JP5448081B2 - Heater chip for thermocompression bonding - Google Patents

Heater chip for thermocompression bonding Download PDF

Info

Publication number
JP5448081B2
JP5448081B2 JP2010047820A JP2010047820A JP5448081B2 JP 5448081 B2 JP5448081 B2 JP 5448081B2 JP 2010047820 A JP2010047820 A JP 2010047820A JP 2010047820 A JP2010047820 A JP 2010047820A JP 5448081 B2 JP5448081 B2 JP 5448081B2
Authority
JP
Japan
Prior art keywords
heater chip
pressing
detour
thermocompression bonding
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010047820A
Other languages
Japanese (ja)
Other versions
JP2011187469A (en
Inventor
忠宏 岩月
英理 松藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2010047820A priority Critical patent/JP5448081B2/en
Publication of JP2011187469A publication Critical patent/JP2011187469A/en
Application granted granted Critical
Publication of JP5448081B2 publication Critical patent/JP5448081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

この発明は、フレキシブルプリント配線板の導体層を硬基板の回路パターンに重ねたうえで熱圧着する場合などに用いる熱圧着用ヒータチップに関するものである。   The present invention relates to a thermo-compression heater chip used when thermo-compression is performed after a conductor layer of a flexible printed wiring board is superimposed on a circuit pattern of a hard substrate.

従来より、プリント配線基板にIC(集積回路)などの端子(リード)を熱圧着したり、フレキシブルプリント配線板(FPC)の導体層をコネクタや他の硬質の基板(硬基板)に熱圧着することが行われている。   Conventionally, a terminal (lead) such as an IC (integrated circuit) is thermocompression bonded to a printed wiring board, or a conductor layer of a flexible printed wiring board (FPC) is thermocompression bonded to a connector or another hard substrate (hard substrate). Things have been done.

図7は従来より広く用いられているヒータチップ1の一例を示す。図8はそのVII−VII線断面図である。これらの図7、8で符号2は水平な下辺であり、この下辺2の両端から起立する左右一対の腕部3、3の上部が給電端子4、4となっている。ヒータチップ1は図8から明らかなように、一定厚さの材料をワイヤーカット法などで加工したものである。ここに用いる材料は、W(タングステン)、Mo(モリブデン)、ニクロム合金(Ni−Cr)、Ti(チタン)などの電気抵抗が大きい金属である。   FIG. 7 shows an example of the heater chip 1 that has been widely used conventionally. FIG. 8 is a sectional view taken along line VII-VII. 7 and 8, reference numeral 2 denotes a horizontal lower side, and upper portions of a pair of left and right arms 3 and 3 standing from both ends of the lower side 2 are power supply terminals 4 and 4. As is apparent from FIG. 8, the heater chip 1 is obtained by processing a material having a constant thickness by a wire cutting method or the like. The material used here is a metal having a large electrical resistance, such as W (tungsten), Mo (molybdenum), nichrome alloy (Ni-Cr), Ti (titanium).

給電端子4、4にはボルト孔5が設けられ、これらは、それぞれ接合装置(図示せず)の加圧ヘッド(図示せず)にボルト結合される。両給電端子4、4間に電流(例えばパルス電流)を流すことによってヒータチップ1を発熱させることができる。回路パターンの接合部(パッド、ランドなど)には予めはんだめっき(プリコート)やはんだペーストが供給され、ここに重ねたリードに前記ヒータチップ1の下辺2を押圧した状態でヒータチップ1を発熱させ、はんだを溶融させることによってはんだ付けを行うものである。   Bolt holes 5 are provided in the power supply terminals 4 and 4, and these are bolted to a pressure head (not shown) of a joining device (not shown). The heater chip 1 can generate heat by flowing a current (for example, a pulse current) between the power feeding terminals 4 and 4. Solder plating (pre-coating) or solder paste is supplied in advance to circuit pattern joints (pads, lands, etc.), and the heater chip 1 is caused to generate heat in a state where the lower side 2 of the heater chip 1 is pressed against the lead superimposed thereon. The soldering is performed by melting the solder.

なお下辺2には図7に符号6で示す位置に熱電対が固着(溶接)され、ヒータチップ1の加熱温度が検出される。この熱電対の検出温度は制御回路(図示せず)にフィードバックされヒータチップ1の加熱電流が制御される。   A thermocouple is fixed (welded) to the lower side 2 at a position indicated by reference numeral 6 in FIG. 7, and the heating temperature of the heater chip 1 is detected. The detected temperature of the thermocouple is fed back to a control circuit (not shown) to control the heating current of the heater chip 1.

特開2009−164400JP 2009-164400 A

特許文献1には、一定間隔を空けて平行にのびる縦断面略U字状の一対のコテ部を有し、両コテ部の互いに向き合う内側辺を略逆U字状のブリッジ部で架橋し、それぞれの外側辺を上方に立上げて給電端子としたヒータチップが示されている。このヒータチップは、パッケージの周囲にガルウィング型端子を持つSOP(Small Outline Package)、QFP(Quad Flatpack Package)の平行な2辺に並ぶ多数の端子(リード)を基板の回路パターンに熱圧着するものである。   Patent Document 1 has a pair of iron parts having a substantially U-shaped longitudinal section extending in parallel with a constant interval, and bridging inner sides of both iron parts facing each other with a substantially inverted U-shaped bridge part, A heater chip is shown in which each outer side is raised upward to serve as a power supply terminal. This heater chip is a device that thermocompression-bonds multiple terminals (leads) arranged on two parallel sides of SOP (Small Outline Package) and QFP (Quad Flatpack Package) with gull-wing type terminals around the package to the circuit pattern of the board. It is.

