 of the outer casing can be prevented from falling down. As a result, it is possible to prevent generation of harmful vibrations during high vacuum operation, and it is not necessary to add a reinforcing member to the lower half 23 of the outer casing that forms the exhaust passage 16. Accordingly, the vacuum adjustment operation that suppresses the decrease in the degree of vacuum in the external casing 15 can be made unnecessary without increasing the exhaust loss and the casing weight, so that the power generation gain can be improved by the high degree of vacuum operation.

[B]第2の実施の形態(図3)
図3は、本発明に係る蒸気タービンの車室構造が適用された第2の実施の形態における低圧タービンの低圧車室を示す斜視図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 3)
FIG. 3 is a perspective view showing a low-pressure casing of the low-pressure turbine according to the second embodiment to which the casing structure of the steam turbine according to the present invention is applied. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の外部車室47が前記第1の実施の形態の外部車室15(図1)と異なる点は、外部車室上半48において、端板27の下端が可撓性部材30を介して軸受支持部上半28と水平フランジ部上半24に接合される他、胴板26の下端が可撓性部材30を介して水平フランジ部上半24に接合された点である。   The external casing 47 of the present embodiment is different from the external casing 15 (FIG. 1) of the first embodiment in that the lower end of the end plate 27 is the flexible member 30 in the upper half 48 of the external casing. In addition to being joined to the bearing support upper half 28 and the horizontal flange upper half 24, the lower end of the body plate 26 is joined to the horizontal flange upper half 24 via the flexible member 30.

このような外部車室47では、外部車室上半48の胴板26及び端板27が真空荷重により外部車室47の内側に撓み変形した場合、これらの撓み変形が可撓性部材30の変形により吸収されて、軸受支持部34及び外部車室下半23へ伝達されることが確実に防止される。更に、端板27と軸受支持部上半28及び水平フランジ部上半24との気密、胴板26と水平フランジ部上半24との気密は、ともに可撓性部材30により確保される。   In such an external compartment 47, when the body plate 26 and the end plate 27 of the upper half 48 of the external compartment are bent and deformed inside the external compartment 47 due to a vacuum load, these bending deformations of the flexible member 30 are caused. Absorption due to deformation and transmission to the bearing support portion 34 and the outer casing lower half 23 are reliably prevented. Further, airtightness between the end plate 27 and the bearing support upper half 28 and the horizontal flange portion upper half 24 and airtightness between the body plate 26 and the horizontal flange portion upper half 24 are ensured by the flexible member 30.

従って、本実施の形態によれば、次の効果(2)を奏する。   Therefore, according to the present embodiment, the following effect (2) is obtained.

(2)外部車室上半48では、端板27の下端が可撓性部材30を介して軸受支持部上半28と水平フランジ部上半24にそれぞれ接合され、更に胴板26の下端が可撓性部材30を介して水平フランジ部上半24に接合されている。このため、外部車室上半48の端板27及び胴板26が真空荷重により内側に撓み変形した場合にも、その撓み変形が可撓性部材30により吸収されて軸受支持部34及び外部車室下半23へ伝達されず、この外部車室下半23の軸受支持部下半33が下方へ倒れ込むことをより一層抑制できる。この結果、高真空度運転時に有害な振動の発生を防止でき、更に、排気通路16を形成する外部車室下半23に補強部材を追加する必要がない。従って、外部車室47内の真空度の低下を抑制する真空調整運転を、排気損失や車室重量を増大させることなく不要にできるので、高真空度運転による発電利得の向上を実現できる。   (2) In the upper half 48 of the outer casing, the lower end of the end plate 27 is joined to the bearing support upper half 28 and the horizontal flange upper half 24 via the flexible member 30, respectively, and the lower end of the body plate 26 is It is joined to the horizontal flange portion upper half 24 via the flexible member 30. For this reason, even when the end plate 27 and the body plate 26 of the upper half 48 of the outer casing are bent and deformed inward by a vacuum load, the bending deformation is absorbed by the flexible member 30 and the bearing support portion 34 and the outer vehicle 26 are deformed. It is possible to further prevent the bearing support portion lower half 33 of the outer casing lower half 23 from falling down without being transmitted to the lower half 23. As a result, it is possible to prevent generation of harmful vibrations during high vacuum operation, and it is not necessary to add a reinforcing member to the lower half 23 of the outer casing that forms the exhaust passage 16. Accordingly, the vacuum adjustment operation that suppresses the decrease in the degree of vacuum in the external casing 47 can be made unnecessary without increasing the exhaust loss and the casing weight, so that the power generation gain can be improved by the high degree of vacuum operation.

[C]第3の実施の形態(図4)
図4は、本発明に係る蒸気タービンの車室構造が適用された第3の実施の形態における低圧タービンを示し、(A)が部分側断面図、(B)が図4(A)のIV−IV線に沿う断面図である。この第3の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 4)
4A and 4B show a low-pressure turbine according to a third embodiment to which a casing structure of a steam turbine according to the present invention is applied. FIG. 4A is a partial side sectional view, and FIG. It is sectional drawing which follows the -IV line. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の外部車室50が前記第1の実施の形態の外部車室15(図1)と異なる点は、外部車室上半51の端板27の下端が軸受支持部上半28と水平フランジ部上半24に固着(例えば溶着)されると共に、外部車室下半52の軸受支持部下半53の強度を高めて軸受支持部54の剛性を向上させた点である。   The outer casing 50 of the present embodiment is different from the outer casing 15 (FIG. 1) of the first embodiment in that the lower end of the end plate 27 of the upper half 51 of the outer casing is the upper half 28 of the bearing support portion. And the horizontal flange portion upper half 24 are fixed (for example, welded), and the strength of the bearing support portion lower half 53 of the outer casing lower half 52 is increased to improve the rigidity of the bearing support portion 54.