近年デジタル家電向けのインターフェースとして、PC(パーソナル・コンピュータ)とディスプレイの接続標準規格であるHDMI(High-Definition Multimedia Interface)が広く用いられている。このHDMIでは映像・音声・制御信号を一体化したシングルケーブルを用い、AV機器の配線を簡略化すると共に、接続機器同士が互いに認識することにより各AV機器間の連携も容易にするものである。   In recent years, HDMI (High-Definition Multimedia Interface), which is a connection standard between PCs (personal computers) and displays, has been widely used as an interface for digital home appliances. This HDMI uses a single cable that integrates video, audio, and control signals, simplifies the wiring of AV equipment, and facilitates cooperation between AV equipment by allowing connected devices to recognize each other. .

この種のケーブルでは信号ラインと共に電源ラインを有するものがあり、この場合には電源ラインを信号ラインより太く(あるいは断面積を大きく)して許容電流容量を大きくしている。このようなケーブルを基板に接続する場合には、HDMIケーブルの接続端子(コネクタ)が接続されるAV機器側ソケット(コネクタ)をフレキシブル基板でマザーボードなどの他の基板に熱圧着により接続することがある。   Some types of cables have a power line along with a signal line. In this case, the allowable current capacity is increased by making the power line thicker (or having a larger cross-sectional area) than the signal line. When such a cable is connected to the board, the AV device side socket (connector) to which the connection terminal (connector) of the HDMI cable is connected may be connected to another board such as a mother board by thermocompression bonding using a flexible board. is there.

この場合には電源ラインと信号ライン(以下制御ラインともいう。)の太さ(または断面積)が異なるため、各ラインの接続に適する加熱温度や熱量が異なる。すなわち太い(断面積が大きい)電源ラインは熱容量が大きく導体層の伝熱量も大きいので、その加熱温度を信号ラインよりも大きくするのが望ましい。   In this case, since the thickness (or cross-sectional area) of the power supply line and the signal line (hereinafter also referred to as control line) is different, the heating temperature and heat amount suitable for connection of each line are different. In other words, a thick power supply line (having a large cross-sectional area) has a large heat capacity and a large heat transfer amount in the conductor layer, so that the heating temperature is desirably higher than that of the signal line.

前記特許文献1に示したヒータチップは同一寸法の多数のガルウィング型端子を一度にはんだ付け(熱圧着)することを前提とするから、一部の端子形状や厚さなどが異なっていて熱容量が異なる場合に熱圧着温度を変えることができない。このため全ての端子をそれぞれに最適な条件で熱圧着することはできない。   Since the heater chip shown in Patent Document 1 is premised on soldering (thermocompression) a large number of gull-wing terminals of the same size at a time, some terminal shapes and thicknesses are different and the heat capacity is high. The thermocompression bonding temperature cannot be changed in different cases. For this reason, all terminals cannot be thermocompression bonded under optimum conditions.

また電力制御回路を内蔵するハイブリッドICなどにおいて、電力ライン用端子(電力用リード)と信号制御ライン用端子(制御用リード)とを有するものが考えられるが、この場合も前記したものと同じ問題が生じ得る。そこで従来は熱容量が異なるリードを有する場合には、各リードに対して異なる温度のヒータチップを付け替えて複数回に分けて熱圧着していた。このためヒータチップの交換や複数のヒータチップ(または接合装置)を用意しなければならず、各熱圧着の信頼性の低下を招いたり、作業能率が悪くなるという問題があった。   Further, in hybrid ICs incorporating power control circuits, it is conceivable to have power line terminals (power leads) and signal control line terminals (control leads), but this case also has the same problem as described above. Can occur. Therefore, conventionally, when leads having different heat capacities are used, a heater chip having a different temperature is attached to each lead, and thermocompression bonding is performed in a plurality of times. For this reason, replacement of the heater chip and a plurality of heater chips (or joining devices) have to be prepared, leading to problems that the reliability of each thermocompression bonding is lowered and the work efficiency is deteriorated.

この発明はこのような事情に鑑みなされたものであり、熱容量などが異なるリードを熱圧着する場合に、温度が異なるヒータチップを用いて複数回熱圧着作業を行う必要が無く、一度に全てのリードを適切な条件で熱圧着することができる熱圧着用ヒータチップを提供することを目的とする。   The present invention has been made in view of such circumstances, and when thermocompression bonding of leads having different heat capacities or the like, it is not necessary to perform thermocompression work a plurality of times using heater chips having different temperatures. An object is to provide a heater chip for thermocompression bonding capable of thermocompression bonding of leads under appropriate conditions.

この発明によればこの目的は、水平な下辺とその両端から立上がる左右一対の腕部とを備え、両腕部の上端を加圧装置の加圧ヘッドに固定する給電端子とする一方、両給電端子間に加熱電流を供給することによって発熱させ、前記下辺を複数の熱圧着部に押圧して一度に接合する熱圧着用ヒータチップにおいて、前記下辺にはこの下辺を複数の押圧部に切り離す間隙を挟んで両端が前記押圧部に接続され前記加熱電流を迂回させる迂回路が、前記下辺と左右の腕部とで略枠状に囲まれる空間に形成され、前記迂回路の電気抵抗をその長手方向に変化させて前記迂回路の両端付近の温度が異なるようにすることによって、前記異なる押圧部に前記迂回路から伝わる熱量が異なるようにしたことを特徴とする熱圧着用ヒータチップ、により達成される。 According to the present invention, this object is provided with a horizontal lower side and a pair of left and right arms that rise from both ends thereof, and the upper ends of both arms are used as power supply terminals for fixing to the pressure head of the pressure device, heat is generated by supplying a heating current between power supply terminals, the lower side in the thermal compression heater chip you joined at a time by pressing a plurality of thermocompression bonded portions, the bottom side, the pressing portion of the lower side a plurality of A detour that bypasses the heating current with both ends connected to the pressing portion across a gap to be separated is formed in a space surrounded by a frame shape between the lower side and the left and right arms, and the electric resistance of the detour The heat-compression heater chip is characterized in that the amount of heat transmitted from the detour to the different pressing portions is made different by changing the temperature in the longitudinal direction so that the temperatures near the both ends of the detour are different. Achieved by It is.

水平な下辺の押圧面を仕切って加熱電流を迂回させる迂回路を形成し、この迂回路で仕切った異なる押圧部に、この迂回路から伝わる熱量が異なるようにしたものであるから、各押圧部に温度差を生じさせることができる。このため温度が高い押圧部で電力ラインなどの熱容量が大きい熱圧着部を押圧し、温度が低い押圧部で信号ライン(制御ライン)などの熱容量が小さい熱圧着部を押圧することにより、各熱圧着部をそれぞれ適切な温度で熱圧着することができる。従って各熱圧着部の接合の信頼性を高めることができる。またこれらの接合条件が異なる熱圧着部を一度に接合できるから作業能率が良い。すなわち温度が異なるヒータチップで複数回熱圧着作業を行う必要が無くなるからである。   Each of the pressing parts is formed by forming a detour that bypasses the heating current by partitioning the pressing surface of the horizontal lower side, and the amount of heat transmitted from this detour differs in different pressing parts partitioned by this detour. A temperature difference can be generated. For this reason, pressing the thermocompression bonding part with a large heat capacity such as an electric power line with a high temperature pressing part, and pressing the thermocompression bonding part with a small heat capacity such as a signal line (control line) with a low temperature pressing part, Each crimping part can be thermocompression bonded at an appropriate temperature. Therefore, the reliability of joining of each thermocompression bonding part can be improved. Moreover, since the thermocompression bonding part from which these joining conditions differ can be joined at once, work efficiency is good. That is, it is not necessary to perform the thermocompression work a plurality of times with heater chips having different temperatures.

本発明の実施例1を示す正面図The front view which shows Example 1 of this invention 同じく左側面図Same left side view この実施例の寸法例を示す図The figure which shows the example of a dimension of this Example 同じく押圧部の温度分布の時間変化を示す図The figure which shows the time change of the temperature distribution of a press part similarly ヒータチップの使用例を示す斜視図Perspective view showing usage example of heater chip ヒータチップの他の使用例を示す斜視図Perspective view showing another example of use of heater chip 従来例を示す正面図Front view showing a conventional example 図7におけるIV−IV線断面図IV-IV sectional view in FIG.

迂回路の両端から下辺に伝わる熱量に差を設けるためには、例えば迂回路の断面積(長手方向に直交する平面の面積)を長手方向に連続的、不連続的、階段状に変化させることによって、迂回路の両端付近の温度が異なるようにすればよい(請求項2)。この断面積が小さければその部分の電気抵抗が大きくなり、電流が一定なら発熱量が増えるからである。   In order to provide a difference in the amount of heat transferred from both ends of the detour to the lower side, for example, the cross-sectional area of the detour (the area of the plane perpendicular to the longitudinal direction) is changed continuously, discontinuously, and stepwise in the longitudinal direction. Therefore, the temperature in the vicinity of both ends of the detour may be made different (claim 2). This is because if the cross-sectional area is small, the electrical resistance of the portion increases, and if the current is constant, the heat generation amount increases.

迂回路で仕切られた下辺の各押圧部の断面積が異なるようにすれば、各押圧部の電気抵抗に差が生じるから、電流が一定なら各押圧部の発熱量にも差が生じる(請求項3)。従って迂回路両端付近の断面積に差を設ける(請求項2)と共に、この各押圧部断面積の差による発熱量の差とを組合せることにより、各押圧部の温度を一層適切に制御することができる。   If the cross-sectional area of each pressing portion on the lower side partitioned by the detour is made different, a difference occurs in the electrical resistance of each pressing portion. Item 3). Accordingly, a difference is provided in the cross-sectional area in the vicinity of both ends of the detour (Claim 2), and the temperature of each pressing part is further appropriately controlled by combining the difference in the amount of heat generated by the difference in the cross-sectional area of each pressing part be able to.

また左右一対の腕部の下部と下辺の両端との接続部付近の断面積に左右で差を設けてもよい(請求項4)。この場合には接続部付近の熱流通(熱伝導)量に差が生じるから、同様に各押圧部の温度制御を一層細かく制御できる。   Moreover, you may provide a difference in right and left in the cross-sectional area of the connection part vicinity of the lower part of a pair of right and left arm parts, and the both ends of a lower side (Claim 4). In this case, since a difference occurs in the amount of heat flow (heat conduction) in the vicinity of the connection portion, similarly, the temperature control of each pressing portion can be further finely controlled.

押圧部の断面積を迂回路の両端付近の断面積より大きくすれば、押圧部の発熱量を相対的に減らして迂回路の発熱による影響(押圧部の温度に及ぼす影響)を大きくすることができる(請求項5)。またこの場合は各押圧部の熱容量が大きくなるので、接合部(リード)に押圧した時の温度低下を少なくできる。   If the cross-sectional area of the pressing part is made larger than the cross-sectional area near both ends of the detour, the amount of heat generated by the depressing part can be relatively reduced to increase the influence of the detour by heat generation (influence on the temperature of the pressing part). (Claim 5). Further, in this case, since the heat capacity of each pressing portion is increased, the temperature drop when pressed against the joint portion (lead) can be reduced.