つまり、軸受支持部下半53は、外部車室下半52の端板32に固着(例えば溶着)して接続される略半円錐台形状の強度メンバー55と、この強度メンバー55におけるロータ軸Oを挟む左右の外側に配設されて排気を案内し整流するフェアリング56と、を有して構成される。   In other words, the lower half 53 of the bearing support portion is connected to the end member 32 of the lower half 52 of the outer casing 52 by being fixed (for example, welded) and connected to a substantially semi-conical strength member 55 and the rotor shaft O in the strength member 55. And a fairing 56 that is disposed outside the left and right sides to guide and rectify the exhaust.

上記強度メンバー55は、外部車室下半53の端板32に接続される下端縁55Aがフェアリング56の外周縁56Aに連続する位置まで下方へ延出して構成される。従って、強度メンバー55は、従来のフェアリングが配設されていた位置αまで延出されることになり、この延出された下端縁55Aにはフェアリング56が配設されない構成となっている。   The strength member 55 is configured such that a lower end edge 55 </ b> A connected to the end plate 32 of the lower half 53 of the outer casing extends downward to a position where the outer peripheral edge 56 </ b> A of the fairing 56 is continuous. Therefore, the strength member 55 is extended to the position α where the conventional fairing is disposed, and the fairing 56 is not disposed on the extended lower edge 55A.

外部車室上半51の軸受支持部上半28は、従来と同様に、略半円錐台形状の強度メンバー57と、この強度メンバー57が端板27に固着(例えば溶着)して接続される箇所の全ての外側に配設されて、排気を案内し整流するフェアリング58と、を有して構成される。   The bearing support upper half 28 of the outer casing upper half 51 is connected to a strength member 57 having a substantially semi-conical truncated cone shape, and the strength member 57 is fixed (for example, welded) to the end plate 27 as in the prior art. And a fairing 58 that is arranged outside all the locations and guides and rectifies the exhaust.

以上のように構成されたことから、本実施の形態によれば、次の効果(3)及び(4)を奏する。   With the configuration as described above, the following effects (3) and (4) are achieved according to the present embodiment.

(3)軸受支持部下半53の強度メンバー55は、外部車室下半53の端板32に接続される下端縁55Aがフェアリング56の外周縁56Aに連続する位置まで下方へ延出して構成されている。このため、軸受支持部下半53の強度が高められて、軸受支持部54の剛性、特に上下方向の剛性が向上する。従って、外部車室50全体の剛性が向上し、この外部車室50に作用する真空荷重によっても、軸受支持部54(特に軸受支持部下半53)が下方へ倒れ込む変形を防止できる。   (3) The strength member 55 of the bearing support lower half 53 extends downward to a position where the lower end edge 55A connected to the end plate 32 of the outer casing lower half 53 is continuous with the outer peripheral edge 56A of the fairing 56. Has been. For this reason, the strength of the lower half 53 of the bearing support portion is increased, and the rigidity of the bearing support portion 54, particularly the rigidity in the vertical direction, is improved. Accordingly, the rigidity of the entire outer casing 50 is improved, and deformation in which the bearing support portion 54 (particularly, the lower half 53 of the bearing support portion) falls down due to a vacuum load acting on the outer casing 50 can be prevented.

この結果、高真空度運転時に有害な振動の発生を防止でき、更に排気通路16を形成する外部車室下半52に補強部材を追加する必要がない。従って、排気損失や車室重量を増大させることなく真空調整運転を不要にできるので、高真空度運転による発電利得の向上を実現できる。   As a result, generation of harmful vibrations during high vacuum operation can be prevented, and there is no need to add a reinforcing member to the lower half 52 of the outer casing that forms the exhaust passage 16. Therefore, since the vacuum adjustment operation can be made unnecessary without increasing the exhaust loss and the passenger compartment weight, the power generation gain can be improved by the high vacuum operation.

(4)軸受支持部下半53の強度メンバー55が下方に限定して延出され、タービンロータ12のロータ軸Oを挟む左右方向に延出されることがないので、厚板構造の強度メンバー55の増加量が少なく、外部車室50の製造コストに対する影響を低減できる。   (4) Since the strength member 55 of the lower half 53 of the bearing support portion is limited to the lower side and does not extend in the left-right direction across the rotor shaft O of the turbine rotor 12, the strength member 55 of the thick plate structure The increase amount is small and the influence on the manufacturing cost of the external compartment 50 can be reduced.

[D]第4の実施の形態(図5)
図5は、本発明に係る蒸気タービンの車室構造が適用された第4の実施の形態における低圧タービンを示し、(A)が部分側断面図、(B)が図5(A)のV−V線に沿う断面図である。この第5の実施の形態において、前記第1及び第3の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 5)
FIGS. 5A and 5B show a low-pressure turbine according to a fourth embodiment to which the casing structure of the steam turbine according to the present invention is applied. FIG. 5A is a partial side sectional view, and FIG. It is sectional drawing which follows the -V line. In the fifth embodiment, the same parts as those in the first and third embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態の外部車室60が前記第3の実施の形態の外部車室50(図4)と異なる点は、外部車室下半61の軸受支持部下半62における強度メンバー63が、軸受支持部下半62の内側(即ち、軸受支持部64の内側)に凸の湾曲面形状に形成された点である。   The external casing 60 of the present embodiment is different from the external casing 50 (FIG. 4) of the third embodiment in that the strength member 63 in the bearing support lower half 62 of the outer casing lower half 61 is a bearing. This is a point formed in a convex curved surface shape inside the support portion lower half 62 (that is, inside the bearing support portion 64).

つまり、軸受支持部下半62の強度メンバー63は、略半円錐台形状で、外部車室下半61の端板32に接続される下端縁63Aがフェアリング56の外周縁56Aに連続する位置まで延出されると共に、排気の流れに沿うように、軸受支持部下半62の内側に凸の湾曲面形状に形成される。   That is, the strength member 63 of the bearing support lower half 62 has a substantially semi-conical shape, and the lower end edge 63A connected to the end plate 32 of the outer casing lower half 61 extends to a position where it continues to the outer peripheral edge 56A of the fairing 56. In addition to being extended, it is formed in a convex curved surface shape inside the bearing support lower half 62 so as to follow the flow of exhaust.

従って、本実施の形態によれば、前記第3の実施の形態の効果(3)及び(4)と同様な効果を奏するほか、次の効果(5)を奏する。   Therefore, according to the present embodiment, in addition to the same effects as the effects (3) and (4) of the third embodiment, the following effect (5) is achieved.

(5)軸受支持部下半62の強度メンバー63が、排気の流れに沿うように軸受支持部下半62の内側に凸の湾曲面形状に形成されたことから、軸受支持部下半62の強度メンバー63が下方に延出された場合にも、排気損失を良好に低減できる。   (5) Since the strength member 63 of the bearing support lower half 62 is formed in a convex curved surface inside the bearing support lower half 62 so as to follow the flow of exhaust, the strength member 63 of the bearing support lower half 62 is formed. Even when the gas is extended downward, the exhaust loss can be reduced well.

[E]第5の実施の形態(図6)
図6は、本発明に係る蒸気タービンの車室構造が適用された第5の実施の形態における低圧タービンの低圧車室を示す斜視図である。この第5の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 6)
FIG. 6 is a perspective view showing a low-pressure casing of the low-pressure turbine in the fifth embodiment to which the casing structure of the steam turbine according to the present invention is applied. In the fifth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の外部車室65が前記第1の実施の形態の外部車室15(図1)と異なる点は、外部車室上半66の端板27の下端が軸受支持部上半28及び水平フランジ部上半24に固着(例えば溶着)されると共に、この端板27に第1防撓材67と、他の防撓材としての第2防撓材68が固着(例えば溶着)して配置された点である。   The external casing 65 of the present embodiment is different from the external casing 15 (FIG. 1) of the first embodiment in that the lower end of the end plate 27 of the upper half 66 of the outer casing is the upper half 28 of the bearing support portion. The first stiffener 67 and the second stiffener 68 as another stiffener are fixed (for example, welded) to the upper half 24 of the horizontal flange portion. It is a point arranged.

つまり、端板27に固着して配置される第1防撓材67は、タービンロータ12のロータ軸Oに直交して水平方向に延び、両端が胴板26に支持されて両端支持梁構造に構成される。更にこの第1防撓材67は、断面係数が大きく設定され、例えばH型断面形状のフェイスプレート付き梁、またはコ字型断面形状のボックス梁などが好ましい。   That is, the first stiffener 67 fixedly disposed on the end plate 27 extends in the horizontal direction perpendicular to the rotor axis O of the turbine rotor 12, and both ends are supported by the body plate 26 to form a both-end support beam structure. Composed. Further, the first stiffener 67 has a large section modulus, and is preferably a beam with a face plate having an H-shaped cross section or a box beam having a U-shaped cross section.

また、同じく端板27に固着して配置される第2防撓材68は、第1防撓材67に交差して接続され、端板27に作用する真空荷重を第1防撓材67に効果的に伝達させるように構成されている。例えば、この第2防撓材68は、第1防撓材67に直交して複数本配置される。   Further, the second stiffener 68 that is also fixedly attached to the end plate 27 is connected to intersect with the first stiffener 67, and a vacuum load acting on the end plate 27 is applied to the first stiffener 67. It is configured to transmit effectively. For example, a plurality of the second stiffeners 68 are arranged orthogonal to the first stiffener 67.

以上のように構成されたことから、本実施の形態によれば、次の効果(6)を奏する。   With the configuration as described above, the present embodiment has the following effect (6).

(6)外部車室上半66では、端板27に、両端が胴板26に接続されて両端支持梁構造に構成された第1防撓材67が配置されると共に、この第1防撓材67に接続される第2防撓材68が配置されている。このため、端板27の剛性が高められ、この端板27の真空荷重による撓み変形を低減できるので、外部車室下半23の軸受支持部下半33が下方へ倒れ込むことを抑制できる。   (6) In the outer casing upper half 66, the end plate 27 is provided with a first stiffener 67 having both ends connected to the body plate 26 and configured to have a both-end support beam structure. A second stiffener 68 connected to the material 67 is disposed. For this reason, the rigidity of the end plate 27 is enhanced, and the bending deformation of the end plate 27 due to the vacuum load can be reduced. Therefore, the bearing support portion lower half 33 of the outer casing lower half 23 can be prevented from falling down.