電源ラインなどのリードの断面積が大きい時に、リードの太さや厚さが制御ラインのリードより大きいことがあるが、このようなリードに対しては各押圧面の高さに差を設けておくのがよい(請求項6)。すなわちリードの高さの差に対応して押圧面の高さに差を設けておくものである。   When the cross-sectional area of a lead such as a power supply line is large, the thickness and thickness of the lead may be larger than the lead of the control line. For such a lead, there is a difference in the height of each pressing surface. (Claim 6). That is, a difference is provided in the height of the pressing surface corresponding to the difference in the height of the leads.

下辺は1つの迂回路で2つの押圧部に分けてもよいが(請求項7)、2以上の迂回路で3以上の押圧部に分けてもよく(請求項8)、この場合には熱容量が3段階以上に変化している接合部に用いるのに都合がよい。   The lower side may be divided into two pressing parts by one detour (Claim 7), but may be divided into three or more pressing parts by two or more detours (Claim 8). In this case, the heat capacity It is convenient to use it for a joint part having changed in three or more stages.

このヒータチップでは、迂回路に蓄積される熱量が増えるため、迂回路と押圧部の温度分布が時間経過に伴って均一化する。すると次の熱圧着の前に迂回路が十分冷えるまで待つ時間が長くなり、待機時間が長くなり、作業能率が低下する。これを防ぐためには迂回路に放熱手段を設けるのがよい(請求項9)。例えば迂回路に放熱用フィンや通気孔を設けたり、表面に凹凸加工を施して、空冷効果を上げることができる。また接合装置にこれらの放熱手段に冷却風を供給する送風手段を設けるのがよい。   In this heater chip, since the amount of heat accumulated in the detour is increased, the temperature distribution of the detour and the pressing portion is made uniform over time. Then, the time to wait until the detour is sufficiently cooled before the next thermocompression bonding becomes longer, the waiting time becomes longer, and the work efficiency is lowered. In order to prevent this, it is preferable to provide a heat radiating means in the bypass (claim 9). For example, the air cooling effect can be improved by providing heat radiation fins or vent holes on the detour, or by applying irregularities to the surface. Moreover, it is good to provide the ventilation apparatus which supplies cooling air to these heat radiating means in a joining apparatus.

図1、2、5において符号10は本発明の一実施例であるヒータチップである。このヒータチップ10は前記図7、8に示した従来のヒータチップ1と同様に、W(タングステン)などの高抵抗かつ一定厚さの金属材料をワイヤーカット加工したものである。このヒータチップ10の下辺は迂回路12によって左右の押圧部14、16に分割されている。すなわち下辺の下面は、この迂回路12で2つの押圧面14A、16Aに分割される。   1, 2, and 5, reference numeral 10 denotes a heater chip according to an embodiment of the present invention. The heater chip 10 is obtained by wire-cutting a metal material having a high resistance and a constant thickness, such as W (tungsten), as in the conventional heater chip 1 shown in FIGS. The lower side of the heater chip 10 is divided into left and right pressing portions 14 and 16 by a bypass 12. That is, the lower surface of the lower side is divided by the detour 12 into two pressing surfaces 14A and 16A.

迂回路12は下辺と左右の腕部18、20とで略枠状に囲まれる空間をほぼ占めるように、略Ω型に形成されている。腕部18、20の上部は給電端子22、24となっている。22A、24Aは給電端子22、24を押圧ヘッド(図示せず)に固定するボルトを通すボルト孔である。   The detour 12 is formed in a substantially Ω shape so that the lower side and the left and right arm portions 18 and 20 substantially occupy a space surrounded by a frame. Upper portions of the arm portions 18 and 20 are power supply terminals 22 and 24. Reference numerals 22A and 24A denote bolt holes through which bolts for fixing the power supply terminals 22 and 24 to a pressing head (not shown) are passed.

このヒータチップ10の詳細な寸法は図3に示す通りである。この図中の数字は寸法をmm単位で示す。なおこのヒータチップ10は図2から明らかなように一定の厚さであるから、図3に示す寸法は各部分の断面積(従って電気抵抗)に比例している。   Detailed dimensions of the heater chip 10 are as shown in FIG. Numbers in this figure indicate dimensions in mm. Since the heater chip 10 has a constant thickness as apparent from FIG. 2, the dimensions shown in FIG. 3 are proportional to the cross-sectional area (and hence the electrical resistance) of each part.

迂回路12は、押圧部14と16の間を0.4mmの間隙Aをもって切り離し、その一端は押圧部14に1.6mm幅の狭隘部Bを介して接続される。この狭隘部Bに連続する部分は、2.5mm幅の直線状の幅狭部Cとなっている。迂回路12の他端は、押圧部16に2.0mm幅の狭隘部Dを介して接続される。この狭隘部Dに連続する部分は、2.0mm幅のコ字型の幅広部Eとなっている。   The detour 12 separates the pressing portions 14 and 16 with a gap A of 0.4 mm, and one end thereof is connected to the pressing portion 14 via a narrow portion B having a width of 1.6 mm. A portion continuous with the narrow portion B is a linear narrow portion C having a width of 2.5 mm. The other end of the detour 12 is connected to the pressing portion 16 via a narrow portion D having a width of 2.0 mm. A portion continuous with the narrow portion D is a U-shaped wide portion E having a width of 2.0 mm.