この結果、高真空度運転時に有害な振動の発生を防止でき、更に排気通路16を形成する外部車室下半23に補強部材を追加する必要がない。従って、排気損失や車室重量を増大させることなく真空調整運転が不要になるので、高真空度運転による発電利得の向上を実現できる。   As a result, it is possible to prevent generation of harmful vibrations during high vacuum operation, and it is not necessary to add a reinforcing member to the lower half 23 of the outer casing that forms the exhaust passage 16. Therefore, since the vacuum adjustment operation is not required without increasing the exhaust loss and the passenger compartment weight, it is possible to improve the power generation gain by the high vacuum operation.

[F]第6の実施の形態(図7)
図7は、本発明に係る蒸気タービンの車室構造が適用された第6の実施の形態における低圧タービンの低圧車室を示す斜視図である。この第6の実施の形態において、前記第1及び第5の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[F] Sixth embodiment (FIG. 7)
FIG. 7 is a perspective view showing a low-pressure casing of the low-pressure turbine in the sixth embodiment to which the casing structure of the steam turbine according to the present invention is applied. In the sixth embodiment, the same parts as those in the first and fifth embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の外部車室70が前記第5の実施の形態の外部車室65(図6)と異なる点は、外部車室上半71の端板72に切欠き73が形成され、更に第1防撓材74が連結部材75により連結された点である。   The external casing 70 of the present embodiment is different from the external casing 65 (FIG. 6) of the fifth embodiment in that a notch 73 is formed in the end plate 72 of the upper half 71 of the external casing. The first stiffener 74 is connected by a connecting member 75.

つまり、切欠き73は、外部車室上半71の端板72における軸受支持部上半28に対応する位置に、軸受35調整用に形成されている。また、第1防撓材74は、ロータ軸Oに直交する水平方向に延びて端板27に固着(例えば溶着)され、両端が胴板26に支持される。この第1防撓材74は、上記切欠き73に対応する位置で左右に分断され、これらの分断部分が、着脱可能な連結部材75により連結されて、両端支持梁構造に構成される。   That is, the notch 73 is formed for adjusting the bearing 35 at a position corresponding to the bearing support upper half 28 in the end plate 72 of the outer casing upper half 71. The first stiffener 74 extends in the horizontal direction orthogonal to the rotor axis O and is fixed (for example, welded) to the end plate 27, and both ends are supported by the body plate 26. The first stiffener 74 is divided into left and right at a position corresponding to the notch 73, and these divided portions are connected by a detachable connecting member 75 to constitute a double-end support beam structure.

これらの第1防撓材74及び連結部材75は、断面係数の大きな、例えばフェイスプレート付き梁またはボックス梁等にて構成される。また、この第1防撓材74に、端板27に固着(例えば溶着)された複数本の第2防撓材68が交差して接続される。   The first stiffener 74 and the connecting member 75 are configured with a large section modulus, for example, a beam with a face plate or a box beam. A plurality of second stiffeners 68 fixed (for example, welded) to the end plate 27 are crossed and connected to the first stiffener 74.

従って、本実施の形態によれば、次の効果(7)を奏する。   Therefore, according to the present embodiment, the following effect (7) is obtained.

(7)外部車室上半71の端板72に配置される第1防撓材74が、切欠き73に対応する位置で分断される場合にも、この分断部分が着脱可能な連結部材75にて連結されるので、第1防撓材74は、両端が胴板26に支持された両端支持梁構造になり、第2防撓材68と共に、外部車室上半71の端板72の剛性を高めることができる。このため、端板72の真空荷重による撓み変形を低減できるので、外部車室下半23の軸受支持部下半33が下方へ倒れ込むことを抑制できる。   (7) Even when the first stiffener 74 arranged on the end plate 72 of the upper half 71 of the external compartment is divided at a position corresponding to the notch 73, the connecting member 75 is detachable. Therefore, the first stiffener 74 has a both-ends support beam structure in which both ends are supported by the body plate 26, and together with the second stiffener 68, the end plate 72 of the upper half 71 of the external compartment is provided. Stiffness can be increased. For this reason, since the bending deformation by the vacuum load of the end plate 72 can be reduced, it can suppress that the bearing support part lower half 33 of the outer casing lower half 23 falls down.

この結果、高真空度運転時に有害な振動の発生を防止でき、更に排気通路16を形成する外部車室下半23に補強部材を追加する必要がない。従って、排気損失や車室重量を増大させることなく真空調整運転を不要にできるので、高真空度運転による発電利得の向上を実現できる。   As a result, it is possible to prevent generation of harmful vibrations during high vacuum operation, and it is not necessary to add a reinforcing member to the lower half 23 of the outer casing that forms the exhaust passage 16. Therefore, since the vacuum adjustment operation can be made unnecessary without increasing the exhaust loss and the passenger compartment weight, the power generation gain can be improved by the high vacuum operation.

[G]第7の実施の形態(図8)
図8は、本発明に係る蒸気タービンの車室構造が適用された第7の実施の形態における低圧タービンの低圧車室を示す斜視図である。この第7の実施の形態において、前記第1及び第5の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[G] Seventh embodiment (FIG. 8)
FIG. 8 is a perspective view showing a low-pressure casing of the low-pressure turbine in the seventh embodiment to which the casing structure of the steam turbine according to the present invention is applied. In the seventh embodiment, the same parts as those in the first and fifth embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態の外部車室77は、第1の実施の形態の外部車室15(図1)と、第5の実施の形態の外部車室65(図6)とを組み合わせたものである。つまり、この外部車室77の外部車室上半78は、端板27の下端が可撓性部材30を介して軸受支持部上半28と水平フランジ部上半24に接合され、且つ、両端が胴板26に支持された第1防撓材67と、この第1防撓材67に交差する第2防撓材68とが端板27に固着(例えば溶着)して配置されたものである。   The external compartment 77 of the present embodiment is a combination of the external compartment 15 (FIG. 1) of the first embodiment and the external compartment 65 (FIG. 6) of the fifth embodiment. . That is, the outer casing upper half 78 of the outer casing 77 has the lower end of the end plate 27 joined to the bearing support upper half 28 and the horizontal flange upper half 24 via the flexible member 30, and both ends. The first stiffener 67 supported by the body plate 26 and the second stiffener 68 intersecting the first stiffener 67 are fixedly attached (for example, welded) to the end plate 27. is there.