給電端子22、24に加熱電流が供給されると、この電流は腕部18、20、押圧部14、16、迂回路12に流れ、ヒータチップ10の各部が発熱する。この時迂回路12の発熱量は幅が狭い幅狭部C(2.5mm)が幅が広い幅広部E(3.0mm)より多くなる。従って迂回路12から押圧部14に伝わる熱量が押圧部16に伝わる熱量よりも多くなる。 When a heating current is supplied to the power supply terminals 22 and 24, the current flows through the arm portions 18 and 20, the pressing portions 14 and 16, and the bypass 12, and each portion of the heater chip 10 generates heat. At this time, the heat generation amount of the detour 12 is larger in the narrow portion C (2.5 mm) having the narrow width than in the wide portion E (3.0 mm) having the wide width. Therefore, the amount of heat transferred from the detour 12 to the pressing portion 14 is larger than the amount of heat transferred to the pressing portion 16.

なお押圧部14側の狭隘部B(幅1.6mm)が押圧部16側の狭隘部D(幅2.0mm)より狭いので、前者B(幅1.6mmの部分)の発熱量が後者D(幅2.0mmの部分)より大きくなる。このため狭隘部B、Dは押圧部14の温度を押圧部16より高くするのに寄与する。   Since the narrow portion B (width 1.6 mm) on the pressing portion 14 side is narrower than the narrow portion D (width 2.0 mm) on the pressing portion 16 side, the heat generation amount of the former B (width 1.6 mm) is the latter D. (Part with a width of 2.0 mm). For this reason, the narrow portions B and D contribute to making the temperature of the pressing portion 14 higher than that of the pressing portion 16.

また腕部18の下部で押圧部14につながる連結部分F(幅0.8mm)は、腕部20の下部で押圧部16につながる連結部分G(幅1.0mm)よりも幅が狭い。このため押圧部14側の連結部分Fの発熱量が押圧部16側の連結部分Gの発熱量が多くなり、押圧部14を押圧部16より高温にするのに寄与する。   Further, the connecting portion F (width 0.8 mm) connected to the pressing portion 14 below the arm portion 18 is narrower than the connecting portion G (width 1.0 mm) connecting to the pressing portion 16 below the arm portion 20. For this reason, the heat generation amount of the connecting portion F on the pressing portion 14 side increases the heat generation amount of the connecting portion G on the pressing portion 16 side, which contributes to making the pressing portion 14 have a higher temperature than the pressing portion 16.

さらに押圧部14(幅2.8mm)は押圧部16(幅3.0mm)よりも狭いから、押圧部14の発熱量が押圧部16の発熱量より多くなる。このように押圧部14の両端に狭隘部Bおよび連結部分Fを介して伝わる熱量は、押圧部16の両端に狭隘部Dおよび連結部分Gを介して伝わる熱量に差が生じると共に、押圧部14、16自身の発熱量にも差が生じ、その結果押圧部14が押圧部16より一層速やかに高温になる。   Furthermore, since the pressing part 14 (width 2.8 mm) is narrower than the pressing part 16 (width 3.0 mm), the amount of heat generated by the pressing part 14 is greater than the amount of heat generated by the pressing part 16. As described above, the amount of heat transmitted to both ends of the pressing portion 14 via the narrow portion B and the connecting portion F is different from the amount of heat transmitted to both ends of the pressing portion 16 via the narrow portion D and the connecting portion G, and the pressing portion 14. , 16 also has a difference in the amount of heat generated, and as a result, the pressing portion 14 becomes higher in temperature than the pressing portion 16 more quickly.

図4は加熱電流の供給に伴う押圧部14、16の温度変化の測定結果を示している。測定部位は図1に符号a、b、〜eで示し、各部位a〜eに溶接した熱電対の温度測定結果が図4の曲線a〜eに対応している。この図4から明らかなように、押圧部14の温度が押圧部16よりも急速に上昇し、2〜4秒後にそれぞれ400〜450℃、250〜280℃に保持される。すなわち所定時間範囲では高温と低温の2段階の温度が得られる。   FIG. 4 shows the measurement result of the temperature change of the pressing portions 14 and 16 accompanying the supply of the heating current. The measurement sites are denoted by reference symbols a, b, and e in FIG. 1, and the temperature measurement results of the thermocouples welded to the respective sites a to e correspond to the curves a to e in FIG. As apparent from FIG. 4, the temperature of the pressing portion 14 rises more rapidly than the pressing portion 16 and is maintained at 400 to 450 ° C. and 250 to 280 ° C. after 2 to 4 seconds, respectively. That is, in a predetermined time range, a two-stage temperature of high temperature and low temperature can be obtained.

なおヒータチップ10を図5に示すように接合対象に押圧した状態で発熱させ、各押圧部14、16が2段階の温度に分かれた後(約4秒経過後)加熱電流を遮断すれば、各部の温度は伝熱により均一化し略一定温度に集束する。この測定は温度測定器としてGR−3500(キーエンス製)を用い、サンプリング周期は100msで行った。   If the heater chip 10 is heated while being pressed against the bonding target as shown in FIG. 5 and the respective pressing portions 14 and 16 are divided into two stages of temperatures (after about 4 seconds), the heating current is cut off. The temperature of each part is made uniform by heat transfer and converged to a substantially constant temperature. This measurement was performed using a GR-3500 (manufactured by KEYENCE) as a temperature measuring instrument with a sampling period of 100 ms.

なお押圧部16の下面である押圧面16Aは、押圧部14の押圧面14Aよりも0.2mm下がっている。このように高さに差を設けたのは、後記する接合対象であるリードの厚さが電力用と制御用とで異なるからである。   Note that the pressing surface 16 </ b> A that is the lower surface of the pressing portion 16 is lower than the pressing surface 14 </ b> A of the pressing portion 14 by 0.2 mm. The reason for the difference in height is that the thickness of a lead, which will be described later, is different for power and control.