これにより、外部車室上半78の端板27の剛性が、第1実施の形態の外部車室上半22の端板27の場合よりも高められる。従って、本実施の形態によれば、前記第1及び第5の実施の形態の効果(1)及び(6)と同様な効果を奏する。   Thereby, the rigidity of the end plate 27 of the outer casing upper half 78 is higher than that of the end plate 27 of the outer casing upper half 22 of the first embodiment. Therefore, according to the present embodiment, the same effects as the effects (1) and (6) of the first and fifth embodiments can be obtained.

[H]第8の実施の形態(図9)
図9は、本発明に係る蒸気タービンの車室構造が適用された第8の実施の形態における低圧タービンの低圧車室を示す斜視図である。この第8の実施の形態において、前記第1、第5及び第6の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[H] Eighth embodiment (FIG. 9)
FIG. 9 is a perspective view showing a low-pressure casing of a low-pressure turbine according to an eighth embodiment to which the steam turbine casing structure according to the present invention is applied. In the eighth embodiment, the same parts as those in the first, fifth and sixth embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態の外部車室80は、第1の実施の形態の外部車室15(図1)と第6の実施の形態の外部車室70(図7)とを組み合わせたものである。つまり、この外部車室80の外部車室上半81では、端板72の下端が可撓性部材30を介して軸受支持部上半28と水平フランジ部上半24に接合され、且つ、端板72には、両端が胴板26に支持される第1防撓材74と、この第1防撓材74に交差する第2防撓材68とが配置されると共に、軸受支持部上半28に対応する位置に切欠き73が形成され、前記第1防撓材74は、切欠き73に対応する部分で分断され、この分断部分が着脱可能な連結部材75により連結されたものである。   The external compartment 80 of the present embodiment is a combination of the external compartment 15 (FIG. 1) of the first embodiment and the external compartment 70 (FIG. 7) of the sixth embodiment. That is, in the outer casing upper half 81 of the outer casing 80, the lower end of the end plate 72 is joined to the bearing support portion upper half 28 and the horizontal flange portion upper half 24 via the flexible member 30, and A first stiffener 74 whose both ends are supported by the body plate 26 and a second stiffener 68 that intersects the first stiffener 74 are disposed on the plate 72, and the upper half of the bearing support portion. A cutout 73 is formed at a position corresponding to 28, the first stiffener 74 is divided at a portion corresponding to the cutout 73, and the divided portion is connected by a detachable connecting member 75. .

これにより、外部車室上半81の端板72の剛性が第6の実施の形態の場合と同様に高められ、且つ端板72の撓み変形が、第1実施の形態の場合と同様に、可撓性部材30の変形により吸収されて軸受支持部下半33の下方への倒れ込みが抑制される。従って、本実施の形態によれば、前記第1及び第6の実施の形態の効果(1)及び(7)と同様な効果を奏する。   Thereby, the rigidity of the end plate 72 of the outer casing upper half 81 is increased in the same manner as in the sixth embodiment, and the bending deformation of the end plate 72 is the same as in the case of the first embodiment. It is absorbed by the deformation of the flexible member 30, and the downward fall of the bearing support lower half 33 is suppressed. Therefore, according to the present embodiment, the same effects as the effects (1) and (7) of the first and sixth embodiments can be obtained.

[I]第9の実施の形態(図10)
図10は、本発明に係る蒸気タービンの車室構造が適用された第9の実施の形態における低圧タービンの低圧車室を示す斜視図である。この第9の実施の形態において、前記第1、第2及び第5の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[I] Ninth Embodiment (FIG. 10)
FIG. 10 is a perspective view showing a low-pressure casing of the low-pressure turbine in the ninth embodiment to which the steam turbine casing structure according to the present invention is applied. In the ninth embodiment, the same portions as those in the first, second and fifth embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態の外部車室85は、第2の実施の形態の外部車室47(図3)と、第5の実施の形態の外部車室65(図6)とを組み合わせたものである。つまり、この外部車室85の外部車室上半86では、端板27の下端が可撓性部材30を介して軸受支持部上半28と水平フランジ部上半24に接合され、胴板26の下端が可撓性部材30を介して水平フランジ部上半24に接合され、且つ、両端が胴板26に支持された第1防撓材67と、この第1防撓材67に交差する第2防撓材68とが、端板27に固着して配置されたものである。   The external compartment 85 of the present embodiment is a combination of the external compartment 47 (FIG. 3) of the second embodiment and the external compartment 65 (FIG. 6) of the fifth embodiment. . That is, in the outer casing upper half 86 of the outer casing 85, the lower end of the end plate 27 is joined to the bearing support upper half 28 and the horizontal flange upper half 24 via the flexible member 30. The first stiffener 67 is joined to the upper half 24 of the horizontal flange portion via the flexible member 30 and both ends are supported by the body plate 26, and intersects the first stiffener 67. The second stiffener 68 is arranged to be fixed to the end plate 27.