次にこの実施例の使用例を図5に基づいて説明する。この図において符号30はフレキシブル基板(FPC)であり、その一端は絶縁層が全く無い裸の導体(フライイングリード構造)となっている。これらの導体は、一部(4本)が太径の電力用リード32であり、他(9本)が細径の制御用リード34となっている。これらリード32、34はヒータチップ10の高温側の押圧部14と低温側の押圧部16の長さ範囲に対応する範囲に平行に並んでいる。36は硬基板(硬質プリント基板)であり、例えばコネクタ(図示せず)を固定するための補強板であったり、マザーボードなどである。硬基板36にはFPC30の各リード32、34に対応する電力用回路パターン38と制御用回路パターン40が形成されている。これらの回路パターン38、40の接合部(パッド)には、予めはんだめっきによりはんだが供給されている。   Next, a usage example of this embodiment will be described with reference to FIG. In this figure, reference numeral 30 denotes a flexible substrate (FPC), one end of which is a bare conductor (flying lead structure) having no insulating layer. Among these conductors, a part (four) is a large-diameter power lead 32 and the other (nine) is a small-diameter control lead 34. These leads 32 and 34 are arranged in parallel in a range corresponding to the length range of the high temperature side pressing portion 14 and the low temperature side pressing portion 16 of the heater chip 10. Reference numeral 36 denotes a hard board (hard printed board), for example, a reinforcing plate for fixing a connector (not shown) or a mother board. A power circuit pattern 38 and a control circuit pattern 40 corresponding to the leads 32 and 34 of the FPC 30 are formed on the hard substrate 36. Solder is supplied in advance to the joint portions (pads) of these circuit patterns 38 and 40 by solder plating.

FPC30の電力用リード32を回路パターン38に位置合わせし、制御用リード34を回路パターン40に位置合わせして重ね、上方からヒータチップ10の押圧部14、16をそれぞれ押圧することにより熱圧着する。すなわちヒータチップ10を押圧した状態で加熱電流を供給すると、図4に示す2段階の温度に加熱され、この状態ではんだが溶融開始すると(約2秒後)この溶融中は略一定温になる(2〜4秒間)。そしてはんだの溶融がほぼ終わると温度測定点cの温度が他の測定点d、eよりも僅かに上昇する(図4のP点、約4秒後)。この温度上昇ははんだの融解が終わって融解熱が不用になる一方迂回路12の全体の温度が均一化して迂回路12から低温側の押圧部16に伝達する熱量が増えるためであると考えられる。 The power lead 32 of the FPC 30 is aligned with the circuit pattern 38, the control lead 34 is aligned and overlapped with the circuit pattern 40, and thermocompression bonding is performed by pressing the pressing portions 14 and 16 of the heater chip 10 from above. . That is, when a heating current is supplied while the heater chip 10 is pressed, it is heated to the two-stage temperature shown in FIG. 4, and when the solder starts to melt in this state (after about 2 seconds), the temperature becomes substantially constant during the melting. (2-4 seconds). When the melting of the solder is almost finished, the temperature at the temperature measurement point c rises slightly higher than the other measurement points d and e (point P in FIG. 4, about 4 seconds later). This increase in temperature is considered to be due to the fact that the melting of the solder ends and the heat of fusion becomes unnecessary, while the overall temperature of the detour 12 is made uniform and the amount of heat transferred from the detour 12 to the low temperature side pressing portion 16 increases. .

太径の電力用リード32の熱容量は制御用リード34の熱容量よりも大きいが、高温側押圧部14をここに押圧し加熱した時には電力用リード32および回路パターン38のはんだめっきなどが適切な熱量で十分に加熱され、良好に熱圧着される。細径の制御用リード34の熱容量はリード32よりも小さいが、ここには低温側押圧部16が押圧されるので、このリード34に適した熱量で十分に加熱され、良好に熱圧着される。   The heat capacity of the large-diameter power lead 32 is larger than the heat capacity of the control lead 34, but when the high temperature side pressing portion 14 is pressed and heated, the power lead 32 and the circuit pattern 38 are soldered with an appropriate amount of heat. Is sufficiently heated and is thermocompression bonded satisfactorily. Although the heat capacity of the small-sized control lead 34 is smaller than that of the lead 32, the low-temperature side pressing portion 16 is pressed here, so that it is sufficiently heated with a heat amount suitable for the lead 34 and is well thermocompression bonded. .

約4秒後(図4のP点)に加熱電流を遮断すれば押圧部14、16の冷却が進み、ヒータチップ10は均一な温度に漸近しながら冷え、ヒータチップの凝固温度以下になった後に熱圧着を完了する。熱圧着が終わるとヒータチップ10を上昇させて次の圧着に備える。   If the heating current is interrupted after about 4 seconds (point P in FIG. 4), the pressing parts 14 and 16 are cooled, and the heater chip 10 gradually cools to a uniform temperature and becomes below the solidification temperature of the heater chip. Later, thermocompression bonding is completed. When the thermocompression bonding is finished, the heater chip 10 is raised to prepare for the next pressure bonding.

なお電力用リード32は太いので押圧部14に接触開始する高さが、押圧部16に制御用リード34に接触開始する高さよりも高い。このためこの実施例1では、前記したように、押圧部14の押圧面14Aを押圧部16の押圧面16Aよりも高く(0.2mm、図3参照)している。なお電力用リード32は太さを大きくするのに代えて、厚さを制御用リード34と同じとしつつ幅を拡大して大電流に対応させることもできる。この場合は押圧面16Aを14Aと同じ高さにすればよい。   Since the power lead 32 is thick, the height at which the power lead 32 starts to contact the pressing portion 14 is higher than the height at which the pressing portion 16 starts to contact the control lead 34. For this reason, in Example 1, as described above, the pressing surface 14A of the pressing portion 14 is higher than the pressing surface 16A of the pressing portion 16 (0.2 mm, see FIG. 3). Instead of increasing the thickness of the power lead 32, the thickness can be made the same as that of the control lead 34, and the width can be expanded to correspond to a large current. In this case, the pressing surface 16A may be the same height as 14A.

図6で符号50はハイブリッドICであり、電力制御用半導体素子とその制御回路とを内蔵する。このICはそのパッケージの対向二辺にガルウィング型の電力用リード52と、制御用リード54とを持つ。4本の電力用リード52はパッケージの一端寄りに隣接し、9本の制御用リード52が他端寄りに隣接している。56は硬基板(PCB)であり、その上面には各リード52、54に対応する図示しない回路パターン(ランド、パッド、スルーホール等)が形成されている。この回路パターンには予めはんだめっきなどによりはんだが供給されている。   In FIG. 6, reference numeral 50 denotes a hybrid IC, which incorporates a power control semiconductor element and its control circuit. This IC has a gull wing type power lead 52 and a control lead 54 on two opposite sides of the package. The four power leads 52 are adjacent to one end of the package, and the nine control leads 52 are adjacent to the other end. Reference numeral 56 denotes a hard substrate (PCB), on which an unillustrated circuit pattern (land, pad, through hole, etc.) corresponding to the leads 52 and 54 is formed. Solder is previously supplied to the circuit pattern by solder plating or the like.

ヒータチップ10は前記したものと同じであり、その高温側押圧部14を電力用リード52に、低温側押圧部16を制御用リード54に位置合わせして押下する。前記実施例1と同様に加熱電流を制御することにより、熱容量が異なる電力用リード52と制御用リード54を適切な熱量で加熱し、良好な状態にはんだ付けすることができる。   The heater chip 10 is the same as described above, and the high temperature side pressing portion 14 is aligned with the power lead 52 and the low temperature side pressing portion 16 is aligned with the control lead 54 and pressed down. By controlling the heating current as in the first embodiment, the power lead 52 and the control lead 54 having different heat capacities can be heated with an appropriate amount of heat and soldered in a good state.

なおヒータチップ10の迂回路12には冷却手段となる冷却フィン58を形成しておいてもよい。このヒータチップ10は迂回路12の熱容量を利用して押圧部14、16を異なる温度に加熱するから、この迂回路12の熱容量が大きいと逆に押圧部14、16の冷却が遅くなる。このため溶融したはんだが凝固するまでの時間が長くなり、処理能率が悪くなることが考えられる。冷却フィン58はこの冷却速度を増大して1回のはんだ圧着処理に要する時間を短縮する作用を持つ。   A cooling fin 58 serving as a cooling means may be formed in the bypass circuit 12 of the heater chip 10. Since the heater chip 10 uses the heat capacity of the bypass 12 to heat the pressing parts 14 and 16 to different temperatures, conversely, when the heat capacity of the bypass 12 is large, the cooling of the pressing parts 14 and 16 is delayed. For this reason, it is considered that the time until the molten solder is solidified becomes longer, and the processing efficiency is deteriorated. The cooling fins 58 increase the cooling rate and shorten the time required for one solder pressing process.

また圧着装置に、この冷却フィン58に適時に冷却空気を供給する送風手段を設けてもよい。この場合冷却フィン58を省いてヒータチップ10全体を空冷するものであってもよい。冷却フィン58に代えて、迂回路16に通気孔を設けてここを冷却空気が通るようにしたり、表面に凹凸加工を施して表面積を増やしてもよい。   Further, the pressure bonding device may be provided with a blowing means for supplying cooling air to the cooling fins 58 in a timely manner. In this case, the cooling fins 58 may be omitted and the entire heater chip 10 may be air-cooled. Instead of the cooling fins 58, a ventilation hole may be provided in the bypass 16 so that the cooling air passes therethrough, or the surface area may be increased by performing uneven processing on the surface.

10 ヒータチップ
12 迂回路
14 高温側押圧部
16 低温側押圧部
14A、16A 押圧面
18、20 腕部
22、24 給電端子
30 フレキシブル基板
32、52 大電力用リード
34、54 制御用リード
36 硬基板
50 ハイブリッドIC
56 硬基板
58 冷却フィン
DESCRIPTION OF SYMBOLS 10 Heater chip 12 Detour 14 High temperature side press part 16 Low temperature side press part 14A, 16A Press surface 18, 20 Arm part 22, 24 Feeding terminal 30 Flexible board 32, 52 High power lead 34, 54 Control lead 36 Hard board 50 Hybrid IC
56 Hard substrate 58 Cooling fin

Claims (9)