これにより、外部車室上半86の端板27の剛性が、第2の実施の形態の外部車室上半48の端板27の場合よりも高められる。従って、本実施の形態によれば、前記第2及び第5の実施の形態の効果(2)及び(6)と同様な効果を奏する。   Thereby, the rigidity of the end plate 27 of the outer casing upper half 86 is higher than that of the end plate 27 of the outer casing upper half 48 of the second embodiment. Therefore, according to the present embodiment, the same effects as the effects (2) and (6) of the second and fifth embodiments are obtained.

[J]第10の実施の形態(図11)
図11は、本発明に係る蒸気タービンの車室構造が適用された第10の実施の形態における低圧タービンの低圧車室を示す斜視図である。この第10の実施の形態において、前記第1、第2、第5及び第6の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[J] Tenth embodiment (FIG. 11)
FIG. 11 is a perspective view showing a low-pressure casing of the low-pressure turbine in the tenth embodiment to which the casing structure of the steam turbine according to the present invention is applied. In the tenth embodiment, the same parts as those in the first, second, fifth and sixth embodiments are denoted by the same reference numerals, and the description thereof will be simplified or omitted.

本実施の形態の外部車室90は、第2の実施の形態の外部車室47(図3)と、第6の実施の形態の外部車室70(図6)とを組み合わせたものである。つまり、この外部車室90の外部車室上半91では、端板72の下端が可撓性部材30を介して水平フランジ部上半24に接合され、胴板26の下端が可撓性部材30を介して水平フランジ部上半24に接合され、且つ、端板72には、両端が胴板26に支持される第1防撓材74と、この第1防撓材74に交差する第2防撓材68とが配置されると共に、軸受支持部上半28に対応する位置に切欠き73が形成され、前記第1防撓材74は、切欠き73に対応する部分で分断され、この分断部分が着脱可能な連結部材75により連結されたものである。   The external compartment 90 of the present embodiment is a combination of the external compartment 47 (FIG. 3) of the second embodiment and the external compartment 70 (FIG. 6) of the sixth embodiment. . That is, in the outer casing upper half 91 of the outer casing 90, the lower end of the end plate 72 is joined to the horizontal flange portion upper half 24 via the flexible member 30, and the lower end of the trunk plate 26 is the flexible member. 30 is joined to the upper half 24 of the horizontal flange portion, and the end plate 72 includes a first stiffener 74 whose both ends are supported by the body plate 26, and a first stiffener 74 that intersects the first stiffener 74. 2 stiffeners 68 are disposed, a notch 73 is formed at a position corresponding to the bearing support upper half 28, and the first stiffener 74 is divided at a portion corresponding to the notch 73, This divided portion is connected by a detachable connecting member 75.

これにより、外部車室上半91の端板72の剛性が第6の実施の形態の場合と同様に高められ、且つ端板72及び胴板26の撓み変形が、第2の実施の形態の場合と同様に可撓性部材30の変形により吸収されて、軸受支持部下半33の下方への倒れ込みが抑制される。従って、本実施の形態によれば、前記第2及び第6の実施の形態の効果(2)及び(7)と同様な効果を奏する。   As a result, the rigidity of the end plate 72 of the outer casing upper half 91 is increased in the same manner as in the sixth embodiment, and the bending deformation of the end plate 72 and the body plate 26 is the same as that of the second embodiment. Similarly to the case, it is absorbed by the deformation of the flexible member 30, and the downward fall of the bearing support lower half 33 is suppressed. Therefore, according to the present embodiment, the same effects as the effects (2) and (7) of the second and sixth embodiments can be obtained.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではなく、更に他の実施の形態が本発明の範囲を逸脱しない範囲で含まれることは言うまでもない。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this, It cannot be overemphasized that other embodiment is contained in the range which does not deviate from the scope of the present invention. .

10 低圧タービン
11 低圧車室
12 タービンロータ
14 内部車室
15 外部車室
22 外部車室上半
23 外部車室下半
24 水平フランジ部上半
25 水平フランジ部下半
26 胴板
27 端板
28 軸受支持部上半
30 可撓性部材
33 軸受支持部下半
34 軸受支持部
47 外部車室
48 外部車室上半
50 外部車室
51 外部車室上半
52 外部車室下半
53 軸受支持部下半
54 軸受支持部
55 強度メンバー
55A 強度メンバーの下端縁
56 フェアリング
56A フェアリングの外周縁
60 外部車室
62 軸受支持部下半
63 強度メンバー
63A 強度メンバーの下端縁
65 外部車室
66 外部車室上半
67 第1防撓材
68 第2防撓材
70 外部車室
71 外部車室上半
72 端板
73 切欠き
74 第1防撓材
75 連結部材
77 外部車室
78 外部車室上半
80 外部車室
82 外部車室上半
85 外部車室
86 外部車室上半
90 外部車室
91 外部車室上半
O ロータ軸
10 Low-pressure turbine 11 Low-pressure casing 12 Turbine rotor 14 Internal casing 15 External casing 22 External casing upper half 23 External casing lower half 24 Horizontal flange upper half 25 Horizontal flange lower half 26 Body plate 27 End plate 28 Bearing support Upper half 30 Flexible member 33 Bearing support lower half 34 Bearing support 47 External compartment 48 External compartment upper half 50 External compartment 51 External compartment upper half 52 External compartment lower half 53 Bearing support lower half 54 Bearing Support member 55 Strength member 55A Strength member lower end edge 56 Fairing 56A Fairing outer peripheral edge 60 External casing 62 Bearing support part lower half 63 Strength member 63A Strength member lower end edge 65 External casing 66 External casing upper half 67 First 1 stiffener 68 second stiffener 70 external compartment 71 external compartment upper half 72 end plate 73 notch 74 first stiffener 75 connecting member 77 external compartment 78 external compartment Half 80 outer casing 82 outer casing upper half 85 outer casing 86 outer casing upper half 90 outer casing 91 outer casing upper half O rotor shaft

Claims (9)

タービンロータを収容する車室が内部車室と外部車室を有してなり、
前記外部車室が、前記タービンロータのロータ軸を通る水平面で外部車室上半と外部車室下半に分割され、
前記外部車室上半は、半筒形状の胴板と、この胴板の両端に設けられる端板と、これら胴板及び端板のそれぞれの下端に設けられる水平フランジ部上半と、この水平フランジ部上半と前記端板間に設けられる軸受支持部上半とを備えてなり、
前記水平フランジ部上半と前記外部車室下半の水平フランジ部下半とが結合され、前記軸受支持部上半と前記外部車室下半の軸受支持部下半とが結合されて、前記外部車室が構成され、
前記軸受支持部下半により前記タービンロータの荷重が支持される蒸気タービンの車室構造であって、
前記外部車室上半では、前記端板の下端が可撓性部材を介して、前記軸受支持部上半と前記水平フランジ部上半とに接合されたことを特徴とする蒸気タービンの車室構造。
The casing that houses the turbine rotor has an inner casing and an outer casing,
The external casing is divided into an upper half of the outer casing and a lower half of the outer casing in a horizontal plane passing through the rotor shaft of the turbine rotor;
The upper half of the outer casing includes a semi-cylindrical body plate, end plates provided at both ends of the body plate, horizontal flange upper portions provided at the lower ends of the body plate and the end plate, and the horizontal plate. A flange support upper half and a bearing support upper half provided between the end plates;
The upper half of the horizontal flange portion and the lower half of the horizontal flange portion of the lower half of the outer casing are coupled, and the upper half of the bearing support portion and the lower half of the bearing support portion of the lower half of the outer casing are coupled to form the outer vehicle. A room is constructed,
A casing structure of a steam turbine in which a load of the turbine rotor is supported by the lower half of the bearing support portion,
In the upper half of the outer casing, the lower end of the end plate is joined to the upper half of the bearing support portion and the upper half of the horizontal flange portion via a flexible member. Construction.
前記外部車室上半では、胴板の下端が可撓性部材を介して、水平フランジ部上半に接合されたことを特徴とする請求項1に記載の蒸気タービンの車室構造。 The steam turbine casing structure according to claim 1, wherein, in the upper half of the outer casing, the lower end of the body plate is joined to the upper half of the horizontal flange portion via a flexible member. タービンロータを収容する車室が内部車室と外部車室を有してなり、
前記外部車室が、前記タービンロータのロータ軸を通る水平面で外部車室上半と外部車室下半に分割され、
前記外部車室下半の軸受支持部下半により前記タービンロータの荷重が支持される蒸気タービンの車室構造であって、
前記軸受支持部下半は、前記外部車室下半の端板に接続される強度メンバーと、この強度メンバーの外側に配設されて排気を案内するフェアリングとを備えてなり、
前記強度メンバーは、前記端板に接続される下端縁が前記フェアリングの外周縁に連続する位置まで下方へ延出して構成されたことを特徴とする蒸気タービンの車室構造。
The casing that houses the turbine rotor has an inner casing and an outer casing,
The external casing is divided into an upper half of the outer casing and a lower half of the outer casing in a horizontal plane passing through the rotor shaft of the turbine rotor;
A steam turbine casing structure in which the load of the turbine rotor is supported by the lower half of the bearing support portion in the lower half of the outer casing,
The lower half of the bearing support portion includes a strength member connected to the end plate of the lower half of the outer casing, and a fairing disposed outside the strength member to guide exhaust.
A casing structure of a steam turbine, wherein the strength member is configured to extend downward to a position where a lower end edge connected to the end plate is continuous with an outer peripheral edge of the fairing.
前記強度メンバーは、軸受支持部下半の内側に凸の湾曲面形状に形成されたことを特徴とする請求項3に記載の蒸気タービンの車室構造。 The casing structure of a steam turbine according to claim 3, wherein the strength member is formed in a convex curved surface shape inside the lower half of the bearing support portion. タービンロータを収容する車室が内部車室と外部車室を有してなり、
前記外部車室が、前記タービンロータのロータ軸を通る水平面で外部車室上半と外部車室下半に分割され、
前記外部車室上半は、半筒形状の胴板と、この胴板の両端に設けられる端板と、これら胴板及び端板のそれぞれの下端に設けられる水平フランジ部上半と、この水平フランジ部上半と前記端板間に設けられる軸受支持部上半とを備えてなり、
前記水平フランジ部上半と前記外部車室下半の水平フランジ部下半とが結合され、前記軸受支持部上半と前記外部車室下半の軸受支持部下半とが結合されて、前記外部車室が構成され、
前記軸受支持部下半により前記タービンロータの荷重が支持される蒸気タービンの車室構造であって、
前記外部車室上半では、前記端板に、両端が前記胴板に支持された防撓材が配置されたことを特徴とする蒸気タービンの車室構造。
The casing that houses the turbine rotor has an inner casing and an outer casing,
The external casing is divided into an upper half of the outer casing and a lower half of the outer casing in a horizontal plane passing through the rotor shaft of the turbine rotor;
The upper half of the outer casing includes a semi-cylindrical body plate, end plates provided at both ends of the body plate, horizontal flange upper portions provided at the lower ends of the body plate and the end plate, and the horizontal plate. A flange support upper half and a bearing support upper half provided between the end plates;
The upper half of the horizontal flange portion and the lower half of the horizontal flange portion of the lower half of the outer casing are coupled, and the upper half of the bearing support portion and the lower half of the bearing support portion of the lower half of the outer casing are coupled to form the outer vehicle. A room is constructed,
A casing structure of a steam turbine in which a load of the turbine rotor is supported by the lower half of the bearing support portion,
In the upper half of the outer casing, a stiffener casing structure having both ends supported by the body plate on the end plate is disposed on the end plate.
前記外部車室上半における端板には軸受支持部上半に対応する位置に切欠きが形成され、 前記端板に配置された防撓材は、前記切欠きに対応する部分で分断され、この分断部分が着脱可能な連結部材により連結されたことを特徴とする請求項5に記載の蒸気タービンの車室構造。 The end plate in the upper half of the outer casing is formed with a notch at a position corresponding to the upper half of the bearing support, and the stiffener disposed on the end plate is divided at a portion corresponding to the notch, The casing structure of a steam turbine according to claim 5, wherein the divided portions are connected by a detachable connecting member. 前記外部車室上半の端板には、防撓材に接続される他の防撓材が配置されたことを特徴とする請求項5または6に記載の蒸気タービンの車室構造。 The casing structure of the steam turbine according to claim 5, wherein another stiffener connected to the stiffener is disposed on the end plate in the upper half of the outer casing. 前記外部車室上半では、両端が胴板に支持された防撓材が端板に配置されたことを特徴とする請求項1または2に記載の蒸気タービンの車室構造。 3. The steam turbine casing structure according to claim 1, wherein a stiffener having both ends supported by a body plate is disposed on the end plate in the upper half of the outer casing. 前記外部車室上半における端板には、両端が胴板に支持される防撓材が配置されると共に、軸受支持部上半に対応する位置に切欠きが形成され、前記防撓材は前記切欠きに対応する部分で分断され、この分断部分が着脱可能な連結部材により連結されたことを特徴とする請求項1または2に記載の蒸気タービンの車室構造。 The end plate in the upper half of the outer casing is provided with a stiffening material whose both ends are supported by the body plate, and a notch is formed at a position corresponding to the upper half of the bearing support portion. The casing structure of the steam turbine according to claim 1, wherein the casing is divided at a portion corresponding to the notch, and the divided portion is connected by a detachable connecting member.
JP2010102960A 2010-04-28 2010-04-28 Steam turbine casing structure Active JP5450237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102960A JP5450237B2 (en) 2010-04-28 2010-04-28 Steam turbine casing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102960A JP5450237B2 (en) 2010-04-28 2010-04-28 Steam turbine casing structure

Publications (2)

Publication Number Publication Date
JP2011231691A JP2011231691A (en) 2011-11-17
JP5450237B2 true JP5450237B2 (en) 2014-03-26

Family

ID=45321259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102960A Active JP5450237B2 (en) 2010-04-28 2010-04-28 Steam turbine casing structure

Country Status (1)

Country Link
JP (1) JP5450237B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746058B2 (en) 2018-03-06 2020-08-18 Kabushiki Kaisha Toshiba Steam turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019243B (en) * 2018-01-15 2020-04-10 重庆江增船舶重工有限公司 Turbine with integral bearing seat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746058B2 (en) 2018-03-06 2020-08-18 Kabushiki Kaisha Toshiba Steam turbine

Also Published As

Publication number Publication date
JP2011231691A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
US8800300B2 (en) Connection structure of exhaust chamber, support structure of turbine, and gas turbine
JP4991600B2 (en) Steam turbine
US6443695B2 (en) Steam turbine
US8403628B2 (en) Low-pressure steam turbine hood and inner casing supported on curb foundation
US5779435A (en) Low-pressure steam turbine
JP5180652B2 (en) Steam turbine casing structure
EP2256305B1 (en) Corrugated hood for low pressure steam turbine
JP5450237B2 (en) Steam turbine casing structure
JP5642514B2 (en) Cabin structure of low-pressure steam turbine
JP6755783B2 (en) Steam turbine
KR102467399B1 (en) Steam turbine plant and combined cycle plant
JP6087803B2 (en) Steam turbine
JP6833745B2 (en) Steam turbine
US10662817B2 (en) Steam turbine
US6231305B1 (en) Steam turbine installation
EP2256306B1 (en) Shaped and stiffened lower exhaust hood sidewalls
JP5371615B2 (en) Bearing housing
JP2013234675A (en) Bearing box
JP2008255915A (en) Structure of steam turbine casing
KR200480583Y1 (en) Exhaust System For Gas Turbine
JP2019023461A (en) Bearing bumper for blade out events
RU2036313C1 (en) Method of heightening dynamical stability of steam turbine
US20130022457A1 (en) Multi-shell turbine casing system
JP2001123804A (en) Low-pressure casing of steam turbine
JP2013036420A (en) Top-inlet-type low pressure steam turbine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R151 Written notification of patent or utility model registration

Ref document number: 5450237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151