水平な下辺とその両端から立上がる左右一対の腕部とを備え、両腕部の上端を加圧装置の加圧ヘッドに固定する給電端子とする一方、両給電端子間に加熱電流を供給することによって発熱させ、複数の熱圧着部を一度に接合する熱圧着用ヒータチップにおいて、
前記下辺にはこの下辺を複数の押圧部に切り離す間隙を挟んで両端が前記押圧部に接続され前記加熱電流を迂回させる迂回路が、前記下辺と左右の腕部とで略枠状に囲まれる空間に形成され、
前記迂回路の電気抵抗をその長手方向に変化させて前記迂回路の両端付近の温度が異なるようにすることによって、前記異なる押圧部に前記迂回路から伝わる熱量が異なるようにしたことを特徴とする熱圧着用ヒータチップ。
It has a horizontal lower side and a pair of left and right arms that rise from both ends, and the upper ends of both arms serve as power supply terminals that are fixed to the pressure head of the pressure device, while supplying a heating current between both power supply terminals in thermal compression heater chip to generate heat, you joining a plurality of thermocompression bonded portions at a time by,
The bottom side, detour to both ends across the gap to separate the lower side in a plurality of pressing portions is connected to the pressing portion bypassing said heating current, surrounded by a substantially frame shape between the lower side and the left and right arms Formed in the space
The amount of heat transmitted from the detour to the different pressing portions is made different by changing the electrical resistance of the detour in the longitudinal direction so that the temperatures near both ends of the detour are different. Heater chip for thermocompression bonding.
迂回路の断面積をその長手方向に変化させ、迂回路の両端付近の温度が異なるようにした請求項1の熱圧着ヒータチップ。 The longitudinal direction is changed, detour around both ends thermocompression heater chip of claim 1 in which the temperature was different in the cross-sectional area of the bypass passage. 迂回路で仕切られた下辺の各押圧部の断面積が異なる請求項1または2の熱圧着用ヒータチップ。   The heater chip for thermocompression bonding according to claim 1 or 2, wherein a cross-sectional area of each pressing portion on a lower side partitioned by a detour is different. 左右一対の腕部の下部と下辺の両端との接続部付近の断面積が異なる請求項1または2又は3の熱圧着用ヒータチップ。   The heater chip for thermocompression bonding according to claim 1, 2 or 3, wherein a cross-sectional area in the vicinity of a connection portion between a lower portion of a pair of left and right arm portions and both ends of a lower side is different. 押圧部の断面積は迂回路の両端付近の断面積より大きくした請求項1〜4のいずれかの熱圧着用ヒータチップ。   The heater chip for thermocompression bonding according to any one of claims 1 to 4, wherein a cross-sectional area of the pressing portion is larger than a cross-sectional area near both ends of the bypass. 一部の押圧部では押圧面の高さが他の押圧部とは異なる請求項1〜5のいずれかの熱圧着用ヒータチップ。   The heater chip for thermocompression bonding according to any one of claims 1 to 5, wherein in some of the pressing portions, the height of the pressing surface is different from that of the other pressing portions. 1つの迂回路により2つの押圧部が形成されている請求項1〜6のいずれかの熱圧着用ヒータチップ。   The heater chip for thermocompression bonding according to any one of claims 1 to 6, wherein two pressing portions are formed by one detour. 複数の迂回路により3以上の押圧部が形成されている請求項1〜6のいずれかの熱圧着用ヒータチップ。   The heater chip for thermocompression bonding according to any one of claims 1 to 6, wherein three or more pressing portions are formed by a plurality of detours. 迂回路には放熱手段が形成されている請求項1〜6のいずれかの熱圧着用ヒータチップ。   The thermocompression bonding heater chip according to any one of claims 1 to 6, wherein a heat radiating means is formed in the bypass.
JP2010047820A 2010-03-04 2010-03-04 Heater chip for thermocompression bonding Expired - Fee Related JP5448081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047820A JP5448081B2 (en) 2010-03-04 2010-03-04 Heater chip for thermocompression bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047820A JP5448081B2 (en) 2010-03-04 2010-03-04 Heater chip for thermocompression bonding

Publications (2)

Publication Number Publication Date
JP2011187469A JP2011187469A (en) 2011-09-22
JP5448081B2 true JP5448081B2 (en) 2014-03-19

Family

ID=44793475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047820A Expired - Fee Related JP5448081B2 (en) 2010-03-04 2010-03-04 Heater chip for thermocompression bonding

Country Status (1)

Country Link
JP (1) JP5448081B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636615B2 (en) * 2006-03-23 2011-02-23 日本アビオニクス株式会社 Multi-point heater chip
JP2009160617A (en) * 2008-01-08 2009-07-23 Miyachi Technos Corp Heater tip and joining device

Also Published As

Publication number Publication date
JP2011187469A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5794577B2 (en) Heater chip, joining device, joining method, and conductor thin wire and terminal connection structure
EP2477223B1 (en) Method of manufacturing a semiconductor apparatus
JPH0810716B2 (en) Electronic package
JP2011044512A (en) Semiconductor component
JP5765981B2 (en) Light emitting device
CN105452818A (en) Thermal mass flow meter and mass flow control device
CN104170535A (en) Method for manufacturing electronic component
JP6133093B2 (en) Power converter
JP2010253503A (en) Heater chip and joining apparatus
JP6851610B2 (en) Heater tip and joining device and joining method
JP5448081B2 (en) Heater chip for thermocompression bonding
JP2019133965A (en) Semiconductor device and manufacturing method thereof
CN102842555B (en) Semiconductor device and manufacture method thereof
JP6710155B2 (en) Power semiconductor module and method of manufacturing power semiconductor module
JP6477105B2 (en) Semiconductor device
JP6318791B2 (en) Busbar connection structure
JP2005026364A (en) Hybrid integrated circuit
JP4919023B2 (en) Power semiconductor module mounting structure
JPH1187906A (en) Semiconductor device and packaging method therefor
WO2022208603A1 (en) Semiconductor device
CN210467818U (en) IGBT module packaging structure
JP2003142821A (en) Method and structure for connecting printed board
WO2017208941A1 (en) Semiconductor device and method for manufacturing same
JP6154987B2 (en) Semiconductor device
JP2009027043A (en) Electronic component and its assembling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Ref document number: 5448081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees